七年级数学上册第3章整式的加减3.4整式的加减3.4.3第1课时去括号练习新版华东师大版
新北师大版七年级数学上册第三章《整式及其加减》全章各课时课件

探 索 新 知
11 1
16 4
21 9
26 16
31 25
36 36
41 49
46 64
(3) 如果这两个代数式分别表示甲乙两家公司给一个 打工者所发的总工资(n代表他上班的总天数),你将选择 在哪家公司打工?
巩 固 练 习
归 纳 小 结
谈谈你的收获.
作业
课本第85页,习题3.3,知识技能,
人民币a元,平均每件文具折合人民币b元.则
(1)两个班捐献的衣物和文具共相当于人民币
情 境 导 入
多少元?
(12a 24b) (14a 18b) (12a 24b) - (14a 18b)
(2)哪个班捐献的衣物和文具所值人民币更多?
第 三 章 整 式 及 其 加 减
我们刚才得到的两个式子含有哪些单项式? 你能发现他们有何共同点吗?
16
2、列代数式解决下列问题.
(2)如图,一个十字形花坛铺满了草皮,这个
花坛草地面积是多少?
复 习 导 入
ab 4c
2
2、列代数式解决下列问题.
复 习 导 入
(3)当水结冰时,其体积大约会比原来增加 10 3 1/9 ,x m 的水结成冰后体积是多少? x m3 9 (4)如图,一个长方体的箱子紧靠墙角,它的 长、宽、高分别是a,b,c. 这个箱子露在外面 ab ac bc 的表面积是多少?
探 索 新 知
怎样区分一个代数式是否是整式?
分母中是否含有字母.
探 索 新 知
ab
8
b
2
ab
32
b2
例 题 讲 解
ab , 4 x,a, 0, 2r 5 x y 1 , ab 2c,x 2 xy y 2,xyz 1,x 2 y 5,a b 2 3
北师大七年级上《3.4整式的加减》课时练习含答案解析

北师大版数学七年级上册第三章第四节整式的加减课时练习一、单选题(共15题)1.化简m-n-(m+n)的结果是()A.0 B.2m C.-2n D.2m-2n答案:C解析:解答:原式=m-n-m-n=-2n.故选C分析: 根据整式的加减运算法则,先去括号,再合并同类项.注意去括号时,括号前是负号,去括号时,括号里各项都要变号;合并同类项时,只把系数相加减,字母和字母的指数不变2.计算:a-2(1-3a)的结果为()A.7a-2 B.-2-5a C.4a-2 D.2a-2答案:A解析:解答:a-2(1-3a)=a-2+6a=7a-2.选A.分析:先按照去括号法则去掉整式中的小括号,再合并整式中的同类项3.如果m是三次多项式,n是三次多项式,那么m+n一定是()A.六次多项式 B.次数不高于三的整式C.三次多项式 D.次数不低于三的整式答案:B解析:解答:若两个三次多项式中,三次项的系数不相等,这两个三次多项式相减后就仍为三次多项式;若两个三次多项式中,三次项的系数相等,这两个三次多项式相减后三次多项式就会变为低于三次的整式.故选B.分析:根据合并同类项的法则,两个多项式相减后,多项式的次数一定不会升高.但当最高次数项的系数如果相等,相减后最高次数项就会消失,次数就低于34.计算x2-(x-5)+(x+1)的结果,正确的是()A.x2+6 B.x2-4x+5 C.-4x-5 D.x2-4x+5答案:A解析:解答: 原式=x2-x+5+x+1=x2+6.选A.分析:此题只需按照整式加减的运算法则,先去括号,再计算.5.化简x-y-(x+y)的最后结果是()A.0 B.2x C.-2y D.2x-2y答案:C解析:解答:原式=x-y-x-y=-2y.选C.分析:原式去括号合并即可得到结果6.(2a+3b)2=(2a-3b)2+(),括号内的式子是()A.6ab B.24ab C.12ab D.18ab答案:B解析:解答: 由题意得,设括号内的式子为A,则A=(2a+3b)2-(2a-3b)2=24ab.选B.分析:本题考查了整式的加减,比较简单,容易掌握7.如图,漠漠和嘉嘉做数学游戏:假设嘉嘉抽到牌的点数为x,漠漠猜中的结果为y,则y 等于()A.2 B.3 C.6 D.x+2答案:A解析:解答: 根据题意得:(3x+6)÷3-x=y,解得:y=2.选A.分析:根据题意列出关系式,求出y8.如图,把四张形状大小完全相同的小长方形卡片不重叠地放在一个底面为长方形(长为a,宽为b)的盒子底部,盒子底面未被卡片覆盖的部分用阴影表示,则这两块阴影部分小长方形周长的和为()A.a+2b B.4a C.4b D.2a+b答案:C解析:解答: 设小长方形卡片的长为m,宽为n,∴L1周长=2(b-2n)+m,L2周长=2×2n+(b-m),∴两块阴影部分小长方形周长的和=2(b-2n)+m+2×2n+(b-m)=4b,选:C.分析:先设小长方形卡片的长为m,宽为n,再结合图形得出两部分的阴影周长加起来9.计算6a2-5a+3与5a2+2a-1的差,结果正确的是()A.a2-3a+4 B.a2-3a+2 C.a2-7a+2 D.a2-7a+4答案:D解析:解答:(6a2-5a+3 )-(5a2+2a-1)=6a2-5a+3-5a2-2a+1=a2-7a+4.选D.分析: 每个多项式应作为一个整体,用括号括起来,再去掉括号,合并同类项,化简10.今天数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记复习老师课上讲的内容,他突然发现一道题:(x2+3xy)-(2x2+4xy)=-x2.此空格的地方被钢笔水弄污了,那么空格中的一项是()A.-7xy B.7xy C.-xy D.xy答案:C解析:解答: 原式=x2+3xy-2x2-4xy=-x2-xy∴空格中是-xy选C.分析: 本题涉及整式的加减运算,解答时用先去括号,再合并同类项就可得出结果11.长方形的一边长等于3x+2y,另一边长比它长x-y,这个长方形的周长是()A.4x+y B.12x+2y C.8x+2y D.14x+6y答案:D解析:解答: 依题意得:周长=2(3x+2y+3x+2y+x-y)=14x+6y.选D分析: 根据题意表示另一边的长,进一步表示周长,化简12.一个多项式与x2-2x+1的和是3x-2,则这个多项式为()A.x2-5x+3 B.-x2+x-1 C.-x2+5x-3 D.x2-5x-13答案:C解析:解答: 由题意得:这个多项式=3x-2-(x2-2x+1),=3x-2-x2+2x-1,=-x2+5x-3.选C.分析: 由题意可得被减式为3x-2,减式为x2-2x+1,根据差=被减式-减式可得出这个多项式13.如果y=3x,z=2(y-1),那么x-y+z等于()A.4x-1 B.4x-2 C.5x-1 D.5x-2答案:B解析:解答: 原式=x-3x+2(3x-1)=4x-2.选B.分析:首先求得z的值(用x表示),再代入x-y+z求解.注意应用去括号得法则:括号前是正号,括号里各项都不变号;括号前是负号,括号里各项都变号14.a-(b+c-d)=(a-c)+()A.d-b B.-b-d C.b-d D.b+d答案:A解析:解答:a-(b+c-d)=(a-c)+(d-b),选A分析:根据去括号与添括号的法则求解即可.注意去添括号时,括号前是负号,括号里的各项都要变号15.下列计算中结果正确的是()A.4+5ab=9ab B.6xy-x=6yC.3a2b-3ba2=0 D.12x3+5x4=17x7答案:C解析:解答:4和5ab不是同类项,不能合并,所以A错误.6xy和x不是同类项,不能合并,所以B错误.3a2b和3ba2是同类项,可以合并,系数相减,字母和各字母的指数不变得:3a2b-3ba2=0,所以C正确.12x3和5x4不是同类项,不能合并,所以D错误.故选C分析:根据合并同类项的法则进行解题,同类项合并时,系数相加减,字母和各字母的指数都不改变.二、填空题(共5题)16.计算 2a-(-1+2a)=___答案:1解析:解答:原式=2a+1-2a=1.答案为:1.分析:本题考查了整式的加减、去括号法则两个考点.先按照去括号法则去掉整式中的小括号,再合并整式中的同类项17.多项式______与m2+m-2的和是m2-2m答案: -3m+2解析:解答: 根据题意得:(m2-2m)-(m2+m-2)=m2-2m- m2-m+2=-3m+2.答案为:-3m+2分析:根据题意列出关系式,去括号合并即可得到结果18.化简:5(x-2y)-4(x-2y)=_________答案:x-2y解析:原式=5x-10y-4x+8y=x-2y,答案为:x-2y.分析:原式去括号合并即可得到结果19.计算:2(a-b)+3b= _________答案:2a+b解析:解答:原式=2a-2b+3b=2a+b.答案为:2a+b.分析: 原式去括号合并即可得到结果20.已知一个多项式与3x2+9x+2的和等于3x2+4x-3,则此多项式是________答案:-5x-5解析:解答: 根据题意得:(3x2+4x-3)-(3x2+9x+2)=3x2+4x-3-3x2-9x-2=-5x-5.答案为:-5x-5分析: 根据和减去一个加数等于另一个加数列出关系式,去括号合并即可得到结果.三、解答题(共5题)21.化简:2(3x2-2xy)-4(2x2-xy-1)答案:-2x2+4解答: 原式=6x2-4xy-8x2+4xy+4=-2x2+4解析:分析: 原式去括号合并即可得到结果22.已知A=3x2-ax+6x-2,B=-3x2+4ax-7,若A+B的值不含x项,求a的值.答案:-2解答: ∵A=3x2-ax+6x-2,B=-3x2+4ax-7,∴A+B=(3x2-ax+6x-2)+(-3x2+4ax-7)=3x2-ax+6x-2-3x2+4ax-7=(3a+6)x-9,由结果不含x项,得到3a+6=0,解得a=-2.解析:分析: 将A与B代入A+B中,去括号合并得到最简结果,由结果不含x项,求出a 的值23.一个多项式加上5x2+3x-2的2倍得1-3x2+x,求这个多项式答案:-13x2-5x+5解答:根据题意得:(1-3x2+x)-2(5x2+3x-2)=1-3x2+x -10x2-6x+4=-13x2-5x+5所以这个多项式为-13x2-5x+5解析:分析: 先列式表示这个多项式,再化简.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.24.把多项式2x2-y2+x-3y写成两个二项式的和答案:(2x2-y2)+(x-3y)解答:由题意得2x2-y2+x-3y =(2x2-y2)+(x-3y)解析:分析:将四项任意分组即可得出答案25.试说明把一个两位数的十位上的数字与个位上的数字互换位置后,所得的新两位数与原两位数的和能被11整除答案:解答:设十位上数字为a,个位上数字为b,则原两位数为10a+b,调换后的两位数为10b+a,则(10a+b)+(10b+a)=10a+b+10b+a=11(a+b),则新两位数与原两位数的和能被11整除解析:分析: 设十位上数字为a,个位上数字为b,表示出原两位数,以及调换后的两位数,列出关系式,去括号合并得到结果,即可做出判断。
七年级数学上册 第3章 整式的加减 3.4 整式的加减 4 整式的加减同步练习2 (新版)华东师大版

3.44.整式的加减一、选择题1.计算2a -3(a -b )的结果是( )A .-a -3bB .a -3bC .a +3bD .-a +3b2.当a =-1,b =1时,(a 3-b 3)-(a 3-3a 2b +3ab 2-b 3)的值是( )A .0B .6C .-6D .93.已知一个多项式与3x 2+9x 的和等于3x 2+4x -1,则这个多项式是( )A .-5x -1B .5x +1C .-13x -1D .13x +14.若一个长方形的周长为4m ,其中一条边长为m -n ,则与其相邻的一条边长为( )A .2m +2nB .3m +nC .m +nD .m +3n5.若|x +3|+(y -12)2=0,则整式4x +(3x -5y )-2(7x -32y )的值为( ) A .-22 B .-20 C .20 D .226.如果M =2x 2-x +5,N =x 2-x +4,那么M 与N 的大小关系是( )A .M >NB .M =NC .M <ND .无法确定二、填空题7.单项式2x 2y ,-3xy 2,x 2y ,-5xy 2的和是________.8.计算:-2(xy 2-y 2)+(3xy 2-x 2y )-2y 2=________.9.已知多项式2x 2-4xy -y 2与-4kxy +5的差中不含xy 项,则k 的值是________.10.一个长方形的一边长是2a +3b ,与其相邻的一边的长是a +b ,则这个长方形的周长是________.11.将4个数排列成2行、2列,两边各加一条竖线记为⎪⎪⎪⎪⎪⎪a b cd ,定义⎪⎪⎪⎪⎪⎪a b cd =ad -bc ,叫做二阶行列式,则⎪⎪⎪⎪⎪⎪-53x 2+52 x 2-3=________. 三、解答题12.计算:(3m 2-2m -1)-2(m 2-m -2).13.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个二次三项式,形式如图K -35-1.图K -35-1求老师所捂的二次三项式.14.先化简,再求值:(1)13(9ab 2-3)+a 2b +3-2(ab 2+1),其中a =-2,b =3;(2)12x -2(x -13y 2)+(-32x +13y 2),其中x =-2,y =23.15.一根铁丝正好可以围成一个长是2a+3b,宽是a+b的长方形框,把铁丝剪开,其中一部分可围成一个长是a,宽是b(均不计算接缝)的长方形框,求剩余部分的铁丝长.16.已知A=3m2-m+1,B=2m2-m-7,且A-2B+C=0,求C.17.已知x-2y=-3,xy=2,求3(2x-y)-2(4x-3y-xy)-(xy-y)的值.18.一列火车上原有(6a-2b)人,中途有一半人下车,又有若干人上车,现在车上共有乘客(10a -6b)人,则有多少人上车?当a=200,b=100时,有多少人上车?19.有这样一道题:“计算(2x3-3x2y-2xy2)-(x3-2xy2+y3)+(-x3+3x2y-y3)的值,其中x=12,y=-1.”(1)甲同学将哪一个字母的值抄错了,计算的结果也是正确的?(2)造成甲同学歪打正着的原因是什么?20 某同学在做一道数学题:“已知两个多项式A,B,其中B=4x2-5x+6,试求A-B”时,把“A-B”看成了“A+B”,结果求出的答案是-7x2+10x-12,请你帮他求出“A-B”的正确答案.1.D2.B3.A4.C5.C,.6. A.2y-8xy22-x2y9.110.6a+8b .11.-11x2+512.解:原式=3m2-2m-1-2m2+2m+4=m2+3.13.解:设老师所捂的二次三项式为A,则A=x2-5x+1+3x=x2-2x+1.14.解:(1)原式=3ab2-1+a2b+3-2ab2-2=(3ab2-2ab2)+(3-1-2)+a2b=ab2+a2b.当a =-2,b=3时,原式=(-2)×32+(-2)2×3=-6.(2)原式=12x -2x +23y 2-32x +13y 2=-3x +y 2. 当x =-2,y =23时,原式=-3×(-2)+(23)2=6+49=649. 15.解:2[(2a +3b)+(a +b)]-2(a +b)=2(3a +4b)-2a -2b =6a +8b -2a -2b =4a +6b. 答:剩余部分的铁丝长为4a +6b.16.解: C =-A +2B =-(3m 2-m +1)+2(2m 2-m -7)=-3m 2+m -1+4m 2-2m -14=m 2-m -15.17.解:原式=6x -3y -8x +6y +2xy -xy +y =-2x +4y +xy.因为x -2y =-3,所以2x -4y =-6,所以原式=-(2x -4y)+xy =-(-6)+2=8.18.解:(10a -6b)-12(6a -2b) =10a -6b -3a +b=7a -5b ,所以有(7a -5b)人上车.当a =200,b =100时,原式=7×200-5×100=900(人).即有900人上车.19.解:(1)甲同学将x 的值抄错了,结果也是正确的.(2)因为(2x 3-3x 2y -2xy 2)-(x 3-2xy 2+y 3)+(-x 3+3x 2y -y 3)=2x 3-3x 2y -2xy 2-x 3+2xy 2-y 3-x 3+3x 2y -y 3=-2y 3,即原代数式的值与x 的大小无关,所以甲同学将x 的值抄错了,计算的结果也是正确的.20解:因为A +(4x 2-5x +6)=-7x 2+10x -12,所以A =(-7x 2+10x -12)-(4x 2-5x +6)=-7x 2+10x -12-4x 2+5x -6=-11x 2+15x -18, 所以A -B =(-11x 2+15x -18)-(4x 2-5x +6)=-11x 2+15x -18-4x 2+5x -6=-15x 2+20x -24.。
华师大版七年级上册数学练习课件-第3章 整式的加减-3.4 3去括号与添括号

14.先化简,再求值:2xy2-6x-42x-1-2xy2+9,其中x-32+y+12=0. 解:原式=2xy2-6x+4(2x-1)+2xy2+9 =2xy2-6x+8x-4+2xy2+9 =4xy2+2x+5.
因为(x-3)2+y+12=0, 所以x=3,y=-12, 则原式=4×3×-122+2×3+5 =3+6+5=14.
▪ 12.已知m+n=-2,mn=-4,则2(mn-3m)-3(2n-mn) 的值为__________.
10
13.去括号,并合并同类项. (1)6a2-4ab-42a2+12ab; 解:6a2-4ab-42a2+12ab=6a2-4ab-8a2-2ab=-2a2-6ab.
▪ (2)-3(2x2-xy)+4(x2+xy-6). ▪ 解:-3(2x2-xy)+4(x2+xy-6)=-6x2+3xy+4x2+4xy-
▪ D.-(a-b-c)=-a+b-c
▪ 4.根据+去括号与添括号法则,用“+”或“-”填空. ▪ (1)a___-______(-b+c)=a-b+c; ▪ (2)a_________(b--c-d)=a-+ b+c+d;
▪ (3)b-a+c+d=_________(a-b)_________(c+d). ▪ 5y.2-8在y+等4 式的括号内填上恰当的项使等式成立:x2-y2+8y-6
▪ 解:原式=2a2b+2ab2-2a2b+2-3ab2-3=-ab2-1. ▪ 当a=-2,b=2时,原式=-(-2)×22-1=7.
7
能力提升
▪ 8.下列去括号或添括号错误的D 有( )
▪ ①a-(b-c)=a-b-c;
▪ ②(x2+y)-2(x-y2)=x2+y-2x+y2;
人教七年级数学上册-整式的加减(附习题)

练习1 若单项式-3amb2与单项式1 a3bn 是 3
同类项,则m=__3__,n=_2___.
知识点2 合并同类项的概念和法则
把多项式中的同类项合并成一项,叫做合并 同类项.
合并同类项后,所得项的系数是合并前 各同类项的系数的和,且字母连同它的指数 不变.
例如 4x2 2x 7 3x 8x2 2 4x2 8x2 2x 3x 7 2 (交换律) (4x2 8x2 ) (2 x 3 x) (7 2)(结合律) (4 8)x2 (2 3) x (7 2)(分配律)
(2)若x=5,y=3,求他的卫生间的面积.
解:(1)卧室面积为xy,厨房面积为 xy, 客厅面积为 × xy=xy. ∴卫生间面积为3xy-xy- xy-xy= xy. (2)当x=5,y=3时,
卫生间的面积= ×5×3=5 m2
课堂小结 所含字母相同,并且相同字母的指数也 相同的项叫做同类项.几个常数项也是同类项.
=2x2-2x2-3xy-2xy+5xy+y2-2y+1
=y2-2y+1 当x= 22 ,y=-1时,原式= 4
7
4. 某人购置了一套一室一厅的住宅,总面积为
3xy m2,其中卧室是长为x m,宽为y m的长方形,
客厅的面积为厨房的 3 ,厨房的面积是卧室
的
2 3
2
,还有一个卫生间.
(1)用x、y表示他的卫生间的面积.
解:7x2-3x2-2x-2x2+5+6x =(7-3-2) x2+(-2+6)x+5 =2x2+4x+5
当x = -2时,原式=2×(-2)2+4×(-2)+5=5
北师版七年级上数学第三章整式及其加减知识点及练习题

3.1 字母表示数 1.填空:(1)小明比小红大3岁,当小红m 岁时,小明________岁. 2)三角形的底边是a ,对应该边上的高是h ,则该三角形的面积是_____ . (3)拿100元钱去买钢笔和笔记本,买了单价为2元的钢笔n 支,买了单价为3元的笔记本m 个,则一共花钱_________ 元.2.把长和宽分别是a 、b 的长方形纸片的四个角都剪去一个边长为x 的正方形.则纸片剩余部分的面积为________. 1.甲乙两人岁数的年龄和等于甲乙两人年龄差的3倍,甲x 岁,乙y 岁,则他们的年龄和如何用年龄差表示(). A.(x+y) B.(x -y) C.3(x -y) D.3(x+y)公路全长P 米,骑车n 小时可到,如想提前一小时到,则需每小时走_______米.3.2 代数式用运算符号(加、减、乘、除、乘方、开方等)把数或表示数的字母连接而成的式子叫做代数式。
单独的一个数或一个字母也是代数式。
注意:①代数式中不含有“=、>、<、≥、≤、≠”等符号。
②代数式中的字母所表示的数必须要使这个代数式有意义,是实际问题的要符合实际问题的意义。
※代数式的书写格式:①代数式中出现乘号,通常省略不写,如vt ;②数字与字母相乘时,数字应写在字母前面,如4a ;③带分数与字母相乘时,应先把带分数化成假分数,如a ⨯312应写作a 37;④在代数式中出现除法运算时,一般写成分数的形式,如4÷(a-4)应写作44-a ;注意:分数线具有“÷”号和括号的双重作用。
⑤在表示和(或)差的代数式后有单位名称的,则必须把代数式括起来,再将单位名称写在式子的后面,如)(22b a -平方米。
1.下列代数式中,符合代数式书写要求的有().(1)2113x y ;(2)3ab c ÷;(3)2m n ;(4)225a b -;(5)()2m n ⨯+;(6)4mb ⋅A.1个B.2个C.3个D.4个2.下列各式中哪些是代数式?哪些不是代数式? (1)12-x (2)1=a (3)2R s =(4)27(5)21>31 3.一个分数,分子是x ,分母比分子的5倍小3,则这个数是(). A .53x x - B .53x x + C .5(3)x x - D .53xx - 5.a b 、和的2倍乘以x 与y 的2倍的和的积,用代数式可表示为_______.1.小宁买了20个练习本,店主给他打八折(即标价的80%)优惠,结果便宜1.60元,则每个练习本的标价是()元.A.0.20元B.0.40元C.0.60元D.0.80元2.当4,8==b a 时,代数式ab ab 22-的值是().A.63B.62C.1022D.1263.如果012=-+x x ,那么代数式7223-+x x 的值为(). A.6 B.8 C.-6 D.-84.按照下图所示的操作步骤,若输入x 的值为-2,则给出的值为.5.现规定一种运算*a b ab a b =+-,其中a ,b 为有理数,则3*5的值为.☆能力提升11.代数式a 2+b 2的意义是().A.a 与b 的和的平方B.a+b 的平方C.a 与b 的平方和D.以上都不对 12.一个两位数,个位是a ,十位比个位大1,这个两位数是(). A.a(a+1) B.(a+1)a C.10(a+1)a D.10(a+1)+a 14.下列说法中错误的是( ).A.x 与y 平方的差是x 2-y 2B.x 加上y 除以x 的商是xyx +C.x 减去y 的2倍所得的差是x-2yD.x 与y 和的平方的2倍是2(x+y)2 15.若23(2)0m n -++=,则2m n +的值为(). A .4- B .1- C .0D .419.下面选项中符合代数式书写要求的是 ( ).A.123cb 2a B.ay ·3 C.24ab D .a ×b+c22.已知3a b ==-,x 、y 互为倒数,则()132a b xy +-的值是().A .12B .0C .-6D .-9 3.3 整式:单项式和多项式统称为整式。
华师版七年级数学上册作业课件(HS) 第3章 整式的加减 第1课时 去括号

9.下列去括号正确的是( B) A.a-(b-c)=a-b-c B.x2-[-(-x+y)]=x2-x+y C.m-2(p-q)=m-2p+q D.a+(b-c-2d)=a+b-c+2d 10.化简-(a-1)-(-a-2)+3的值是( B ) A.4 B.6 C.0 D.无法计算
11.下面的计算:①-(a-b)=-a+b;②2(a+b)=2a+b; ③4a-(3b+c)=4a-3b+c;④-5(-5a+1)=-25a-5,
14.三角形的周长为 48,第一边长为 3a+2b,
第二边长的 2 倍比第一边少 a-2b+2,求第三边长是多少.
解:由题意,第二边长为12[(3a+2b)-(a-2b+2)], 所以第三边的长为 48-(3a+2b)-12[(3a+2b)-(a-2b+2)]= 48-3a-3b-12(2a+4b-2)=48-3a-2b-a-2b+1=49-4a-4b. 答:第三边长为 49-4a-4b
5.(1)(2017·淮安)2(x-y)+3y= 2x+y ; (2)(5a+4b)-2(a+b)= 3a+2b.
6.计算: (1)(4ab-b2)-2(a2+2ab-b2); 解:原式=-2a2+b2
(2)-3(2x2-xy)+4(x2+xy-6); 解:原式=-2x2+7xy-24
(3)6x2-2xy-2(3x2+12xy). 解:原式=-3xy
7.当1<m<3时,化简|m-1|-|m-3|= 2m-4 . 8.如图所示是两种长方形铝合金窗框.已知窗框的长都是y米,窗框宽都 是x米,若一用户需(1)型的窗框2个,(2)型的窗框5个,则共需铝合金多少米?
解:由题意可知,做2个(1)型的窗户需要铝合金2(3x+2y)米,做5个(2)型的 窗户需要铝合金5(2x+2y)米,所以共需铝合金2(3x+2y)+5(2x+2y)=(16x+ 14y)米
七年级数学上册第3章整式的加减3.4.1_3.4.2同步测试题新版华东师大版202107011151

第三章3.-3.同步测试题一、选择题1.下列各式中,与3x 2y 3是同类项的是() A .2x 5B .3x 3y 2 C .-12x 2y 3D .-13y 52.、下列式子中是同类项的是() A .62和x 2B .11abc 和9bcC .3m 2n 3和-n 3m 2D .2b 和ab 23.下面不是同类项的是()A .-2与12B .-2a 2b 与a 2bC .2m 与2nD .-x 2y 2与12x 2y 24.计算2a -3a ,结果正确的是()A .-1B .1C .-aD .a5.计算2m 2n -3nm 2的结果为() A .-1 B .-5m 2n C .-m 2n D .不能合并6.下列计算正确的是()A .3a +2a =5a 2B .3a -a =3C .2a 3+3a 2=5a 5D .-a 2b +2a 2b =a 2b7.对于单项式:①6x 3;②xy 23;③-2x ;④-14x 2;⑤13xy 2z ,其中说法正确的是() A .没有同类项B .②与③是同类项C .②与⑤是同类项D .①与④是同类项8.如果3x m y 与-2x 2y n 是同类项,那么m n等于() A .1 B .-2 C .2 D .-19.下列说法:①12xy 2与xy 2是同类项;②0与-1不是同类项;③12m 2n 与2mn 2是同类项;④12πR 2与3R 2是同类项.其中正确的有() A .1个B .2个C .3个D .4个10.已知多项式ax +bx 合并后的结果为2x ,则下列关于a ,b 的叙述一定正确的是()A .a =b =x =2B .a -b =2C .a =b =2D .a +b =211.已知-2m 6n 与5m 2x n y的和是单项式,则() A .x =2,y =1 B .x =3,y =1C .x =32,y =1 D .x =1,y =312.如果关于a ,b 的代数式7a 4-6a 2b +5a 3+ma 2b 的值与b 无关,那么() A .a =0 B .b =0 C .m =0 D .m =613.若x 为有理数,|x|-x 表示的数是()A .正数B .非正数C .负数D .非负数14.如果用a ,b 分别表示一个两位数的十位数字和个位数字,交换这个两位数的十位数字和个位数字,得到一个新的两位数,则这两个两位数的和一定能被()A .9整除B .10整除C .11整除D .12整除二、填空题15.写出-2x 3y 4的一个同类项:_______.16.如果单项式-xyb +1与12x a -2y 3是同类项,那么(a -b )2 019=_______. 17.在2x 2y ,-2xy 2,-3x 2y ,2xy 四个单项式中,有两个是同类项,它们的和是_______.18.合并同类项:4a 2+6a 2-a 2=_______.19.如果等式12x 2a +1y 2-14xy 3b -4=14xy 2成立,那么a +b =_______. 三、解答题20.指出下列各组中的两项是不是同类项,如不是,请说明理由.(1)2xy 2与13xy 2;(2)-5与0;(3)2a 2b 与3ab 2; (4)12xyz 与2xy ;(5)-ab 与ba.21.合并下列多项式中的同类项:(1)2x +5+3x -7;(2)5x 2-7xy +3x 2+6xy -4x 2.(3)a 3-a 2b +ab 2+a 2b -ab 2+b 3;(4)15x n +6x n +1-4x n -7x n +1+x n +1.22.把a -b 看成一个整体,对式子3(a -b)2-7(a -b)+8(a -b)2+6(a -b)进行化简.23.已知|m -2|+|3-3n|=0,问2xm -n +1y 3与4x 2y m +n 是同类项吗?并说明理由.24.已知-3x2m -1y n +4与73x n y 5是同类项,求代数式(1-m)2 020·(n -3378)2 020的值.参考答案一、选择题1.下列各式中,与3x 2y 3是同类项的是(C ) A .2x 5B .3x 3y 2 C .-12x 2y 3D .-13y 52.、下列式子中是同类项的是(C ) A .62和x 2B .11abc 和9bcC .3m 2n 3和-n 3m 2D .2b 和ab 23.下面不是同类项的是(C )A .-2与12B .-2a 2b 与a 2bC .2m 与2nD .-x 2y 2与12x 2y 24.计算2a -3a ,结果正确的是(C )A .-1B .1C .-aD .a5.计算2m 2n -3nm 2的结果为(C ) A .-1 B .-5m 2n C .-m 2n D .不能合并6.下列计算正确的是(D )A .3a +2a =5a 2B .3a -a =3C .2a 3+3a 2=5a 5D .-a 2b +2a 2b =a 2b7.对于单项式:①6x 3;②xy 23;③-2x ;④-14x 2;⑤13xy 2z ,其中说法正确的是(B ) A .没有同类项B .②与③是同类项C .②与⑤是同类项D .①与④是同类项8.如果3x m y 与-2x 2y n 是同类项,那么m n等于(C ) A .1 B .-2 C .2 D .-19.下列说法:①12xy 2与xy 2是同类项;②0与-1不是同类项;③12m 2n 与2mn 2是同类项;④12πR 2与3R 2是同类项.其中正确的有(B ) A .1个B .2个C .3个D .4个10.已知多项式ax +bx 合并后的结果为2x ,则下列关于a ,b 的叙述一定正确的是(D )A .a =b =x =2B .a -b =2C .a =b =2D .a +b =211.已知-2m 6n 与5m 2x n y的和是单项式,则(B ) A .x =2,y =1 B .x =3,y =1C .x =32,y =1 D .x =1,y =312.如果关于a ,b 的代数式7a 4-6a 2b +5a 3+ma 2b 的值与b 无关,那么(D ) A .a =0 B .b =0 C .m =0 D .m =613.若x 为有理数,|x|-x 表示的数是(D )A .正数B .非正数C .负数D .非负数14.如果用a ,b 分别表示一个两位数的十位数字和个位数字,交换这个两位数的十位数字和个位数字,得到一个新的两位数,则这两个两位数的和一定能被(C )A .9整除B .10整除C .11整除D .12整除二、填空题15.写出-2x 3y 4的一个同类项:答案不唯一,如:x 3y 4.16.如果单项式-xyb +1与12x a -2y 3是同类项,那么(a -b )2 019=1. 17.在2x 2y ,-2xy 2,-3x 2y ,2xy 四个单项式中,有两个是同类项,它们的和是-x 2y .18.合并同类项:4a 2+6a 2-a 2=9a 2.19.如果等式12x 2a +1y 2-14xy 3b -4=14xy 2成立,那么a +b =2. 三、解答题20.指出下列各组中的两项是不是同类项,如不是,请说明理由.(1)2xy 2与13xy 2;(2)-5与0;(3)2a 2b 与3ab 2; (4)12xyz 与2xy ;(5)-ab 与ba. 解:(1)、(2)、(5)都符合同类项的定义,都是同类项;(3)2a 2b 与3ab 2虽然所含的字母相同,但相同字母的指数都不相同,所以它们不是同类项;(4)12xyz 与2xy 所含的字母不相同,故它们不是同类项. 21.合并下列多项式中的同类项:(1)2x +5+3x -7;解:原式=(2+3)x +5-7=5x -2.(2)5x 2-7xy +3x 2+6xy -4x 2.解:原式=(5+3-4)x 2+(-7+6)xy=4x 2-xy.(3)a 3-a 2b +ab 2+a 2b -ab 2+b 3;解:原式=a 3+(-a 2b +a 2b)+(ab 2-ab 2)+b 3=a 3+b 3.(4)15x n +6x n +1-4x n -7xn +1+x n +1. 解:原式=(15-4)x n +(6-7+1)xn +1=11x n . 22.把a -b 看成一个整体,对式子3(a -b)2-7(a -b)+8(a -b)2+6(a -b)进行化简.解:原式=(3+8)(a -b)2+(-7+6)(a -b)=11(a -b)2-(a -b).23.已知|m -2|+|3-3n|=0,问2xm -n +1y 3与4x 2y m +n 是同类项吗?并说明理由. 解:由题意,得m =2,n =1.所以2x m -n +1y 3=2x 2y 3,4x 2y m +n =4x 2y 3. 因为它们都含有字母x ,y ,且x 的指数都是2,y 的指数都是3,所以它们是同类项.24.已知-3x 2m -1y n +4与73x n y 5是同类项,求代数式(1-m)2 020·(n -3378)2 020的值. 解:由题意,得m =1,n =1.所以(1-m)2 020·(n -3378)2 020=(1-1)2 020×(1-3378)2 020=0.。
七年级数学上册整式的加减去括号专题训练

七年级数学上册整式的加减去括号专题训练1归纳出去括号的法则吗?2. 去括号:(1)a+(-b+c-d);(2)a-(-b+c-d) ;(3)-(p+q)+(m-n);(4)(r+s)-(p-q).3.下列去括号有没有错误?若有错,请改正:(1)a2-(2a-b+c) (2)-(x-y)+(xy-1)=a2-2a-b+c;=-x-y+xy-1.(3)(y-x) 2 =(x-y) 2(4) (-y-x) 2 =(x+y) 2(5) (y-x)3 =(x-y) 34.化简:(1)(2x-3y)+(5x+4y);(2)(8a-7b)-(4a-5b);(3)a-(2a+b)+2(a-2b);(4)3(5x+4)-(3x-5);(5)(8x-3y)-(4x+3y-z)+2z;(6)-5x2+(5x-8x2)-(-12x2+4x)+2;(7)2-(1+x)+(1+x+x2-x2);(8)3a2+a2-(2a2-2a)+(3a-a2)。
作业:1.根据去括号法则,在___上填上“+”号或“-”号:(1) a___(-b+c)=a-b+c;(2)a___(b-c-d)=a-b+c+d;(3) ___(a-b)___(c+d)=c+d-a+b2.已知x+y=2,则x+y+3= ,5-x-y= .3.去括号:(1)a+3(2b+c-d); (2)3x-2(3y+2z).(3)3a+4b-(2b+4a); (4)(2x-3y)-3(4x-2y).4.化简:(1)2a-3b+[4a-(3a-b)];(2)3b-2c-[-4a+(c+3b)]+c.拔高题:1. 化简2-[2(x+3y)-3(x-2y)]的结果是().A.x+2; B.x-12y+2; C.-5x+12y+2; D.2-5x.2. 已知:1-x+2x=3,求{x-[x2-(1-x)]}-1的值.-1.下列各式中,与a-b-c的值不相等的是() A.a-(b+c) B.a-(b-c)C.(a-b)+(-c) D.(-c)+(-b+a)2.化简-[0-(2p-q)]的结果是() A.-2p-q B.-2p+q C.2p-q D.2p+q3.下列去括号中,正确的是() A.a-(2b-3c)=a-2b-3cB.x3-(3x2+2x-1)=x3-3x2-2x-1C.2y2+(-2y+1)=2y2-2y+1D.-(2x-y)-(-x2+y2)=-2x+y+x2+y24.去括号:a+(b-c)=;(a-b)+(-c-d)=;-(a-b)-(-c-d)=;5x3-[3x2-(x-1)]=.5.判断题.(1)x-(y-z)=x-y-z ( )(2)-(x-y+z)=-x+y-z ( )(3)x-2(y-z)=x-2y+z ()(4)-(a-b)+(-c-d)=-a+b+c+d () 6.去括号:-(2m-3);n-3(4-2m);(1)16a-8(3b+4c);(2)-12(x+y)+14(p+q);(3)-8(3a-2ab+4);(4)4(rn+p)-7(n-2q).(5)8 (y-x) 2 -12(x-y) 2-4(-y-x) 2-3(x+y) 2+2(y-x) 27.先去括号,再合并同类项:-2n-(3n-1);a-(5a-3b)+(2b-a);-3(2s-5)+6s;1-(2a-1)-(3a+3);3(-ab+2a)-(3a-b);14(abc-2a)+3(6a-2abc).8.把-︱-[ a-(b-c)]︱去括号后的结果应为() A.a+b+c B.a-b+c C.-a+b-c D.a-b-c 9.化简(3-π)-︱π-3︱的结果为()A.6 B.-2πC.2π-6 D.6-2π10.先去括号,再合并同类项:ab);2(2a-b)-[4b-(-2a+b)] 6a2-2ab-2(3a2-12a2) ];9a3-[-6a2+2(a3-232 t-[t-(t2-t-3)-2 ]+(2t2-3t+1).11.对a随意取几个值,并求出代数式25+3a-{11a-[a-10-7(1-a)]}的值,你能从中发现什么?试解释其中的原因.。
华师版七年级上册数学第3章 整式的加减 去括号与添括号 (2)

2.下列去括号正确的是( C ) A.-3(b-1)=-3b-3 B.2(2-a)=4-a C.-3(b-1)=-3b+3 D.2(2-a)=2a-4
3.下列各项去括号正确的是( B ) A.-3(m+n)-mn=-3m+3n-mn B.-(5x-3y)+4(2xy-y2)=-5x+3y+8xy-4y2 C.ab-5(-a+3)=ab+5a-3 D.x2-2(2x-y+2)=x2-4x-2y+4
(2)(8xy-x2+y2)-4(x2-y2+2xy-3).
(8xy-x2+y2)-4(x2-y2+2xy-3)=8xy-x2+y2-4x2+4y2-8xy +12=-5x2+5y2+12.
6.给式子 a-b+c 添括号,正确的是( B ) A.a-(b+c) B.a-(b-c) C.a+(b-c) D.a+(b+c)
(2)3a2b-2[ab2-2(a2b-2ab2)].
解:原式=3a2b-2(ab2-2a2b+4ab2) =3a2b-2ab2+4a2b-8ab2 =7a2b-10ab2.
13.有理数 a,b,c 在数轴上对应的点的位置如图所示,化简|a+ c|+|b-a|-|c-b|.
解:由数轴可知 a+c<0,b-a>0,c-b<0, 所以|a+c|+|b-a|-|c-b|=-(a+c)+(b-a)-[-(c-b)]= -a-c+b-a+c-b=-2a.
14.把代数式(a2-2ab+b2+5)(-a2+2ab-b2+5)写成(5+m) (5-m)的形式,并求出 m.
解:(a2-2ab+b2+5)(-a2+2ab-b2+5) =[5+(a2-2ab+b2)][5-(a2-2ab+b2)], 故 m=a2-2ab+b2.
15.已知 s+t=21,3m-2n=9,求多项式(2s+9m)+[-(6n- 2t)]的值. 解:(2s+9m)+[-(6n-2t)]=2s+9m-6n+2t= 2(s+t)+3(3m-2n). 因为 s+t=21,3m-2n=9, 所以原式=2×21+3×9=42+27=69.
北师大版七年级数学上册 第三章3 整式的加减

用括号括起来。(2)整式加减的最后结果中:①不能含有同类项, 即要合并到不能再合并为止;②不能出现带分数,带分数要化 成假分数。
知识点2:整式化简求值的步骤(重难点) 一化:利用整式加减运算法则将整式化简;二代:把已知字母或某 个整式的值代入化简后的式子; 三计算:依据有理数的运算法则进行计算。
例4:一名同学做一道题,“已知两个多项式A、B,计算A+B” 时,
他误将A+B看成A-B,求得结果是9x2-2x+7,若B=x2+ 3x解:A=9x2-2x+7+x2+3x-2=10x2+x+5,所以A+B=
1-0x22,+求x+出5A++xB2+的3正x确-答2=案1。1x2+4x+3。
【题型三】整式加减运算中的无关型问题(拓展) 例5:已知代数式A=x2+xy-2y,B=2x2-2xy+x-1。
【题型一】整式的加减运算
例1:化简:(1)(7m2n-5m)-(4m2n-5m);(2)2x2{- 5x -1 ( x-3) 2
+ 2}x2 。
解:(1)原式=7m2n-5m-4m2n+5m=3m2n。(2)原式=2x2-5x +
12x-3-2x2=-92x-3。
例 2:先化简,再求值:21x2+2x2-3xy+13y2-332x2-2xy-19y2, 其中x,y满足(x-2)2+|y+3|=0。
如果用a,b分别表示一个两位数的十位数字和个位数字,那 么这个两位数可以表示为10a+b。交换这个两位数的十位 数字和个位数字,得到的数是10b+a,这两个数相加得 (10a+b)+(10b+a)=11a+11b
2.请同学们在完成上面任务后思考以下问题:
两个数相减后的结果有什么规律?这个规律对任意一个三位数都 成立吗? 规律是它们的差为百位数字与个位数字的差的99倍,对任意一个 三位数都成立
2024秋七年级数学上册第三章整式的加减3.4整式的加减2去括号与添括号教案(新版)华东师大版

简短介绍整式的基本概念和重要性,为接下来的学习打下基础。
2.整式基础知识讲解(10分钟)
目标:让学生了解整式的基本概念、组成部分和原理。
过程:
讲解整式的定义,包括其主要组成元素或结构。
详细介绍整式的组成部分或功能,使用图表或示意图帮助学生理解。
-分类:单项式和多项式。
2.整式的加减法则:
-同类项的定义和加减法。
3.去括号与添括号的方法:
-原则:正数去括号,负数去括号,添括号保持等式平衡。
-示例:去括号和添括号的具体步骤。
4.练习题:
-加减运算题目和去括号添括号题目。
5.作业布置与反馈:
-课后练习题和作业要求。
2024秋七年级数学上册第三章整式的加减3.4整式的加减2去括号与添括号教案(新版)华东师大版
授课内容
授课时数
授课班级
授课人数
授课地点
授课时间ห้องสมุดไป่ตู้
教学内容
本节课的教学内容来自于2024秋七年级数学上册第三章整式的加减3.4节,主要涉及整式的加减法则,特别是去括号与添括号的方法。具体内容包括:
1.掌握去括号的原则,即如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
(2)视频:播放一些与整式加减相关的视频,让学生更直观地了解去括号与添括号的过程。
(3)在线工具:利用在线工具,让学生进行整式加减的练习,及时反馈学生的学习情况,提高教学效果。
教学过程设计
1.导入新课(5分钟)
目标:引起学生对整式加减的兴趣,激发其探索欲望。
华师版七年级数学上册3.4.3 去括号与添括号

100t+120(t-0.5) ① 100t-120(t-0.5) ②
上面两式中去括号部分变形分别为 +120(t-0.5)=+120t-60 ③ -120(t-0.5)=-120t+60 ④
新课讲解
问题:比较③、④两式,你能发现去括号时符号变化的 规律吗?
新课讲解
括号没了,正负号没变 括号没了,正负号却变了
HS七(上) 教学课件
第三章 整式的加减
3.4 整式的加减
3.4.3 去括号与添括号
学习目标
1.在具体情境中体会去括号的必要性,能运用运算律去括 号法则;(重点) 2.掌握去括号、添括号的法则,并能利用法则解决简单的 问题.(难点)
新课引入
请欣赏下面的图片,如何求阴影部分的面积?请列式 表示.
x
新课讲解
适当添加括 号,可使计
算简便.
一、去括号 1. (1) 2(x+8) =2x+16
(2) 120(t-0.5) =120t-60 (3) +(x+3) =x+3 2. (1) -3(3x+4)= -9x-12 (2) -120(t-0.5)= -120t+60 (3) -(x-3) = -x+3
随堂即练
课堂小结
括号前面是“+”号,去括号时把
括号连同它前面的“+”号去掉,
去
括号内的各项都不改变符号
括
号
括号前面是“-”号,去括号时把
括号连同它前面的“-”号去掉,
化
检
括号内的各项都改变符号
验
简 求
所添括号前面是“+”号,括到
值
添
2022秋七年级数学上册第3章整式的加减3.4整式的加减1同类项2合并同类项课件新版华东师大版

13.若代数式 k2x+y-x+ky+10 的值与 x,y 的取值无关,则 k 的值为( D ) A.0 B.±1 C.1 D.-1
14.若 3xm+5y2 与 x8yn 的和是单项式,则 mn=___6___. 【点拨】由题意得 m+5=8,n=2, 解得 m=3,故 mn=6.
15.如图,在 3×3 的方格内,填写了一些单项式,已知图中各行、 各列及对角线上三个单项式之和都相等,则 x 的值为 __-__1____.
10.合并下列各式中的同类项:
(1)15x+4x-10x; 解:原式=(15+4-10)x=9x.
(2)7a2+3a+8-5a2-3a-8; 原式=(7a2-5a2)+(3a-3a)+(8-8)=2a2.
(3)-10x2+13x3-x+3x4-4x-3+x3. 原式=3x4+(13x3+x3)-10x2+(-x-4x)-3=3x4+14x3-
(2)在解答第二个问题时,马小虎同学把 y=-1 错看成 y=1,可 是他得到的最后结果却是正确的,你知道这是为什么吗?
解:在第一个问题的前提下,代数式为 3x2+8y2, y 的指数为偶数, 故无论 y 的取值为-1 还是 1,y2 的值都恒等于 1,所以马小虎同 学把 y=-1 看成 y=1,却能得到正确的结果.
(1)小明同学很快就完成了第一个问题,也请你把你的解答写在下 面吧!
解:因为 2x2+7xy+3y2+x2-kxy+5y2 =(2x2+x2)+(3y2+5y2)+(7xy-kxy) =3x2+8y2+(7-k)xy, 所以只要 7-k=0,即 k=7,这个代数式中就不含 xy 项. 所以当 k=7 时,代数式中不含 xy 项.
10x2-5x-3.
11.先合并同类项,再求值:3x2+4x-2x2-x+x2-3x-1,其 中 x=-1.
北师版七年级数学上册作业课件(BS) 第三章 整式及其加减 第3课时 整式的加减

12.多项式7a2-6a3b+3a2b+3a2+6a3b-3a2b-10a2的值(D ) A.与字母a,b都有关 B.只与字母a有关 C.只与字母b有关 D.与字母a,b都无关
13.一家商店以每包 a 元的价格进了 30 包甲种茶叶,又以每包 b 元的价
格买进 60 包乙种茶叶.如果以每包a+2 b元的价格卖出这两种茶叶,则卖完后,
七年级上册(北师版)数学
第三章 整式及其加减
3.4 整式的加减
第3课时 整式的加减
1.整式加减的运算法则:一般地,几个整式相加减, 如果有括号就先去括号,然后 再合并同类项 . 练习1:(2016·雅安)计算:3a-(2a-b)= a+b . 2.几个整式相加减,通常用括号 将每一个整式括起来 ,再用加减号连接, 然后去括号,合并同类项. 练习2:一根铁丝的长为5a+4b,剪下一部分围成一个长为a,宽为b的长 方形,则这根铁丝还剩下 3a+2b .
4.在2-[2(x+y)-( )]=x+2中,括号内填的式子应是( A ) A.3x+2y B.-x+2y C.x-2y D.-x-2y
5.已知A=a2+b2-c2,B=-4a2+2b2+3c2,若A+B+C=0, 则多项式C为( C ) A.5a2+3b2+2c2 B.5a2-3b2+4c2 C.3a2-3b2-2c2 D.3a2+3b2+4c2
解:由题意得(m+n)+[(m+n)+(m-3)]+(2n-m)=2m+4n-3, 所以这个三角形的周长为2m+4n-3 11.某校有A,B,C三个课外活动小组,A小组有学生(x+2y)名,B小组 学生人数是A小组学生人数的3倍,C小组比A小组多3名学生,问A,B,C 三个课外活动小组共有多少名学生? 解:三个课外活动小组共有(5x+10y+3)名学生
北师大版数学七年级上册第三章整式及其加减第4节整式的加减课后练习

第三章整式及其加减第4节整式的加减课后练习学校:___________姓名:___________班级:___________考生__________评卷人得分一、单选题1.如图,从边长为(a+1)cm的正方形纸片中剪去一个边长为(a﹣1)cm的正方形(a>1),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则该矩形的面积是()A.2cm2B.2acm2 C.4acm2D.(a2﹣1)cm2 2.已知622x y和313m nx y-是同类项,则2m n+的值是()A.6B.5C.4D.23.下列说法正确的是().A.23xyz与23xy是同类项B.1x与2x是同类项C.320.5x y-与232x y是同类项D.25m n与22nm-是同类项4.一个两位数x,个位上的数字是a,十位上的数字是b,交换个位与十位上的数字得到一个新的两位数y,则下列各数一定能整除x y-的是()A.11B.9C.5D.25.一个多项式减去x2﹣2y2等于x2+y2,则这个多项式是()A.﹣2x2+y2B.2x2﹣y2C.x2﹣2y2D.﹣x2+2y2 6.下列去括号与添括号变形中,正确的是()A.2a-(3a-c)=2a-3b-c B.3a+2(2b-1)=3a+4b-1C.a+2b-3c=a+(2b-3c)D.m-n+a-b=m-(n+a-b)7.多项式3x3+2mx2-5x+3与多项式8x2-3x+5相加后,不含二次项,则m等于()A.2B.-2C.-4D.-88.萱萱的妈妈下岗了,在国家政策的扶持下开了一家商店,全家每个人都要出一份力,妈妈告诉萱萱说,她第一次进货时以每件a元的价格购进了35件牛奶;每件b元的价格购进了50件洗发水,萱萱建议将这两种商品都以2a b+元的价格出售,则按萱萱的建议商品卖出后,商店( ) A .赚钱 B .赔钱C .不嫌不赔D .无法确定赚与赔9.有两桶水,甲桶装有a 升水,乙桶中的水比甲桶中的水多3升.现将甲桶中倒一半到乙桶中,然后再将此时乙桶中总水量的13倒给甲桶,假定桶足够大,水不会溢出.我们将上述两个步骤称为一次操作,进行重复操作,则( )A .每操作一次,甲桶中的水量都会减小,最后甲桶中的水会全部倒入乙桶B .每操作一次,甲桶中的水量都会减小,但永远倒不完C .每操作一次,甲桶中的水量都会增加,反复操作,最后甲桶中的水会比乙桶多D .每操作一次,甲桶中的水量都会增加,但永远比乙桶中的水量要少10.整式25m 6m 3-+和整式25m 7m 5-+的值分别为M 、N ,则M 、N 之间的大小关系是( ) A .M>N B .M<NC .M=ND .无法确定评卷人得分二、填空题 11.当k=________时,多项式21383x kxy xy -++中不含xy 项.12.在计算:A ﹣(5x 2﹣3x ﹣6)时,小明同学将括号前面的“﹣”号抄成了“+”号,得到的运算结果是﹣2x 2+3x ﹣4,则多项式A 是______________________. 13.若|1||2|0a b -+-=,则3333232a b a b ++-的值为________.14.如图是王明家的楼梯示意图,其水平距离(即AB 的长度)为(2a +b )米,一只蚂蚁从A 点沿着楼梯爬到C 点,共爬了(3a -b )米,则王明家楼梯的竖直高度(即BC 的长度)为________米.15.有理数a ,b ,c 在数轴上的对应点如图所示,化简:|b|-|c +b|+|b -a|=________.16.如图,将一个正方形分割成11个大小不同的正方形,记图中最大正方形的周长是1C,最小正方形的周长是2C,则12CC_____.17.如图1,小长方形纸片的长为2,宽为1,将4张这样的小长方形纸片按图2所示的方式不重叠的放在大长方形内,未被覆盖的部分恰好被分割为两个长方形Ⅰ和Ⅰ,设长方形Ⅰ和Ⅰ的周长分别为C1和C2,则C1_____C2(填“>”、“=”或“<”).18.把四张形状大小完全相同的小长方形卡片(如图Ⅰ)不重叠无缝隙地放在一个底面为矩形(长为15cm,宽为12cm)的盒子底部(如图Ⅰ),盒子底面未被卡片覆盖的部分用阴影表示,则图Ⅰ中两块阴影部分的周长和是_____.19.甲、乙、丙三人分别拿出相同数量的钱,合伙购买某种商品若干件.商品买来后,乙比甲少拿了2件,丙比甲多拿了11件,最后结算时,三人要求按所得商品的实际数量付钱,进行多退少补.已知丙付给甲30元,那么丙应付给乙_____元.评卷人得分三、解答题20.(1)﹣12a2bc+12cba2 (2)7ab﹣3a2b2+7+8ab2+3a2b2﹣3﹣7ab(3)(﹣x+2x2+5)+(4x2﹣3﹣6x ) (4)(2x2﹣12+3x )﹣4(x ﹣x2+12)21.合并同类项:(1)2232231x x x x -+-+-+; (2)222213134222x y xy xy x y xy xy -++--;22.先化简,再求值:3x3﹣[x3+(6x2﹣7x )]﹣2(x3﹣3x2﹣4x ),其中x=13.23.某地电话拨号入网有两种收费方式,用户可以任选其一. 计时制:0.05元/分;包月制:50元/月(限一部个人住宅电话上网). 此外,每一种上网方式都得加收通信费0.02元/分.(1)某用户某月上网的时间为x 小时,请你分别写出两种收费方式下该用户应该支付的费用.(2)若某用户估计一个月内上网的时间为20小时,你认为采用哪种方式较为合算?24.阅读理解:李华是一个勤奋好学的学生,他常常通过书籍、网络等渠道主动学习各种知识.下面是他从网络搜到的两位数乘11的速算法,其口诀是:“头尾一拉,中间相加,满十进一”.例如:Ⅰ2411264⨯=.计算过程:24两数拉开,中间相加,即246+=,最后结果264;Ⅰ6811748⨯=.计算过程:68两数分开,中间相加,即6814+=,满十进一,最后结果748.(1)计算:Ⅰ3211⨯= , Ⅰ7811⨯=_____ ;(2)若某一个两位数十位数字是a ,个位数字是()10b a b +<,将这个两位数乘11,得到一个三位数,则根据上述的方法可得,该三位数百位数字是____,十位数字是_____, 个位数字是_____ ; ( 用含a b 、的化数式表示) (3)请你结合(2)利用所学的知识解释其中原理.25.某同学做一道数学题:两个多项式A 、B ,B =2x 2﹣4x ﹣6,试求A ﹣2B .这位同学把“A ﹣2B ”看成“A +2B ”,结果求出的答案是7x 2﹣8x ﹣11,那么,A ﹣2B 的正确答案是多少?参考答案:1.C 【解析】 【详解】根据题意得出矩形的面积是(a+1)2﹣(a ﹣1)2,求出即可:矩形的面积是(a+1)2﹣(a ﹣1)2=a 2+2a+1﹣(a 2﹣2a+1)=4a (cm 2).故选C . 2.A 【解析】 【分析】由622x y 和313m nx y -是同类项,可知相同字母的指数相同,据此列式求出m 和n 的值,然后代入计算即可. 【详解】 由题意得, 3m =6,n =2, Ⅰm =2,Ⅰ22226m n +=⨯+= 故选A. 【点睛】本题考查了利用同类项的定义求字母的值,熟练掌握同类项的定义是解答本题的关键,所含字母相同,并且相同字母的指数也相同的项,叫做同类项,根据相同字母的指数相同列方程(或方程组)求解即可. 3.D 【解析】 【分析】根据同类项的定义,一看字母是否相同,二看相同字母指数是否相同,依次进行判断即可. 【详解】解:选项A .前面的单项式含有z ,后面的单项式不含有,所以不是同类项,不符合题意;选项B.1x不是整式,2x是整式,所以不是同类项,不符合题意;选项C.两个单项式,所含字母相同,但相同字母的指数不一样,所以不是同类项,不符合题意;选项D.两个单项式,所含字母相同,相同字母的指数也相同,所以是同类项,符合题意.故选D.【点睛】本题考查同类项的定义,解题的关键是熟练掌握同类项定义中的两个“相同”.4.B【解析】【分析】先分别求出交换位置前后的两位数,再求出其差即可.【详解】Ⅰ一个两位数,个位上的数是a,十位上的数是b,Ⅰ这个两位数是10b+a,Ⅰ交换个位与十位上的数字得到一个新两位数,则这两个数为10a+b,交换前后两位数的差为:10b+a−10a−b=10(b−a)−(b−a)=9(b−a),Ⅰ这两个数的差一定能被9整除.故选B【点睛】此题考查整式的加减,解题关键在于分别求出交换位置前后的两位数5.B【解析】【分析】根据:被减式=减式+差,列式计算即可得出答案.【详解】解:这个多项式为:x2﹣2y2+(x2+y2),=(1+1)x2+(﹣2+1)y2,=2x2﹣y2,故选B.【点睛】本题主要考查整式的加减.熟练应用整式加减法计算法则进行计算是解题的关键.6.C【解析】【分析】去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号.结合各选项进行判断即可.【详解】A选项:2a-(3a-c)=2a-3a-c,故本选项错误;B选项:3a+2(2b-1)=3a+4b-2,故本选项错误;C选项:a+2b-3c=a+(2b-3c),故本选项正确;D选项:m-n+a-b=m-(n-a+b),故本选项错误.故选C.【点睛】考查了去括号及添括号的知识,熟练掌握去括号及添括号的法则是关键.7.C【解析】【详解】(3x3+2mx2-5x+3)+(8x2-3x+5)=3x3+2mx2-5x+8x2-3x+5=3x3+(2m+8)x2-8x+8,因为不含二次项,所以2m+8=0,解得,m=-4,故选C.【点睛】本题考查了整式的加减,能正确计算并且能根据题意确定出二次项系数为0是解题的关键.8.D【解析】【分析】此题可以先列出商品的总进价的代数式,再列出按萱萱建议卖出后的销售额,然后利用销售额减去总进价即可判断出该商店是否盈利. 【详解】由题意得,商品的总进价为3050a b +, 商品卖出后的销售额为(3550)2a b+⨯+, 则15(3550)(3550)()22a b a b a b +⨯+-+=-, 因此,当a b >时,该商店赚钱:当a b <时,该商店赔钱;当a b =时,该商店不赔不赚. 故答案为D. 【点睛】本题主要考查列代数式及整数的加减,分类讨论的思想是解题的关键. 9.D 【解析】 【分析】由题意可知甲桶装有a 升水,乙桶装有a+3升水,然后根据题意的操作进行计算,发现规律即可. 【详解】解:由题意可知甲桶装有a 升水,乙桶装有a+3升水, 进行1次操作后:甲桶装有a+1升水,乙桶装有a+2升水;进行2次操作后:甲桶装有a+86升水,乙桶装有a+106升水;进行3次操作后:甲桶装有a+2618升水,乙桶装有a+2818升水; ······综上可以发现,每操作一次,甲桶中的水量都会增加,但永远比乙桶中的水量要少. 故选D. 【点睛】本题考查整式的应用,解此题的关键在于准确按照题意进行操作,然后发现规律. 10.D 【解析】 【详解】25m 6m 3-+-(25m 7m 5-+)=2 5m 6m 3-+-25m 7m 5+-=m-2,当m-2>0时,M>N ;当m-2<0时,M<N ;当m-2=0时,M=N.故选D.点睛:比较两个式子的大小时:用一个式子的值减另一个式子的值,若差为正数,则前一个式子的值大于后一个式子的值;若差为负数、则前一个式子的值小于后一个式子的值;若差为0,则这两个式子的值相等. 11.19【解析】 【分析】先合并同类项得到21(3)83x k xy +-+,再根据题意计算即可得到答案.【详解】21383x kxy xy -++=21(3)83x k xy +-+,要使得多项式21383x kxy xy -++中不含xy 项,则1303k -=,则19k =. 【点睛】本题考查合并同类项,解题的关键是掌握合并同类项的方法. 12.﹣7x 2+6x+2. 【解析】 【详解】试题解析:根据题意得:22222(234)(536)234536762A x x x x x x x x x x =-+----=-+--++=-++, 故答案为276 2.x x -++ 13.-3 【解析】 【分析】先根据绝对值的性质得出a,b 的值,再把a,b 代入即可解答 【详解】Ⅰ|1||2|0a b -+-= Ⅰ|1|=0|2|0a b --=,Ⅰ1-a=0,b-2=0 Ⅰa=1,b=2将a=1,b=2,代入3333232a b a b ++-得5×13 -23=-3【点睛】此题考查绝对值的性质,合并同类项,解题关键在于求出a,b 的值14.(a ﹣2b )【解析】【详解】解:根据平移可得蚂蚁所爬的距离=AB +BC ,即3a -b =2a +b +BC ,ⅠBC =(a ﹣2b )米.故答案为:(a ﹣2b ).15.a -b +c【解析】【详解】先根据各点在数轴上的位置判断出其符号,再去绝对值符号,合并同类项即可,即可由图可知,c <b <0<a ,可求c+b <0,b-a <0,因此原式=-b+c+b+a-b=a+c-b. 故答案为a+c-b.点评:本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.16.432【解析】【分析】如图(见解析),设,AB x BC y ==,根据正方形的定义可得最小正方形的边长为1411x y -,而且x 和y 满足等式:8101411y x x y -=-,再根据正方形的周长公式12,C C 即可得.【详解】如图,设,AB x BC y ==,最大正方形标记为0号,被分割成的11个正方形标记为1-11号,其中最小正方形标记为11号,各个正方形的边长求解过程如下:0号:1号+2号得x y +,5号:1号-2号得y x -,3号:2号-5号得()2x y x x y --=-,4号:0号-2号-3号得(2)22x y x x y y x +---=-,7号:3号-4号得2(22)43x y y x x y ---=-,6号:4号-7号得22(43)56y x x y y x ---=-,10号:0号-1号得x ,9号:0号-4号-6号-10号得(22)(56)86x y y x y x x x y +-----=-,8号:10号-9号得(86)67x x y y x --=-,11号:6号-7号得56(43)810y x x y y x ---=-,或9号-6号得86(56)1411x y y x x y ---=-,因此x 和y 满足等式:8101411y x x y -=-,整理得:1924x y =, 所以最大正方形(0号)的周长1434()6C x y y =+=, 最小正方形(11号)的周长214(1411)3C x y y =-=, 则12432C C =. 【点睛】本题考查了用代数式表示几何图形的周长,设定未知数,利用正方形的性质将最大正方形的周长和最小正方形的周长求出是解题关键.17.=【解析】【分析】设图2中大长方形长为x ,宽为y ,再表示出长方形Ⅰ和Ⅰ的长和宽,进而可得周长,然后可得答案.【详解】解:设图2中大长方形长为x ,宽为y ,则长方形Ⅰ的长为x ﹣1,宽为y ﹣3,周长C 1=2(x ﹣1+y ﹣3)=2x +2y ﹣8,长方形Ⅰ的长为x ﹣2,宽为y ﹣2,周长C 2=2(x ﹣2+y ﹣2)=2x +2y ﹣8,则C 1=C 2,故填:=.【点睛】本题主要考查整式合并同类项的应用问题,巧妙设出组成的大长方形的边长,再利用已知条件分别表示出长方形Ⅰ和Ⅰ的长和宽,是本题的解题突破点。
整式的加减课件北师大版数学七年级上册

由于结果中不含x,所以A-B+C的值与x无关.
课堂小结
去括号
整式加减的步骤
合并同类项
整式的加减
整式加减的应用
计算:
(1)(2x2-3x+1)与(-3x2+5x-7)的和 ;
(2) − + − 与 − + − 的差.
解:(1)(2x2-3x+1)+(-3x2+5x-7)
=2x2-3x+1-3x2+5x-7
=2x2-3x2-3x+5x+1-7
=-x2+2x-6;
【类型四】利用“无关”进行说理或求值
【例】已知A=-6x2+4x,B=-x2-3x,C=5x2-7x+1,小明和小白在计算时
对x分别取了不同的数值,并进行了多次计算,但所得A-B+C的结果却
是一样的.你认为这可能吗?说明你的理由.
【答案】 解:可能.
A-B+C=(-6x2+4x)-(-x2-3x)+(5x2-7x+1)
(100a+10b+c)-( 100c+10b+a)
= 100a+10b+c-100c-10b-a
=99a-99c
=99(a-c)
任意一个三位
数可以表示成
100a+10b+c.
勤于思考
在上面的两个问题中,分别涉及了整式的什么运算?说说你是
如何运算的?
整式的加减运算
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3章整式的加减
3.4 整式的加减
3.去括号与添括号
第1课时去括号
[学生用书P81]
1.(a-1)的相反数为( )
A.a-1 B.a+1
C.1-a D.-a-1
2.下列各式中,去括号正确的是( )
A.x+2(y-1)=x+2y-1
B.x-2(y-1)=x+2y+2
C.x-2(y-1)=x-2y-2
D.x-2(y-1)=x-2y+2
3.化简a+b-2(a-b)的结果是( )
A.3b-a B.-a-b
C.a+3b D.-a+b
4.-[a-(b-c)]去掉括号后为( )
A.-a-b-c B.-a-b+c
C.a+b-c D.-a+b-c
5.[xx·株洲]计算:3a-(2a-1)=__ __.
6.在括号前填入正号或负号,使左边与右边相等.
(1)y-x=_ __(x-y);
(2)(x-y)2=__ __(y-x)2;
(3)(x-y)3=__ __(y-x)3.
7.计算:(x-y+z)-(x-y-z)+(x+y-z)=__ _.8.先去括号,再合并同类项:
(1)3(5a+4)-(3a-10);
(2)(8a-4b)-(4a+4b-c)-2a;
(3)-3x 2
+(3x -4x 2
)-(2x 2
-3x +6); (4)7(a 2
b -ab )-2(a 2
b -3ab ).
9.先去括号,再合并同类项: (1)-3(2s -5)+6s ;
(2)3x -⎣⎢⎡⎦⎥⎤5x -⎝ ⎛⎭⎪⎫12x -4; (3)6a 2
-4ab -4⎝
⎛⎭⎪⎫2a 2+12ab ;
(4)-3(2x 2
-xy )+4(x 2
+xy -6).
10.[xx·甘井子区期末]先化简,再求值:(2x 2
-1+3x )+4(1-3x -2x 2
),其中x =-1.
11.[xx·崆峒区期末]先化简,再求值:-a 2
b +(3ab 2
-a 2
b )-2(2ab 2
-a 2
b ),其中 a =-1,b =-2.
12.[xx·江津区期末]先化简,再求值:
2×⎝ ⎛⎭⎪⎫-3xy +52x 2-[2x 2-3(2xy -x 2
)-2xy ],其中x =-2,y =12.
13.[xx·卢龙县期末]先化简,再求值:-6x +3(3x 2
-1)-(9x 2
-x +3),其中x =-
1
.
3
14.已知2x m y2与-3xy n是同类项,计算m-(m2n+3m-4n)+(2nm2-3n)的值.
15.[xx·凉州区期末]先化简,后求值:-2(mn-3m2)-[m2-5(mn-m2)+2mn],其中m、n满足|m-1|+(n+2)2=0.
参考答案
【分层作业】
1.C
2.D
3.A
4.D
5.a+1
7.x +y +z
8. 解:(1)3(5a +4)-(3a -10) =15a +12-3a +10 =(15-3)a +(12+10) =12a +22;
(2)(8a -4b )-(4a +4b -c )-2a =8a -4b -4a -4b +c -2a =(8-4-2)a +(-4-4)b +c =2a -8b +c ;
(3)-3x 2
+(3x -4x 2
)-(2x 2
-3x +6) =-3x 2
+3x -4x 2
-2x 2
+3x -6 =(-3-4-2)x 2
+(3+3)x -6 =-9x 2
+6x -6;
(4)7(a 2
b -ab )-2(a 2
b -3ab ) =7a 2
b -7ab -2a 2
b +6ab =(7-2)a 2
b +(-7+6)ab =5a 2
b -ab .
9.解:(1)-3(2s -5)+6s =-6s +15+6s =15;
(2)3x -⎣⎢⎡⎦
⎥⎤5x -⎝ ⎛⎭⎪⎫12x -4 =3x -⎝ ⎛⎭⎪⎫5x -12x +4
=3x -5x +1
2x -4
=-3
2
x -4;
(3)6a 2
-4ab -4⎝
⎛⎭⎪⎫2a 2+12ab
=6a 2
-4ab -8a 2
-2ab
(4)-3(2x 2
-xy )+4(x 2
+xy -6) =-6x 2
+3xy +4x 2
+4xy -24 =-2x 2+7xy -24.
10.解:(2x 2
-1+3x )+4(1-3x -2x 2
), =2x 2
-1+3x +4-12x -8x 2
, =-6x 2-9x +3,
把x =-1代入-6x 2
-9x +3=-6+9+3=6.
11.解:原式=-a 2
b +3ab 2
-a 2
b -4ab 2
+2a 2
b =-ab 2
, 当a =-1,b =-2时, 原式=-(-1)×(-2)2=4.
12.解:原式=-6xy +5x 2
-(2x 2
-6xy +3x 2
-2xy ) =-6xy +5x 2
-2x 2
+6xy -3x 2+2xy =2xy ,
当x =-2,y =1
2时,
原式=2×(-2)×1
2
=-2.
13.解:原式=-6x +9x 2
-3-9x 2
+x -3=-5x -6. 当x =-13时,原式=53-6=-13
3.
14.解:因为2x m y 2与-3xy n
是同类项,所以m =1,n =2. m -(m 2
n +3m -4n )+(2nm 2-3n ) =m -m 2
n -3m +4n +2nm 2
-3n =(m -3m )+(4n -3n )+(2nm 2
-m 2
n ) =-2m +n +m 2
n . 当m =1,n =2时,
原式=-2×1+2+12
×2=2.
15.解:由|m -1|+(n +2)2
=0可知m =1,n =-2, ∴原式=-2mn +6m 2
-(m 2
-5mn +5m 2
+2mn ) =-2mn +6m 2
-m 2
+5mn -5m 2
-2mn
=mn
=-2.
关闭Word文档返回原板块。
如有侵权请联系告知删除,感谢你们的配合!。