5 多元向量值函数的导数与微分

合集下载

第六章 多元函数微积分

第六章 多元函数微积分
→ → →
30
用坐标表示的向量的运算

设向量 a = ax , ay , az , b = bx , by , bz 则 a± b = ax ± bx , ay ± by , az ± bz
→ →Biblioteka {}→{
}
{
}
λ a = {λax , λay , λaz }

31

→ →

→ → → →
设向量a = {3,−5,6}, b = {2,−1,4} ,计算 a+ 2 b, 3 a− 4 b

14
简单的二次曲面
如果空间曲面Σ上的任一点的坐标( x、y、z )都满足方程
F(x、y、z) = 0 ,而满足 F(x、y、z) = 0 的( x、y、z )值均在
曲面Σ上,则称 F(x、y、z) = 0 为曲面Σ的方程.
若方程是二次的,所表示的曲面为二次曲面 二次曲面
15
简单的二次曲面
球面
空间中与一定点的距离为定长的点的轨迹称为球面, 定点称为球心,定长称为半径.
三角形法则
27
向量的几何运算
减法运算
由于a − b = a + (−b) ,将向 a 和 b 的起点移到同一点O,则以 b 的终点 为起点,以 a 的终点为终点的向量是a − b
三角形法则
28
向量的几何运算
数乘向量
设a 是一个非零向量,λ 是一个非零实数,则a 与λ 的乘积仍是向量, 称为数乘向量,记作λa
B( x2 , y2 , z2 ) ,
AB = {x2 − x1, y2 − y1, z2 − z1}
| AB |= (x2 − x1)2 + ( y2 − y1 )2 + (z2 − z1)2

D5-5(1-2)多元向量值函数的导数与微分市公开课获奖课件省名师示范课获奖课件

D5-5(1-2)多元向量值函数的导数与微分市公开课获奖课件省名师示范课获奖课件

xn
fm (x0 )
dxn n1
xn
mn
D f ( x0 ) d x , (d x (dx1, dx2,, dxn ) ).
20
目录 上页 下页 返回 结束
例5.3 设矩阵A (aij )mn的每个元素都是常数,
f ( x) Ax ( x (x1 , x2,, xn )Τ Rn ),试求D f ( x) .
d
f
( x0
)
df2 ( x0 )
dfm ( x0 )
19
目录 上页 下页 返回 结束
f1 (x0 ) f1 (x0 ) f1 (x0 )
x1
f 2
(
x0
)
x1
fm (x0 )
x1
x2 f2 (x0 )
x2
fm (x0 ) x2
xn
f
2
(
x0
)
dx1 dx2
例5.1 设有向量值函数
sin 2x
f (x) ln(x 1 x2 )
试求 f (x), f (x) 及 f (0). arctan x2
解:由(5.7)、(5.9)式,分别得
2 cos 2x
4sin 2x
f
(
x)
1
1
x2
2x
1 x4
f
( x)
(1
x x2 )32
f (x0 ) ( f1(x0 ), f2(x0 ),, fm(x0 ))
(5.9)
类似可定义 f 在 x0 处旳n 阶导数为 Dn f (x0 ) D(Dn1 f (x)) x x0
当m=3时,一元向量值函数旳导数有物理意义:

向量值函数的导数与积分

向量值函数的导数与积分

v (t ) r (t ),
速度的方向或质点运动的方向是运动轨迹的切线方向,
v(t ) r (t ) 是质点在时刻 t 的瞬时加速度 a (t).
高等数学分级教学A2班教学课件
Dept. Math. & Sys. Sci. 应用数学教研室
向量值函数的导数可通过计算其分量函数的导数得到. 定理9.2.2 设三维向量值函数 r (t ) f (t )i g (t ) j h(t )k, 其中各分量函数在点 t 处可导, 则 r(t) 在点 t 处可导, 且
条曲线为分段光滑曲线.
高等数学分级教学A2班教学课件
Dept. Math. & Sys. Sci. 应用数学教研室
3 2 r ( t ) {1 t , t }是否为光滑曲线? 例2 判断曲线
解 因为 r (t ) (3t 2 , 2t ), r (0) (0,0), 所以,该曲线不是 光滑的.曲线在点(1, 0) (对应t = 0)突然改变了方向,
对于二维向量值函数与三维向量值函数,dr 是一个与
曲线的切向量 T (t ) r (t ) 平行的向量,当 dt >0 时, dr与 与切向量 r (t ) 同向; 当dt <0 时, dr与切向量 r (t ) 反向.
高等数学分级教学A2班教学课件
Dept. Math. & Sys. Sci.
r (t ) f (t )i g (t ) j h(t )k.
三维向量值函数 r (t ) f (t )i g (t ) j h(t )k 的二阶导数为
r (t ) f (t )i g (t ) j h(t )k.
同样,对于可导的二维向量值函数有类似的结论.

向量微积分的偏导数和全微分

向量微积分的偏导数和全微分

向量微积分的偏导数和全微分向量微积分是数学中的一个重要分支,它涉及到向量、曲线、曲面和多元函数等概念,广泛应用于自然科学、工程学和经济学等领域。

其中偏导数和全微分是向量微积分中最为基础和常见的概念,本文将从它们的定义、性质和应用等方面进行讨论。

一、偏导数偏导数是多元函数在某一点上沿着某一坐标轴的导数,它可以用来衡量函数在该点上在该自变量方向上的变化率。

偏导数的定义如下:$$\dfrac{\partial f}{\partial x_i} = \lim_{h\rightarrow 0}\dfrac{f(x_1,\dots,x_i+h,\dots,x_n)-f(x_1,\dots,x_i,\dots,x_n)}{h} $$其中$f(x_1,\dots,x_i+h,\dots,x_n)$表示将第$i$个自变量增加$h$后的函数值,$f(x_1,\dots,x_i,\dots,x_n)$表示原始函数值,$h$表示增量,$\frac{\partial f}{\partial x_i}$表示函数$f$在第$i$个自变量上的偏导数。

具有偏导数的函数称为可偏导函数。

偏导数具有以下性质:1. 对于可偏导函数$f(x_1,\dots,x_n)$,其各个偏导数存在时,它们的顺序可以交换,即偏导数的次序不影响结果。

2. 对于可偏导函数$f(x_1,\dots,x_n)$,如果它在某一点上各个偏导数都存在且连续,则它在该点上可微。

3. 对于可偏导函数$f(x_1,\dots,x_n)$,其全微分可以表示为:$$df = \dfrac{\partial f}{\partial x_1}dx_1 + \dfrac{\partial f}{\partial x_2}dx_2 + \dots + \dfrac{\partial f}{\partial x_n}dx_n$$其中$dx_1,dx_2,\dots,dx_n$表示自变量的增量。

多元函数微分知识点总结

多元函数微分知识点总结

多元函数微分知识点总结一、多元函数的梯度在多元函数微分学中,梯度是一个非常重要的概念。

梯度是一个向量,表示函数在某一点的变化率最快的方向。

对于一个二元函数f(x, y),梯度可以表示为:∇f = (∂f/∂x, ∂f/∂y)其中,∂f/∂x和∂f/∂y分别表示函数f对x和y的偏导数。

梯度的方向即为函数在该点变化率最快的方向,而梯度的模即为函数在该点的变化率。

因此,梯度可以帮助我们确定函数在某一点的最大变化率和变化的方向。

在实际应用中,梯度可以帮助我们求解多元函数的最值问题。

通过求解梯度为0的点,可以找到函数的极值点。

梯度的方向还可以告诉我们函数在某一点的最快下降方向,从而帮助我们优化函数的取值。

二、多元函数的链式法则链式法则是多元函数微分学中的一个重要概念。

链式法则是用来计算复合函数的导数的方法。

对于一个复合函数f(g(x)), 链式法则可以表示为:(d(f(g))/dx) = (dg/dx)*(df/dg)链式法则的应用十分广泛。

在实际问题中,我们经常会遇到复合函数,通过链式法则,我们可以求解复合函数的导数,从而解决实际问题。

三、多元函数的偏导数多元函数的偏导数是多元函数微分学中的一个基本概念。

对于一个二元函数f(x, y),其关于变量x的偏导数可以表示为∂f/∂x,而关于变量y的偏导数可以表示为∂f/∂y。

偏导数表示了函数在某一点的变化率。

通过偏导数,我们可以确定函数在某一点的变化率和变化的方向,从而帮助我们解决实际问题。

四、多元函数的泰勒展开泰勒展开是多元函数微分学中的一个重要概念。

泰勒展开可以将一个函数在某一点处展开为一个无穷级数。

对于一个n次可导的函数f(x),它在点a处的泰勒展开可以表示为:f(x) = f(a) + f'(a)*(x-a) + f''(a)*(x-a)^2/2! + ... + f^(n)(a)*(x-a)^n/n!泰勒展开的应用非常广泛。

通过泰勒展开,我们可以将一个函数在某一点处近似为一个多项式,从而方便我们进行数值计算和求解。

多元函数微分学

多元函数微分学

第11章 多元函数微分学1 本章概述1.1 本章主要教学内容本章知识主要为:多元函数概念及其重极限、连续性;多元函数的偏导数、微分的概念及计算;连续、偏导数存在及可微三者之间的关系;链式规则;偏导数的几何应用,切平面与法向量;方向导数、梯度;隐函数存在性、可微性定理;多元函数最值求法,条件极值与Lagrange 乘数法.本章的较多篇幅是讲述偏导数的计算法,尤其是抽象复合函数的一阶、二阶偏导数的计算法,以及由方程确定的隐函数的偏导数的计算法.1.2 本章知识逻辑结构在以下图表中揭示出本章知识的逻辑关系.箭头前的是必须先学习的知识.1.3 在学习本章之前的必修知识学习本章——多元函数微分学应该具备一元函数微分学基本知识,空间解析几何基础知识, 具有线性代数基础知识更好.一元函数微分学基本知识具体为: 一元函数概念性质、极限概念及其性质、连续; 闭区间上连续函数的性质; 导数定义, 导数意义;微分、导数的四则运算、复合运算、高阶导数;微分中值定理;泰勒公式; 极值与最值.空间解析几何基础知识具体为:空间直线方程、平面方程和常见的二次曲面等知识.线性代数基础知识具体为:线性方程组解法;行列式及其运算;二次型概念及正定与负定二次型的判别法.( 线性代数不是学习本章的必要条件).1.4 本章对后继章节的影响在学习重积分、曲线积分、曲面积分时都必须先学本章知识. 本章知识与全微分方程有一定的相关性.1.5 本章的重点本章的关键点是: 偏导数的计算法本章的重点是:多元函数的连续性、偏导数、微分的概念, 连续、偏导数存在及可微三者隐函数求导法则 多元函数 极限 连续 有界闭区域上连续函数的性质 偏导数全微分 全微分形式不变性 极值 泰勒公式 最值无条件极值区域 方向导数 梯度 多元复合 求导法则 偏导数几何应用条件极值Lagrange 乘数法之间的关系;多元复合函数求导方法;偏导数的几何应用;极值及最值的求法.1.6 本章的难点区域有关概念, 二元函数极限, 全微分概念以及一阶微分形式不变性, 含有抽象函数的复合函数的一阶、二阶偏导数运算, 方程(组)确定的隐函数的一阶、二阶偏导数运算, 方向导数与偏导数间的关系,梯度的意义,无条件极值的充分条件的证明.2 .教学内容提要及教学建议(评注)2.1 多元函数的基本概念以二元函数为例叙述,可以平行推广到n 元函数的内容不再叙述. 2.1.1平面点集有关概念平面点集概念中最常说到的是邻域、区域. 其他的概念在初学时可以不讲. 某点的邻域是一个以该点为圆心的开圆盘,即一个开圆盘称为圆心的邻域.类似于一元函数时的区间,讨论二元函数时常常用到区域. 形象地说,区域就是连成一块的一个平面图形. 不含边界的区域叫开区域,含有全部边界在内的区域叫闭区域. 开区域或闭区域、半开半闭区域我们统称为区域.区域的严格数学定义为:区域是连通的开集.所谓连通集,即该集中任意两点都可以用含在该集中的连续曲线连接起来. 所谓开集,即该集中的每一点都有一个邻域含在此集中.能被一个圆盘包含的区域称为有界区域,否则称为无界区域.平面区域相关概念如内点、界点、聚点等建议不要在讲解二元函数概念之前先介绍, 因为对于非数学专业学生来说,学习内点,界点,聚点等这些是很难理解的,容易让学生感到抽象.可以先讲解二元函数的概念,然后几何意义,接着介绍二元函数定义域的求法与表示法,让学生从具体的定义域中感性的认识区域的有关概念,然后接着严格或者通俗的介绍这些概念.2.1.2 二元函数概念我们把二元函数定义为是从平面点集到实数集的映射. 注意使学生熟悉函数的记号,如函数与自变量的记号无关,f (x , y )既表示函数也表示函数值,函数记为z = f (x ,y )时,函数值,可记作00(,)f x y 或00(,)|x y z 等等.二元函数与一元函数类似,也只与定义域和对应法则有关,而与自变量,因变量用什么字母表示无关.一元函数可以看成是特殊的二元函数,而把二元函数的一个自变量固定,就得到一元函数. 二元函数z = f (x ,y ),其图形为空间一张曲面,该曲面在oxy 平面上的投影区域就是该函数的定义域. 也可以说该区面的方程是z = f (x ,y ).如函数z z =.注:三元及更多元函数的图形不是直观的图形..2.2 二元函数的极限与连续 2.2.1二重极限定义 设函数()z f P =在区域D 上有定义,点000(,)P x y 是D 的点或边界点.若当动点(,)P x y 在D 内无限趋向000(,)P x y 时, ()f P 总是无限的趋向于同一个常数A ,则称A 为()f P 当00(,)(,)x y x y →时的极限,记作00(,)(,)lim(,)x y x y f x y A →=, 或(,)f x y A → (00(,)(,)x y x y →).或 0lim ()P P f P A →=, 或()f P A → (0P P →).上面定义的极限叫二重极限. 二元函数还有一种极限叫二次极限,二者不同.二重极限仍有四则运算、无穷小乘有界量还是无穷小等性质,但没有洛比达法则.二重极限主要先从描述定义出发讲解,这样容易理解二元函数极限的本质,然后再向精确定义过度;要特别强调二元函数若当点(,)P x y 在D 内以任意方式任意方向趋向000(,)P x y 时,()f P 总是无限的趋向于同一个常数A ,则称A 为()f P 当00(,)(,)x y x y →时的极限,记作00(,)(,)lim (,)x y x y f x y A →=或0lim ()P P f P A →=.其次介绍二元极限与一元函数极限的不同点,让学生理解二元函数极限比一元要复杂,主要是体现的动点趋于的方向与方式上的多样性上.这个其实也是导致多元函数微分学会产生与一元不同的结果的根源所在.一元与二元函数极限的区别最后介绍二元函数极限的一些常规的求法及其证明二元函数极限不存在的一些作法. 如证明0lim ()P P f P →不存在: 一般寻找两条趋于P 0的不同的路径(首先考虑直线,其次是其他特殊的曲线)C 1;C 2若1C f A −−−→沿;2Cf B −−−→沿;而A B ≠,或,A B 中有一个不存在,则0lim ()P P f P →不存在, 例如考虑在原点O(0,0)的极限时,选直线 y kx =,假如有(,)(0,0)lim (,)x y f x kx A →=.① 若A 中含有k ,或A 不存在,则lim ()P Of P →不存在.②若A 中不含有k ,则lim ()P Of P →存在与否不能判断,此时需要选择其它曲线去考虑.因为这些是后面要讨论连续与可偏导,可偏导与可微分之间关系常用的方法.2.2.2二元连续函数二元函数连续性的定义与一元函数类似.定义 若()z f P =在区域D 上有定义且000(,)P x y D ∈,若有0lim ()()P P f P f P →= 或0000(,)(,)lim(,)(,)x y x y f x y f x y →=则称函数()f P 在0P 处连续,或称点0P 是函数()f P 的连续点.否则称为0P 为函数的间断点.若()f P 在区域D 上每一点都连续,则称()f P 在D 上连续.或称()f P 为D 上的连续函数. 二元连续函数性的性质也与一元函数类似,如:二元连续函数的四则运算及复合运算后仍是连续函数. 二元初等函数在其定义区域内都是连续的.最值定理: 若()f P 在有界闭区域D 上连续,则存在12,P P D ∈,使得P D ∀∈,有12()()()f P f P f P ≤≤ 4.介值定理: 若()f P 在有界闭区域D 上连续,则()f P 必取介于最大值与最小值之间的任一值.注:更一般的介值定理是:区域上的连续函数的值域是区间.2.3 偏导数2.3.1 偏导数的定义偏导数本质上是一元函数的导数.定义 设函数 (,)z f x y =在点),(00y x 的某邻域内有定义,当y 固定在0y ,考虑一元函数0(,)z f x y =,若它在0x x =处的导数存在,即00000(,)(,)limx f x x y f x y x∆→+∆-∆存在则称此极限值为函数),(y x f z =在点),(00y x 处对x 的偏导数,记作00|x x y y z x ==∂∂,00|x x y y z x ==∂∂ ,00|x x x y y z =='或00(,)x f x y '. 类似地,如果极限00000(,)(,)lim y f x y y f x y y∆→+∆-∆存在, 则称此极限值为函数),(y x f z =在点),(00y x 处对y 的偏导数, 记作0|x x y y z y==∂∂,00|x x y y z y==∂∂,00y y x x yz ==' 或00(,)y f x y '注1:00|x x y y z x ==∂∂=0),(0x x y x f dxd=. 或写0000(,)[(,)]|x x x f x y f x y =''= 用此式求一些分段函数在分段点处的偏导数很方便.注2: 000000(,)(,)|[(,)]x x x x x y y f x y f x y f x y =='''=≠注3:二元函数在某点的连续性与偏导数存在之间没有因果关系.如果函数),(y x f z =在区域D 内每一点),(y x 处对自变量x 或y 的偏导数(,)x f x y '、(,)y f x y ' 都存在,则这两个偏导数仍是y x 、的函数,称它们为函数),(y x f 对自变量x 或y 的偏导函数,简称偏导数,分别记作x z ',(,)x f x y ',x z ∂∂,xf ∂∂或y z ', (,)y f x y ', yz ∂∂,yf ∂∂.一元函数的变化率就是导数,对于二元函数由于自变量多,研究变化率就显得复杂,为了方便起见,我们仅限于讨论当点沿着平行于坐标轴方向变化时函数的变化率,即固定一个自变量,研究函数对另一个自变量的变化率即偏导数.其本质就是把二元函数当做一元函数去研究变化率. 即 0000(,)[(,)]|x x x f x y f x y =''=例 设(,)f x y =arctan22ln()y xex y ⋅+,求x f ')0,1(.解 如果先求出偏导函数x f '),(y x ,再求x f ')0,1(,可以发现求x f '运算比较繁杂.但若按偏导数定义即把y 固定在y =0,则有(,0)f x =2ln ||x 从而2(,0)x f x x'=,于是x f ')0,1(=2 .2.3.2 偏导数的计算方法由偏导数的定义可知,偏导数本质上是一元函数的导数,故求偏导数并不需要什么新的方法.对于给出具体表达式的显函数来说,在求它对某一自变量的偏导数时,只需将其它自变量看成常数,按照一元函数的求导法则进行求导.2.3.3. 偏导数的几何意义),(00y x f x '就是曲线C x :⎩⎨⎧==0),,(y y y x f z 在点)),(,,(00000y x f y x M 处切线x T M 0对x 轴的斜率, 即αtan ),('00=y x f x .同理,偏导数),(00y x f y '的几何意义是曲面S 与平面0x x =的交线C y 在点0M 处的切线y T M 0对y 轴的斜率,即),(00y x f y '= tan b .2.4 全微分可微、全微分紧接着偏导数之后讲的优点是:便于给出链式规则;便于给出求抽象函数、隐函数的偏导数的各种方法;便于讲述切平面.2.4.1全微分的概念(1)函数在一点处可微及全微分定义.定义 设函数(,)z f x y =在点0P 的某邻域0()U P 内有定义,若函数(,)f x y 在点000(,)P x y处的全增量0000(,)(,)z f x x y y f x y ∆=+∆+∆-可表示为(),z A x B y o ρ∆=∆+∆+其中,A B 是仅与点0P 有关,而与,x y ∆∆无关的常数,ρ则称函数(,)z f x y =在点0P 处可微分;并称线性函数A x B y ∆+∆为函数(,)z f x y =在点0P 处的全微分,记作00(,)|x y dz , 即(,)||x yx x y y dz df A x B y ====∆+∆. 对于二元函数,规定自变量的增量为自变量的微分:x dx ∆=,y dy ∆=.于是00(,)|x y dz Adx Bdy =+.注 微分d z 是自变量增量,x y ∆∆的线性函数, 容易计算;当||,||x y ∆∆很小时,有z dz ∆≈的误差较小,故d z 是函数增量z ∆的容易计算又精确的近似值.(2) 函数的微分定义 若),(y x f z =在区域D 内每一点都可微,则称),(y x f z =在D 内可微或称此函数是区域D 内的可微函数.此时全微分记作dz . 即(,)x dz f x y dx '=+(,)y f x y dy '.一般的,dx y x f y x df dz x ),(),('==dy y x f y ),('+注 函数的微分是一个形式符号,有时用它较为方便.2.4.2 可微与连续、偏导数存在之间的关系定理(可微的必要条件)若函数),(y x f z =在点00(,)x y 可微,则 ①函数(,)f x y 在点00(,)x y 处连续;②函数(,)f x y 在点00(,)x y 处的偏导数00(,)x f x y ',00(,)y f x y '都存在,且有00(,)00|(,)x y x dz f x y x '=∆+00(,)y f x y y '∆.定理(可微的充分条件)若函数),(y x f z =在点000(,)P x y 的某邻域0()U P 内偏导数都存在,且(,)x f x y ',(,)y f x y '在点000(,)P x y 处连续,则函数(,)f x y 在点000(,)P x y 处可微. 这两个定理的逆命题都不成立.学习微分概念与可微分的必要条件后,建议结合定义补充如下与可微等价的结论.用此定理判定一个函数的可微性时较方便,初学者易于理解掌握. 有了这个结论后对于学习理解可微有积极的帮助.定理: 若),(y x f z =在点000(,)P x y 处的两个偏导数,x y f f ''都存在,在点0P 处满足000[()()]lim0x y z f P x f P y ρρ→''∆-∆+∆=则),(y x f z =在000(,)P x y 处可微. 且00(,)00|(,)x y x dz f x y x '=∆+00(,)y f x y y '∆.可微的充分条件可以弱化为:两个偏导数之一连续,函数就可微.定理(可微的充分条件)若函数),(y x f z =在点000(,)P x y 的某邻域0()U P 内偏导数都存在,且(,)x f x y '与(,)y f x y '二者中至少有一个在点000(,)P x y 处连续,则函数(,)f x y 在点000(,)P x y 处可微.证 我们只需证明函数的全增量z ∆满足可微的定义.证明思想就是通过插项方法把二元函数化为一元函数处理. ),(y x f z =在点000(,)P x y 的邻域0()U P 内改变量0000(,)(,)z f x x y y f x y ∆=+∆+∆-0000[(,)(,)]f x x y y f x y y =+∆+∆-+∆0000[(,)(,)]f x y y f x y ++∆-因且(,)x f x y ',(,)y f x y '在0()U P 内存在,于是一元函数0(,)z f x y y =+∆关于x 在点0x 可导,即可微. 0000001(,)(,)(,)x f x x y y f x y y f x y y x x ε'+∆+∆-+∆=+∆∆+⋅∆ (1) 同理可得 0000002(,)(,)(,)y f x y y f x y f x y y y ε'+∆-=∆+⋅∆ (2)再由(,)x f x y '在000(,)P x y 点连续知 00003(,)(,)x x f x y y f x y y ε''+∆=+⋅∆ (3)(1)+(2)并将(3)带入,即得0000123(,)(,)x y z f x y x f x y y x y x y εεε''∆=∆+∆+⋅∆+⋅∆+∆∆而 123123||||||||x y x y εεεεεερρ⋅∆+⋅∆+∆∆≤++由于 123lim[||||||]0x y εεερ∆→∆→++=. 所以0000(,)(,)()x y z f x y x f x y y o ρ''∆=∆+∆+,故(,)f x y 在点000(,)P x y 处可微.此定理的逆命题也不成立.学习完偏导数,可微概念后,及时对它们之间的关系对照一元函数画出关系图,以便学生理解一元函数与二元函数微分学的不同点.二元函数几个概念间的关系下面常见的函数可以成为表述上述关系的重要的例子.可微例1函数22221()sin ,(,)(0,0)(,)0,(,)(0,0)x y x y x y f x y x y ⎧+=⎪+=⎨⎪=⎩在(0,0)O 处可微, 但偏导数在(0,0)O 处不连续.例2函数,)(0,0),(,)0, (,)(0,0),x y f x y x y ≠==⎩在原点(0,0)连续, 可偏; 但不可微性. 例3 函数22,(,)(0,0),(,)0,(,)(0,0)xyx y x y f x y x y ⎧≠⎪+⎪=⎨⎪⎪=⎩在点(0,0)O 存在偏导数;但却不连续. 例4 函数),(y x f 22y x +=在点(0, 0)处连续但偏导数不存在.注 全微分在近似计算中的应用由全微分的定义可知,若函数(,)z f x y =在点00(,)x y 处可微分,且00(,),x f x y '00(,)y f x y '不全为零, 当||,||x y ∆∆都很小时,有近似公式z ∆≈00(,)x f x y x '∆+00(,)y f x y y '∆ (*)或写为 0000(,)(,)f x x y y f x y +∆+∆≈+00(,)x f x y x '∆+00(,)y f x y y '∆. (**)这表示在点00(,)x y 邻域内,可以把(,)f x y 近似地线性化.右侧就是一次线性逼近,这种逼近可以用来解决复杂近似计算.学习完微分后,务必要讲解微分的近似计算,因为这才能让学生明白和理解,微分的真正意义是当自变量的改变量很小时,可以用微分近似逼近函数的改变量.2.5 多元复合函数的微分法 2.5.1.链式法则链式法则大体上有两种叙述,条件有所不同,结论也相应不同,但计算偏导数的公式是一样的.差别仅在于如果要求内函数是可微的,则复合函数也可微,如果要求内函数仅是可偏导的,则复合函数也仅是可偏导的.定理 1 设),(v u f z =,),(y x u φ=,),(y x v ψ=可以构成复合函数)],(),,([y x y x f z ψφ=.若),(y x u φ=及),(y x v ψ=在点),(y x 处对x 、y 的偏导数均存在,函数),(v u f z =在对应点),(v u 处可微,则复合函数)],(),,([y x y x f z ψφ=在点),(y x 处对,x y 的偏导数存在,且有z f u fv x u x v x z f u fv y u y vy ∂∂∂∂∂⎫=+⎪∂∂∂∂∂⎪⎬∂∂∂∂∂⎪=+∂∂∂∂∂⎪⎭定理 2 设),(v u f z =,),(y x u φ=,),(y x v ψ=可以构成复合函数)],(),,([y x y x f z ψφ=.若),(y x u φ=及),(y x v ψ=都在点),(y x 处可微,函数),(v u f z =在对应点),(v u 处可微,则复合函数)],(),,([y x y x f z ψφ=在点),(y x 处可微,且有z f u fv x u x v x z f u fv y u y vy ∂∂∂∂∂⎫=+⎪∂∂∂∂∂⎪⎬∂∂∂∂∂⎪=+∂∂∂∂∂⎪⎭注① 定理中的条件并非必要条件.注② 特别地,当),(v u f z =,而)(x u φ=,)(x v ψ=时, 上述两个定理就是一样的,由于复合函数)](),([x x f z ψφ=为x 的一元函数,这时z 对x 的导数称为全导数,应写为dz f du f dv dx u dx v dx∂∂=⋅+⋅∂∂.链式法则对多层复合的函数依然成立,对多元函数也依然成立.以三个中间变量为例,定理1是:若(,)u x y ϕ=,),(y x v ψ=及),(y x w ω=都在),(y x 具有对x 及对y 的偏导数,函数),,(w v u f z =在对应点),,(w v u 处可微,则[(,),(,),(,)]z f x y x y x y φψω=在点),(y x 处的偏导数都存在,且有z f u f v f w x u x v x w x∂∂∂∂∂∂∂=++∂∂∂∂∂∂∂ z f u f v f w yu yv yw y∂∂∂∂∂∂∂=++∂∂∂∂∂∂∂求抽象复合函数的偏导数,是重点,也是难点,需多作讲解和练习.因为学习了偏导数后,学生会知道偏导数计算与一元函数求导本质上相同.似乎偏导数计算问题我们完满的解决了.其实对于复杂点的函数,或者含有抽象函数时复合函数我们还是很难计算或表达他们的偏导数.如:设空间曲线(),(),()x g t y h t z k t ===其上一点(,,)x y x 的温度为(,,)w f x y z =,对t 的每个值,在点(,,)x y x 处的温度是复合函数[(),(),()]w f g t h t k t =,现在我们想研究f 沿着路径随时间t 的变化率.即要求复合函数(,,)w f x y z =对t 的导数.若上述曲线,温度的表达式很复杂,或者干脆这些表达式都不能具体的表达出来,就是一个抽象的式子,那么如何求f 对t 的导数?这就需要学习的复合函数的链式法则.这个也就是为什么还要学习这个法则的原因.由于多元复合求导法则是微分学的基础,所以要加强这个地方的训练.要求学生要掌握该法则.记忆可以通过与一元复合求导法则对比,介绍记忆方法;即一般所谓的树形图形法. 然后通过习题介绍应该注意的事项.其次要提醒学生, 多元复合求导法则主要用在含有抽象函数求偏导时.可以用该法则把复合函数求导问题表示出来.当不含有抽象函数时,一般采用直接求偏导数就可以,若此时使用复合函数求导法则,有时反而复杂化.2.5.2 一阶全微分形式的不变性若(,)z f u v =可微,(,),(,)u x y v x y ϕψ==也可微,则函数(,)z f u v =与复合函数[(,),(,)]z f x y x y ϕψ=的微分相等,即不论,u v 作为(,)z f u v =的自变量; 还是作为复合函数[(,),(,)]z f x y x y ϕψ=的中间变量,均有dv v z du u z dz ∂∂+∂∂=.这一性质称为一阶全微分形式的不变性.利用一阶全微分形式不变性,可以证明不论,u v 是自变量,还是中间变量下列全微分的四则运算法则都成立.定理 设,u v 可微分,则,,(0)uu v uv v v±≠亦可微分,且有 (1) ();d u v du dv ±=± (2) ();d uv vdu udv =+ 特别有(),d ku kdu k =∈.(3) 2().u vdu udvd v v-=我们常常是在不知不觉中就用到了一阶全微分形式不变性.2.6 隐函数微分法2.6.1. 一个方程的情形 ( 1) 由方程(,)0F x y =所确定的一元隐函数的存在性、可微性定理 (隐函数存在定理)设函数),(y x F 在点000(,)P x y 的某一邻域0()U P 内有连续的偏导数,且0),(00=y x F ,0),(00≠'y x F y ,则存在点0x 某一邻域0()U x ,和唯一一个定义在0()U x 上的、有连续导数的函数)(x f y =,它满足)(00x f y =及在0()U x 的恒等式(,())0F x f x ≡,且有y x F F dx dy ''-=.常称函数)(x f y =为由方程0),(00=y x F 确定的隐函数.此定理本身不易理解. 定理条件中应强调0),(00≠'y x F y ,可结合定理结论中的导数公式yx F F dx dy''-=来理解、记忆此条件.(2) 由方程(,,)0F x y z =所确定的二元隐函数的的存在性、可微性定理 若函数(,,)F x y z 在点0000(,,)P x y z 的某一邻域0()U P 内具有连续偏导数,且0()0F P =,0()0z F P '≠,则存在点0x 某一邻域0()U x ,和唯一一个定义在0()U x 上的、有连续偏导数的二元隐函数),(y x f z =,它满足),(000y x f z =及在0()U x 的恒等式,(,,(,))0F x y f x y ≡且有 x z F z xF '∂=-'∂, y z F z yF '∂=-'∂.常称函数),(y x f z =为由方程(,,)0F x y z =确定的隐函数. 2.6.2. 方程组的情形定理 设(,,,)F x y u v ,(,,,)G x y u v 均在点00000(,,,)P x y u v 的某一邻域0()U P 内对各个变量具有连续偏导数,且0()0F P =,0()0G P =;且偏导数构成的行列式0(,)0(,)u v u v P PF F FG J G G u v ''∂==≠''∂,则方程组(,,,)0(,,,)0F x y u vG x y u v ==⎧⎨⎩在点0P 的某一邻域0()U P 内能唯一确定一组具有连续偏导数的函数(,),(,)u u x y v v x y ==,它们满足000000(,),(,)u u x y v v x y ==及恒等式[,,(,),(,)]0F x y u x y v x y ≡,[,,(,),(,)]0G x y u x y v x y ≡且有1(,)(,)u F G x J x v ∂∂=-∂∂, 1(,)(,)u F G y J y v ∂∂=-∂∂1(,)(,)v F G x J u x ∂∂=-∂∂, 1(,)(,)v F G y J x y ∂∂=-∂∂2.6.3 隐函数求导法方法1 利用隐函数导数公式 y x F F dx dy ''-=,或x z F z xF '∂=-'∂, y z F z yF '∂=-'∂.或1(,)(,)u F G x J x v ∂∂=-∂∂, 1(,)(,)u F G y J y v ∂∂=-∂∂1(,)(,)v F G x J u x ∂∂=-∂∂, 1(,)(,)v F G y J x y ∂∂=-∂∂方法2 方程(组)两边同时求(偏)导,再解出所求(偏)导数.方法3方程(组)两边同时求微分,解出隐函数的微分,再解出所求(偏)导数.隐函数求导其实是复合函数求导的应用,隐函数求导在关于微分学在几何方面有一些重要的应用. 如曲线Γ由一般方程(,,)0(,,)0F x y zG x y z =⎧⎨=⎩, 给出时,就可以方便的求出其切线与法平面.以及曲面的切平面与法线求法.对于隐函数求导法,要强调方法1(直接套用隐函数求(偏)导数公式)与另两种方法的区别,即作为隐函数的那个变量在求导时是自变量还是中间变量. 要特别注意它们的求导树形图的区别.例如三元方程(,,)0F x y z =所确定的二元隐函数),(y x f z =公式求导法(方法1)关系为 直接求导法(方法2)关系为即: 用公式法求偏导数时,(,,)F x y z 中的所有变量都是独立的自变量.而对于用直接法求偏导数时,即对方程(,,)0F x y z =两边求偏导时,(,,)0F x y z =中的,x y 是独立自变量,但z 须看成,x y 的函数.采用方法3(两边同时求微分)时,实际上用到了一阶全微分形式不变性,即使对于复合结构比较复杂的函数,以及出比较难以分清变量之间的关系时,是很有用的,出错的可能性较小一些. 对于方程组确定的隐函数情形,也是如此.对于涉及含有抽象复合函数与隐函数求导问题,建议用方程组模式处理,或者微分形式不变性的方法处理,这样可以避免出现计算错误, 避免学生难以区分自变量与中间变量问题.避免中间变量的关错综复杂的关联关系. 这两种方法是处理这种问题比较有效的方法.例如,四元方程组(,,,)0(,,,)0F x y u vG x y u v ==⎧⎨⎩满足以函数存在定理,可以确定(,),(,)u u x y v v x y == 一般采用直接对方程组两端分别对自变量x ;y 求偏导数,只需把其中的,u v 看作,x y的隐函数.最后解所得线性方程组.将方程组两边分别关于x 求偏导,由复合函数求导的链式法则有0,0.x u x v x xu x v x F F u F v G G u G v '''''+⋅+⋅≡⎧⎨'''''+⋅+⋅≡⎩ 解该方程组就可得到,x x u v ''.同理将方程组两边分别关于y 求偏导, 由复合函数求导的链式法则有0,0.y u y v y yu y v y F F u F v G G u G v '''''+⋅+⋅≡⎧⎪⎨'''''+⋅+⋅≡⎪⎩ xFyz公式法多元隐函数树形图yxFxyz解该方程组就可得到,y y u v ''的表达式.如上的这种求偏导数的方法也就方程组求导法.注: 使用方程组求导法求方程组确定隐函数的导数时,隐函数中自变量个数=方程组中所含变量个数-方程组中所含方程的个数.2.7 切平面、法线和切线、法平面 在曲面的一个点处求出切平面、法线,可以用切平面和法线构成该点处的一个直角坐标系,该点附近的小片曲面就可以近似看成切面上的一片. 切线、法平面同理.2.7.1 曲面的切平面与法线求法 设曲面S 的一般方程为 :(,,)0S F x y z =. 其中0000(,,)M x y z S ∈,函数(,,)F x y z 在该点可微,且偏导数不同时为零.定理 设曲面S 的方程为:(,,)0S F x y z =,0000(,,)M x y z S ∈.函数(,,)F x y z 在0M 处可微且偏导数不同时为零. 则曲面S 上任意一条通过0000(,,)M x y z 且在0000(,,)M x y z 处光滑曲线,其在0000(,,)M x y z 的切线都在下述平面上000000))()(()(()()0x y z F x F F M x M y y M z z '''++---= 此平面称为曲面S 在0000(,,)M x y z 出的切平面.过切点且与切平面垂直的直线称为法线,曲面S 在0000(,,)M x y z 处的法线方程为000000.()()()x y z x x y y z z F M F M M F ---=='''注 ①定理仅适用于曲面方程由一般方程给出情况.② 曲面S 由显函数(,)z f x y =方程给出时,在点00000(,,()),M x y f x S y ∈处的切平面为0000000))(,)((,)(x y x f z z f x y x x y y y '+'-=--法线方程为000000.()()1,,x y x x y y z z x f x f y y ---=='-'③ 对于(,)z f x y =而言,在点0M S ∈的切平面为0000000))(,)((,)(x y x f z z f x y x x y y y '+'-=--,即 000000000(,)))|(,)((,)(x y x y x f df z z f x y x x y y y '+='-=-- 由此给出微分的几何解释.2.7.2 空间曲线一般方程下其切线与法平面求法 若曲线Γ由一般方程表处(,,)0(,,)0F x y zG x y z =⎧⎨=⎩, 可以将其看作参数方程,比如以x 为参数,上述方程组确定两个隐函数)(),(x z z x y y ==,Γ的参数方程为:x x =,)(),(x z z x y y ==.Γ上与参数0x x =相对应的点处的切线方程是00000.1()()x x y y z z y x z x ---=='' 法平面方程为00000:()()()()0x x y x y y z x z z π''-+-+-=还有另一个求法:求出曲面0),,(:1=z y x F S 和曲面0),,(:2=z y x G S 在某点的切平面, 这两个切平面的交线就是该点处的切线.2.8 高阶偏导数定义 如果),(y x f z =在区域D 内的偏导数(,)x f x y '与(,)y f x y '仍可求偏导,则称它们的偏导数为函数(,)f x y 的二阶偏导数,按照对变量求偏导次序的不同,二阶偏导数共有以下四个:),()(22y x f z x z x z x xx xx ''=''=∂∂=∂∂∂∂, ),()(2y x f z yx z x z y xy xy ''=''=∂∂∂=∂∂∂∂, ),()(2y x f z x y z y z x yx yx''=''=∂∂∂=∂∂∂∂, ),()(22y x f z yz y z y yy yy ''=''=∂∂=∂∂∂∂, 其中偏导数yx xy z z '''',通常称为二阶混合偏导数.类似地可以定义更高阶的偏导数,例如混合偏导数(,)xyf x y '',再对y 求偏导数是 232()(,)xyyxyy z zz f x y y x y x y∂∂∂''''''===∂∂∂∂∂ 二阶及二阶以上的偏导数统称为高阶偏导数.定理 (求高阶偏导数与次序无关定理)若函数),(y x f z =的二阶混合偏导数xy z ''和yx z ''在区域D 内连续,,则在该区域D 内必有xy yx z z ''''= .即连续的二阶混合偏导数与其求导次序无关.对于含有抽象函数求高阶偏导数,学生容易对复合结构产生一些偏差,再此要特别强调含有抽象函数计算高阶偏导数时与计算一阶偏导数时函数的复合结构关系(树形图)是完全一致的,或者多元函数求偏导后其复合结构不变.即若设),(v u f z =,),(y x u φ=,),(y x v ψ=u vx y 12f ''x yuv x x yy uv x x yy f '在对一阶偏导数求二、三阶偏导数时,112()()u uv f f f f ''''''==、仍是以,u v 为中间变量,,x y 为自变量的复合函数,即复合关系或复合树形图不变.2.9方向导数与梯度2.9.1.方向导数方向导数的定义有两种,有微小差别.定义1 设(,)z f x y =在点000(,)P x y 的某邻域0()U P 内有定义,l 为一个向量,其单位向量为0{cos ,cos }l αβ=.在以0P 为始点沿着l 方向的射线上任取一点00(cos ,cos )P x h y h αβ++ (h 足够小使0()P U P ∈),若极限00000000()()(cos ,cos )(,)lim lim ||h h f P f P f x h y h f x y P P hαβ+→→-++-= 存在,则称此极限为函数(,)f x y 在点0P 处沿着方向l 的方向导数,记作|P f l∂∂或0()l D f P ,即|P f l∂∂=0()l D f P 00000(cos ,cos )(,)lim h f x h y h f x y hαβ+→++-=.定义2设(,)z f x y =在点000(,)P x y 的某邻域0()U P 内有定义,l 为一个向量,其单位向量为0{cos ,cos }l αβ=.过0P 作与l 平行的直线(有向直线)l 00(cos ,cos )P x h y h αβ++()h ∈且0()P U P ∈.若极限00000(cos ,cos )(,)limh f x h y h f x y hαβ→++-存在,则称此极限为函数(,)f x y 在点0P 处沿着方向l 的方向导数,记作|P f l∂∂或0()l D f P ,即|P fl ∂∂=0()l D f P 00000(cos ,cos )(,)limh f x h y h f x y hαβ→++-=.方向导数与偏导数的关系为:按定义1,函数在某点沿指定方向的方向导数本质是函数在该点沿着指定方向的单侧变化率,而偏导数是函数沿着平行于坐标轴正向的变化率,即双侧变化率.故在某点M 沿平行于坐标轴的方向导数都存在也不能推断出偏导数存在;但反之,偏导数存在时,在点M 沿坐标轴正负向的方向导数都存在,且满足()f f l l∂∂=-∂-∂=-l f∂∂(M ),其中l 表示坐标轴正向,即P 0lP 0P 0ll 是x 或y .总之,按定义1,函数在点M 处偏导数存在,则在点M 沿坐标轴正向的方向导数存在,且二者相等,反之不真.即有(按定义1):只有在()f fl l∂∂=-∂-∂时,偏导数才存在.按定义2,函数在点M 处偏导数存在等价于在点M 沿坐标轴正向的方向导数存在,且二者相等. 即这时可以认为偏导数是方向导数的特殊情况,或者方向导数是偏导数的推广. 这时总有0|()|P P f l fl∂∂-∂=-∂. 两个定义的比较:有相同的计算公式(见下);但方向导数存在的范围前者大于后者;前者是沿射线的变化率,后者是沿直线的变化率;前者与偏导数不一致,后者不一致;前者适应实际情况,便于应用,后者以偏导数为特例,可以将偏导数和方向导数统一解释为沿直线的变化率,有利于初学者的理解学习.方向导数的计算定理1 若函数(,)z f x y =在点000(,)P x y 处可微分,则函数(,)f x y 在该点沿着任一方向l 的方向导数都存在,且有000|()cos ()cos P x y f fP f Plαβ'=∂'+∂ 其中0{cos ,cos }l αβ=是方向l 的单位向量.注 三元函数(,,)u f x y z =的方向导数可类似定义和计算.如类似于定义1,(,,)u f x y z =在空间一点0000(,,)P x y z 处沿着方向0{cos ,cos ,cos }l αβγ=的方向导数为0000000(cos ,cos ,cos )(,,)|lim P h f x h y h z h f x y z f hlαβγ+→+++-∂=∂.2.9.2 梯度(1)定义 若函数(,)z f x y =在点000(,)P x y 处可微分,则称向量00{(),()}x y f P f P ''为(,)f x y 在点0P 处的梯度向量,简称为梯度,记作0()gradf P 或0()f P ∇,即0000()(){(),()}x y gradf P f P f P f P ''=∇=.偏导数存在.。

多元函数的偏导数与全微分

多元函数的偏导数与全微分

多元函数的偏导数与全微分多元函数是指含有多个自变量的函数。

在研究多元函数时,我们经常需要考虑函数在各个自变量上的变化情况。

而偏导数就是用来描述多元函数在某个自变量上的变化率。

偏导数的定义如下:对于多元函数f(x1, x2, ..., xn),在某个点P(x1,x2, ..., xn)处,对第i个自变量求导得到的导数称为偏导数,记作∂f/∂xi。

偏导数表示了函数在某一方向上的变化率。

如果函数f是可微的,那么全微分df可以表示为df = ∂f/∂x1 * dx1 + ∂f/∂x2 * dx2 + ... + ∂f/∂xn * dxn,其中dx1, dx2, ..., dxn是自变量的微小变化量。

偏导数与方向导数之间存在一定的联系。

方向导数表示了函数在某一特定方向上的变化率,偏导数是方向导数在坐标轴方向上的特例。

具体来说,对于函数f(x1, x2, ..., xn)在点P(x1, x2, ..., xn)处的方向向量为d,则方向导数可以表示为Df = ∂f/∂x1 * dx1 + ∂f/∂x2 * dx2 + ... +∂f/∂xn * dxn。

当d为坐标轴方向(例如d = (1, 0, 0, ..., 0))时,方向向量的每个分量只有一个非零分量,其他分量为0,此时方向导数就变成了偏导数。

在求解多元函数的偏导数时,常常使用链式法则和求导法则。

链式法则用于求解复合函数的导数,求导法则则是求解一些特定函数的导数公式。

多元函数偏导数在实际问题中有着广泛的应用。

例如,在经济学中,我们经常研究生产函数来描述生产过程中的变化率;在物理学中,偏导数可以用来表示速度、加速度等物理量的变化率。

总结一下,多元函数的偏导数是用来描述函数在某个自变量上的变化率。

全微分则是将多个自变量的偏导数通过线性组合得到的。

偏导数与方向导数密切相关,是方向导数在坐标轴方向上的特例。

在实际问题中,偏导数有着重要的应用价值。

以上就是关于多元函数的偏导数与全微分的相关内容,希望能够帮助你更好地理解和应用多元函数的求导方法。

多元函数微分法及其应用.doc

多元函数微分法及其应用.doc

第八章多元函数微分法及其应用一、本章教学目标:1.使学生掌握多元函数的基本概念2.使学生掌握多元函数的微分求解关系3.使学生掌握多元函数各知识点之间的联系二、本章基本要求:1.使学生掌握多元函数连续的计算2.使学生掌握多元函数微分的计算三、本章各节的教学内容:第一节多元函数的基本概念教学内容:①平面点集,n维空间②多元函数的概念③多元函数的极限④多元函数的连续性第二节偏导数教学内容:①偏导数的定义及计算法②高阶偏导数第三节全微分教学内容:①全微分的定义②全微分在近似计算中的应用第四节多元复合函数的求导法则教学内容:①多元复合函数的求导法则第五节隐函数的求导法则教学内容:①一个方程的情形②方程组的情形第六节多元函数微分学的几何应用教学内容:①空间曲线的切线与法平面②曲面的切平面与法线第七节方向导数与梯度教学内容:①方向导数②梯度第八节多元函数的极值及其求法教学内容:①多元函数极值、最大值和最小值②条件极值,拉格朗日乘数法四、本章教学重点:1.使学生掌握多元函数的连续2.使学生掌握多元函数的微分3.使学生掌握多元函数微分学的应用五、本章教学内容的深化和拓宽:使学生深化对多元函数知识点间的联系六、本章教学方式:多媒体七、本章教学过程中应注意的问题:培养学生用发展变化的观点看待问题八、本章主要参考书目:1.同济大学数学教研室主编.1996年.北京:高等教育出版社2.华东师范大学数学系主编.1990年.北京:高等教育出版社3.惠淑荣主编.2002年.北京:中国农业出版社4.李喜霞主编.2003年.北京:中国农业出版社九、本章思考题:1.多元函数极限,连续,可微之间的关系2.多元函数求导的法则及应用3.多元函数微分学及应用§8-1多元函数的基本概念一、区域 1.邻域设0P 是XOY 平面上的一点,δ是一个正数,与点0P 的距离小于δ的点(,)P x y 的全体,称为点0P 的δ邻域。

记作()0,U P δ,即(){}00,U PP PP δδ=<,也就是 ()({}0,,U P x y δδ=<。

多元函数的微分与全微分

多元函数的微分与全微分

多元函数的微分与全微分在微积分中,多元函数是指具有多个自变量的函数。

在研究多元函数的性质时,微分和全微分是两个重要的概念。

本文将介绍多元函数的微分和全微分的概念,并对其进行详细解释。

一、多元函数的微分多元函数的微分可以理解为对函数的微小变化的近似表示。

对于一个具有 n 个自变量的函数 f(x₁, x₂, ..., xₙ),其微分可以表示为:df = ∂f/∂x₁ dx₁ + ∂f/∂x₂ dx₂ + ... + ∂f/∂xₙ dxₙ其中,∂f/∂x₁, ∂f/∂x₂, ..., ∂f/∂xₙ 分别是函数 f 对自变量 x₁, x₂, ..., xₙ 的偏导数。

dx₁, dx₂, ..., dxₙ 分别是自变量 x₁, x₂, ..., xₙ 的微小变化量。

多元函数的微分可以看作是函数在某一点上的切线在各个方向上的变化率的线性组合。

微分在数值计算、优化问题以及在物理学等领域都具有广泛的应用。

二、多元函数的全微分当多元函数的各个自变量均发生微小变化时,函数值的变化可以用全微分来描述。

全微分可以看作是微分的推广,它不再仅仅依赖于各个自变量的微小变化,还包括函数本身对自变量的变化的响应。

对于一个具有 n 个自变量的函数 f(x₁, x₂, ..., xₙ),其全微分可以表示为:df = (∂f/∂x₁) dx₁ + (∂f/∂x₂) dx₂ + ... + (∂f/∂xₙ) dxₙ= (∂f/∂x₁, ∂f/∂x₂, ..., ∂f/∂xₙ) · (dx₁, dx₂, ..., dxₙ)ᵀ其中,(∂f/∂x₁, ∂f/∂x₂, ..., ∂f/∂xₙ) 是函数 f 在给定点的梯度向量,(dx₁, dx₂, ..., dxₙ)ᵀ是自变量的变化向量的转置。

全微分可以看作是函数值的变化与自变量变化的关系,通过计算梯度向量和自变量变化向量的内积得到。

全微分在最优化问题、求解方程组以及微分几何等领域有着重要应用。

多元函数微分学总结

多元函数微分学总结

`第八章 多元函数微分学8.1基本知识点要求1.理解多元函数的概念,理解二元函数的几何意义.2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质。

3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必 要条件和充分条件,了解全微分形式的不变性。

4.理解方向导数与梯度的概念,并掌握其计算方法.5.熟练掌握多元复合函数一阶、二阶偏导数的求法.6.了解隐函数存在定理,熟练掌握多元隐函数偏导数的求法.7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,熟练掌握它们的方程的求法。

8.了解二元函数的二阶泰勒公式.9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,掌握二元函数极值存在的充分条件,并会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题。

8.2基本题型及解题思路分析题型1 与多元函数极限、连续、偏导数和可微的概念及其之间的关系有关的题1. 二元函数的极限与连续的概念及二元函数极限的计算。

(1)基本概念①二元函数极限的定义:设()(,)f P f x y =的定义域为D ,000(,)P x y 是D 的聚点.若∃常数A ,对于∀0ε>,总∃0δ>,使得当0(,)(,)P x y D U P δ∈时,都有()(,)f P A f x y A ε-=-<成立,则称A 为函数(,)f x y 当00(,)(,)x y x y →时的极限,记作000(,)(,)lim (,)lim ()x y x y P P f x y A f P A →→==或。

②二元函数的连续:设()(,)f P f x y =的定义域为D ,000(,)P x y 为D 的聚点,且0P D ∈.若0000(,)(,)lim(,)(,)x y x y f x y f x y →=,则称(,)f x y 在点000(,)P x y 连续。

多元函数的导数与微分

多元函数的导数与微分

表示 PP0 (关于 l 的方向)的斜率. 当 t ® 0, x ® x0 , 割线转化为切线.
¶f 它关于 l 方向的斜率是方向导数 ¶ l .
x0
目录 上页 下页 返回 结束
例3.1 设二元函数
求 f 在点(0,0)沿方向 解:当cos q ¹ 0 时,有
? f (0,0) f (t cos q, t sin q) f (0,0) = lim t® 0 ¶l t cos q × sin 2 q sin 2 q = lim = ; 2 2 4 t ® 0 cos q + t sin q cos q
是自变量为t 的一元函数,记作
F (t ) = f ( x0 + tel ).
因此,f (x)在x0 处沿方向l 的变化率就是函数F(t)在t=0 处的导数,即
F (t ) - F (0) lim t® 0 t
f ( x0 + tel ) - f ( x0 ) = lim . t® 0 t
目录
上页
下页
目录 上页
y0
( x0 , y0 )
y
在点M0 处的切线 M 0Ty 对 y 轴的
下页
返回
结束
注意: 函数在某点各偏导数都存在,
但在该点不一定连续.
xy , x2 y2 0 2 例如, z f ( x, y ) x y 2 2 2 0 , x y 0
显然
的方向导数.
当 cos q = 0 时,由于
f (t cos q, t sin q) - f (0,0) = 0,
¶ f (0,0) = 0. 从而 ¶l
目录 上页 下页 返回 结束
偏导数的定义

第八章 多元函数微分学

第八章 多元函数微分学

例. 设 z = f ( xy, yg ( x)) 其中函数 f 具有二阶连续 偏导数,函数 可导, 偏导数,函数g(x)可导,且在 可导 且在x=1处取得极值 处取得极值 ∂2 z g(1)=1,求 求 x =1, y =1 ∂x∂y 可导且在x=1处取极值所以 g ′(1) = 0 解:由g(x)可导且在 由 可导且在 处取极值所以
′′′ fx′′′ (x, y, z) = f yz x (x, y, z) = fz′′′y (x, y, z) yz x
= fx′′′ y (x, y, z) = f y′′′ (x, y, z) = f z′′′ (x, y, z) z xz yx
4. 微分
∆z = fx′(x, y) ∆x + f y′(x, y) ∆ y
答案: ( 考研题) 答案:B(2012考研题) 考研题
x2 y2 2 2 , x + y ≠0 3 证明: 例. 证明 f (x, y) = (x2 + y2 ) 2 0 , x2 + y2 = 0 在点(0,0) 处连续且偏导数存在 , 但不可微 . 在点 解: 利用 2xy ≤ x2 + y2 , 知 1 1 2 2 2 f (x, y) ≤ (x + y ) 4 ∴ lim f (x, y) = 0 = f (0, 0)
k −1
f ( x, y , z )
同乘以 t, 得
(tx) f1′(u, v, w) + (ty) f 2′(u, v, w) + (tz ) f 3′(u, v, w) = k ⋅ t k f ( x, y, z )
由条件f (tx, ty , tz ) = t k f ( x, y , z ), 及u = tx, v = ty , w = tz , 得

向量值函数的导数与微分

向量值函数的导数与微分

向量值函数的导数与微分当我们研究单变量函数的导数时,我们可以通过计算其斜率来衡量其变化率。

然而,当涉及到向量值函数时,这种思维方式就不再适用了。

在本文中,我们将探讨向量值函数的导数与微分的概念,并了解其在向量微积分中的应用。

一、向量值函数的定义向量值函数是指以实数为自变量,向量为函数值的函数。

一般形式为:r(t) = [f1(t), f2(t), ..., fn(t)]其中,f1(t), f2(t), ..., fn(t) 是 t 的函数,称为向量值函数的分量函数。

向量值函数可以看作是将实数映射到向量空间中的曲线。

二、向量值函数的导数我们知道,对于单变量函数 f(x),其导数可表示为 f'(x) 或 df/dx。

类似地,对于向量值函数 r(t),其导数可表示为 r'(t) 或 dr/dt。

向量值函数的导数是一个向量,其分量函数对应各个分量函数的导数,即:r'(t) = [f1'(t), f2'(t), ..., fn'(t)]三、向量值函数的微分向量值函数的微分是指对函数进行微小变化时,所产生的向量变化。

假设我们在 t0 时刻的函数值为 r(t0),且函数在 t0 处可导,则向量值函数在 t0 处的微分可表示为:dr = r'(t0) dt其中,dr 是函数值的微小变化量,dt 是 t 的微小变化量。

微分可看作是近似函数值的改变。

四、向量值函数的几何意义向量值函数的导数和微分反映了函数在每个时刻的斜率和微小变化量。

从几何上讲,导数表示了函数的切线方向和斜率,微分表示了函数曲线的微小位移。

五、向量值函数的应用向量值函数的导数和微分在物理学、工程学和计算机图形学中有着广泛的应用。

例如,在物理学中,物体的位置、速度和加速度可以用向量值函数表示,通过求导和微分可以得到物体在不同时刻的速度和加速度。

在计算机图形学中,通过对向量值函数进行导数和微分,可以生成平滑的曲线和曲面,用于三维模型的表示和动画。

多元函数微分

多元函数微分

多元函数微分在结束了一段旅途之后,我们重新回到了微积分的世界中。

但你我都知道,经历过线性代数世界的我们,有些事已经发生了改变。

在将微积分从一元推广向多元以前,先来重新复习一下导数与微分的概念。

导数与可微我们知道,对于一元函数,其在一点 x_0 处的导数定义为:f\prime(x_0)=\lim_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0}如果我们切换一下视角,实际上可以将这个式子看作:f(x)-f(x_0)\approx f\prime(x_0)(x-x_0)换句话说, x_0 处的导数 f\prime(x_0) 实际上起到的作用是使得在该点处附近的自变量差值与函数差值近似的形成一个倍乘关系。

如果我们将 f\prime(x_0) 记作一个确定数值,比如 k ,而后将 x_0 附近的自变量差值记作为新的自变量,比如\delta ,则我们可以将导数的这个近似函数写作:\Delta f(x)=g(\delta)\approx k\cdot \delta这个简单而熟悉的倍乘关系,一下子就能让你联想到我们在《线性代数-0.线性》一文中提到的线性性质之一——齐次性,即 f(kx)=kf(x)而,微分的定义,函数增量(差值)的线性主部,即将这个函数中的近似符号改为等号:df(x)=k\cdot \delta可以看到,当我们说函数在一点处可微,实际上就是将函数在一点处附近看作是线性的。

不过由于对于一元函数,其定义域与值域一般来说是实数域到实数域的映射,即标量到标量的映射,故一般只能体现出线性的齐次性。

但是,当我们从一元推广到二元后,定义域与值域的情况就有了新的变化。

对于二元函数 f(x,y) ,参照一元函数的导数定义进行推广,即在一点 (x_0,y_0) 处的函数差值与自变量差值的比值。

其中,函数差值的部分没有问题,即 f(x,y)-f(x_0,y_0) ,但自变量的差值就出现了变化,即该如何定义 (x,y)-(x_0,y_0) 的差值。

多元函数的微分中值定理

多元函数的微分中值定理

多元函数的微分中值定理微分中值定理是微积分中的一项重要定理,用于研究函数在某一区间内的性质。

在单变量函数中,我们已经学习了单变量函数的微分中值定理。

而在多元函数中,微分中值定理有一些不同的特性和应用。

多元函数的微分中值定理是基于多元函数的连续性和可微性的。

它表明在某个区间内,存在一点使得多元函数在该点的微分等于函数在整个区间的平均变化率。

首先,我们来看一下多元函数的连续性。

如果一个多元函数在某个闭区间内的每个点上都连续,即函数在该区间内无间断的突变,那么我们说该函数在这个区间内是连续的。

而多元函数的可微性表示函数在某个点上的偏导数存在且连续。

如果一个多元函数在某个点上的偏导数存在且连续,那么我们可以说该函数在该点是可微的。

对于一个满足上述条件的多元函数,微分中值定理告诉我们,在某个区间内,函数在两个点之间的平均变化率等于函数在某一点的偏导数。

这个点取决于具体的情况,它并不一定是区间的端点或者中点。

多元函数的微分中值定理有以下形式:设函数f(x, y)在闭区间[a, b] × [c, d] 上连续,在开区间(a, b) × (c, d)上可微。

则存在ξ∈(a,b)×(c,d),使得f(b,d)-f(a,d)-f(b,c)+f(a,c)=∂f/∂x(ξ)(b-a)+∂f/∂y(ξ)(d-c)其中∂f/∂x(ξ)和∂f/∂y(ξ)分别表示函数f(x, y)在点ξ处对x和y的偏导数。

此外,多元函数的微分中值定理还可以推广到多元向量值函数上。

在这种情况下,函数的微分是一个向量,而偏导数则是对应的分量导数。

多元函数的微分中值定理在实际问题中有广泛的应用。

例如,在经济学中,它可以用于研究市场需求和供应的关系;在物理学中,它可以用于描述物体的运动和变化。

利用微分中值定理,我们可以定量地分析函数在某个区间内的特性,从而更好地理解和解决实际问题。

总结而言,多元函数的微分中值定理是微积分中的重要定理,它利用函数的连续性和可微性来研究函数在某个区间内的性质。

向量的多元函数和偏导数

向量的多元函数和偏导数

向量的多元函数和偏导数在微积分学中,我们学习了单变量函数的导数,这些函数有一个自变量和一个因变量。

但是在现实生活中,许多函数不仅仅有一个自变量,它们可能有多个自变量。

这些函数称为多元函数。

多元函数可表示为 $f(x_1,x_2,...,x_n)$ 的形式,其中$x_1,x_2,...,x_n$ 是自变量,$f$ 是因变量。

向量是一种把多个变量组合在一起的数学工具。

因此,向量的多元函数是将向量作为自变量的多元函数。

向量的多元函数常见于矢量分析和物理学中。

以矢量场为例,矢量场是一个向量值函数,它将每个空间点映射到一个向量上。

矢量场是一种对流体动力学、电磁学、流量测量和应力分析等领域非常有用的工具。

对于向量的多元函数,存在多个偏导数。

偏导数可以看作在函数中固定除一个自变量之外的其他自变量,对这个自变量求导数的运算。

偏导数在向量分析、应用数学和物理学中发挥着重要作用。

例如,我们考虑一个简单的向量函数 $f(x,y) = \begin{bmatrix}x^2y \\ x+y \end{bmatrix}$,它将二维向量 $(x,y)$ 映射到一个二维向量上。

我们可以计算 $f$ 的偏导数。

当 $f$ 中只有一个自变量$(x)$ 时,$f$ 的偏导数是 $f_x(x,y) = \begin{bmatrix} 2xy \\ 1\end{bmatrix}$。

类似地,当 $f$ 中只有一个自变量 $(y)$ 时,$f$ 的偏导数是 $f_y(x,y) = \begin{bmatrix} x^2 \\ 1 \end{bmatrix}$。

我们可以将偏导数看作向量函数的导数。

在单变量函数中,导数是切线的斜率,向量函数的导数是切向量的斜率。

在向量函数中,每个偏导数都是切向量在相应坐标轴上的投影分量。

同样的方式,我们可以计算更高阶的偏导数。

当 $f$ 中有两个以上的自变量时,我们需要计算混合偏导数。

混合偏导数是多个偏导数公交相乘的结果。

第四节多元函数的求导法则

第四节多元函数的求导法则

第四节多元函数的求导法则多元函数的求导法则是研究多元函数的导数性质和计算方法的重要内容,具有广泛应用的价值。

在数学和应用数学的研究中,多元函数的求导法则是解决最优化问题、微分方程、数值计算和物理问题等领域中的基础工具。

一、多元函数的偏导数和全导数1. 偏导数:偏导数是多元函数中的一种导数形式,它表示多元函数在其中一变量上的变化率。

对于多元函数f(x1, x2, ..., xn),它关于第i个自变量的偏导数表示为∂f/∂xi,也可以记作fi(x1, x2, ..., xn)或fxi。

偏导数的计算方法与一元函数的导数计算相似,只需将其他自变量视为常数进行求导即可。

2. 全导数:全导数是多元函数的另一种导数形式,它表示多元函数沿着其中一方向的变化率。

对于多元函数f(x1, x2, ..., xn),它沿着向量v=(v1, v2, ..., vn)的全导数表示为df/dv,也可以记作Dvf(x1,x2, ..., xn)或(fv1, fv2, ..., fvn)。

全导数可以通过偏导数来计算,具体方法为df/dv = (∂f/∂x1, ∂f/∂x2, ..., ∂f/∂xn)·(v1, v2, ..., vn)。

二、多元函数的导数法则多元函数的导数法则是基于偏导数的性质和基本运算规则进行推导和证明的,其中包括常数法则、和法则、积法则、商法则和复合函数法则等。

1. 常数法则:对于常数c,有∂c/∂xi = 0和d(c)/dxi = 0,因为常数的偏导数和全导数都等于零。

2. 和法则:对于多元函数f(x1, x2, ..., xn)和g(x1, x2, ..., xn),有以下推导式:- 对于偏导数,有∂(f + g)/∂xi = ∂f/∂xi + ∂g/∂xi,即偏导数的和等于两个函数偏导数的和。

- 对于全导数,有d(f + g)/dxi = df/dxi + dg/dxi,即全导数的和等于两个函数全导数的和。

应用数学基础 第四章-向量值函数的导数

应用数学基础 第四章-向量值函数的导数

2!2! 13
§4.2-4 方阵函数 性质
性质1 (Euler公式) XCnn, 有
eiX = cosX + isinX , cosX = ( eiX + e iX )/2 , sinX = ( eiX e iX )/2 .
两边对应的 数项幂级数 具有此性质
性质2 XCnn及 t C, 有
d eAt = AeAt = eAt A ,
征值都满足不等式 | j - 0 | < R, j = 1, 2,…, n .则方阵幂级
数 cm(X 0E)m绝对收敛. 若存在X的一个特征 m0
值k, 使得 | k - 0 | > R, 则方阵幂级数发散.
12
§4.2-3 方阵函数 几个特殊的和函数
e
Xe
z
mm00
Xz mm mm!!
1E
定理4.3 设ACnn, 则Am收敛于零矩阵 至少 存在一种方阵范数||•||, 使得||A||1.
9
定理4§.4 4设.2-Am1=[方aij阵(m级)]数Cnn收, m敛=的0,1充,2要,…条,件S=及[s性ij]质Cnn.
则方阵级数 Am 收敛于方阵 S=[sij]
m0
i,j=1,2,…,n,
定义 设ACnn 的谱 (A) = {1, 2,…, s }, A的最小多项式()= (-1) (m1 1) … (-s) (ms 1), f (z)是复变函数.
若对j=1, 2,…, s, f(j), f (j),…, f (mi 1)(j) 都存在, 则称 f(z)在(A)上有定义, 并称
数项级数
a(m) ij
收敛于sij.
mo
证明思路:根据矩阵级数收敛的定义,以及定理4.1。

数学分析中的多元向量值函数和隐函数定理

数学分析中的多元向量值函数和隐函数定理

在数学分析中,多元向量值函数是指一个输入多个变量,输出多个变量的函数。

而隐函数定理则是多元向量值函数的重要定理之一。

首先,我们来了解一下多元向量值函数。

在数学中,通常我们所研究的函数都是输入一个变量,输出一个变量的情况。

而多元向量值函数则是输入多个变量,输出多个变量的情况。

例如,给定一个三维空间中的多元向量值函数F(x, y)= (x^2 + y, xy),这个函数的输入是两个变量x和y,输出是两个变量u =x^2 + y和v = xy。

多元向量值函数在物理、工程和经济等领域有着广泛的应用,因为它们能描述多个变量之间的关系。

接下来,我们讨论多元向量值函数的导数。

对于多元向量值函数F(x) =(f1(x), f2(x), ..., fn(x)),其导数DF(x)是一个由偏导数组成的矩阵,记作:DF(x) = d(f1(x), f2(x), ..., fn(x)) / dx其中d表示求导的操作。

具体而言,如果函数F的每个分量都可导,则DF(x)的第i行第j列元素就是函数fi对变量xj的偏导数。

多元向量值函数的导数在微积分和最优化等问题中有着重要的应用。

最后,我们来了解一下隐函数定理。

隐函数定理是针对多元向量值函数的一个重要定理,它描述了在某些条件下,多元向量值函数能够转化为隐含在其中的(单值)函数。

具体而言,设函数F(x, y) = (0, 0)是一个多元向量值函数,其中x和y是变量,我们想要求解这个方程组。

根据隐函数定理,如果函数F满足一定的连续性和可微性条件,且F在某个点(x0, y0)处的偏导数不为零,那么在该点附近存在一个唯一的函数y = g(x),使得F(x, g(x)) = (0, 0)成立。

换句话说,我们可以将多元向量值函数F转化为一个单变量函数g。

通过这篇文章,我们了解了多元向量值函数和隐函数定理在数学分析中的重要性。

多元向量值函数能够描述多个变量之间的关系,并且它们的导数在多个领域有着广泛的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

9
向量值复合函数求导的链式法则
Df [g( x)] Df (u) Dg( x) ug( x)
例:试通过如下函数验证上述公式
w
f (u)
u12
,
u1u2
w
w1 w2
,
u
u1 u2
u
g(u)
x1
e x2
,
sin x1
x
x1 x2
2007年8月
南京航空航天大学 理学院 数学系
dx1
dx2
fm ( x0 )
x2
f1( x0 )
x1
于是,将矩阵
f2 ( x0 ) x1
fm ( x0 ) x1
f1( x0 )
x2
f2 ( x0 ) x2
Df
( x0 )
称为导数
fm ( x0 )
x2
Jacobi 矩阵
2007年8月
南京航空航天大学 理学院 数学系
多元向量值函数的导数与 微分
一元向量值函数的导数与微分 二元向量值函数的导数与微分 微分运算法则
2007年8月
南京航空航天大学 理学院 数学系
1
对于一般的n元向量值函数:
f :A n m
f1( x) f1( x1, x2 ,
f
(
x)
f
2
(
x
)
f2 ( x1 , x2 ,
fm ( x) fm ( x1, x2 ,
6
一般地,对于n元向量值函数:f : A n m
定义导数(Jacobi矩阵)为:
f1( x0 )
x1
Df
( x0
)
f2 ( x0 ) x1
fm ( x0 ) x1
f1( x0 ) x2
f2 ( x0 ) x2
fm ( x0 ) x2
f1( x0 )
xn f2( x0
xn
)
)
dx1
f2 ( x0 x1
)
dx1
f1( x0 x2
)
dx2
f2 ( x0 x2
)
dx2
f1( x0 ) x1
f2 ( x0 ) x1
dfm ( x0 )
fm ( x0 x1
)
dx1
fm ( x0 x2
)
dx2
fm ( x0 ) x1
f1( x0 )
x2
f2 ( x0 ) x2
2007年8月
南京航空航天大学 理学院 数学系
4
二、二元向量值函数的导数与微分
f :A 2 m
f1( x1, x2 )
f
(
x1
,
x2
)
f
2
(
x1
,
x2
)
,
fm ( x1, x2 )
x1, x2
定义:
df
(
x0
)
df1( x0 )
df
2
(
x0
)
f1( x0 x1
)
dx1
f2 ( x0 x1
10
fm ( x0 ) x2
f1( x0 )
xn f2 ( x0
xn
)
d x1 dx2
f
m
(
x0
)
dxn
xn
2007年8月
南京航空航天大学 理学院 数学系
7
对于n元向量值函数,若m=n: f : A n n
则称Jacobi矩阵的行列式为Jacobi行列式,计作:
J f ( x0 )
, xn )
,
xn
)
, xn )
lim f ( x) a i 1,
x x0
, m, lim x x0
fi(x)
ai
2007年8月
南京航空航天大学 理学院 数学系
2
一、一元向量值函数的导数与微分
f :A m
f1( x)
f
(
x)
f
2
(
x
)
,
x
fm(x)
定义一元向量值函数 f 的导数为:
Df ( x0 )
f
'( x0 )
lim
x 0
f ( x0
x) x
f ( x0 )
显然 f 可导当且仅当其每个分量可导,并且:
Df ( x0 ) f '( x0 ) f1 '( x0 ), , fm '( x0 ) T
2007年8月
南京航空航天大学 理学院 数学系
3
类似可以定义 f 的二阶导数以及n阶导数:
D2 f ( x0 ) f "( x0 ) f1 "( x0 ), , fm "( x0 ) T
Dn f ( x0 ) D Dn1 f ( x) |xx0
定理:
f : A m可微
f 的任意分量 fi : A 可微
df ( x0 ) f '( x0 )x f1 '( x0 )x, , fm '( x0 )x T
D f , g ( x) f (x)T Dg(x) g(x)T Df (x)
D(uf )( x) uDf ( x) f ( x)Du( x) (u 为数量值函数)
f,g: 3
D( f g)( x) Df ( x) g( x) f ( x) Dg( x)
2007年8月
南京航空航天大学 理学院 数学系
f1( x0 ) f2( x0 )
fm ( x0 )
fm ( x0 )
xn
定义微分为:
df
(
x0
)
df1( x0 ) df2( x0 )
f1( x0 )
x1 f2 ( x0
x1
)
dfm ( x0 )
fm ( x0 )
x1
f1( x0 ) x2
f2( x0 ) x2
f1, f2 , x1 , x2 ,
, fn , xn x0
向量值函数的偏导数:
f x0
xi
f1 x0
xi
,
f2 x0
xi
,
,
fm x0
xi
T
本质上是一元向量值函数的导数!
2007年8月
南京航空航天大学 理学院 数学系
8
三、微分运算法则
f 和 g 为向量值函数
D( f g)( x) Df ( x) Dg( x)
)
dx1
f1( x0 x2
)
dx2
f2 ( x0 x2
)
dx2
dfm ( x0 )
fm ( x0 x1
)
dx1
fm ( x0 x2
)
dx2
2007年8月
南京航空航天大学 理学院 数学系
5
利用矩阵乘法:
df ( x0 )
df1( x0 )
df2
(
x0)f1( x0x1
相关文档
最新文档