人教版数学九年级下册图形的相似和比例线段--知识讲解(提高)

合集下载

数学九年级下册相似知识点

数学九年级下册相似知识点

数学九年级下册相似知识点相似是数学中一个重要的概念,它在几何学中特别常见。

而数学九年级下册的内容中,相似是一个需要重点掌握的知识点。

本文将从不同角度来论述数学九年级下册的相似知识点。

一、相似三角形相似三角形是九年级下册的重要内容之一。

当两个三角形的对应角相等,且对应边成比例,那么这两个三角形就是相似的。

相似三角形有一些重要的性质和定理。

首先,相似三角形的边长比例定理指出,如果两个三角形相似,那么对应边的长度之比等于它们对应角的正弦值的比。

这个定理在解决相似三角形的问题时非常有用。

其次,相似三角形的角度比例定理指出,如果两个三角形相似,那么对应角的度数之比相等。

这个定理可以用来解决一些角度相关的问题。

最后,相似三角形的高线比例定理表明,如果两个三角形相似,那么相似三角形的高线之比等于它们的对应边之比。

这个定理常常用于求解三角形的高线长度。

二、相似比相似比是相似三角形中的一个重要概念。

相似比是指两个相似三角形中对应边的长度之比,通常表示为k。

相似比具有以下性质。

首先,相似比的大小与相似三角形的对应边的长度之比相等。

这就意味着,如果相似比为k,那么两个对应边的长度之比也是k。

其次,相似比的倒数表示了对应边的长度之比的倒数。

这个性质在一些推导和运算中非常实用。

最后,相似比和对应边的比例成正比。

这意味着,如果一个三角形的边长翻倍,那么它与相似三角形的相似比也将翻倍。

三、相似多边形除了相似三角形,相似多边形也是九年级下册相似知识点的内容之一。

当两个多边形中对应角相等,且对应边成比例,那么这两个多边形就是相似的。

相似多边形也有一些重要的性质和定理。

首先,相似多边形的周长比例定理说明了相似多边形的周长之比等于它们对应边的比例。

其次,相似多边形的面积比例定理说明了相似多边形的面积之比等于它们对应边长度之比的平方。

最后,相似多边形的高线比例定理说明了相似多边形的高线之比等于它们对应边长度之比。

相似多边形的性质可以帮助我们在解决与多边形及其面积相关的问题时,快速地得到答案。

人教版 九年级数学下册 第二十七章相似全章讲学稿

人教版 九年级数学下册   第二十七章相似全章讲学稿

27.1.1图形的相似(一)一、学习目标:1.从生活中形状相同的图形的实例中认识图形的相似,理解相似图形概念.2.了解成比例线段的概念,会确定线段的比.二、学习重、难点:重点:相似图形的概念与成比例线段的概念.难点:成比例线段概念.三、学习过程(一)探究新知:1.观察右边几组几何图形,你能发现它们之间有什么关系?相似图形定义:这种形状相同的图形叫.2.对上题中的3组相似图形,其中一个图形可以看做由另一个图形或得到。

练一练:1.在下面的图形中,形状相似的一组是( )2.下列图形一定是相似图形的是( )A.任意两个菱形B.任意两个正三角形C.两个等腰三角形D.两个矩形(二)探究新知:问题:如图在矩形ABCD中,边AB=2cm,BC=3 cm,这两条线段的比= .归纳:1.两条线段的比,就是两条线段的比.例1一张桌面的长a=1.25m,宽b=0.75m,那么长与宽的比:ab=(1)如果a=125cm,b=75cm,那么长与宽的比:ab=(2)如果a=1250mm,b=750mm,那么长与宽的比:ab=小结:⑴上面分别采用m、cm、mm三种不同的长度单位,求得的ab的值是的,所以说,两条线段的比与所采用的长度单位,但求比时两条线段的长度单位必须(2)线段的比是一个没有单位的正数;2.成比例线段:对于四条线段a,b,c,d,如果其中两条线段的比与另两条线段的比相等,即:a cb d=(或::a b c d=),我们就说这四条线段是成比例线段,简称比例线段.或者说四条线段a,b,c,d成比例,【注意】比例线段是四条线段之间的特殊关系;3.比例的基本性质:若四条线段满足:a cb d=(或::a b c d=),则有,即比例内项之积等于比例外项之积。

练一练:1.已知32=yx,则______=+yyx,______=+yxx,______=+-yxyx;2.若43=-yyx,则______=yx;若045=-yx,则x∶y= 。

人教版 九年级数学 相似形及比例线段讲义 (含解析)

人教版 九年级数学 相似形及比例线段讲义 (含解析)

第16讲相似形及比例线段知识定位讲解用时:3分钟A、适用范围:人教版初三,基础偏上B、知识点概述:本讲义主要用于人教版初三新课,本节课我们首先主要对相似多边形的概念和性质进行讲解,重点是理解相似形的相关概念和相似多边形性质的运用,通过对相似多边形的学习,为后面学习相似三角形的知识奠定基础。

其次主要讲解比例线段的有关概念和性质,重点在于理解不同概念和性质之间的联系和区别,熟练比例线段之间的转换,并能结合具体图形,运用比例线段的性质进行解题。

最后学习平行线分线段成比例定理,为下面相似三角形的学习奠定基础。

知识梳理讲解用时:30分钟相似形的概念及性质1、相似形的概念把形状相同的两个图形称为相似的图形,简称相似形。

2、相似多边形的性质如果两个多边形是相似形,那么这两个多边形的对应角相等,对应边的长度成比例;当两个相似的多边形是全等形时,它们对应边的长度的比值为1。

比例线段相关概念及性质1、比和比例 一般来说,两个数或两个同类的量a 与b 相除,叫做a 与b 的比,记作:a b (或表示为ab);如果::a b c d =(或a c bd=),那么就说a 、b 、c 、d 成比例。

2、比例的性质 (1)基本性质: 如果a cbd=,那么ad bc =;如果a c b d =,那么b d a c =,a b c d =,c da b=. (2)合比性质:如果a c bd =,那么a b c d b d++=; 如果a c b d =,那么a b c d b d--=. (3)等比性质: 如果a c k b d ==,那么a c a ck b d b d +===+(如果是实数运算,要注意强调0b d +≠)。

3、比例线段的概念 对于四条线段a 、b 、c 、d ,如果::a b c d =(或表示为ac bd=),那么a 、b 、c 、d 叫做成比例线段,简称比例线段。

4、黄金分割如果点P 把线段AB 分割成AP 和PB (AP PB >)两段(如下图),其中AP 是AB 和PB 的比例中项,那么称这种分割为黄金分割,点P 称为线段AB 的黄金分割点.其中,510.6182AP AB -=≈,称为黄金分割数,简称黄金数。

九年级下册数学第27章相似图形知识点归纳

九年级下册数学第27章相似图形知识点归纳

九年级下册数学第27章相似图形知识点归纳
九年级下册数学第27章相似图形知识点归纳
知识点1.概念
把形状相同的图形叫做相似图形。

(即对应角相等、对应边的比也相等的图形)
解读:(1)两个图形相似,其中一个图形可以看做由另一个图形放大或缩小得到.
(2)全等形可以看成是一种特殊的相似,即不仅形状相同,大小也相同.
(3)判断两个图形是否相似,就是看这两个图形是不是形状相同,与其他因素无关.
知识点2.比例线段
对于四条线段a,b,c,d ,如果其中两条线段的长度的比与另两条线段的长度的比相等,即(或a:b=c:d)那么这四条线段叫做成比例线段,简称比例线段.
知识点3.相似多边形的性质
相似多边形的性质:相似多边形的对应角相等,对应边的比相等.
解读:(1)正确理解相似多边形的定义,明确“对应”关系.
(2)明确相似多边形的'“对应”来自于书写,且要明确相似比具有顺序性.
知识点4.相似三角形的概念
对应角相等,对应边之比相等的三角形叫做相似三角形.
解读:(1)相似三角形是相似多边形中的一种;
(2)应结合相似多边形的性质来理解相似三角形;
(3)相似三角形应满足形状一样,但大小可以不同;
(4)相似用“∽”表示,读作“相似于”;
(5)相似三角形的对应边之比叫做相似比.。

《相似》全章复习与巩固(知识讲解)九年级数学下册基础知识专项讲练(人教版)

《相似》全章复习与巩固(知识讲解)九年级数学下册基础知识专项讲练(人教版)

专题27.43《相似》全章复习与巩固(知识讲解)【学习目标】1、了解比例的基本性质,线段的比、成比例线段;2、通过具体实例认识图形的相似,探索相似图形的性质,理解相似多边形对应角相等、对应边成比例、周长的比等于相似比、面积的比等于相似比的平方,探索并掌握相似三角形的判定方法,并能利用这些性质和判定方法解决生活中的一些实际问题;3、了解图形的位似,能够利用位似将一个图形放大或缩小,在同一直角坐标系中,感受位似变换后点的坐标的变化;4、结合相似图形性质和判定方法的探索和证明,进一步培养推理能力,发展逻辑思维能力和推理论证的表达能力,以及综合运用知识的能力,运用学过的知识解决问题的能力.【要点梳理】【知识点一】成比例线段1、定义:四条线段,,,a b c d 中,如果a 与b 的比等于c 与d 的比,即a cb d=,那么这四条线段,,,a b c d 叫做成比例线段,简称比例线段。

2、性质:(1)基本性质:如果a cb d=,那么ad bc =;反之,若ad bc =(),,,0a b c d 都不等于,那么a c b d =(2)等比性质:如果()==0a c m b d n b d n =+++≠ ,那么a c m a b d n b +++=+++ (3)合比性质:如果a c b d =,那么a b c d b d ++=,a b c d b d --=【知识点二】平行线分线段成比例1、定理:两条直线被一组平行线所截,所得的对应线段成比例2、推论:平行于三角形一边的直线与其他两边相交,截得的对应线段成比例【知识点三】相似多边形1、定义:各角分别相等,各边成比例的两个多边形叫做相似多边形。

相似多边形对应边的比叫做相似比2、性质:相似多边形的周长比等于相似比,面积比等于相似比的平方【知识点四】相似三角形1、定义:三角分别相等,三边成比例的两个三角形叫做相似三角形2、判定:(1)两角分别相等的两个三角形相似(2)两边成比例且夹角相等的两个三角形相似(3)三边成比例的两个三角形相似3、性质:(1)相似三角形的对应角相等,对应边成比例(2)相似三角形对应高的比,对应中线的比,对应角平分线的比都等于相似比(3)相似三角形的周长比等于相似比,面积比等于相似比的平方【知识点五】黄金分割点C 把线段AB 分成两条线段AC 和BC ()AC BC >,如果AC BC AB AC=,那么称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比,即:0.618:1AC AB ≈【知识点六】位似图形1、定义:一般的,如果两个相似多边形任意一组对应顶点P ,'P 所在的直线都经过同一点O ,且有'OP =()0k OP k ⋅≠,那么这样的两个多边形叫做位似多边形,点O 叫做位似中心2、性质:位似图形上任意一对对应点到位似中心的距离之比等于相似比3、画图步骤:(1)尺规作图法:①确定位似中心;②确定原图形中的关键点关于中心的对应点;③描出新图形(2)坐标法:在平面直角坐标系中,将一个多边形每个顶点的横坐标、纵坐标都乘于同一个数()0k k ≠,所对应的图形与原图形位似,位似中心是坐标原点,它们的相似比为k【典型例题】类型一、成比例线段和平行线分线段成比例1.已知三条线段a b c ,,满足1324a b c +==,且17a b c ++=.(1)求a b c ,,的值;(2)若线段d 是线段a 和b 的比例中项,求d 的值.【点拨】本题考查了比例的性质,比例线段,利用“设k 法”用k 表示出a 、b 、c 可以使计算更加简便.【变式1】已知:2:3,:3:4a b b c ==,且26a b c +-=,求,,a b c 的值【答案】4a =,6b =,8c =.【分析】根据比的性质,可得a ,b ,c 用k 表示,根据解方程,可得k 的值,即可得答案.解:∵:2:3a b =,:3:4b c =,∴设2a k =,3b k =,4c k =,∴()22346k k k ⋅+-=,整理得:36k = ,解得:2k =,∴24a k ==,36b k ==,48c k ==.【点拨】本题考查了比例的性质,利用比例的性质得出2a k =,3b k =,4c k =是解题关键.【变式2】如图所示,以长为2的定线段AB为边作正方形ABCD,取AB的中点P,连接PD,在BA的延长线上取点F,使PF PD=,以AF为边作正方形AMEF,点M在AD上.,的长;(1)求AM DM(2)点M是AD的黄金分割点吗?为什么?【点拨】此题综合考查了正方形的性质、勾股定理和黄金分割的概念.先求得线段AM,DM的长,然后求得线段AM和AD,DM和AM之间的比,根据黄金分割的概念进行判断.2.如图,已知AD∥BE∥CF,它们以此交直线l1、l2于点A、B、C和D、E、F.若25DE EF =,AC=14,(1)求AB 的长.(2)如果AD=7,CF=14,求BE 的长.【点拨】本题考查平行线分线段成比例的知识,解题的关键是掌握三条平行线截两条直线,所得的对应线段成比例.【变式1】如图,已知AD//BE//CF,它们依次交直线1l、2l于点A、B、C和点D、E、F,且AB=6,BC=8.(1)求DEDF的值;(2)当AD=5,CF=19时,求BE的长.【点拨】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例;熟练掌握平行线分线段成比例,通过作辅助线运用平行线分线段成比例求出BH 是解决问题的关键.【变式2】如图,在ABC ∆中,点D 是边AB 上的一点.(1)请用尺规作图法,在ABC ∆内,求作ADE ∠,使ADE B ∠=∠,DE 交AC 于E ;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,若2AD DB =,求AE EC的值.【点拨】本题考查了作一个角等于已知角,平行线分线段成比例定理,熟练掌握利用尺规作一个角等于已知角的作图方法是解题的关键.类型二、相似三角形判定和性质3.如图,在ABC 中,90ACB ∠=︒,CD 是边AB 上的中线,EF 垂直平分CD ,分别交AC ,BC 于E ,F ,连接DE ,DF .(1)求证:OCE OFD ∽△△.(2)当7AE =,24BF =时,求线段EF 的长.【答案】(1)见分析(2)25EF =【分析】(1)如图(见分析),先根据线段垂直平分线的性质可得90EOC DOF ∠=∠=︒,ED EC =,FD FC =,再根据三角形全等的判定定理证出EDF ECF ≅ ,根据全等三角形的性质可得12∠=∠,从而可得421∠=∠=∠,然后根据相似三角形的判定即可得证;(2)如图(见分析),延长FD 至G ,使DG DF =,连接AG ,EG ,先根据线段垂直平分线的判定与性质可得EG EF =,再根据三角形全等的判定定理证出ADG BDF ≅△△,根据全等三角形的性质可得24AG BF ==,7B ∠=∠,然后根据平行线的判定与性质可得90EAG ∠=︒,最后在Rt AEG △中,利用勾股定理即可得.(1)证明:∵EF 垂直平分CD ,∴90EOC DOF ∠=∠=︒,ED EC =,FD FC =,在EDF 和ECF △中,ED EC FD FC EF EF =⎧⎪=⎨⎪=⎩,∴()EDF ECF SSS ≅ ,∴12∠=∠,∵90ACB ∠=︒,90EOC ∠=︒,∴233490∠+∠=∠+∠=︒,∴421∠=∠=∠,在OCE △和OFD △中,9014EOC DOF ∠=∠=︒⎧⎨∠=∠⎩,∴OCE OFD .(2)解:如图,延长FD 至G ,使DG DF =,连接AG ,EG .则ED 垂直平分FG ,【点拨】本题考查了相似三角形的判定、三角形全等的判定定理与性质、线段垂直平分线的判定与性质等知识点,较难的是题(2),构造全等三角形和直角三角形是解题关键.【变式1】如图,四边形ABCD 中,AC 平分∠DAB ,∠ADC=∠ACB=90°,E 为AB 的中点,(1)求证:AC 2=AB•AD ;(2)求证:CE ∥AD ;(3)若AD=4,AB=6,求的值.=.∴AF4【变式2】如图,在△ABC中,(1)求作:∠BAD=∠C,AD交BC于D.(用尺规作图法,保留作图痕迹,不要求写作法).(2)在(1)条件下,求证:AB2=BD•BC.【点拨】本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了相似三角形的判定与性质.中,过点C作CD//AB,E是AC的中点,连接DE并延长,4.如图,在ABC交AB于点F,交CB的延长线于点G,连接AD,CF()1求证:四边形AFCD是平行四边形.()2若GB3=,BC6=,3BF=,求AB的长.2【变式1】已知:如图6,菱形ABCD,对角线AC、BD交于点O,BE⊥DC,垂足为E,交AC于点F.求证:(1)△ABF∽△BED;(2)求证:AC BD BE DE=.【变式2】如图,已知▱ABCD.(1)用直尺和圆规在BC边上取一点E,使AB=AE,连结AE;(保留作图痕迹,不写作法)(2)在(1)的前提下,求证:AE=CD;∠EAD=∠D;(3)若点E为BC的中点,连接BD,交AE于F,直接写出EF:FA的值.【答案】(1)见分析(2)证明见分析(3)1:2分析:(1)以点A为圆心,AB为半径作圆,该圆与BC的交点即为所求的点E;(2)根据平行四边形的对边互相平行可得AD∥BC,再根据两直线平行,内错角相等可得∠AEB=∠EAD,根据等边对等角可得∠ABE=∠AEB,即可得证;(3)由四边形ABCD是平行四边形,可证得△BEF∽△AFD即可求得EF∶FA的值.解:(1)如图所示:;(2)证明:在平行四边形ABCD中,AD∥BC,∴∠AEB=∠EAD,∵AE=AB,∴∠ABE=∠AEB,∴∠B=∠EAD,∵∠B=∠D,∴∠DAE=∠D;(3)解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴△BEF ∽△AFD ,∴=,∵E 为BC 的中点,∴BE=BC=AD ,∴EF :FA=1:2.【点拨】此题考查了相似三角形的判定与性质与平行四边形的性质,熟练掌握平行四边形的性质是关键.5.如图,在ABC 中,点D 、点E 分别在AC 、AB 上,点P 是BD 上的一点,联结EP 并延长交AC 于点F ,且A EPB ECB ∠=∠=∠.(1)求证:BE BA BP BD ⋅=⋅;(2)若90ACB ∠=︒,求证:CP BD ⊥.【变式1】已知ADE C ∠=∠,AG 平分BAC ∠交DE 于F ,交BC 于G .(1)求证:ADF ∽ACG ;(2)连接DG ,若DG AC ∥,25AF AG =,6AD =,求CE 的长度.【点拨】本题考查了相似三角形的判定和性质、角平分线的性质、平行线的性质、等腰三角形的判定和性质,解决本题的关键是掌握以上的定理并熟练的运用.【变式2】如图,∠A=∠C=∠EDF,CF=4,CD=AD=6;(1)求AE的长.(2)求证:△ADE∽△DFE.【点拨】此题考查了相似三角形的判定和性质,掌握相似三角形的判定方法以及根据相似三角形性质列出比例式进行求解是解题的关键.类型三、相似三角形拓展与提升6.已知△ABC中,∠ACB=90°,AC=BC=4cm,点P从点A出发,沿AB方向cm的速度向终点B运动,同时动点Q从点B出发沿BC方向以每秒1cm的速度向终点C运动,设运动的时间为t秒.(1)如图①,若PQ⊥BC,求t的值;(2)如图②,将△PQC沿BC翻折至△P′QC,当t为何值时,四边形QPCP′为菱形?【点拨】此题是相似形综合题,主要考查的是菱形的性质、等腰直角三角形的性质,线段垂直平分线的性质,用方程的思想解决问题是解本题的关键.【变式1】已知,点E 、F 、G 、H 分别在正方形ABCD 的边AB 、BC 、CD 、AD 上.(1)如图1,当四边形EFGH 是正方形时,求证:AE AH AB +=;(2)如图2,已知AE AH =,CF CG =,当AE 、CF 的大小有_________关系时,四边形EFGH 是矩形;(3)如图3,AE DG =,EG 、FH 相交于点O ,:4:5OE OF =,已知正方形ABCD 的边长为16,FH 长为20,当OEH △的面积取最大值时,判断四边形EFGH 是怎样的四边形?证明你的结论.【答案】(1)见分析(2)AE CF =(3)平行四边形,证明见分析【分析】(1)利用平行四边形的性质证得BEF AHE ∠=∠,根据角角边证明AEH BFE △≌△.(2)当AE CF =,证得AEH FCG △≌△,EBF △是等腰直角三角形,∠HEF =∠EFG =90°,即可证得四边形EFGH 是矩形.(3)利用正方形的性质证得AEGD 为平行四边形,过点H 作HM BC ⊥,垂足为点M ,交EG 于点N ,由平行线分线段成比例,设4OE x =,5OF x =,HN h =,则可表示出HN ,从而把△OEH 的面积用x 的代数式表示出来,根据二次函数求出最大值,则可得OE =OG ,OF =OH ,即可证得平行四边形.解:(1)∵四边形ABCD 为正方形,∴90A B ∠=∠=︒,∴90AEH AHE ∠+∠=°.∵四边形EFGH 为正方形,∴EH EF =,90HEF ∠=︒,∴90AEH BEF ∠+∠=︒,∴BEF AHE ∠=∠.在AEH △和BFE △中,∵90A B ∠=∠=︒,AHE BEF ∠=∠,EH FE =,∴AEH BFE △≌△.∴AH BE =.∴AE AH AE BE AB +=+=;(2)AE CF =;证明如下:∵四边形ABCD 为正方形,∴90A B ∠=∠=︒,AB =BC =AD =CD ,∵AE =AH ,CF =CG ,AE =CF ,∴AH =CG ,∴AEH FCG △≌△,∴EH =FG .∵AE =CF ,∴AB -AE =BC -CF ,即BE =BF ,∴EBF △是等腰直角三角形,∴∠BEF =∠BFE =45°,∵AE =AH ,CF =CG ,∴∠AEH =∠CFG =45°,∴∠HEF =∠EFG =90°,∴EH ∥FG ,∴四边形EFGH 是矩形.(3)∵四边形ABCD 为正方形,∴AB CD ∥.【点拨】此题考查了正方形的性质,矩形的判定和平行四边形的性质与判定,平行线分线段成比例定理,全等三角形的判定与性质,等腰三角形的性质,二次函数的最值,有一定的综合性,解题的关键是熟悉这些知识并灵活运用.【变式2】已知点E在正方形ABCD的对角线AC上,正方形AFEG与正方形ABCD有公共点A.(1)如图1,当点G 在AD 上,F 在AB(2)将正方形AFEG 绕A 点逆时针方向旋转9(0)0αα︒<<︒,如图2,求:CE DG 的值为多少;(3)AB =AG AD =,将正方形AFEG 绕A 逆时针方向旋转(0360)αα︒<<︒,当C ,G ,E 三点共线时,请直接写出DG 的长度.正方形AFEG 绕A 点逆时针方向旋转DAG CAE∴∠=∠12AG AD AE AC == GAD EAC ∴ ∽ 82AB =,22AG =82AD AB ∴==,AG =,,G E C 三点共线,Rt AGC △中,GC AC =由(2)知△ADG∽△【点拨】本题考查了平行线分线段成比例,相似三角形的性质与判定,正方形的性质,勾股定理,旋转的性质,综合运用以上知识是解题的关键.类型三、位似7.如图,在6×8的网格图中,每个小正方形边长均为1,点O和△ABC的顶点均为小正方形的顶点.⑴以O为位似中心,在网格图中作△A′B′C′,使△A′B′C′和△ABC位似,且位似比为1:2⑵连接⑴中的AA′,求四边形AA′C′C的周长.(结果保留根号)【点拨】此题主要考查了位似图形的画法以及勾股定理等知识,利用位似比得出对应点位置是解题关键.【变式一】如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(5,2).(1)以点B为位似中心,在网格内画出△ABC的位似△A1BC1,使得△A1BC1与△ABC的位似比为2;(2)直接写出点A1的坐标和△A1BC1的面积.(2)如图所示1A :()3,7;11Δ116846222A BC S =⨯-⨯⨯-⨯【点拨】此题考查了位似变换和三角形面积求法,【变式二】如图,ABC 在平面直角坐标系内,三个顶点的坐标分别为()1,3A ,()2,1B ,()5,2C (正方形网格中,每个小正方形的边长为1),以点O 为位似中心,把ABC 按相似比2:1放大,得到对应A B C '''V .(1)请在第一象限内画出A B C '''V ;(2)若以点A 、B 、C 、D 为顶点的四边形是平行四边形,请直接写出满足条件的点D 的坐标.【答案】(1)见分析(2)()14,4D ;()26,0D ;()32,2D -【分析】(1)根据点O 为位似中心,()1,3A ,()2,1B ,()5,2C ,把ABC 按相似比2:1放大,得到对应A B C '''V ,求出点'A ,'B ,'C 的坐标,在网格中描点顺次连线即得;C(2)设D(x,y),∵平行四边形的对角线互相平分,且综上,()14,4D ;()26,0D ;()32,2D -.【点拨】本题主要考查了位似三角形,平行四边形,解决问题的关键是熟练掌握位似三角形的定义及画法,平行四边形对角线的性质和线段中点坐标公式.。

人教版九年级数学下册 27.1 图形的相似 讲义(PDF版 )

人教版九年级数学下册  27.1  图形的相似  讲义(PDF版 )

点处可获得最佳美学效果,若舞台 AB 长 20 米,主持人要想站在舞台的黄金分割点处,她应走
到距 A 点至少
米处,如果向 B 点再走
米,也处在舞台的黄金
分割点处(结果精确到 0.1 米)
(三)相似三角形 相似三角形:形状相同,但大小不一样. 定义:三角对应相等,三边对应成比例的两个三角形叫做相似三角形。所有的边数相同的正多边形都相似(正三角形,正 方形,正五边形等等) 相似三角形的性质: 1.相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比(相似 三角形的对应边的比,叫做相似比). 2.相似三角形周长的比等于相似比. 3.相似三角形面积的比等于相似比的平方. 【例题 7】△DEF∽△ABC 表示△DEF 与△ABC______,其中 D 点与______对应,E 点与______对应,F 点与______对应; ∠E=______;DE∶AB=______∶BC,AC∶DF=AB∶______.
������ ������ ������
������
������+������+������+⋯+������ ������
【例题 4】若������=c = ������=5,则������+2������−3������=
.
������ d ������ 7
������+2������−3������
������ ������
������ ������
(2)反比性质:
������ = ������ ↔ ������ = ������
������ ������ ������ ������
(3)更比性质: ������ = ������ → ������ = ������ 或 ������ = ������

人教版数学九年级下册27.1《图形的相似》教案

人教版数学九年级下册27.1《图形的相似》教案
举例:运用相似性质解决实际问题,如求三角形的未知边长、计算相似图形的面积比等。
(3)相似变换的性质:相似变换是本节课的另一个难点,教师需要详细讲解相似变换的性质,如对应点、对应线段的比等,并通过实例使学生理解这些性质。
举例:讲解旋转变换、平移变换等相似变换的性质,让学生在实际操作中体会相似变换的特点。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《图形的相似》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过两个形状看起来很相似的物体?”(如两个相似的三角形装饰品)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索图形相似的奥秘。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与相似图形相关的实际问题,如相似三角形的周长比、面积比等。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如制作两个相似三角形并比较它们的性质。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
教学内容与课本紧密相关,旨在帮助学生掌握图形相似的相关知识,提高解决问题的能力。
二、核心素养目标
《图形的相似》章节的核心素养目标如下:
1.培养学生的空间观念,提高对图形相似性的认识,增强观察、分析图形的能力。
2.培养学生运用数学语言进行表达、交流、合作的能力,提高解决实际问题的能力。
3.培养学生逻辑思维和推理能力,能运用相似性质进行严密的论证。
举例:分析相似四边形的性质,解决面积、周长等与相似多边形相关的问题。
2.教学难点
(1)相似图形的识别:学生往往在识别相似图形时存在困难,需要教师通过丰富的实例和引导,帮助学生掌握识别相似图形的方法。

九年级第四单元相似形比例线段的知识点

九年级第四单元相似形比例线段的知识点

九年级第四单元相似形比例线段的知识点九年级相似形基本知识点知识点一:放缩与相似形1.图形的放大或缩小,称为图形的放缩运动。

2.把形状相同的两个图形说成是相似的图形,或者就说是相似性。

注意:⑴相似图形强调图形形状相同,与它们的位置、颜色、大小无关。

⑵相似图形不仅仅指平面图形,也包括立体图形相似的情况。

⑶我们可以这样理解相似形:两个图形相似,其中一个图形可以看作是由另一个图形放大或缩小得到的.⑷若两个图形形状与大小都相同,这时是相似图形的一种特例——全等形.3.相似多边形的性质:如果两个多边形是相似形,那么这两个多边形的对应角相等,对应边的长度成比例。

注意:当两个相似的多边形是全等形时,他们的对应边的长度的比值是1.知识点二:比例线段有关概念及性质(1)有关概念1、比:选用同一长度单位量得两条线段。

a、b的长度分别是m、n,那么就说这两条线段的比是a:b=m:n(或)2、比的前项,比的后项:两条线段的比a:b中。

a叫做比的前项,b叫做比的后项。

说明:求两条线段的比时,对这两条线段要用同一单位长度。

3、比例:两个比相等的式子叫做比例,如4、比例外项:在比例(或a:b=c:d)中a、d叫做比例外项。

5、比例内项:在比例(或a:b=c:d)中b、c叫做比例内项。

6、第四比例项:在比例(或a:b=c:d)中,d叫a、b、c的第四比例项。

7、比例中项:如果比例中两个比例内项相等,即比例为(或a:b=b:c时,我们把b叫做a和d的比例中项。

8.比例线段:对于四条线段a、b、c、d,如果其中两条线段的长度的比与另两条线段的长度的比相等,即(或a:b=c:d),那么,这四条线段叫做成比例线段,简称比例线段。

(注意:在求线段比时,线段单位要统一,单位不统一应先化成同一单位)(2)比例性质1.基本性质:(两外项的积等于两内项积)2.反比性质:(把比的前项、后项交换)3.更比性质(交换比例的内项或外项):4.合比性质:(分子加(减)分母,分母不变).注意:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间发生同样和差变化比例仍成立.如:.5.等比性质:(分子分母分别相加,比值不变.)如果,那么.注意:(1)此性质的证明运用了“设法”,这种方法是有关比例计算,变形中一种常用方法.(2)应用等比性质时,要考虑到分母是否为零.(3)可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.知识点三:黄金分割1)定义:在线段AB上,点C把线段AB分成两条线段AC和BC(AC >BC),如果,即AC2=AB×BC,那么称线段AB被点C黄金分割,点C 叫做线段AB的黄金分割点,AC与AB的比叫做黄金比。

人教版九年级下册第二十七章相似图形及成比例的线段

人教版九年级下册第二十七章相似图形及成比例的线段

新知小结
求线段的长度比,先看单位是否统一,不统一的要 化为同一单位,再把数值进行化简化成最简整数比.
巩固新知
1 在比例尺为1:10 000 000的地图上,量的甲乙两地 的距离是30cm,求两地的实际距离. 解: 3000km.
2 在1 : 1 000 000的地图上,A,B两点之间的距离
是5 cm,则A,B两地的实际距离是( B )
【答案】C
3.观察下列各组图形,其中不.相.似.的是( A )
4.对于四条线段 a,b,c,d,如果其中两条线段的__比______(即 它们_长__度__的__比___)与另两条线段的__比____相等,如ab=dc,我们 就说这四条线段成比例.
5.在比例尺为 1∶38 000 的城市交通地图上,某条道路的长为 5
a :b = c :d
们的形状不相同.图(6)“拉长”而不是整体放大变成
2 m,b=8 cm,则a∶b=________.
B中的
,它
D.所有的圆都相似
利用比例的性质求代数式值的方法:当一个题中
D.5
例2 若a=0.2 m,b=8 cm,则a∶b=__5_∶__2___. 导引:a=0.2 m=20 cm,a∶b=20∶8=5∶2.
判断线段是否成比例,其基本方法是先排序,后求 比值,再看比值是否相等.
巩固新知
1 下列四组线段中,是成比例线段的是( C ) A.3 cm,4 cm,5 cm,6 cm B.4 cm,8 cm,3 cm,5 cm C.5 cm,15 cm,2 cm,6 cm D.8 cm,4 cm,1 cm,3 cm
巩固新知
1
(中考·东营)若 y 3 ,则 x y 的值为(
x4
x

九年级下数学相似知识点

九年级下数学相似知识点

九年级下数学相似知识点在数学学科中,相似是一个十分重要的概念。

相似性质指的是两个或更多个几何形状在形状和比例方面的相似。

它不仅在几何学中有重要的应用,而且在许多实际问题中也起着关键作用。

在本文中,我们将探讨九年级下数学中与相似相关的几个重要知识点。

一. 相似三角形相似三角形是指具有相同形状但尺寸不同的三角形。

这意味着它们的内角度量相等,对应的边的比值也相等。

我们可以利用这个性质来求解各种问题。

例如,当两个三角形相似时,我们可以利用已知的边长比例求解未知边长的长度。

二. 相似比例相似三角形的边长比例称为相似比例。

相似比例可以用来比较两个三角形的边长或者其他线段的长度。

一般来说,相似三角形的相似比例等于它们对应边长的比值。

这个知识点在解决各种测量和缩放问题时非常有用。

三. 相似三角形面积比当两个三角形相似时,它们的面积比等于它们对应边长的比值的平方。

这是因为面积与边长的关系是二次的。

通过理解和运用这个知识点,我们可以轻松计算出相似三角形的面积比,以及利用已知面积比求解未知面积的值。

四. 相似多边形除了三角形,我们还可以讨论相似多边形的概念。

相似多边形是指具有相同形状但尺寸不同的多边形。

和相似三角形一样,相似多边形的边长比示例相等。

我们可以通过相似多边形的性质来解决各种几何问题,例如计算未知边长的长度或者未知角度的度数。

五. 相似图形的应用相似图形的理论不仅只停留在几何学中,它还具有广泛的应用。

比如在地图制作中,我们经常需要等比例缩放地图的大小,以使得不同区域可以在同一个纸上展示。

相似比例的知识可以帮助我们计算如何放大或者缩小地图的尺寸。

此外,在建筑设计、模型制作等领域,相似性质也是不可或缺的工具。

总结起来,九年级下的数学课程中相似知识点包含相似三角形、相似比例、相似三角形的面积比、相似多边形以及相似图形的应用等内容。

这些知识点不仅在数学课堂上有重要的应用,还可以帮助我们解决各种实际问题。

深入理解和掌握相似概念,将有助于我们在未来的学习和生活中更好地运用数学知识。

人教版九年级数学下册27.1图形的相似(教案)

人教版九年级数学下册27.1图形的相似(教案)
通过这次教学,我深感教学反思的重要性。在今后的工作中,我会继续努力,以学生为中心,关注他们的学习需求,提高教学质量,让每个学生都能在数学的世界里找到乐趣。
-难点二:在实际图形中找出相似图形。教师可以设计一些具有挑战性的题目,如多边形内含相似三角形等,引导学生通过观察、分析找到相似图形。
-难点三:相似性质与其他几何知识的综合应用。例如,在求解复杂图形的线段长度时,需要运用相似性质与勾股定理。教师需引导学生逐步分析,将复杂问题分解为简单步骤,便于学生理解。
三、教学难点与重点
1.教学重点
-理解并掌握相似图形的定义:相似图形的对应角相等,对应边成比例。
-掌握相似图形的性质及其应用,如相似三角形的判定(AA、SAS等)。
-学会运用相似性质解决实际问题,如求线段长度、角度等。
-通过实例,让学生理解相似在实际生活中的应用,提高学生的实际应用能力。
举例解释:
-通过比较两个三角形,强调对应角相等、对应边成比例的相似定义。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《图形的相似》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过两个物体形状相似但大小不同的情况?”(如两个不同大小的三角形装饰品)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索图形相似的奥秘。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解相似图形的基本概念。相似图形是指对应角相等,对应边成比例的图形。它在几何学中有着广泛的应用,如解决实际问题中的长度、面积等计算。
2.案例分析:接下来,我们来看一个具体的案例。通过分析两个相似三角形,展示相似在实际中的应用,以及如何利用相似性质解决问题。

2021春人教版九年级数学下册 第27章 27.1.1 相似图形及成比例的线段

2021春人教版九年级数学下册 第27章 27.1.1  相似图形及成比例的线段

第二十七章相似27.1图形的相似第1课时相似图形及成比例的线段1 2u相似图形u成比例线段u比例的性质逐点导讲练课堂小结课后作业回忆全等图形指能够完全重合的两个图形,即它们的形状和大小完全相同.知1-导1相似图形问题:每组图片中的两张图片有何关系?知1-导知1-导想一想:我们刚才所见到的图形有什么相同和不同的地方?相同点:形状相同.不同点:大小不一定相同.知1-讲生活中我们会碰到许多这样形状相同的.大小不一定相同的图形,在数学上,我们把具有相同形状的图形称为:相似形知1-讲例1ꢀ图中的相似图形有哪些?知1-讲导引:本题依据相似图形的定义求解.观察这些图形,虽然图(6)与图(12)、图(8)与图(11)极为相似,但是它们的形状不相同.图(6)“拉长”而不是整体放大变成了图(12),图(8)“压缩”而不是整体缩小变成了图(11),所以它们不是相似图形.而图(1)与图(9)、图(2)与图(4)、图(3)与图(10)、图(5)与图(7)的形状完全相同,所以它们是相似图形.解:相似图形有:图(1)和图(9),图(2)和图(4),图(3)和图(10),图(5)和图(7).知1-讲总结(1)两个图形相似是指它们的形状相同,与它们的位置无关;(2)全等图形是一种特殊的相似图形,不仅形状相同,大小也相同.(来自《点拨》)知1-练ꢀ1ꢀꢀꢀꢀ如图,从放大镜里看到的三角尺和原来的三角尺ꢀꢀꢀꢀꢀꢀꢀ相似吗?解:相似.(来自《教材》)知1-练2如图,图形(a)~(f)中,哪些与图形(1)或(2)相似?解:d与(1)相似,e与(2)相似.(来自《教材》)知1-练3下列说法中,不正确的是(ꢀBꢀ)A.同一版的8开中国地图与32开中国地图相似B.亮亮4岁时的照片与16岁时的照片相似C.用放大镜看到的图形与原图形相似D.所有的圆都相似知1-练4下列和如图所示的图形形状相同的是(ꢀAꢀ)知2-导2成比例线段绳子的出现最早可以追溯到数万年前.在人类开始有最简单工具的时候,他们会用草或细小的树枝绞合搓捻成绳子.不通过测量,运用所学知识,快速地把一长为50cm 的细线分成两部分,使两部分之比为2︰3 ,该如何分?知2-讲两条线段的比:在同一单位长度下,两条线段长度的比值叫做两条线段的比.知2-讲例2若a=0.2 m,b=8 cm,则a∶b=___5_∶_2___.导引:a=0.2 m=20 cm,a∶b=20∶8=5∶2.(来自《点拨》)知2-讲总结求线段的长度比,先看单位是否统一,不统一的要化为同一单位,再把数值进行化简化成最简整数比.知2-练1在比例尺为1:10 000 000的地图上,量的甲乙两地的距离是30cm,求两地的实际距离.解:3000km.(来自《教材》)知2-练2在1:1 000 000的地图上,A,B两点之间的距离是5 cm,则A,B两地的实际距离是(ꢀBꢀ)ꢀA.5 kmC.500 km B.50 km D.5 000 km知2-练3某机器零件在图纸上的长度是21 mm,它的实际长度是630 mm,则图纸的比例尺是(ꢀꢀB)A.1∶20B.1∶30C.1∶40D.1∶504已知线段AB,在BA的延长线上取一点C,使CA=3AB,则线段CA与线段CB的长度比为(ꢀAꢀ)A.3∶4B.2∶3C.3∶5D.1∶2知2-讲成比例线段:在四条线段a 、b 、c 、d 中,如果a 和b 的比等于c 和d 的比,那么这四条线段a 、b 、c 、d 叫做成比例线段,简称比例线段.内项a 、b 、c 的第四比例项外项内项内项 a :b = c :d外项外项知2-讲如果作为比例内项的是两条相等的线段即或a :b = b :c,那么线段b 叫做线段a 和c 的比例中项.知2-讲例3下列各组线段中,能成比例线段的是(D)A.1 cm,3 cm ,4 cm ,6 cmB.30 cm ,12 cm ,0.8 cm ,0.2 cmC.0.1 cm ,0.2 cm ,0.3 cm ,0.4 cmD.12 cm ,16 cm ,45 cm ,60 cm分析:从比例线段的概念入手.作为选择题,可逐个排查.为了能迅速找到比例关系,可首先对数据按大小排序,以减少试验的次数.A中的,它们不成比例;B中的,它们不成比例;C中的,它们不成比例;D中的,它们成比例.故选D.知2-讲总结判断线段是否成比例,其基本方法是先排序,后求比值,再看比值是否相等.知2-练1下列四组线段中,是成比例线段的是(ꢀCꢀ)A.3 cm,4 cm,5 cm,6 cmB.4 cm,8 cm,3 cm,5 cmC.5 cm,15 cm,2 cm,6 cmD.8 cm,4 cm,1 cm,3 cm知2-练2【中考·六盘水】矩形的两边长分别为a,b,下列数据能构成黄金矩形的是(ꢀDꢀ)A.a=4,b=+2B.a=4,b=-2C.a=2,b=+1D.a=2,b=-1知3-讲3比例的性质比例的基本性质:等积式(1)如果,那么比例式内项积=外项积知3-讲(2)如果,且那么知3-讲总结比例的基本性质常用于比例式与乘积式的互相转化,关键是把握两内项之积等于两外项之积.知3-讲例4若5x-4y=0,则=____;=____;=____;=____;分析:从比例线段的性质入手.根据比例的基本性质把5x-4y =0变形为:,然后利用合比性质变形即得.也可使用“设参数”的方式,代入后约分即可..∴解:∵5x-4y=0 ,∴令x=4k,y=5k ,则知3-讲总结利用比例的性质求代数式值的方法:当一个题中出现多个未知数时,常巧用“消元法”求代数式的值;当条件中出现多个比值相等时,用“中间量法”巧设出比值是首选的方法.(来自《点拨》)知3-练1(中考·东营)若A.1,则的值为(D) B. C. D.2【中考·牡丹江】若x:y=1:3,2y=3z,则的值是(A)B.A.-5 C.D.5知3-练3【中考·兰州】如果(b+d+f≠0),3且a+c+e=3(b+d+f),那么k=________.11.相似图形的定义;2.判断是否是成比例线段:一排(排顺序)、二算(算比值或乘积、三判断;3.比例的基本性质:⇔ad=bc;2已知线段a=3,b=5,c=7,则a,b,c的第四比例项x=________.易错点:忽视线段成比例的顺序性.易错总结:要求a,b,c的第四比例项x,就有a∶b=c∶x,所以x=,切勿看到线段成比例就分类讨论,从而造成错误.请完成《点拨》对应习题!。

九年级下册相似图形的知识点

九年级下册相似图形的知识点

九年级下册相似图形的知识点相似图形是初中数学中的一个重要概念,让我们一起来了解一下九年级下册相似图形的知识点。

相似图形是指具有相同形状但尺寸不同的图形。

在相似图形中,对应角相等,对应边成比例。

通过相似图形的研究,我们可以推导出很多有用的结论和定理。

1. 相似比例相似比例是指两个相似图形相对应边的比值。

设两个相似三角形ABC和A'B'C',则相似比例为:AB/A'B' = BC/B'C' = AC/A'C'2. 相似三角形的性质(1)相似三角形的对应角相等。

(2)相似三角形的对应边成比例。

(3)相似三角形的高线、中线、角平分线也是相似的。

3. 判断相似三角形(1)两个三角形的对应角相等,并且两对对应边成比例时,这两个三角形相似。

(2)两个三角形的一个角相等,且两个角的对边成比例,这两个三角形相似。

4. 相似三角形的应用(1)测量高处难以到达的高度,可以利用相似三角形定理进行测算。

(2)在地图测绘中,利用相似三角形可以计算远处的高度和距离。

(3)在影视特效制作中,利用相似三角形可以实现物体的缩放和变形效果。

5. 相似多边形相似三角形的概念可以推广到相似多边形。

在相似多边形中,对应角相等,对应边成比例。

利用相似多边形的性质,我们可以解决很多与长度、面积等有关的几何问题。

总结:九年级下册相似图形是一个重要的数学知识点,通过研究相似图形,我们可以深入理解几何形状的特性,解决与长度、面积等相关的几何问题。

相似三角形和相似多边形的性质可以应用于实际生活中的测量、设计和计算中,具有广泛的应用价值。

掌握了相似图形的知识,我们可以更好地理解几何学,提高问题解决的能力。

人教版数学九年级下册图形的相似和比例线段--知识讲解(基础)

人教版数学九年级下册图形的相似和比例线段--知识讲解(基础)

人教版数学九年级下册图形的相似和比例线段--知识讲解(基础)【学习目标】1、能通过生活中的实例认识图形的相似,能通过观察直观地判断两个图形是否相似;2、了解比例线段的概念及有关性质,探索相似图形的性质,知道两相似多边形的主要特征:对应角相等,对应边的比相等.明确相似比的含义;3、知道两个相似的平面图形之间的关系,会根据相似多边形的特征识别两个多边形是否相似,并会运用性质进行相关的计算,提高推理能力.【要点梳理】要点一、比例线段【高清课堂:图形的相似预备知识】1.线段的比:如果选用同一长度单位量得两条线段a、b长度分别是m、n,那么就说这两条线段的比是a:b=m:n,或写成a mb n .2.成比例线段:对于四条线段a、b、c、d,如果其中两条线段的比与另两条线段的比相等,如a:b=c:d,我们就说这四条线段是成比例线段,简称比例线段.3.比例的基本性质:(1)若a:b=c:d,则ad=bc;(2)若a:b=b:c,则2b =ac(b称为a、c的比例中项).要点二、相似图形在数学上,我们把形状相同的图形称为相似图形(similar figures).要点诠释:(1) 相似图形就是指形状相同,但大小不一定相同的图形;(2) “全等”是“相似”的一种特殊情况,即当“形状相同”且“大小相同”时,两个图形是全等;要点三、相似多边形【高清课堂:图形的相似二、图形的相似 2】相似多边形的概念:如果两个多边形的对应角相等,对应边的比相等,我们就说它们是相似多边形.要点诠释:(1)相似多边形的定义既是判定方法,又是它的性质.(2)相似多边形对应边的比称为相似比.【典型例题】类型一、比例线段1.(2014•甘肃模拟)若==(abc≠0),求的值.【答案与解析】解:设===k,则a=2k,b=3k,c=5k,所以===.【总结升华】本题考查了比例的性质.解题的关键是先假设===k,得出a=2k,b=3k,c=5k,降低计算难度.举一反三:【变式】(2015•兰州一模)若3a=2b,则的值为()A.B.C.D.【答案】A【解析】解:∵3a=2b,∴=,设a=2k,则b=3k,则==﹣.故选A.类型二、相似图形2.(2014•江北区模拟)下面给出了一些关于相似的命题,其中真命题有()(1)菱形都相似;(2)等腰直角三角形都相似;(3)正方形都相似;(4)矩形都相似;(5)正六边形都相似.A.1个B.2个C.3个D.4个【答案】C.【解析】解:(1)所有菱形的对应角不一定相等,故菱形不一定都相似;(2)等腰直角三角形都相似,正确;(3)正方形都相似,正确;(4)矩形对应边比值不一定相等,不矩形不一定都相似;(5)正六边形都相似,正确,故符合题意的有3个.故选:C.【总结升华】此题主要考查了相似图形,应注意:①相似图形的形状必须完全相同;②相似图形的大小不一定相同;③两个物体形状相同、大小相同时它们是全等的,全等是相似的一种特殊情况.举一反三:【变式】如图,左边是一个横放的长方形,右边的图形是把左边的长方形各边放大两倍,并竖立起来以后得到的,这两个图形是相似的吗?【答案】这两个图形是相似的,这两个图形形状是一样,对应线段的比都是1:2,虽然它们的摆放方法、位置不一样,但这并不会影响到它们相似性.类型三、相似多边形3. 如图,已知四边形相似于四边形,求四边形的周长.【思路点拨】先根据相似多边形的对应边的比相等,求出四边形的未知边的长,然后即可求出该四边形的周长【答案与解析】∵四边形相似于四边形∴,即∴∴四边形的周长.【总结升华】观察一下可以发现,周长比等于边的比.举一反三:【变式】如图所示的相似四边形中,求未知边x、y的长度和角的大小.【答案】根据题意,两个四边形是相似形,得,解得.4. 如图,在矩形ABCD中,AB=2AD,线段EF=10,在EF上取一点M,分别以EM、MF为一边作矩形EMNH、MFGN,使矩形MFGN与矩形ABCD相似.令MN=x,当x为何值时,矩形EMNH的面积S有最大值?最大值是多少?【答案与解析】解:∵矩形MFGN与矩形ABCD相似当时,S有最大值,最大值为.【总结升华】借助相似,把最值问题转移到函数问题上,是解决这类题型最好方法之一.。

数学九年级下册第二十七章相似图形及成比例的线段课件PPT公开课

数学九年级下册第二十七章相似图形及成比例的线段课件PPT公开课

想一想:我们刚才所见到的图形有什么相同和不同 的地方?
相同点:形状相同. 不同点:大小不一定相同.
生活中我们会碰到许多这样形状相同的.大小 不一定相同的图形,在数学上,我们把具有相同形 状的图形称为:
相似形
例1 图中的相似图形有哪些?
导引:本题依据相似图形的定义求解.观察这些图形,虽 然图(6)与图(12)、图(8)与图(11)极为相似,但是它 们的形状不相同.图(6)“拉长”而不是整体放大变成 了图(12),图(8)“压缩”而不是整体缩小变成了图(11), 所以它们不是相似图形.而图(1)与图(9)、图(2)与图 (4)、图(3)与图(10)、图(5)与图(7)的形状完全相同, 所以它们是相似图形.
易错总结:要求a,b,c的第四比例项x,就有a∶b=c∶x,所以x= ,切勿看到线段成比例就分类讨论,从而造成错误.
易错总结:要求a,b,c的第四比例项x,就有a∶b=c∶x,所以x=
例4 若5x-4y=0,则 =____;
b 3 A中的
,它们不成比例;
C. = D.3a=2b 判断线段是否成比例,其基本方法是先排序,后求
巩固新知
1 在比例尺为1:10 000 000的地图上,量的甲乙两地 的距离是30cm,求两地的实际距离. 解: 3000km.
2 在1 : 1 000 000的地图上,A,B两点之间的距离
是5 cm,则A,B两地的实际距离是( B )
A.5 km
B.50 km
C.500 km
D.5 000 km
2 下列说法中,不正确的是( )
转值化叫, 做关两键条是线把段当握的两比条内.项件之积中等于出两外现项之多积.个比值相等时,用“中间量法”巧设出
(4)、图(3)与图(10)、图(5)与图(7)的形状完全相同,

人教版初三数学下册中考知识点梳理:第17讲相似三角形

人教版初三数学下册中考知识点梳理:第17讲相似三角形

第17讲相似三角形一、知识清单梳理知识点一:比例线段关键点拨与对应举例1.比例线段在四条线段a,b,c,d中,如果a与b的比等于c与d的比,即a cb d=,那么这四条线段a,b,c,d叫做成比例线段,简称比例线段.列比例等式时,注意四条线段的大小顺序,防止出现比例混乱.2.比例的基本性质(1)基本性质:a cb d=⇔ ad=bc;(b、d≠0)(2)合比性质:a cb d=⇔a bb±=c dd±;(b、d≠0)(3)等比性质:a cb d==…=mn=k(b+d+…+n≠0)⇔......a c mb d n++++++=k.(b、d、···、n≠0)已知比例式的值,求相关字母代数式的值,常用引入参数法,将所有的量都统一用含同一个参数的式子表示,再求代数式的值,也可以用给出的字母中的一个表示出其他的字母,再代入求解.如下题可设a=3k,b=5k,再代入所求式子,也可以把原式变形得a=3/5b代入求解.例:若35ab=,则a bb+=85.3.平行线分线段成比例定理(1)两条直线被一组平行线所截,所得的对应线段成比例.即如图所示,若l3∥l4∥l5,则AB DEBC EF=.利用平行线所截线段成比例求线段长或线段比时,注意根据图形列出比例等式,灵活运用比例基本性质求解.例:如图,已知D,E分别是△ABC的边BC和AC上的点,AE=2,CE=3,要使DE∥AB,那么BC:CD应等于53. (2)平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.即如图所示,若AB∥CD,则OA OBOD OC=.(3)平行于三角形一边的直线和其他两边相交,所构成的三角形和原三角形相似.如图所示,若DE∥BC,则△ADE∽△ABC.4.黄金分割点C把线段AB分成两条线段AC和BC,如果ACAB==5-12≈0.618,那么线段AB被点C黄金分割.其中点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比.例:把长为10cm的线段进行黄金分割,那么较长线段长为5(5-1)cm.知识点二:相似三角形的性质与判定5.相似三角形的判定(1) 两角对应相等的两个三角形相似(AAA).如图,若∠A=∠D,∠B=∠E,则△ABC∽△DEF.判定三角形相似的思路:①条件中若有平行线,可用平行线找出相等的角而判定;②条件中若有一对等角,可再找一对等角或再找夹这对等角的两组边对应成比例;③条件中若有两边对应成比例可找夹角相等;④条件中若有一对直角,可考虑再找一对等角或证(2) 两边对应成比例,且夹角相等的两个三角形相似.如图,若∠A=∠D,AC ABDF DE=,则△ABC∽△DEF.(3) 三边对应成比例的两个三角形相似.如图,若AB AC BCDE DF EF==,则△ABC∽△DEF.FEDCBAl5l4l3l2l1ODCBAEDCBAFEDCBAFEDCBAFEDCBA明直角边和斜边对应成比例;⑤条件中若有等腰关系,可找顶角相等或找一对底角相等或找底、腰对应成比例.6.相似三角形的性质(1)对应角相等,对应边成比例.(2)周长之比等于相似比,面积之比等于相似比的平方.(3)相似三角形对应高的比、对应角平分线的比和对应中线的比等于相似比.例:(1)已知△ABC∽△DEF,△ABC的周长为3,△DEF的周长为2,则△ABC与△DEF的面积之比为9:4.(2) 如图,DE∥BC, AF⊥BC,已知S△ADE:S△ABC=1:4,则AF:AG=1:2.7.相似三角形的基本模型(1)熟悉利用利用相似求解问题的基本图形,可以迅速找到解题思路,事半功倍.(2)证明等积式或者比例式的一般方法:经常把等积式化为比例式,把比例式的四条线段分别看做两个三角形的对应边.然后,通过证明这两个三角形相似,从而得出结果.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是()A.9分B.8分C.7分D.6分【答案】C【解析】分析: 根据中位数的定义,首先将这组数据按从小到大的顺序排列起来,由于这组数据共有7个,故处于最中间位置的数就是第四个,从而得出答案.详解: 将这组数据按从小到大排列为:6<7<7<7<8<9<9,故中位数为:7分,故答案为:C.点睛: 本题主要考查中位数,解题的关键是掌握中位数的定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.2.为了解中学300名男生的身高情况,随机抽取若干名男生进行身高测量,将所得数据整理后,画出频数分布直方图(如图).估计该校男生的身高在169.5cm~174.5cm之间的人数有()A.12 B.48 C.72 D.96【答案】C【解析】解:根据图形,身高在169.5cm~174.5cm之间的人数的百分比为:12100%=24% 6+10+16+12+6,∴该校男生的身高在169.5cm~174.5cm之间的人数有300×24%=72(人).故选C.3.设x1,x2是一元二次方程x2﹣2x﹣5=0的两根,则x12+x22的值为()A.6 B.8 C.14 D.16【答案】C【解析】根据根与系数的关系得到x1+x2=2,x1•x2=-5,再变形x12+x22得到(x1+x2)2-2x1•x2,然后利用代入计算即可.【详解】∵一元二次方程x2-2x-5=0的两根是x1、x2,∴x1+x2=2,x1•x2=-5,∴x12+x22=(x1+x2)2-2x1•x2=22-2×(-5)=1.故选C.【点睛】考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=-ba,x1•x2=ca.4.五个新篮球的质量(单位:克)分别是+5、﹣3.5、+0.7、﹣2.5、﹣0.6,正数表示超过标准质量的克数,负数表示不足标准质量的克数.仅从轻重的角度看,最接近标准的篮球的质量是()A.﹣2.5 B.﹣0.6 C.+0.7 D.+5【答案】B【解析】求它们的绝对值,比较大小,绝对值小的最接近标准的篮球的质量.【详解】解:|+5|=5,|-3.5|=3.5,|+0.7|=0.7,|-2.5|=2.5,|-0.6|=0.6,∵5>3.5>2.5>0.7>0.6,∴最接近标准的篮球的质量是-0.6,故选B.【点睛】本题考查了正数和负数,掌握正数和负数的定义以及意义是解题的关键.5.下列命题是假命题的是()A.有一个外角是120°的等腰三角形是等边三角形B.等边三角形有3条对称轴C.有两边和一角对应相等的两个三角形全等D.有一边对应相等的两个等边三角形全等【答案】C【解析】解:A.外角为120°,则相邻的内角为60°,根据有一个角为60°的等腰三角形是等边三角形可以判断,故A选项正确;B.等边三角形有3条对称轴,故B选项正确;C.当两个三角形中两边及一角对应相等时,其中如果角是这两边的夹角时,可用SAS来判定两个三角形全等,如果角是其中一边的对角时,则可不能判定这两个三角形全等,故此选项错误;D.利用SSS.可以判定三角形全等.故D选项正确;故选C.6.已知函数y=ax2+bx+c的图象如图所示,则关于x的方程ax2+bx+c﹣4=0的根的情况是A.有两个相等的实数根B.有两个异号的实数根C.有两个不相等的实数根D.没有实数根【答案】A【解析】根据抛物线的顶点坐标的纵坐标为4,判断方程ax2+bx+c﹣4=0的根的情况即是判断函数y=ax2+bx+c的图象与直线y=4交点的情况.【详解】∵函数的顶点的纵坐标为4,∴直线y=4与抛物线只有一个交点,∴方程ax2+bx+c﹣4=0有两个相等的实数根,故选A.【点睛】本题考查了二次函数与一元二次方程,熟练掌握一元二次方程与二次函数间的关系是解题的关键.7.如图,已知AC是⊙O的直径,点B在圆周上(不与A、C重合),点D在AC的延长线上,连接BD 交⊙O于点E,若∠AOB=3∠ADB,则()A.DE=EB B.2DE=EB C.3DE=DO D.DE=OB【答案】D【解析】解:连接EO.∴∠B=∠OEB,∵∠OEB=∠D+∠DOE,∠AOB=3∠D,∴∠B+∠D=3∠D,∴∠D+∠DOE+∠D=3∠D,∴∠DOE=∠D,∴ED=EO=OB,故选D.8.一个布袋内只装有1个黑球和2个白球,这些球除颜色不同外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是( )A.49B.13C.16D.19【答案】D【解析】试题分析:列表如下由表格可知,随机摸出一个球后放回搅匀,再随机摸出一个球所以的结果有9种,两次摸出的球都是黑球的结果有1种,所以两次摸出的球都是黑球的概率是19.故答案选D.考点:用列表法求概率.9.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是()A.k>12B.k≥12C.k>12且k≠1D.k≥12且k≠1【答案】C【解析】根据题意得k-1≠0且△=2²-4(k-1)×(-2)>0,解得:k>12且k≠1.故选C【点睛】本题考查了一元二次方程ax²+bx+c=0(a≠0)的根的判别式△=b²-4ac,关键是熟练掌握:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.10.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3,其中正确的个数是()A.1 B.2 C.3 D.4【答案】B【解析】分析:直接利用二次函数图象的开口方向以及图象与x轴的交点,进而分别分析得出答案.详解:①∵二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,且开口向下,∴x=1时,y=a+b+c,即二次函数的最大值为a+b+c,故①正确;②当x=﹣1时,a﹣b+c=0,故②错误;③图象与x轴有2个交点,故b2﹣4ac>0,故③错误;④∵图象的对称轴为x=1,与x轴交于点A、点B(﹣1,0),∴A(3,0),故当y>0时,﹣1<x<3,故④正确.故选B.点睛:此题主要考查了二次函数的性质以及二次函数最值等知识,正确得出A点坐标是解题关键.二、填空题(本题包括8个小题)11.如图,直线a∥b,∠BAC的顶点A在直线a上,且∠BAC=100°.若∠1=34°,则∠2=_____°.【答案】46【解析】试卷分析:根据平行线的性质和平角的定义即可得到结论.解:∵直线a∥b,∴∠3=∠1=34°,∵∠BAC=100°,∴∠2=180°−34°−100°=46°,故答案为46°. 12.因式分解:212x x --= . 【答案】()()34x x +-;【解析】根据所给多项式的系数特点,可以用十字相乘法进行因式分解. 【详解】x 2﹣x ﹣12=(x ﹣4)(x+3). 故答案为(x ﹣4)(x+3).13.如图,a ∥b ,∠1=40°,∠2=80°,则∠3= 度.【答案】120 【解析】如图,∵a ∥b ,∠2=80°,∴∠4=∠2=80°(两直线平行,同位角相等) ∴∠3=∠1+∠4=40°+80°=120°. 故答案为120°.14.如图,在平面直角坐标系中,已知点A (﹣4,0)、B (0,3),对△AOB 连续作旋转变换依次得到三角形(1)、(2)、(3)、(4)、…,则第(5)个三角形的直角顶点的坐标是_____,第(2018)个三角形的直角顶点的坐标是______.【答案】(1645,125)(806845,125)【解析】利用勾股定理列式求出AB的长,再根据图形写出第(5)个三角形的直角顶点的坐标即可;观察图形不难发现,每3个三角形为一个循环组依次循环,用2018除以3,根据商和余数的情况确定出第(2018)个三角形的直角顶点到原点O的距离,然后写出坐标即可.【详解】∵点A(﹣4,0),B(0,3),∴OA=4,OB=3,∴AB=2243=5,∴第(2)个三角形的直角顶点的坐标是(445,125);∵5÷3=1余2,∴第(5)个三角形的直角顶点的坐标是(1645,125),∵2018÷3=672余2,∴第(2018)个三角形是第672组的第二个直角三角形,其直角顶点与第672组的第二个直角三角形顶点重合,∴第(2018)个三角形的直角顶点的坐标是(806845,125).故答案为:(1645,125);(806845,125)【点睛】本题考查了坐标与图形变化-旋转,解题的关键是根据题意找出每3个三角形为一个循环组依次循环. 15.如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m.水面下降2.5m,水面宽度增加_____m.【答案】1.【解析】根据已知建立平面直角坐标系,进而求出二次函数解析式,再通过把y=-1.5代入抛物线解析式得出水面宽度,即可得出答案【详解】解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半1米,抛物线顶点C坐标为(0,1),设顶点式y=ax1+1,把A点坐标(-1,0)代入得a=-0.5,∴抛物线解析式为y=-0.5x1+1,当水面下降1.5米,通过抛物线在图上的观察可转化为:当y=-1.5时,对应的抛物线上两点之间的距离,也就是直线y=-1与抛物线相交的两点之间的距离,可以通过把y=-1.5代入抛物线解析式得出:-1.5=-0.5x1+1,解得:x=±3,1×3-4=1,所以水面下降1.5m,水面宽度增加1米.故答案为1.【点睛】本题考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题的关键,学会把实际问题转化为二次函数,利用二次函数的性质解决问题,属于中考常考题型.16.如图,已知函数y=x+2的图象与函数y=kx(k≠0)的图象交于A、B两点,连接BO并延长交函数y=kx(k≠0)的图象于点C,连接AC,若△ABC的面积为1.则k的值为_____.【答案】3【解析】连接OA.根据反比例函数的对称性可得OB=OC,那么S△OAB=S△OAC=12S△ABC=2.求出直线y=x+2与y轴交点D的坐标.设A(a,a+2),B(b,b+2),则C(-b,-b-2),根据S△OAB=2,得出a-b=2 ①.根据S△OAC=2,得出-a-b=2 ②,①与②联立,求出a、b的值,即可求解.【详解】如图,连接OA.由题意,可得OB=OC,∴S△OAB=S△OAC=12S△ABC=2.设直线y=x+2与y轴交于点D,则D(0,2),设A(a,a+2),B(b,b+2),则C(-b,-b-2),∴S△OAB=12×2×(a-b)=2,∴a-b=2 ①.过A点作AM⊥x轴于点M,过C点作CN⊥x轴于点N,则S△OAM=S△OCN=12k,∴S△OAC=S△OAM+S梯形AMNC-S△OCN=S梯形AMNC=2,∴12(-b-2+a+2)(-b-a)=2,将①代入,得∴-a-b=2 ②,①+②,得-2b=6,b=-3,①-②,得2a=2,a=1,∴A(1,3),∴k=1×3=3.故答案为3.【点睛】本题考查了反比例函数与一次函数的交点问题,反比例函数的性质,反比例函数图象上点的坐标特征,三角形的面积,待定系数法求函数的解析式等知识,综合性较强,难度适中.根据反比例函数的对称性得出OB=OC是解题的突破口.17.如图,已知圆柱底面的周长为4dm,圆柱高为2dm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为______dm.【答案】42【解析】要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,根据勾股定理计算即可.【详解】解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC的长度.∵圆柱底面的周长为4dm,圆柱高为2dm,∴AB=2dm,BC=BC′=2dm,∴AC2=22+22=8,∴AC=22dm.∴这圈金属丝的周长最小为2AC=42dm.故答案为:42dm【点睛】本题考查了平面展开-最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题把圆柱的侧面展开成矩形,“化曲面为平面”是解题的关键.18.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为_______.【答案】213【解析】设⊙O半径为r,根据勾股定理列方程求出半径r,由勾股定理依次求BE和EC的长.【详解】连接BE,设⊙O半径为r,则OA=OD=r,OC=r-2,∵OD⊥AB,∴∠ACO=90°,AC=BC=12AB=4,在Rt△ACO中,由勾股定理得:r2=42+(r-2)2,r=5,∴AE=2r=10,∵AE 为⊙O 的直径,∴∠ABE=90°,由勾股定理得:BE=6,在Rt △ECB 中,EC =222264213BE BC +=+=. 故答案是:213.【点睛】考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.三、解答题(本题包括8个小题)19.如图,港口B 位于港口A 的南偏东37°方向,灯塔C 恰好在AB 的中点处,一艘海轮位于港口A 的正南方向,港口B 的正西方向的D 处,它沿正北方向航行5 km 到达E 处,测得灯塔C 在北偏东45°方向上,这时,E 处距离港口A 有多远?(参考数据:sin 37°≈0.60,cos 37°≈0.80,tan 37°≈0.75)【答案】35km【解析】试题分析:如图作CH ⊥AD 于H .设CH=xkm ,在Rt △ACH 中,可得AH=3737CH x tan tan =︒︒,在Rt △CEH 中,可得CH=EH=x ,由CH ∥BD ,推出AH AC HD CB=,由AC=CB ,推出AH=HD ,可得37x tan ︒=x+5,求出x 即可解决问题. 试题解析:如图,作CH ⊥AD 于H .设CH=xkm ,在Rt △ACH 中,∠A=37°,∵tan37°=CH AH,∴AH=3737CH x tan tan =︒︒, 在Rt △CEH 中,∵∠CEH=45°,∴CH=EH=x ,∵CH ⊥AD ,BD ⊥AD ,∴CH ∥BD ,∴AH AC HD CB=, ∵AC=CB ,∴AH=HD ,∴37x tan ︒=x+5, ∴x=5?37137tan tan ︒-︒≈15, ∴AE=AH+HE=1537tan ︒+15≈35km , ∴E 处距离港口A 有35km .20.海中有一个小岛P ,它的周围18海里内有暗礁,渔船跟踪鱼群由西向东航行,在点A 测得小岛P 在北偏东60°方向上,航行12海里到达B 点,这时测得小岛P 在北偏东45°方向上.如果渔船不改变航线继续向东航行,有没有触礁危险?请说明理由.【答案】有触礁危险,理由见解析.【解析】试题分析:过点P 作PD ⊥AC 于D ,在Rt △PBD 和Rt △PAD 中,根据三角函数AD ,BD 就可以用PD 表示出来,根据AB=12海里,就得到一个关于PD 的方程,求得PD .从而可以判断如果渔船不改变航线继续向东航行,有没有触礁危险.试题解析:有触礁危险.理由:过点P 作PD ⊥AC 于D .设PD 为x ,在Rt △PBD 中,∠PBD=90°-45°=45°.∴BD=PD=x .在Rt △PAD 中,∵∠PAD=90°-60°=30°∴AD=330x x tan =︒∵AD=AB+BD ∴3x=12+x∴x=12=63+131-() ∵6(3+1)<18∴渔船不改变航线继续向东航行,有触礁危险.【点睛】本题主要考查解直角三角形在实际问题中的应用,构造直角三角形是解题的前提和关键. 21.如图:求作一点P ,使PM PN =,并且使点P 到AOB ∠的两边的距离相等.【答案】见解析【解析】利用角平分线的作法以及线段垂直平分线的作法分别得出进而求出其交点即可.【详解】如图所示:P 点即为所求.【点睛】本题主要考查了复杂作图,熟练掌握角平分线以及线段垂直平分线的作法是解题的关键.22.如图,在大楼AB 正前方有一斜坡CD ,坡角∠DCE=30°,楼高AB=60米,在斜坡下的点C 处测得楼顶B 的仰角为60°,在斜坡上的D 处测得楼顶B 的仰角为45°,其中点A,C,E 在同一直线上.求坡底C 点到大楼距离AC 的值;求斜坡CD 的长度.【答案】(1)坡底C点到大楼距离AC的值为203米;(2)斜坡CD的长度为803-120米.【解析】分析:(1)在直角三角形ABC中,利用锐角三角函数定义求出AC的长即可;(2)过点D作DF⊥AB于点F,则四边形AEDF为矩形,得AF=DE,DF=AE.利用DF=AE=AC+CE求解即可.详解:(1)在直角△ABC中,∠BAC=90°,∠BCA=60°,AB=60米,则AC=60203603ABtan==︒(米)答:坡底C点到大楼距离AC的值是203米.(2)过点D作DF⊥AB于点F,则四边形AEDF为矩形,∴AF=DE,DF=AE.设CD=x米,在Rt△CDE中,DE=12x米,3米在Rt△BDF中,∠BDF=45°,∴BF=DF=AB-AF=60-12x(米)∵DF=AE=AC+CE,∴3312x解得:3(米)故斜坡CD的长度为(3)米.点睛:此题考查了解直角三角形-仰角俯角问题,坡度坡角问题,熟练掌握勾股定理是解本题的关键.23.如图,已知抛物线的顶点为A(1,4),抛物线与y轴交于点B(0,3),与x轴交于C、D两点.点P 是x轴上的一个动点.求此抛物线的解析式;求C、D两点坐标及△BCD的面积;若点P在x轴上方的抛物线上,满足S△PCD=12S△BCD,求点P的坐标.【答案】(1)y=﹣(x﹣1)2+4;(2)C(﹣1,0),D(3,0);6;(3)P(1+102,32),或P(1﹣102,32)【解析】(1)设抛物线顶点式解析式y=a(x-1)2+4,然后把点B的坐标代入求出a的值,即可得解;(2)令y=0,解方程得出点C,D坐标,再用三角形面积公式即可得出结论;(3)先根据面积关系求出点P的坐标,求出点P的纵坐标,代入抛物线解析式即可求出点P的坐标.【详解】解:(1)、∵抛物线的顶点为A(1,4),∴设抛物线的解析式y=a(x﹣1)2+4,把点B(0,3)代入得,a+4=3,解得a=﹣1,∴抛物线的解析式为y=﹣(x﹣1)2+4;(2)由(1)知,抛物线的解析式为y=﹣(x﹣1)2+4;令y=0,则0=﹣(x﹣1)2+4,∴x=﹣1或x=3,∴C(﹣1,0),D(3,0);∴CD=4,∴S△BCD=12CD×|y B|=12×4×3=6;(3)由(2)知,S△BCD=12CD×|y B|=12×4×3=6;CD=4,∵S△PCD=12S△BCD,∴S△PCD=12CD×|y P|=12×4×|y P|=3,∴|y P|= 32,∵点P在x轴上方的抛物线上,∴y P>0,∴y P= 32,∵抛物线的解析式为y=﹣(x﹣1)2+4;∴32=﹣(x ﹣1)2+4, ∴x=1±102, ∴P (1+102, 32),或P (1﹣102,32). 【点睛】本题考查的是二次函数的综合应用,熟练掌握二次函数的性质是解题的关键.24.已知:如图,AB AD =,AC AE =,BAD CAE ∠=∠.求证:BC DE =.【答案】见解析【解析】先通过∠BAD=∠CAE 得出∠BAC=∠DAE ,从而证明△ABC ≌△ADE ,得到BC=DE .【详解】证明:∵∠BAD=∠CAE ,∴∠BAD+∠DAC=∠CAE+∠DAC .即∠BAC=∠DAE ,在△ABC 和△ADE 中,AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩, ∴△ABC ≌△ADE (SAS ).∴BC=DE .【点睛】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:AAS 、SSS 、SAS 、SSA 、HL .25.班级的课外活动,学生们都很积极.梁老师在某班对同学们进行了一次关于“我喜爱的体育项目”的调査,下面是他通过收集数据后,绘制的两幅不完整的统计图.请根据图中的信息,解答下列问题:调查了________名学生;补全条形统计图;在扇形统计图中,“乒乓球”部分所对应的圆心角度数为________;学校将举办运动会,该班将推选5位同学参加乒乓球比赛,有3位男同学(,,)A B C 和2位女同学(,)D E ,现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.【答案】50 见解析(3)115.2° (4)35【解析】试题分析:(1)用最喜欢篮球的人数除以它所占的百分比可得总共的学生数;(2)用学生的总人数乘以各部分所占的百分比,可得最喜欢足球的人数和其他的人数,即可把条形统计图补充完整;(3)根据圆心角的度数=360 º×它所占的百分比计算;(4)列出树状图可知,共有20种等可能的结果,两名同学恰为一男一女的有12种情况,从而可求出答案.解:(1)由题意可知该班的总人数=15÷30%=50(名) 故答案为50;(2)足球项目所占的人数=50×18%=9(名),所以其它项目所占人数=50﹣15﹣9﹣16=10(名) 补全条形统计图如图所示:(3)“乒乓球”部分所对应的圆心角度数=360°×=115.2°,故答案为115.2°;(4)画树状图如图.由图可知,共有20种等可能的结果,两名同学恰为一男一女的有12种情况,所以P (恰好选出一男一女)==.点睛:本题考查的是条形统计图和扇形统计图的综合运用,概率的计算.读懂统计图,从不同的统计图中得到必要的信息及掌握概率的计算方法是解决问题的关键.26.某中学九年级甲、乙两班商定举行一次远足活动,A 、B 两地相距10千米,甲班从A 地出发匀速步行到B 地,乙班从B 地出发匀速步行到A 地.两班同时出发,相向而行.设步行时间为x 小时,甲、乙两班离A 地的距离分别为1y 千米、2y 千米,1y 、2y 与x 的函数关系图象如图所示,根据图象解答下列问题:直接写出1y 、2y 与x 的函数关系式;求甲、乙两班学生出发后,几小时相遇?相遇时乙班离A 地多少千米?甲、乙两班相距4千米时所用时间是多少小时?【答案】(1)y 1=4x ,y 2=-5x+1.(2)409km .(3)23h . 【解析】(1)由图象直接写出函数关系式;(2)若相遇,甲乙走的总路程之和等于两地的距离.【详解】(1)根据图可以得到甲2.5小时,走1千米,则每小时走4千米,则函数关系是:y 1=4x ,乙班从B 地出发匀速步行到A 地,2小时走了1千米,则每小时走5千米,则函数关系式是:y 2=−5x+1.(2)由图象可知甲班速度为4km/h ,乙班速度为5km/h ,设甲、乙两班学生出发后,x 小时相遇,则4x+5x=1,解得x=109. 当x=109时,y 2=−5×109+1=409, ∴相遇时乙班离A 地为409km. (3)甲、乙两班首次相距4千米,即两班走的路程之和为6km ,故4x+5x=6,解得x=23h. ∴甲、乙两班首次相距4千米时所用时间是23h.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,钓鱼竿AC长6m,露在水面上的鱼线BC长32m,某钓者想看看鱼钓上的情况,把鱼竿AC 转动到AC'的位置,此时露在水面上的鱼线B′C′为33m,则鱼竿转过的角度是()A.60°B.45°C.15°D.90°【答案】C【解析】试题解析:∵sin∠CAB=32262 BCAC==∴∠CAB=45°.∵33362B Csin C ABAC'''∠===',∴∠C′AB′=60°.∴∠CAC′=60°-45°=15°,鱼竿转过的角度是15°.故选C.考点:解直角三角形的应用.2.已知:如图,AD是△ABC的角平分线,且AB:AC=3:2,则△ABD与△ACD的面积之比为()A.3:2 B.9:4 C.2:3 D.4:9【答案】A【解析】试题解析:过点D作DE⊥AB于E,DF⊥AC于F.∵AD为∠BAC的平分线,∴DE=DF ,又AB:AC=3:2, 11:():():3:222ABD ACD S S AB DE AC DF AB AC ∴=⋅⋅==, 故选A.点睛:角平分线上的点到角两边的距离相等.3.某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是( )A .在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”B .从一副扑克牌中任意抽取一张,这张牌是“红色的”C .掷一枚质地均匀的硬币,落地时结果是“正面朝上”D .掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6【答案】D【解析】根据统计图可知,试验结果在0.16附近波动,即其概率P≈0.16,计算四个选项的概率,约为0.16者即为正确答案.【详解】根据图中信息,某种结果出现的频率约为0.16,在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”的概率为23≈0.67>0.16,故A 选项不符合题意, 从一副扑克牌中任意抽取一张,这张牌是“红色的”概率为1327≈0.48>0.16,故B 选项不符合题意, 掷一枚质地均匀的硬币,落地时结果是“正面朝上”的概率是12=0.5>0.16,故C 选项不符合题意, 掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6的概率是16≈0.16,故D 选项符合题意, 故选D.【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.熟练掌握概率公式是解题关键.4.如图,点M 是正方形ABCD 边CD 上一点,连接MM ,作DE ⊥AM 于点E ,BF ⊥AM 于点F ,连接BE ,若AF =1,四边形ABED 的面积为6,则∠EBF 的余弦值是( )A 213B 313C .23D 13 【答案】B【解析】首先证明△ABF ≌△DEA 得到BF=AE ;设AE=x ,则BF=x ,DE=AF=1,利用四边形ABED 的面积等于△ABE 的面积与△ADE 的面积之和得到12•x•x+•x×1=6,解方程求出x 得到AE=BF=3,则EF=x-1=2,然后利用勾股定理计算出BE ,最后利用余弦的定义求解.【详解】∵四边形ABCD 为正方形,∴BA =AD ,∠BAD =90°,∵DE ⊥AM 于点E ,BF ⊥AM 于点F ,∴∠AFB =90°,∠DEA =90°,∵∠ABF+∠BAF =90°,∠EAD+∠BAF =90°,∴∠ABF =∠EAD ,在△ABF 和△DEA 中BFA DEA ABF EAD AB DA ∠=∠⎧⎪∠=⎨⎪=⎩∴△ABF ≌△DEA (AAS ),∴BF =AE ;设AE =x ,则BF =x ,DE =AF =1,∵四边形ABED 的面积为6, ∴111622x x x ⋅⋅+⋅⨯=,解得x 1=3,x 2=﹣4(舍去), ∴EF =x ﹣1=2,在Rt △BEF 中,222313BE =+ ∴313cos 1313BF EBF BE ∠=== 故选B .【点睛】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.会运用全等三角形的知识解决线段相等的问题.也考查了解直角三角形.5.甲、乙两人沿相同的路线由A地到B地匀速前进,A、B两地间的路程为20km.他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是()A.甲的速度是4km/h B.乙的速度是10km/hC.乙比甲晚出发1h D.甲比乙晚到B地3h【答案】C【解析】甲的速度是:20÷4=5km/h;乙的速度是:20÷1=20km/h;由图象知,甲出发1小时后乙才出发,乙到2小时后甲才到,故选C.6.如图,⊙O中,弦BC与半径OA相交于点D,连接AB,OC,若∠A=60°,∠ADC=85°,则∠C的度数是()A.25°B.27.5°C.30°D.35°【答案】D【解析】分析:直接利用三角形外角的性质以及邻补角的关系得出∠B以及∠ODC度数,再利用圆周角定理以及三角形内角和定理得出答案.详解:∵∠A=60°,∠ADC=85°,∴∠B=85°-60°=25°,∠CDO=95°,∴∠AOC=2∠B=50°,∴∠C=180°-95°-50°=35°故选D.点睛:此题主要考查了圆周角定理以及三角形内角和定理等知识,正确得出∠AOC度数是解题关键.7.若关于x的方程333x m mx x++--=3的解为正数,则m的取值范围是()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版数学九年级下册
图形的相似和比例线段--知识讲解(提高)
【学习目标】
1、能通过生活中的实例认识图形的相似,能通过观察直观地判断两个图形是否相似;
2、了解比例线段的概念及有关性质,探索相似图形的性质,知道两相似多边形的主要特征:对应角相等,对应边的比相等.明确相似比的含义;
3、知道两个相似的平面图形之间的关系,会根据相似多边形的特征识别两个多边形是否相似,并会运用性质进行相关的计算,提高推理能力.
【要点梳理】
要点一、比例线段
【高清课堂:图形的相似预备知识】
1.线段的比:
如果选用同一长度单位量得两条线段a、b长度分别是m、n,那么就说这两条线段的比是a:b=m:n,
或写成a m
b n .
2.成比例线段:对于四条线段a、b、c、d,如果其中两条线段的比与另两条线段的比相等,如a:b=c:d,我们就说这四条线段是成比例线段,简称比例线段.
3.比例的基本性质:
(1)若a:b=c:d,则ad=bc;
(2)若a:b=b:c,则2b =ac(b称为a、c的比例中项).
要点二、相似图形
在数学上,我们把形状相同的图形称为相似图形(similar figures).
要点诠释:
(1) 相似图形就是指形状相同,但大小不一定相同的图形;
(2) “全等”是“相似”的一种特殊情况,即当“形状相同”且“大小相同”时,两个图形是
全等;
要点三、相似多边形
【高清课堂:图形的相似二、图形的相似 2】
相似多边形的概念:如果两个多边形的对应角相等,对应边的比相等,我们就说它们是相似多边形.要点诠释:
(1)相似多边形的定义既是判定方法,又是它的性质.
(2)相似多边形对应边的比称为相似比.
【典型例题】
类型一、比例线段
1. 求证:如果
,那么. 【思路点拨】这是比例的合比性质,利用等式的性质得到证明.
【答案与解析】∵,
在等式两边同加上1,
∴,
∴.
【总结升华】比例有合比性质如果,

分比性质如果,a b c d
b d
--
=;
更比性质如果,a b
c d =.
举一反三:
【高清课堂:图形的相似预备知识练习2】
【变式】(2014秋•贵港期末)如果,那么的值是()
A.3
4
B.
7
3
C.
3
2
D.
2
3
【答案】B;
提示:∵,∴==.故选B.
类型二、相似图形
2. 如果两个四边形的对应边成比例,能不能得出这两
个四边形相似?为什么?
【答案与解析】从我们日常生活的直观经验中可以得出结论.两个四边形对应边成比例,这两个四边形不一定相似,如下图,边长是6的正方形和边长是2的菱形,它们对应边之比都是3,但它们形状并不一样,因而也不相似.
【总结升华】多边形的相似要满足两个条件:(1)对应角相等,(2)对应边的比相等.
举一反三:
【变式】下面的四个图案是空心的矩形,正方形,等边三角形,不等边三角形,其中每个图案的边的宽度都相等,那么每个图案中边的内外边缘所围成的几何图形不相似的是()
【答案】A
类型三、相似多边形
3.(2014秋•慈溪市期末)一个矩形ABCD的较短边长
为2.
(1)如图①,若沿长边对折后得到的矩形与原矩形相似,求它的另一边长;
(2)如图②,已知矩形ABCD的另一边长为4,剪去一个矩形ABEF后,余下的矩形EFDC与原矩形相似,求余下矩形EFDC的面积.
【答案与解析】解:(1)由已知得MN=AB=2,MD=AD=BC,
∵沿长边对折后得到的矩形与原矩形相似,
∴矩形DMNC与矩形ABCD相似,=,
∴DM•BC=AB•MN,即BC2=4,
∴BC=2,即它的另一边长为2;
(2)∵矩形EFDC与原矩形ABCD相似,
∴=,
∵AB=CD=2,BC=4,
∴DF==1,
∴矩形EFDC的面积=CD•DF=2×1=2.
【总结升华】本题考查相似多边形的性质:相似多边形对应边的比相等.
举一反三:
【变式】等腰梯形与等腰梯形
相似,
,求出的长及梯形各角的度数.
【答案】∵等腰梯形与等腰梯形
相似
4. 某小区有一块矩形草坪长20米,宽10米,沿着草
坪四周要修一宽度相等的环形小路,使得小路内外边缘所成的矩形相似,你能做到吗?若能,求出这一宽度;若不能,说明理由.
【思路点拨】四边形相似要满足角对应相等,边对应成比例.
【答案与解析】设小路宽为x米,则小路的外边缘围成的矩形的长为(20+2x)米,宽为(10+2x)米,
将两个矩形的长与宽分别相比,得长的比为

而宽的比为,
很明显,
所以做不到.
【总结升华】通过本题的探索可以发现:把一个矩形的长和宽同时增加或减小相同的长度,所得矩形与原来矩形一定不相似.因为.。

相关文档
最新文档