2018全国高中数学联赛安徽省初赛试卷(含答案)

合集下载

2018年全国高中数学联合竞赛试题及解答.(B卷)

2018年全国高中数学联合竞赛试题及解答.(B卷)

a 2018年全国高中数学联合竞赛一试(B 卷)一、填空题:本大题共8个小题,每小题8分,共64分。

2018B1、设集合{}8,1,0,2=A ,集合{}A a a B ∈=|2,则集合B A 的所有元素之和是 ◆答案: 31★解析:易知{}16,2,0,4=B ,所以{}16,8,4,2,1,0=B A ,元素之和为31.2018B 2、已知圆锥的顶点为P ,底面半径长为2,高为1.在圆锥底面上取一点Q ,使得直线PQ 与底面所成角不大于045,则满足条件的点Q 所构成的区域的面积为 ◆答案: π3★解析:记圆锥的顶点P 在底面的投影为O ,则O 为底面中心,且1tan ≤=∠OQOPOQP ,即1≥OQ ,故所以区域的面积为πππ31222=⨯-⨯。

2018B 3、将6,5,4,3,2,1随机排成一行,记为f e d c b a ,,,,,,则def abc +是奇数的概率为 ◆答案:101 ★解析:由def abc +为奇数时,abc ,def 一奇一偶,①若abc 为奇数,则c b a ,,为5,3,1的排列,进而f e d ,,为6,4,2的排列,这样共有3666=⨯种;②若abc 为偶数,由对称性得,也有3666=⨯种,从而def abc +为奇数的概率为101!672=。

2018B 4、在平面直角坐标系xOy 中,直线l 通过原点,)1,3(=n 是l 的一个法向量.已知数列{}n a 满足:对任意正整数n ,点),(1n n a a +均在l 上.若62=a ,则54321a a a a a 的值为 ◆答案: 32-★解析:易知直线l 的方程为x y 3-=,因此对任意正整数n ,有n n a a 311-=+,故{}n a 是以31-为a 公比的等比数列.于是23123-=-=a a ,由等比数列的性质知325354321-==a a a a a a2018B 5、设βα,满足3)3tan(-=+πα,5)6tan(=-πβ,则)tan(βα-的值为◆答案: 47-★解析:由两角差的正切公式可知7463tan =⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+πβπα,即可得47)tan(-=-βα2018B 6、设抛物线x y C 2:2=的准线与x 轴交于点A ,过点)0,1(-B 作一直线l 与抛物线C 相切于点K ,过点A 作l 的平行线,与抛物线C 交于点N M ,,则KMN ∆的面积为为 ◆答案:21★解析:设直线l 与MN 的斜率为k ,:l 11-=y k x ,:MN 211-=y k x 分别联立抛物线方程得到:0222=+-y k y (*),和0122=+-y ky (**) 对(*)由0=∆得22±=k ;对(**)得2442=-=-k y y NM所以2121=-⋅⋅=-==∆∆∆∆N M KBAN BAM BMN KMN y y AB S S S S2018B 7、设)(x f 是定义在R 上的以2为周期的偶函数,在区间[]2,1上严格递减,且满足1)(=πf ,0)2(=πf ,则不等式组⎩⎨⎧≤≤≤≤1)(010x f x 的解集为◆答案:[]ππ--4,62★解析:由)(x f 为偶函数及在区间[]2,1上严格递减知,)(x f 在[]1,2--上递增,结合周期性知,)(x f 在[]1,0上递增,又1)()4(==-ππf f ,0)2()62(==-ππf f ,所以不等式等价于)4()()62(ππ-≤≤-f x f f ,又14620<-<-<ππ,即不等式的解集为a[]ππ--4,622018B 8、已知复数321,,z z z 满足1321===z z z ,r z z z =++321,其中r 是给定的实数,则133221z z z z z z ++的实部是 (用含有r 的式子表示) ◆答案: 232-r★解析:记133221z z z z z z w ++=,由复数的模的性质可知:111z z =,221z z =,331z z =,因此 133221z z z z z z w ++=。

2018年全国高中数学联合竞赛一试参考答案(A卷)

2018年全国高中数学联合竞赛一试参考答案(A卷)

祝君金榜题名2018 年全国高中数学联合竞赛一试(A 卷)参考答案及评分标准说明:1. 评阅试卷时,请依据本评分标准. 填空题只设 8 分和 0 分两档;其他各题的 评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可 参考本评分标准适当划分档次评分,解答题中第 9 小题 4 分为一个档次,第 10、 11 小题 5 分为一个档次,不得增加其他中间档次.一、填空题:本大题共 8 小题,每小题 8 分,满分 64 分.1. 设集合 A 1, 2, 3,, 99, B2x xA, Cx 2x A,则 BC 的元素个数为.答案:24 .1399解:由条件知,B C,2, 4, 6, , 198,1, , 2, ,2, 4, 6, , 48222故 B C 的元素个数为 24 .2. 设点 P 到平面 的距离为 3 ,点Q 在平面 上,使得直线 PQ 与 所成角不小于30且不大于60,则这样的点Q 所构成的区域的面积为.答案:8 .OP3解:设点 P 在平面上的射影为O .由条件知,tan OQP, 3 , OQ3即OQ[1, 3],故所求的区域面积为.318223. 将1, 2, 3, 4, 5, 6 随机排成一行,记为 a , b , c , d , e , f ,则 abc + def 是偶数的 概率为.答案:9 10.解:先考虑abc + def 为奇数的情况,此时abc , def 一奇一偶,若abc 为奇数,则a , b , c 为1, 3, 5的排列,进而d , e , f 为2, 4, 6的排列,这样有3!×3! = 36 种情况,由对称性可知,使abc + def 为奇数的情况数为36×2 = 72 种.从而abc + def 为偶 72 72 9 数的概率为1− = 1− = . 6! 720 10xy22ab4. 在平面直角坐标系 xOy 中,椭圆C :1(a b 0)的左、右焦点22分别是 F 、F ,椭圆C 的弦 ST 与UV 分别平行于 x 轴与 y 轴,且相交于点 P .已12知线段 PU , PS , PV , PT 的长分别为1, 2, 3, 6 ,则 PF F的面积为 .1 2答案: 15 .解:由对称性,不妨设 P (x , y ) 在第一象限,则由条件知PP1 1x PT PS y PV PU,2,1PP221祝君金榜题名即 P (2,1).进而由 1, 2xPU PS得U (2, 2), S (4, 1) ,代入椭圆C 的方程知 P1 1 1 14 4 161 2 20,25,解得 a b .abab22221从而15SF Fyaby .22PF F1 2PP21 25. 设 f (x ) 是定义在 R 上的以 2 为周期的偶函数,在区间[0, 1]上严格递减,1 x 2,且满足 f ()1, f (2) 2 ,则不等式组的解集为.1 f (x ) 2答案:[2, 82].解:由 f (x ) 为偶函数及在[0, 1]上严格递减知, f (x ) 在[1, 0] 上严格递增, 再结合 f (x ) 以 2 为周期可知,[1, 2]是 f (x ) 的严格递增区间.注意到f f ff f ,(2) ( ) 1, (8 2 )( 2 ) (2 ) 2 所以1f (x ) 2 f (2) f (x ) f (82) ,而1282 2 ,故原不等式组成立当且仅当 x[2, 82].6. 设复数 z 满足 z 1,使得关于 x 的方程 zxzx 有实根,则这样 22 2 0的复数 z 的和为.3答案:. 2解:设 z ab i (a , b R , a 2 b 21) .将原方程改为(a b i)x 22(ab i)x 2 0,分离实部与虚部后等价于axax ,①22 2 0bxbx . ②22 0若b 0,则 a,但当 a1时,①无实数解,从而 a 1,此时存在实21数 x1 3 满足①、②,故 z1满足条件.若b 0,则由②知 x{0, 2},但显然 x 0 不满足①,故只能是 x 2 ,代 115 1 15i入①解得 .a,进而b,相应有z4441 15i1 15i3 综上,满足条件的所有复数 z 之和为1.4427. 设O 为ABC 的外心,若 AO AB 2AC ,则sinBAC 的值为 .故10 答案: .4 解:不失一般性,设ABC 的外接圆半径 R 2 .由条件知,2AC AOAB BO,①1AC BO .122祝君金榜题名取 AC 的中点 M ,则OM AC ,结合①知OM BO ,且 B 与 A 位于直线MC1 OM 的同侧.于是cos BOC cos (90 MOC ) sin MOCOC4.在BOC 中,由余弦定理得BC OBOCOB OC BOC,222cos10BC10进而在ABC 中,由正弦定理得.sin BAC 2R48. 设整数数列 1, 2, , 10 10 3 1, 282 5 a a a 满足 a a a aa ,且aaa i,iii1 {1, 2 },1, 2, , 9则这样的数列的个数为.答案:80. 解:设baai ,则有 1{1, 2}( 1, 2, , 9)iii2aaabbb ,①1101129bbbaaaabbb . ②2345285567用t 表示b 2, b 3, b 4 中值为 2 的项数.由②知,t 也是 5, 6, 7b b b 中值为 2 的项数,2, 3,, 70 2 1 2 2 2 3 2 3333取定 2, 3, ,78, 9b b b 后,任意指定b b 的值,有 22 4 种方式. 最后由①知,应取 1 {1,2} b 的取法是b使得bbb 为偶数,这样的1291唯一的,并且确定了整数 1, 2, , 9a 的值,进而数列b bb 唯一对应一个满足条件的 1数列 1, 2, ,10a a a . 综上可知,满足条件的数列的个数为 204 80.二、解答题:本大题共 3 小题,满分 56 分.解答应写出文字说明、证明过 程或演算步骤.9.(本题满分 16 分)已知定义在 R 上的函数 f (x ) 为log x 1 , 0 x9, f (x )34 x , x 9.设 a , b , c 是三个互不相同的实数,满足 f (a ) f (b ) f (c ) ,求 abc 的取值范围.解:不妨假设ab c .由于 f (x ) 在(0, 3] 上严格递减,在[3, 9] 上严格递增,在[9,) 上严格递减,且 f (3) 0, f (9)1,故结合图像可知a,b (3, 9),c (9,),(0, 3)并且 f (a ) f (b ) f (c ) (0, 1) . …………………4 分由 f (a ) f (b ) 得1log a log b1,33即 39log alog b 2,因此 ab.于是 abc 9c . …………………8 分233又3祝君金榜题名0 f (c ) 4 c 1, …………………12 分故c (9, 16) .进而 abc 9c (81, 144) .所以, abc 的取值范围是(81, 144) .…………………16 分r注:对任意的 r (81, 144) ,取c = ,则c ∈ ,从而 0 90 (9,16)f (c )∈(0,1).过点(c , f (c ))作平行于 x 轴的直线l ,则l 与 f (x )的图像另有两个交点(a , f (a )) ,(b , f (b )) (其中a (0, 3), b (3, 9) ),满足 f (a ) f (b ) f (c ) ,并且ab 9 ,从 而abc = r .10.(本题满分 20 分)已知实数列 1, 2,3,a a a满足:对任意正整数 n ,有 a S a ,其中 (2 ) 1 S 表示数列的前 n 项和.证明: n n n n(1) 对任意正整数 n ,有 2an ;n(2) 对任意正整数 n ,有a a.11n n证明:(1) 约定S.由条件知,对任意正整数 n ,有 1(2) ( )(),aSaSSSSSS22nnnnn 1nn 1nn 1从而22Sn Sn ,即 Sn (当 n 0 时亦成立). …………………5 分nn显然,11 2aSSnnn . …………………10 分nnn(2) 仅需考虑 a a 同号的情况.不失一般性,可设 a a 均为正(否则, ,nn 1nn 1将数列各项同时变为相反数,仍满足条件),则SSSn ,故必有n 1nn 1S n Sn ,,1nn 1此时an nan n , 1,1nn 1从而a an n n nn n n n .n n1(1)(1) (1)(1) 1…………………20 分11.(本题满分 20 分)在平面直角坐标系 xOy 中,设 AB 是抛物线 y 24x 的过点 F (1, 0) 的弦,AOB 的外接圆交抛物线于点 P (不同于点O , A , B ).若 PF 平分APB ,求 PF 的所有可能值.AyB y Py1 ,,2 ,,3,1, 2, 3yyy222解:设,由条件知 y y y 两两不等且非零.1234 4 4设直线 AB 的方程为 x ty 1,与抛物线方程联立可得 yty ,故24 4 0y y. ①1 24注意到AOB 的外接圆过点O ,可设该圆的方程为 xydx ey ,与 22yyd 24x 联立得,y y y y这四个不1yey 0 .该四次方程有 1, 2,3, 0241644祝君金榜题名同的实根,故由韦达定理得y y y,从而1 2 3 0 0y yy.②3 ( 1 2 )…………………5 分PA FA y因PF平分APB,由角平分线定理知,PB FB y,结合①、②,有122y y2 23 1 2(y y)22 3 1 2 2 2y PA 4 42 (y y) y16(2y y)1 2 1 1 212 2 2y PB y y y y y y y2 2 2 2 2 2( ) 16(2 )2 3 2 2 1 2 2 2 1(y y)3 24 4(y8) 16(4y y16) y64y1922 2 2 2 4 22 1 2 2 1 ,………………10 分(y8) 16(4y y16) y64y1922 2 2 2 4 21 2 1 1 2即16 64 12 22192 12 2664 22 12192 22y y y y y y y y,故(y y)(y y y y192) 0 .2 2 4 2 24 1 2 1 1 22当 2 2 3 0y y时,y y,故y,此时P与O重合,与条件不符.1 2 2 1当14 122224192 0y y y y时,注意到①,有(y y) 192(y y) 208.…………………15 分2 2 22 1 2 1 2因12 22 4 13 8 2 1 2 1 2 4 13 1, 2y y y y,故满足①以及y y的实数2 2y y存在,对应可得满足条件的点A, B.此时,结合①、②知PF.y3 1 (y1 y2 ) 4 y1 y2 4 208 4 13 12 2 2 24 4 4 4…………………20 分5。

【数学竞赛】2018年全国高中数学联赛安徽省初赛试卷(附答案)

【数学竞赛】2018年全国高中数学联赛安徽省初赛试卷(附答案)

|T,n2按照顺时针螺旋方式排成n行n列的表格T,第一行是1,2,,n.例如:=⎢894⎥.题号一2018年全国高中数学联赛安徽省初赛试卷(考试时间:2018年6月30日上午9:00—11:30)二总分9101112得分评卷人复核人注意:1.本试卷共12小题,满分150分; 2.用钢笔、签字笔或圆珠笔作答;3.书写不要超过装订线;4.不得使用计算器.一、填空题(每题8分,共64分,结果须化简)1.设三个复数1,i,z在复平面上对应的三点共线,且z|=5,则z=.2.设n是正整数,且满足n5=438427732293,则n=.3.函数f(x)=|sin(2x)+sin(3x)+sin(4x)|的最小正周期=.4.设点P,Q分别在函数y=2x和y=log x的图象上,则|PQ|的最小值=2.5.从1,2,,10中随机抽取三个各不相同的数字,其样本方差s2≤1的概率=.6.在边长为1的正方体ABCD-A B C D内部有一小球,该小球与正方体的对角线段AC相切,则小球11111半径的最大值=.7.设H是△ABC的垂心,且3HA+4HB+5HC=0,则cos∠AHB=.⎡123⎤8.把1,2,n3⎢⎥⎢⎣765⎥⎦设2018在T100的第i行第j列,则(i,j)=.二、解答题(第9—10题每题21分,第11—12题每题22分,共86分)9.如图所示,设ABCD是矩形,点E,F分别是线段AD,BC的中点,点G在线段EF上,点D,H关于线段AG的垂直平分线l对称.求证:∠HAB=3∠GAB.D HCE lG FA B213 2 π 210.(1) M ( x 0 , y 0 ) 处的切线方程 x 0 x - y 0 y = 1 .(3 分)b 2y 0 , x 0 + y ⎪ , B ( x 2 , y 2 ) = x 0 -y 0 , b a -b ⎭0 010. 设 O 是坐标原点,双曲线C : x 2 y 2 - a 2 b 2= 1(a > 0,b > 0) 上动点 M 处的切线交 C 的两条渐近线于 A , B两点.(1)求证: △AOB 的面积 S 是定值;(2)求 △AOB 的外心 P 的轨迹方程.11. (1)求证:对于任意实数 x , y , z 都有 x 2 + 2 y 2 + 3z 2 ≥3( xy + yz + zx ) .(2)是否存在实数k >试证明你的结论.3 ,使得对于任意实数 x , y , z 下式恒成立?x 2 + 2 y 2 + 3z 2 ≥ k ( x y + yz +zx )12. 在正 2018 边形的每两个顶点之间均连一条线段,并把每条线段染成红色或蓝色. 求此图形中三边颜色都相同的三角形的最小个数.参考答案和评分标准一、填空题(每题 8 分,共 64 分)1 2 3 45 6 7 84 - 3i 或 - 3 + 4i 1 + ln(ln 2) ln 21 154 - 65 -6 6(34,95)二、解答题(第 9—10 题每题 21 分,第 11—12 题每题 22 分,共 86 分) 9.由 E , F 分别是 AD , BC 的中点,得 EF // AB ⊥ AD .(3 分) 设 P 是 E 关于 l 的对称点,则 EP // AG ⊥ l ,故四边形 AEPG 是等腰梯形. (8 分) 进而 ∠PAG = ∠EGA = ∠GAB , ∠APG = ∠GEA ,从而 AP ⊥ HG . (13 分) 再由 HP = DE = EA = PG ,得 ∠HAP = ∠PAG = ∠GAB . (18 分) 因此, ∠HAB = 3∠GAB .(21 分)a 2⎛ a b ⎫ ⎛ a - b ⎫ ⎪ ⎪与渐近线方程联立,得 A ( x 1, y 1 ) = x ⎝ a + b a b ⎭ ⎝ a x 0上述两式相乘,得P的轨迹方程为a2x2-b2y2=1(a2+b2)2.11故x2+2y2+3z2≥3(xy+yz+zx).22,∑x(2017-x)=2M.当且仅当每个x=1008或1009时,N取得最小值C10092018-⨯1008=2C3.(16分)从而,S=1x y-x y=ab是定值.21221(2)由(1)可设A(λa,λb),B(a,-b),P(x,y),λ为非零常数.λλ由P A=PO=PB,得(x-λa)2+(y-λb)2=x2+y2=(x-a)2+(y+b)2.(9分) (12分) (15分)λλ从而有ax+by=λ(a2+b2),ax-by=1(a2+b2).22λ(18分) (21分)411.(1)由均值不等式,1x2+3y2≥3xy,x2+3z2≥3xz,y2+3z2≥3y z.2222 (2)x2+2y2+3z2-k(xy+yz+zx)=(x-k y-k z)2+(2-k2)y2+(3-k2)z2+(k2-k)y z22442(8分) (14分)上式≥0恒成立当且仅当2-k2≥0且(k2-k)2≤4(2-42k24)(3-k2).4(18分)化简得k≤22且k3-6k2+24≥0.显然,k=2>3满足要求.(22分) 12.设N是此图形中三边颜色都相同的三角形数目,M是此图形中三边颜色不全相同的三角形数目,x是以第i个顶点为端点的红色线段数目,则有iM+N=C320182018i i(10分) ii=1321009N=2C3是可以取到的,例如把线段i→i±j mod2018(1≤i≤2018,1≤j≤504)染成红1009色,其它线段染成蓝色.(22分)。

2018年全国高中数学联合竞赛试题及解答.(A卷)

2018年全国高中数学联合竞赛试题及解答.(A卷)

{}{}{}{}∈⎢,3⎥,即OQ∈[1,3],6⨯6=36种,从而abc+def为奇数的概率为722018年全国高中数学联合竞赛一试(A卷)一、填空题:本大题共8个小题,每小题8分,共64分。

2018A1、设集合A=1,2,3, ,99,集合B=2x|x∈A,集合C=x|2x∈A,则集合B C 的元素个数为◆答案:24★解析:由条件知,B C=2,4,6, ,48,故B C的元素个数为24。

2018A2、设点P到平面α的距离为3,点Q在平面α上,使得直线PQ与平面α所成角不小于300且不大于600,则这样的点Q所构成的区域的面积为◆答案:8π★解析:设点P在平面α上的射影为O,由条件知tan∠OQP=OP⎡3⎤OQ⎣3⎦所以区域的面积为π⨯32-π⨯12=8π。

2018A3、将1,2,3,4,5,6随机排成一行,记为a,b,c,d,e,f,则abc+def是偶数的概率为◆答案:9 10★解析:先考虑abc+def为奇数时,abc,def一奇一偶,①若abc为奇数,则a,b,c为1,3,5的排列,进而d,e,f为2,4,6的排列,这样共有6⨯6=36种;②若abc为偶数,由对称性得,也有119=,故所求为1-=6!1010102018A4、在平面直角坐标系xOy中,椭圆C:x2y2+a2b2=1(a>b>0)的左右焦点分别是F,F,12椭圆C的弦ST与U V分别平行于x轴和y轴,且相交于点P,已知线段PU,PS,PV,PT的长分别为1,2,3,6,则∆PF F的面积为12★解析:由对称性,不妨设点 P x , y在第一象限,则 x = PT -PS 即 P 2,1 。

进 而 可 得 U2,2 , S 4,1 , 代 入 椭 圆 方 程 解 得 : a 2 = 20 , b 2 = 5 , 从 而 2 2[ ]◆答案: π - 2,8 - 2π ][ ] [ ][ ] 所以 π - 2 < x < 8 - 2π ,即不等式的解集为 π - 2,8 - 2π ] ⎩bx 2 - 2bx = 0◆答案: 15()2 = 2 ,y 0 =PV - PU2= 1( ) ( ) ( )S ∆PF 1F2=1 1F F ⨯ y = ⨯ 2 15 ⨯ 1 = 15 。

高三数学-2018年全国高中数学联合竞赛一试试卷及答案(word版) 精品

高三数学-2018年全国高中数学联合竞赛一试试卷及答案(word版) 精品

2018年全国高中数学联合竞赛一试试卷(考试时间:上午8:00—9:40)一、选择题(本题满分36分,每小题6分) 1. 如图,在正四棱锥P −ABCD 中,∠APC =60°,则二面角A −PB −C 的平面角的余弦值为( ) A. 71 B. 71- C. 21 D. 21- 2. 设实数a 使得不等式|2x −a |+|3x −2a |≥a 2对任意实数x 恒成立,则满足条件的a 所组成的集合是( ) A. ]31,31[- B. ]21,21[- C. ]31,41[- D. [−3,3] 3. 将号码分别为1、2、…、9的九个小球放入一个袋中,这些小球仅号码不同,其余完全相同。

甲从袋中摸出一个球,其号码为a ,放回后,乙从此袋中再摸出一个球,其号码为b 。

则使不等式a −2b +10>0成立的事件发生的概率等于( ) A. 8152 B. 8159 C. 8160 D. 8161 4. 设函数f (x )=3sin x +2cos x +1。

若实数a 、b 、c 使得af (x )+bf (x −c )=1对任意实数x 恒成立,则ac b cos 的值等于( ) A. 21- B. 21 C. −1 D. 1 5. 设圆O 1和圆O 2是两个定圆,动圆P 与这两个定圆都相切,则圆P 的圆心轨迹不可能是( )6. 已知A 与B 是集合{1,2,3,…,100}的两个子集,满足:A 与B 的元素个数相同,且为A ∩B 空集。

若n ∈A 时总有2n +2∈B ,则集合A ∪B 的元素个数最多为( )A. 62B. 66C. 68D. 74二、填空题(本题满分54分,每小题9分)7. 在平面直角坐标系内,有四个定点A (−3,0),B (1,−1),C (0,3),D (−1,3)及一个动点P ,则|PA |+|PB |+|PC |+|PD |的最小值为__________。

8. 在△ABC 和△AEF 中,B 是EF 的中点,AB =EF =1,BC =6,33=CA ,若2=⋅+⋅,则与的夹角的余弦值等于________。

【竞赛试题】2018全国高中数学联赛安徽省初赛试卷

【竞赛试题】2018全国高中数学联赛安徽省初赛试卷

1【竞赛试题】2018全国高中数学联赛安徽省初赛试卷(考试时间:2018年6月30日上午9:00)一、填空题(每题8分,共64分,结果须化简)1、设三个复数1, i, z 在复平面上对应的三点共线,且|z|=5,则z=2、设n 是正整数,且满足n 5=438427732293,则n=3、函数f(x) =sin(2x) + sin(3x) + sin(4x)的最小正周期=4.设点P,Q 分别在函数y=2x 和y=log 2x 的图象上,则|PQ|的最小值=5、从1,2,…,10中随机抽取三个各不相同的数字,其样本方差s 2≤1的概率=6、在边长为I 的正方体ABCD-A 1B 1C 1D 1内部有一小球,该小球与正方体的对角线段AC 1相切,则小球半径的最大值=7、设H 是△ABC 的垂心,且3450HA HB HC ++=,则cos ∠AHB=8、把1,2,…,n 2按照顺时针螺旋方式排成n 行n 列的表格T n ,第一行是1,2,…,n.例如:3123894765T ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦设2018在T 100的第i 行第j 列,则(i,j)= · 二、解答题(第9-10题每题21分,第11-12题每题22分,共86分)9、如图所示,设ABCD 是矩形,点E, F 分别是线段AD, BC 的中点,点G 在线段EF 上,点D, H 关于线段AG 的垂直平分线L 对称.求证:∠HAB=3∠GAB.10、设O 是坐标原点,双曲线C:上动点M 处的切线交C 的两条渐近线于A,B 两点。

(1)减B 两点:`(1)求证:△AOB 的面积S 是定值。

(2)求△AOB 的外心P 的轨迹方程.11、(1)求证:对于任意实数x,y,z都有: ) 222x23y z xy yz zx ++≥++.(2)是否存在实数x.y,z下式恒成立?()222x23y z k xy yz zx++≥++,试证明你的结论.12.在正2018边形的每两个顶点之间均连一条线段,并把每条线段染成红色或蓝色.求此图形中三边颜色都相同的三角形的最小个数.232018全国高中数学联赛安徽省初赛试卷考试时间:2019年6月30日上午9:001.设三个复数1,i,z 在复平面上对应的三点共线,且5z =,则z =4-3i,34i -+.2.设n 是正整数,且满足5438427732293n =,则n =213.3.函数()sin2sin3sin4f x x x x =++的最小正周期=2π.4.设点,P Q 分别在函数2x y =和2log y x =的图象上,则PQ 的最小值=5、从1,2,,10⋅⋅⋅中随机抽取三个各不相同的数字,其样本方差21s ≤的概率=115. 6、在边长为1的正方体1111ABCD A BC D -内部有一小球,该小球与正方体的对角线段1AC 相切,则小球半径的最大值 7、设H 是ABC ∆的垂心,且3450HA HB HC ++=,则cosAHB ∠=6-. 8、把21,2,,n ⋅⋅⋅按照顺时针螺旋方式排成n 行n 列的表格n T ,第一行是1,2,,n ⋅⋅⋅.例如:3123894765T ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦设2018在100T 的第i 行第j 列,则(),i j =()34,95.9、如图所示,设ABCD 是矩形,点,E F 分别是线段,AD BC 的中点,点G 在线段EF 上,点,D H 关于线段AG 的垂直平分线L 对称.求证:3HAB GAB ∠=∠.。

2018年全国高中数学联合竞赛一试参考答案(A卷)word版含解析

2018年全国高中数学联合竞赛一试参考答案(A卷)word版含解析

2018 年全国高中数学联合竞赛一试(A 卷)参考答案及评分标准1. 评阅试卷时,请依据本评分标准. 填空题只设8 分和0 分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9 小题4 分为一个档次,第10、11 小题5 分为一个档次,不得增加其他中间档次.一、填空题:本大题共8 小题,每小题8 分,满分64 分.1. 设集合A 1, 2, 3, , 99 , B {}2x x A∈, C {}2x x A∈,则B C 的元素个数为.答案:24 .解:由条件知,B C 2, 4, 6, ,198 12, 1, 32,2, ,9922, 4, 6, , 48 ,故B C 的元素个数为24 .2. 设点P 到平面Q 在平面 上,使得直线PQ 与 所成角不小于30 且不大于60 ,则这样的点Q 所构成的区域的面积为.答案:8 .解:设点 P 在平面 上的射影为O.由条件知,tan[3OPOPQOQ=∠∈即OQ [1, 3],故所求的区域面积为 32 12 8 .3. 将1, 2, 3, 4, 5, 6 随机排成一行,记为a, b, c, d,e, f ,则abc +def是偶数的概率为答案:9 10解:先考虑abc +def 为奇数的情况,此时abc, def 一奇一偶,若abc 为奇数,则a, b, c 为1, 3, 5的排列,进而d , e, f 为2, 4, 6的排列,这样有3! ×3! = 36 种情况,由对称性可知,使abc +def 为奇数的情况数为36 ×2 = 72 种.从而abc +def 为偶数的概率为72729116!72010-=-=1 / 64. 在平面直角坐标系 xOy 中,椭圆 C :22221x y a b += (a b 0) 的左、右焦点分别是 F 1 、F 2 ,椭圆C 的弦 ST 与UV 分别平行于 x 轴与 y 轴,且相交于点 P .已 知线段 PU , PS , PV , PT 的长分别为1, 2, 3, 6 ,则 PF 1F 2 的面积为 .解:由对称性,不妨设 P ( x P , y P ) 在第一象限,则由条件知x 1()2PT PS - 2, y 1()2PV PU - 1即 P (2, 1) .进而由 x P PU 1, PS 2 得U (2, 2), S (4, 1) ,代入椭圆C 的方程知111144161a b a b ⋅+⋅=⋅+=,解得a 220, b 2 5 .从而121212PF F P P S F F y y ∆===5. 设 f ( x ) 是定义在 R 上的以 2 为周期的偶函数,在区间[0, 1] 上严格递减,且满足 f ( ) 1 f (2 ) 2 ,则不等式组121()2x f x ⎧⎨≤≤⎩的解集为 . 答案:[ 2, 8 2 ] .解:由 f ( x ) 为偶函数及在[0, 1] 上严格递减知, f ( x ) 在[ 1, 0] 上严格递增, 再结合 f ( x ) 以 2 为周期可知,[1, 2] 是 f ( x ) 的严格递增区间. 注意到f ( 2) f ( ) 1, f (8 2 ) f ( 2 ) f (2 ) 2 , 所以1 f ( x )2 f ( 2) f ( x ) f (8 2 ) ,而1 2 8 2 2 ,故原不等式组成立当且仅当 x [ 2, 8 2 ] .6. 设复数 z 满足z 1 ,使得关于 x 的方程 zx 2 2 z x 2 0 有实根,则这样 的复数 z 的和为.答案:32-解:设 z a b i (a , b R , a 2 b 2 1) .将原方程改为 (a b i) x 2 2(a b i) x 2 0 ,分离实部与虚部后等价于 ax 2 2ax 2 0 , ① bx 2 2bx 0 .②若b 0 ,则 a 2 1 ,但当 a 1 时,①无实数解,从而 a 1 ,此时存在实数 x 1 z 1 满足条件.若 b 0 ,则由②知 x {0, 2} ,但显然 x 0 不满足①,故只能是 x 2 ,代入①解得 a 14=-,进而b ,相应有 z综上,满足条件的所有复数 z 之和为 1=32- 7. 设O 为 ABC 的外心,若AO AB 2 AC ,则sin BAC 的值为.解:不失一般性,设 ABC 的外接圆半径 R 2 .由条件知, 2 AC AO AB -① 故 AC12BO 1 . 取 AC 的中点 M ,则 OM AC ,结合①知 OM BO ,且 B 与 A 位于直线 OM 的同侧.于是 cos BOC cos (90 MOC ) sin MOC MOOC14=-在 BOC 中,由余弦定理得BC =进而在 ABC 中,由正弦定理得sin BAC2BC R =8. 设整数数列 a 1 , a 2 , , a 10 满足 a 10 3a 1 , a 2 a 8 2a 5 ,且 a i 1 {1 a i ,2 a i }, i 1, 2, , 9 , 则这样的数列的个数为 .答案:80 .解:设b i a i 1 a i {1, 2}(i 1, 2, , 9) ,则有 2a 1 a 10 a 1 b 1 b 2 b 9 , ① b 2 b 3 b 4 a 5 a 2 a 8 a 5 b 5 b 6 b 7 .②用t 表示b 2 , b 3 , b 4 中值为 2 的项数.由②知,t 也是 b 5 , b 6 , b 7 中值为 2 的项数,其中t {0, 1, 2, 3} .因此 b 2 , b 3 , , b 7 的取法数为 (03C )2 (13C ) 2 (23C ) 2 (33C ) 2 20取定b 2 , b 3 , , b 7 后,任意指定 b 8 , b 9 的值,有 22 4 种方式.最后由①知,应取 b 1 {1, 2} 使得b 1 b 2 b 9 为偶数,这样的 b 1 的取法是 唯一的,并且确定了整数 a 1 的值,进而数列 b 1 , b 2 , , b 9 唯一对应一个满足条 件的 数列 a 1 , a 2 , , a 10 .综上可知,满足条件的数列的个数为 20 4 80 .二、解答题:本大题共 3 小题,满分 56 分.解答应写出文字说明、证明过 程或演算步骤.9.(本题满分 16 分)已知定义在 R上的函数 f ( x )为3log 109()49x x f x x⎧-≤⎪=⎨-⎪⎩设 a , b , c 是三个互不相同的实数,满足 f (a ) f (b ) f (c ) ,求 abc 的取值围. 解:不妨假设 a b c .由于 f ( x ) 在 (0, 3] 上严格递减,在[3, 9] 上严格递增, 在[9, ) 上严格递减,且 f (3) 0, f (9) 1,故结合图像可知 a (0, 3) , b (3, 9) , c (9, ) ,并且 f (a ) f (b ) f (c ) (0, 1) . …………………4 分由 f (a ) f (b ) 得 1 l og 3 a log 3 b 1 ,即 log 3 a log 3 b 2 ,因此 ab 32 9 .于是 abc 9c . …………………8 分又0 f (c ) 4 1, …………………12 分 故 c (9, 16) .进而 abc 9c (81, 144) . 所以, abc 的取值范围是 (81, 144) . …………………16 分注:对任意的 r (81, 144) ,取09r c =,则0c ∈ (9, 16) ,从而 f (0c ) ∈ (0, 1) .过 点 (c 0 , f (c 0 )) 作平行于 x 轴的直线 l ,则 l 与 f ( x ) 的图像另有两个交点 (a , f (a )) ,(b , f (b )) (其中 a (0, 3), b (3, 9) ),满足 f (a ) f (b ) f (c ) ,并且 ab 9 ,从 而 abc = r .10.(本题满分 20 分)已知实数列 a 1 , a 2 , a 3 , 满足:对任意正整数 n ,有 a n (2S n a n ) 1 ,其中 S n 表示数列的前 n 项和.证明:(1) 对任意正整数 n ,有 a n (2) 对任意正整数 n ,有 a n a n 1 1 .证明: (1) 约定 S 0 0 .由条件知,对任意正整数 n ,有1 a n (2S n a n ) (S n S n -1)(S n S n -1) S n2 S n -12 ,S n n S 0 n ,即 S n n 0 时亦成立). …………………5 分显然, a n S n S n 1 …………………10 分 (2) 仅需考虑 a n , a n 1 同号的情况.不失一般性,可设 a n , a n 1 均为正(否则将数列各项同时变为相反数,仍满足条件),则 S n 1 S n S n 1 此时从而a n a n 1 () 1. …………………20 分1 2 1 1 2 2 1 1 2 1 2 2 1 211.(本题满分 20 分)在平面直角坐标系 xOy 中,设 AB 是抛物线 y 2 4 x 的 过点 F (1, 0) 的弦, AOB 的外接圆交抛物线于点 P (不同于点O , A , B ).若 PF 平 分 APB ,求 PF 的所有可能值.解:设211(,)4y A y ,222(,)4y B y ,233(,)4y P y ,由条件知 y 1 , y 2 , y 3 两两不等且非零. 设直线 AB 的方程为 x ty 1 ,与抛物线方程联立可得 y 2 4ty 4 0 ,故y 1 y 2 4 . ①注意到 AOB 的外接圆过点O ,可设该圆的方程为 x 2 y 2 dx ey 0 ,与x 24y 联立得,42(1)0164y d y ey +++=.该四次方程有 y y 1 , y 2 , y 3,0 这四个不同的实根,故由韦达定理得 y 1 y 2 y 3 0 0 ,从而y 3 ( y 1 y 2 ) .②…………………5 分因 PF 平分 APB ,由角平分线定理知,12PA FA y PB FB y ==,结合①、②,有 222312231122322232232()()44()()44y y y y PA y y y y PB y y -+-==-+-222212112222212221[()]16(2)[()]16(2)y y y y y y y y y y +-++=+-++ 422142126419264192y y y y +-=+- 即 y 6 64 y 2 y 2 192 y 2 y 6 64 y 2 y 2 192 y 2,故( y 2 y 2 )( y 4 y 2 y 2 y 4192) 0 .当 y 2 y 2 时, y y ,故 y 0 ,此时 P 与 O 重合,与条件不符. 当 y 4 y 2 y 2 y 4 192 0 时,注意到①,有 (y 2 y 2 )2=192+(y y ) 2=208y 2 y 28 212y y ,故满足①以及 y 1 y 2的实数 y 1 , y 2 存在,对应可得满足条件的点 A , B .此时,结合①、②知222231212()4411444y y y y y PF +++-=+==== …………………20 分。

2018年全国高中数学联合竞赛试卷(一试)(B卷)(附答案详解)

2018年全国高中数学联合竞赛试卷(一试)(B卷)(附答案详解)

2018年全国高中数学联合竞赛试卷(一试)(B 卷)一、单空题(本大题共8小题,共64.0分)1. 设集合A ={2,0,1,8},B ={2a|a ∈A},则A ∪B 的所有元素之和是______.2. 已知圆锥的顶点为P ,底面半径长为2,高为1,在圆锥底面上取一点Q ,使得直线PQ与底面所成角不大于45°,则满足条件的点Q 所构成的区域的面积为______. 3. 将1,2,3,4,5,6随机排成一行,记为a ,b ,c ,d ,e ,f ,则abc +def 是奇数的概率为______.4. 在平面直角坐标系xOy 中,直线l 经过坐标原点,n⃗ =(3,1)是l 的一个法向量,已知数列{a n }满足:对任意的正整数n ,点(a n+1,a n )均在l 上,若a 2=6,则a 1a 2a 3a 4a 5的值为______.5. 设α,β满足tan(α+π3)=−3,tan(β−π6)=5,则tan(α−β)的值为______. 6. 设抛物线C :y 2=2x 的准线与x 轴交于点A ,过点B(−1,0)作一直线l 与抛物线C 相切于点K ,过点A 作l 的平行线,与抛物线C 交于点M ,N ,则△KMN 的面积为______. 7. 设f(x)是定义在R 上的以2为周期的偶函数,在区间[1,2]上严格递减,且满足f(π)=1,f(2π)=0,则不等式组{0≤x ≤10≤f(x)≤1 的解集为______.8. 已知复数z 1,z 2,z 3满足|z 1|=|z 2|=|z 3|=1,|z 1+z 2+z 3|=r ,其中r 是给定实数,则z 1z 2+z 2z 3+z 3z 1的实部是______(用含有r 的式子表示). 二、解答题(本大题共3小题,共56.0分) 9. 已知数列{a n },a 1=7,a n+1a n=a n +2,n =1,2,3,⋯.求满足a n >42018的最小正整数n .10. 已知定义在R +上的函数f(x)={|log 3x −1|,0<x ≤94−√x,x >9,设a ,b ,c 是三个互不相同的实数,且满足f(a)=f(b)=f(c),求abc 的取值范围.11.如图所示,在平面直角坐标系xOy中,A、B与C、D分别是椭圆Γ:x2a2+y2b2=1(a>b>0)的左、右顶点与上、下顶点,设P,Q是Γ上且位于第一象限的两点,满足OQ//AP,M是线段AP的中点,射线OM与椭圆交于点R.证明:线段OQ,OR,BC能构成一个直角三角形.答案和解析1.【答案】31【解析】解:因为集合A={2,0,1,8},B={2a|a∈A}={0,2,4,16},所以A∪B={0,1,2,4,8,16},所以A∪B的所有元素之和是0+1+2+4+8+16=31.故答案为:31.先求出集合B,然后由集合并集的定义求出A∪B,即可得到答案.本题考查了集合的运算,主要考查了集合并集的定义,属于基础题.2.【答案】3π【解析】解:圆锥的顶点P在底面上的投影即为底面中心,设为O,所以∠OQP即为直线PQ与底面所成的角,因为直线PQ与底面所成角不大于45°,则tan∠OQP=OPOQ≤1,即OQ≥1,所以所求的区域面积为π⋅22−π⋅12=3π.故答案为:3π.圆锥的顶点P在底面上的投影即为底面中心,设为O,由线面角的定义可知,∠OQP即为直线PQ与底面所成的角,由题意求出OQ≥1,由圆的面积公式求解即可.本题考查了动点轨迹的求解,直线与平面所成角的理解与应用,圆的面积公式的运用,考查了逻辑推理能力与化简运算能力,属于中档题.3.【答案】110【解析】解:将1,2,3,4,5,6随机排成一行,记为a,b,c,d,e,f,基本事件总数n=6!,当abc+def为奇数时,abc,def必为一奇一偶,若abc为奇数,则a,b,c为1,3,5的排列,这样有3!×3!=36种情况,由对称性可知满足条件的情况有:36×2=72种,∴abc+def是奇数的概率为P=726!=110.故答案为:110.基本事件总数n=6!,当abc+def为奇数时,abc,def必为一奇一偶,求出满足条件的情况有72种,由此能求出abc+def是奇数的概率.本题考查概率的运算,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.4.【答案】−32【解析】【分析】本题主要考查等比数列的定义和通项公式的运用,考查直线方程的求法,考查运算能力,属于基本知识的考查与应用.由直线的法向量可得直线的斜率和直线方程,求得a n+1=−13a n,则数列{a n}为公比q为−13的等比数列,运用等比数列的通项公式可得所求值.【解答】解:直线经过坐标原点,n⃗=(3,1)是l的一个法向量,可得直线l的斜率为−3,即有直线l的方程为y=−3x,点(a n+1,a n)均在l上,可得a n=−3a n+1,即有a n+1=−13a n,则数列{a n}为公比q为−13的等比数列,可得a3=a2q=6×(−13)=−2.所以a1a2a3a4a5=(−2)5=−32.故答案为:−32.5.【答案】−74【解析】解:因为α,β满足tan(α+π3)=−3,tan(β−π6)=5,所以由两角差的正切公式可知tan[(α+π3)−(β−π6)]=tan(α+π3)−tan(β−π6)1+tan(α+π3)tan(β−π6)=−3−51+(−3)×5=47,所以tan(α−β+π2)=47,即cot(α−β)=−47,所以tan(α−β)=−74故答案为:−74.由已知利用两角差的正切公式,诱导公式即可计算得解.本题主要考查了两角差的正切公式,诱导公式在三角函数求值中的应用,考查了计算能力和转化思想,属于基础题.6.【答案】12【解析】解:设直线l与MN的斜率为k,则l:x=1k y−1,MN:x=1ky−12,将l于C联立,得方程y2−2ky+2=0,由△=4k2−8=0可得k=±√22,将MN于C联立,得方程y2−2ky+1=0,于是|y M−y N|=√(y M+y N)2−4y M y N=√4k2−4=2,结合l与MN平行,可知S△KMN=S△BMN=|S△BAM−S△BAN|=12|AB|⋅|y M−y N|=12⋅12⋅2=12故答案为:12.设出直线l与,MN的方程,联立抛物线方程,利用韦达定理、面积公式即可求解.本题考查了直线与抛物线位置关系,考查了计算能力,属于中档题.7.【答案】[2π−6,4−π]【解析】解:由f(x)为偶函数且在区间[1,2]上严格递减,可得f(x)在[−2,−1]上严格递增,又因为f(x)是以2为周期的函数,所以f(x)在[0,1]上严格递增, f(4−π)=f(π−4)=f(π)=1,f(2π−6)=f(2π)=0, 所以0≤f(x)≤1⇔f(2π−6)≤f(x)≤f(4−π),而0<2π−6<4−π<1,所以原不等式组∈[2π−6,4−π]. 故答案为:[2π−6,4−π].根据函数的奇偶性、单调性和周期性可得f(x)在[0,1]上严格递增,由f(π)=1,f(2π)=0得出f(4−π)=1,f(2π−6)=0,从而由0≤f(x)≤1得出f(4−π)≤f(x)≤f(2π−6),从而可得原不等式组的解集.本题主要考查函数的单调性、奇偶性与周期性,考查转化思想与运算求解能力,属于中档题.8.【答案】r 2−32【解析】解:记w =z 1z 2+z 2z 3+z3z 1,由复数模的性质可知,z 1−=1z 1,z 2−=1z 2,z 3−=1z 3,故w =z 1z 2− +z 2z 3−+z 3z 1−,r 2=(z 1+z 2+z 3)(z 1−+z 2−+z 3−)=|z 1|2+|z 2|2+|z 3|2+w +w −=3+2Rew , 解得Rew =r 2−32,故z 1z 2+z 2z 3+z 3z 1的实部是r 2−32.故答案为:r 2−32.根据已知条件,结合复数模公式,以及复数实部的概念,即可求解. 本题主要考查复数模公式,以及复数实部的概念,属于难题.9.【答案】解:由a n+1a n=a n +2知a n+1+1=(a n +1)2, 故a n +1=(a 1+1)2n−1=82n−1=23×2n−1,故a n =23×2n−1−1,显然{a n }单调递增,由于a 11=23072−1<24036=42018, a 12=26144−1>24036=42018,故满足a n >42018的最小正整数n 为12.【解析】略 略10.【答案】解:不妨设a <b <c ,由于f(x)在(0,3]上严格单调递减,在[3,9]上严格单调递增,在[9,+∞)上严格打电脑递减,又f(3)=0,f(9)=1,结合图象可知a ∈(0,3),b ∈(3,9),c ∈(9,+∞),所以f(a)=f(b)=f(c)∈(0,1), 由f(a)=f(b)得,1−log 3a =log 3b −1, 取log 3a +log 3b =2, 所以ab =32=9, 所以abc =9c ,又0<f(x)=4−√c <1, 所以c ∈(9,16),所以abc =9c ∈(81,144), 所以abc 的取值范围为(81,144).【解析】先判断函数的性质以及图象的特点,设a <b <c ,由图象得ab 是个定值,利用数形结合思想去解决即可.本题考查函数与方程之间的关系,解题中注意数形结合思想的应用,属于中档题.11.【答案】证明:设点P 坐标为(x 0,y 0),由于OQ ⃗⃗⃗⃗⃗⃗ //AP ⃗⃗⃗⃗⃗ ,AP ⃗⃗⃗⃗⃗ =OP ⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ ,OR ⃗⃗⃗⃗⃗ //OM ⃗⃗⃗⃗⃗⃗⃗ ,OM⃗⃗⃗⃗⃗⃗⃗ =12(OP⃗⃗⃗⃗⃗ +OA ⃗⃗⃗⃗⃗ ), 故存在实数λ,μ,使得OQ ⃗⃗⃗⃗⃗⃗ =λ(OP ⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ ),OR ⃗⃗⃗⃗⃗ =μ(OP ⃗⃗⃗⃗⃗ +OA ⃗⃗⃗⃗⃗ ), 此时点Q ,R 的坐标可分别表示为(λ(x 0+a),λy 0),(μ(x 0−a),μy 0), 由于Q ,R 都在椭圆上,于是λ2[(x 0+a)2a 2+y 02b 2]=μ2[(x 0−a)2a 2+y 02b 2]=1,结合x 02a 2+y 02b2=1知,上式可化为λ2(2+2x 0a)=μ2(2−2x 0a)=1,解得λ2=a2(a+x 0),μ2=a2(a−x 0),因此|OQ|2+|OR|2=λ2[(x 0+a)2+y 02]+μ2[(x 0−a)2+y 02], =a 2(a+x 0)[(x 0+a)2+y 02]+a2(a−x 0)[(x 0−a)2+y 02]=a(a+x 0)2+ay 022(a+x 0)+a(a−x 0)2+ay 022(a−x 0)=a 2+ay 022(1a+x 0+1a−x 0)=a 2+ay 022⋅2aa 2−x 02=a 2+a 2b 2(1−x 02a 2)a 2−x 02=a 2+b 2=|BC|2,∴线段OQ ,OR ,BC 能构成一个直角三角形.【解析】设点P 坐标为(x 0,y 0),依题意,存在实数λ,μ,使得OQ ⃗⃗⃗⃗⃗⃗ =λ(OP ⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ ),OR ⃗⃗⃗⃗⃗ =μ(OP ⃗⃗⃗⃗⃗ +OA ⃗⃗⃗⃗⃗ ),则点Q ,R 的坐标分别为(λ(x 0+a),λy 0),(μ(x 0−a),μy 0),然后再验证|OQ|2+|OR|2=|BC|2即可得证.本题考查椭圆性质以及平面向量在解析几何中的运用,对运算能力要求较高,属于较难题目.。

2018年全国高中数学联赛一试试卷

2018年全国高中数学联赛一试试卷

2018年全国高中数学联合竞赛一试试题(A 卷)一、填空题:本大题共8小题,每小题8分,共64分.1.设集合{1,2,3,,99}A = ,{2|}B x x A =∈,{|2}C x x A =∈,则B C 的元素个数为.2.设点P 到平面α,点Q 在平面α上,使得直线PQ 与α所成角不小于30︒且不大于60︒,则这样的点Q 所构成的区域的面积为.3.将1,2,3,4,5,6随机排成一行,记为,,,,,a b c d e f ,则abc def +是偶数的概率为.4.在平面直角坐标系xOy 中,椭圆C :22221x y a b+=(0a b >>)的左、右焦点分别是1F 、2F ,椭圆C 的弦ST 与UV 分别平行于x 轴和y 轴,且相交于点P .已知线段PU 、PS 、PV 、PT 的长分别为1,2,3,6,则△12PF F 的面积为.5.设()f x 是定义在R 上的以2为周期的偶函数,在区间[0,1]上严格递减,且满足(π)1f =,(2π)2f =,则不等式组121()2x f x ⎧⎨⎩≤≤≤≤的解集为.6.设复数z 满足||1z =,使得关于x 的方程2220zx zx ++=有实根,则这样的复数z 的和为.7.设O 为△ABC 的外心,若2AO AB AC =+ ,则sin BAC ∠的值为.8.设整数数列1210,,,a a a 满足1013a a =,2852a a a +=,且1{1,2}i i i a a a +∈++,1,2,,9i = ,则这样的数列的个数为.二、解答题:本大题共3小题,共56分.解答应写出文字说明、证明过程或演算步骤.9.(本题满分16分)已知定义在+R 上的函数()f x为3|log 1|,09()49x x f x x -<⎧⎪=⎨>⎪⎩≤设,,a b c 是三个互不相同的实数,满足()()()f a f b f c ==,求abc 的取值范围.10.(本题满分20分)已知实数列123,,,a a a 满足:对任意正整数n ,有(2)1n n n a S a -=,其中n S 表示数列的前n 项和.证明:(1)对任意正整数n,有n a <(2)对任意正整数n ,有11n n a a +<.11.(本题满分20分).在平面直角坐标系xOy 中,设AB 是抛物线24y x =的过点(1,0)F 的弦,△AOB 的外接圆交抛物线于点P (不同于点,,O A B ).若PF 平分APB ∠,求||PF 的所有可能值.。

2018年全国高中数学联合竞赛一试(含答案)

2018年全国高中数学联合竞赛一试(含答案)

则(������ + ������������)������2 + 2(������ − ������������)������ + 2 = 0,
整理得:(������������2 + 2������������ + 2) + (������������2 − 2������������)������ = 0
由图结合对称性得:
������1 = ������ − 2, ������2 = 2������ − [4 + 2(2������ − 6)] = 8 − 2������ 所以,由函数单调性,不等式1 ≤ ������(������) ≤ 2在[1,2]内
分析:������������������ + ������������������为偶数,则������������������与������������������奇偶性相同,
故当������ ≥ 2 时,
������������ = √������ ± √������ − 1 ≤ √������ + √������ − 1 < 2√������ (2) ������������与������������+1异号时结论显然成立,
当������������与������������+1同号时: 由(1)得������������ = ±√������, 不妨得:������������ = √������ − √������ − 1
6. 设复数������满足|������|=1,使得关于������ 的方程z������2 + 2������̅������ +
2 = 0有实根,则这样的复数������的和为

2018年全国高中数学联赛试题及答案详解(B卷)_PDF压缩

2018年全国高中数学联赛试题及答案详解(B卷)_PDF压缩
证明:存在 x0 ∈[1, 9] ,使得 f (x0 ) ≥ 2 . 证法 1:只需证明存在 u, v ∈[1, 9] ,满足 f (u) − f (v) ≥ 4 ,进而由绝对值不
等式得
f (u) + f (v) ≥ f (u) − f (v) ≥ 4 ,
故 f (u) ≥ 2 与 f (v) ≥ 2 中至少有一个成立.
注意到 f (4 ) f ( 4) f () 1, f (2 6) f (2) 0 ,
所以
0 f (x) 1 f (2 6) f (x) f (4 ) ,
而 0 2 6 4 1 ,故原不等式组成立当且仅当 x [2 6, 4 ] .

4 7
,即
tan




2


4 7
,从而
tan(

)

cot




2



7 4

6. 设抛物线 C : y2 2x 的准线与 x 轴交于点 A ,过点 B (1, 0) 作一直线 l 与
抛物线 C 相切于点 K ,过点 A 作 l 的平行线,与抛物线 C 交于点 M , N ,则 KMN
…………………5 分
由 f (a) f (b) 得 1 log3 a log3 b 1,
即 log3 a log3 b 2 ,因此 ab 32 9 .于是 abc 9c . 又
…………………10 分
0 f (c) 4 c 1,
…………………15 分
故 c (9, 16) .进而 abc 9c (81, 144) .

2018年全国高中数学联赛试题及答案详解(B卷)

2018年全国高中数学联赛试题及答案详解(B卷)

说明: 1. 评阅试卷时,请严格按照本评分标准的评分档次给分. 2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可 参考本评分标准适当划分档次评分,10 分为一个档次,不得增加其他中间档次.
一、(本题满分 40 分)设 a, b 是实数,函数 f (x) = ax + b + 9 . x
知,满足条件的情况数为 36 × 2 =72 种.从而所求概率为= 72 7= 2 1 . 6! 720 10
4. 在平面直角坐标系 xOy 中,直线 l 通过原点, n (3, 1) 是 l 的一个法向
量.已知数列{an}满足:对任意正整数 n ,点 (an1, an ) 均在 l 上.若 a2 6 ,则
11.(本题满分 20 分)如图所示,在平面直角 坐 标 系 xOy 中 , A 、 B 与 C 、 D 分 别 是 椭 圆
x2 y2 : a2 b2 1 (a b 0) 的左、右顶点与上、下顶 A 点.设 P, Q 是 上且位于第一象限的两点,满足
y
R
P
C
M
Q
O
Bx
OQ ∥ AP , M 是线段 AP 的中点,射线 OM 与椭
是 0 1 2 4 8 16 31 .
2. 已知圆锥的顶点为 P ,底面半径长为 2 ,高为1.在圆锥底面上取一点 Q ,
使得直线 PQ 与底面所成角不大于 45 ,则满足条件的点 Q 所构成的区域的面积


答案: 3 .
解:圆锥顶点 P 在底面上的投影即为底面中心,记之为 O .由条件知, OP tan OQP 1 ,即 OQ 1 ,故所求的区域面积为 22 12 3 . OQ

2018年全国高中数学联赛试题及答案详解(A卷)

2018年全国高中数学联赛试题及答案详解(A卷)


2,
4,
6,,
48

故 B C 的元素个数为 24 . 2. 设点 P 到平面 的距离为 3 ,点 Q 在平面 上,使得直线 PQ 与 所成
角不小于 30 且不大于 60 ,则这样的点 Q 所构成的区域的面积为

答案:8 .
解:设点 P 在平面 上的射影为 O .由条件知,OP OQ


tan
OQP



3, 3求的区域面积为 32 12 8 .
3. 将1, 2, 3, 4, 5, 6 随机排成一行,记为 a, b, c, d , e, f ,则 abc + def 是偶数的
概率为

答案: 9 . 10
在[9,) 上严格递减,且 f (3) 0, f (9) 1,故结合图像可知
a (0, 3) , b (3, 9) , c (9, ) ,
并且 f (a) f (b) f (c) (0, 1) .
…………………4 分
由 f (a) f (b) 得 1 log3 a log3 b 1,
注意到 f ( 2) f () 1, f (8 2) f (2) f (2) 2 ,
所以 1 f (x) 2 f ( 2) f (x) f (8 2) ,
而1 2 8 2 2 ,故原不等式组成立当且仅当 x [ 2, 8 2] . 6. 设复数 z 满足 z 1,使得关于 x 的方程 zx2 2zx 2 0 有实根,则这样
证明: (1) 约定 S0 0 .由条件知,对任意正整数 n ,有
1

an
(2Sn

最新-2018年全国高中数学联赛试题及参考答案精品

最新-2018年全国高中数学联赛试题及参考答案精品

最新-2018年全国⾼中数学联赛试题及参考答案精品2018年全国⾼中数学联赛试题及参考答案试题⼀、选择题(本题满分36分,每⼩题6分)1、函数f (x)=log1/2(x2-2x-3)的单调递增区间是()。

(A)(-∞,-1)(B)(-∞,1)(C)(1,+∞)(D)(3, +∞)2、若实数x,y满⾜(x+5)2+(y-12)2=142,则x2+y2的最⼩值为()。

(A)2 (B)1 (C)√3(D)√23、函数f(x)=x/1-2x-x/2()(A)是偶函数但不是奇函数(B)是奇函数但不是偶函数(C)既是偶函数⼜是奇函数(D)既不是偶函数也不是奇函数4、直线x/4+y/3=1与椭圆x2/16+y2/9=1相交于A,B两点,该椭圆上点P,使得ΔPAB⾯积等于3,这样的点P共有()。

(A)1个(B)2个(C)3个(D)4个5、已知两个实数集合A={a1,a2,…,a100}与B={b1,b2,…,b50},若从A到B的映射f使得B中每个元素都有原象,且f(a1)≤f(a2)≤…≤f(a100)则这样的映射共有()。

(A)C50100(B)C4899(C)C49100(D)C49996、由曲线x2=4y,x2=-4y,x=4,x=-4围成的图形绕y轴旋转⼀周所得旋转体的体积为V1;满⾜x2+y2≤16,x2+(y-2)2≥4,x2+(y+2)2≥4的点(x,y)组成的图形绕y轴旋转⼀周所得旋转体的体积为V2,则()。

(A)V1=(1/2)V2 (B)V1=(2/3)V2 (C)V1=V2 (D)V1=2V2⼆、填空题(本题满分54分,每⼩题9分)7、已知复数Z1,Z2满⾜∣Z1∣=2,∣Z2∣=3,若它们所对应向量的夹⾓为60°,则∣(Z1+Z2)/(Z1+Z2)∣=。

8、将⼆项式(√x+1/(24√x))n的展开式按x的降幂排列,若前三项系数成等差数列,则该展开式中x的幂指数是整数的项共有个。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018全国高中数学联赛安徽省初赛试卷
(考试时间:2018年6月30日上午9:00)
一、填空题(每题8分,共64分,结果须化简)
1、设三个复数1, i, z在复平面上对应的三点共线,且|z|=5,则z=
2、设n是正整数,且满足n5=438427732293,则n=
3、函数f(x) =sin(2x) + sin(3x) + sin(4x)的最小正周期=
4.设点P,Q分别在函数y=2x和y=log
2
x的图象上,则|PQ|的最小
值=
5、从1,2,…,10中随机抽取三个各不相同的数字,其样本方差s2≤1的概率=
6、在边长为I的正方体ABCD-A
1
B
1
C
1
D
1
内部有一小球,该小球与正方体的对角线段AC
1
相切,则小球半径的最大值=
7、设H是△ABC的垂心,且3450
HA HB HC
++=,则cos∠AHB=
8、把1,2,…,n2按照顺时针螺旋方式排成n行n列的表格T
n
,第一行是1,2,…,n.例如:3
123
894
765
T
⎡⎤
⎢⎥
=⎢⎥
⎢⎥
⎣⎦设2018在T
100
的第i行第j列,则(i,j)=·
二、解答题(第9-10题每题21分,第11-12题每题22分,共86分)
9、如图所示,设ABCD是矩形,点E, F分别是线段AD, BC的中点,点G在线段EF上,点D, H关于线段AG的垂直平分线L对称.求证:∠HAB=3∠GAB.
10、设O是坐标原点,双曲线C:上动点M处的切线交C的两条渐近线于A,B两点。

(1)减B 两点:`(1)求证:△AOB的面积S是定值。

(2)求△AOB的外心P的轨迹方程.
11、(1)求证:对于任意实数x,y,z都有:
) 222
x23
y z xy yz zx ++≥++
.
(2)是否存在实数x.y,z下式恒成立?
()
222
x23
y z k xy yz zx
++≥++
,试证明你的结论.
12.在正2018边形的每两个顶点之间均连一条线段,并把每条线段染成红色或蓝色.求此图形中三边颜色都相同的三角形的最小个数.
参考答案
一、填空题(每题8分,共64分,结果须化简)
1、设三个复数1, i, z在复平面上对应的三点共线,且|z|=5,则z=4-3i,34i
-+
2、设n是正整数,且满足n5=438427732293,则n=213
3、函数f(x) =sin(2x) + sin(3x) + sin(4x)的最小正周期=2π
4.设点P,Q分别在函数y=2x和y=log
2
x的图象上,则|PQ|的最小值
5、从1,2,…,10中随机抽取三个各不相同的数字,其样本方差s2≤1的概率=
1 15
6、在边长为I的正方体ABCD-A
1B
1
C
1
D
1
内部有一小球,该小球与正方体的对角线段AC
1
相切,则小球半径的最大值=
4
5
-
7、设H是△ABC的垂心,且3450
HA HB HC
++=
,则cos∠AHB=
-
8、把1,2,…,n2按照顺时针螺旋方式排成n行n列的表格T
n
,第一行是1,2,…,n.例如:3
123
894
765
T
⎡⎤
⎢⎥
=⎢⎥
⎢⎥
⎣⎦设2018在T
100
的第i行第j列,则(i,j)=(34,95).
二、解答题(第9-10题每题21分,第11-12题每题22分,共86分)
9、如图所示,设ABCD是矩形,点E, F分别是线段AD, BC的中点,点G在线段EF上,点D, H关于线段AG的垂直平分线L
对称.求证:∠HAB=3∠GAB.
10、设O是坐标原点,双曲线C:上动点M处的切线交C的两条渐近线于A,B两点。

(1)减B 两点:`(1)求证:△AOB的面积S是定值。

(2)求△AOB的外心P的轨迹方程.
11、(1)求证:对于任意实数x,y,z都有:
) 222
x23
y z xy yz zx ++≥++
.
(2)是否存在实数x.y,z下式恒成立?
()
222
x23
y z k xy yz zx
++≥++
,试证明你的结论.
12.在正2018边形的每两个顶点之间均连一条线段,并把每条线段染成红色或蓝色.求此图形中三边颜色都相同的三角形的最小个数.。

相关文档
最新文档