二面角大小的求法
求二面角的六种方法
求二面角的六种方法求解二面角是空间几何学中常见的问题,它在多个领域如物理学、化学和工程学中都有广泛的应用。
本文将介绍六种求解二面角的方法,包括向量法、坐标法、三角法、平面几何法、球面几何法和投影法。
一、向量法向量法是一种简便的求解二面角的方法。
它利用向量的夹角来表示二面角。
首先,我们需要确定两个平面的法向量,然后计算它们之间的夹角。
通过向量的点积和模长运算,可以得到二面角的大小。
二、坐标法坐标法是一种常用的求解二面角的方法。
它利用坐标系中的点来表示二面角。
我们可以通过给定的坐标点,计算两个平面的法向量,然后利用向量夹角的公式求解二面角。
三、三角法三角法是一种基于三角函数的求解二面角的方法。
它利用三角函数的性质来计算二面角的大小。
通过已知的边长和角度,可以利用正弦定理、余弦定理等公式求解二面角。
四、平面几何法平面几何法是一种利用平面几何关系求解二面角的方法。
它通过已知的平面形状和角度关系,利用平面几何的知识来求解二面角的大小。
例如,可以利用平行线的性质、垂直线的性质等来计算二面角。
五、球面几何法球面几何法是一种利用球面几何关系求解二面角的方法。
它通过已知的球面形状和角度关系,利用球面几何的知识来求解二面角的大小。
例如,可以利用球面上的弧长、球面上的角度等来计算二面角。
六、投影法投影法是一种利用投影关系求解二面角的方法。
它通过已知的投影长度和角度关系,利用投影几何的知识来求解二面角的大小。
例如,可以利用平面上的投影线段、平面上的角度等来计算二面角。
通过以上六种方法,我们可以灵活地求解二面角的大小。
不同的问题和场景可能适用不同的方法,我们可以根据具体情况选择合适的方法来解决问题。
这些方法在实际应用中具有重要的意义,能够帮助我们更好地理解和解决相关问题。
总结起来,求解二面角的六种方法分别是向量法、坐标法、三角法、平面几何法、球面几何法和投影法。
每种方法都有其特点和适用场景,我们可以根据具体问题选择合适的方法来求解二面角。
求二面角的五种方法
五法求二面角从全国19份高考试卷中我们知道,立体几何题中命有求二面角大小的试题共有12份,并都为分值是12分的大题,足以说明这一知识点在高考中的位置,据有关专家分析,它仍然是2010年高考的重点,因此,我们每位考生必须注意,学会其解题方法,掌握其解题技巧,是十分重要的。
一、 定义法:从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。
本定义为解题提供了添辅助线的一种规律。
如例1中从二面角S —AM —B 中半平面ABM 上的一已知点(B )向棱AM 作垂线,得垂足(F );在另一半平面ASM 内过该垂足(F )作棱AM 的垂线(如GF ),这两条垂线(BF 、GF )便形成该二面角的一个平面角,再在该平面角内建立一个可解三角形,然后借助直角三角函数、正弦定理与余弦定理解题。
例1(2009全国卷Ⅰ理)如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面ABCD,AD =2DC SD ==,点M 在侧棱SC 上,ABM ∠=60°(I )证明:M 在侧棱SC 的中点 (II )求二面角S AM B --的大小。
证(I )略解(II ):利用二面角的定义。
在等边三角形ABM 中过点B作BF AM ⊥交AM 于点F ,则点F 为AM 的中点,过F 点在平面ASM 内作GF AM ⊥,GF 交AS 于G ,连结AC ,∵△ADC ≌△ADS ,∴AS-AC ,且M 是SC 的中点, ∴AM ⊥SC , GF ⊥AM ,∴GF ∥AS ,又∵F 为AM 的中点,∴GF 是△AMS 的中位线,点G 是AS 的中点。
则GFB ∠即为所求二面角. ∵2=SM ,则22=GF ,又∵6==AC SA ,∴2=AM ∵2==AB AM ,060=∠ABM ∴△ABM 是等边三角形,∴3=BF在△GAB 中,26=AG ,2=AB ,090=∠GAB ,∴211423=+=BG FG366232222113212cos 222-=-=⨯⨯-+=⋅-+=∠FB GF BG FB GF BFG ∴二面角S AM B --的大小为)36arccos(-练习1(2008山东)如图,已知四棱锥P -ABCD ,底面ABCD 为菱形,P A ⊥平面ABCD ,60ABC ∠=︒,E ,F 分别是BC , PC 的中点. (Ⅰ)证明:AE ⊥PD ;(Ⅱ)若H 为PD 上的动点,EH 与平面P AD 所成最大角E —AF —C 的余弦值. 分析:第1题容易发现,可通过证AE ⊥AD 后推出AE ⊥平面APD ,使命题获证,而第2题,则首先必须在找到最大角正切值有关的线段计算出各线段的长度之后,考虑到运用在二面角的棱AF 上找到可计算二面角的平面角的顶点S ,和两边SE 与SC ,进而计算二面角的余弦值。
二面角8种求法
二面角求法正方体是研究立体几何概念的一个重要模型,中学立体几何教学中,求平面与平面所成的二面角是转化为平面角来度量的,也可采用一些特殊的方法求二面角,而正方体也是探讨求二面角大小方法的典型几何体。
笔者通过探求正方体中有关二面角,分析求二面角大小的八种方法:(1)平面角定义法;(2)三垂线定理法;(3)线面垂直法;(4)判定垂面法;(5)异面直线上两点间距离公式法;(6)平行移动法;(7)投影面积法;(8)棱锥体积法。
一、平面角定义法此法是根据二面角的平面角定义,直接寻求二面角的大小。
以所求二面角棱上任意一点为端点,在二面角两个平面内分别作垂直于棱的两条射线所成角就是二面角的平面角,如图二面角α-l-β中,在棱l上取一点O,分别在α、β两个平面内作AO⊥l,BO⊥l,∠AOB即是所求二面角的平面角。
例题1:已知正方体ABCD-A1B1C1D1中,O、O1是上下底面正方形的中心,求二面角O1-BC-O的大小。
例题2:已知正方体ABCD-A1B1C1D1中,E、F为A1D1、C1D1的中点,求平面EFCA与底面ABCD所成的二面角。
二、 利用三垂线定理法此方法是在二面角的一个平面内过一点作另一个面的垂线,再由垂足(或仍是该点)作棱的垂线,连接该点和棱上的垂足(或连两垂足)两点线,即可得二面角的平面角。
如图二面角α-l-β中,在平面α内取一点A ,过A 作AB ⊥平面β,B 是垂足, 由B (或A )作BO (或AO )⊥l ,连接AO (或BO )即得AO 是平面β的斜线, BO 是AO 在平面β中的射影,根据三垂线定理(或逆定理)即得AO ⊥l ,BO ⊥l , 即∠AOB 是α-l-β的平面角。
例题3:已知正方体ABCD-A 1B 1C 1D 1中,求二面角B-AC-B 1的大小。
例题4:已知正方体ABCD-A 1B 1C 1D 1中,求平面ACD 1与平面BDC 1所成的二面角。
三、 线面垂直法此法利用直线垂直平面即该直线垂直平面内任何直线的性质来寻求二面角的平面角。
求解二面角的六种常规方法
求解二面角的六种常规方法作者:李淑芸来源:《中学教学参考·理科版》2010年第03期求解二面角问题是高考的热点问题,在近几年的高考中几乎每一年、每一套高考题的立体几何问题都涉及到求二面角的大小问题.然而通过对学生考卷的分析,我们发现这一问题的得分率却并不理想.因此,本文总结了常见的六种求解二面角的方法,希望能给部分读者以帮助.1.定义法是指过二面角的棱上任一点在两个面内分别作垂直于棱的直线,则两直线所构成的角即为二面角的平面角,继而在平面中求出其平面角的一种方法.【例1】如图1,空间四边形ABCD中,AB=BC=CD=DA=a,对角线AC=a,BD=2a,求二面角A—BD—C的大小.图1解:取BD的中点为O,分别连接AO、CO,∵AB=AD,BC=CD.∴AO⊥BD,CO⊥BD.∴∠AOC为二面角A—BD—C的平面角.∵AB=AD=a,BD=2a,∴AO=22a.∵BC=CD=a,BD=2a,∴OC=22a.在△AOC中,OC=22a,OA=22a,AC=a,OA2+OC2=AC2,∴∠AOC=90°,即二面角A—BD—C为直二面角.2三垂线法是指利用三垂线定理,根据“与射影垂直,则也与斜线垂直”的思想构造出二面角的平面角,继而求出平面角的方法.【例2】如图2,二面角α-AB-β的棱AB上有一点C,线段CDα,CD=100,∠BCD=30°,点D 到平面β的距离为253,求二面角α-AB-β的度数.图2解:过D作DE⊥β于E,DF⊥AB于F,连接EF.∵DF⊥AB,EF是DF在β内的射影,∴AB⊥EF(三垂线定理).∴∠DFE为二面角为α-AB-β的平面角.在Rt△DEF中,DF=12CD=50,DE=253,∴sin∠DFE=DEDF=25350=32.∴∠DFE=60°.即二面角α-AB-β的度数为60°.3.垂面法是指用垂直于棱的平面去截二面角,则截面与二面角的两个面必有两条交线,这两条交线构成的角即为二面角的平面角,继而再求出其平面角的一种方法.【例3】如图3,已知SA⊥平面ABC,AB⊥BC,SA=AB,SB=BC,E是SC的中点,DE⊥SC交AC于D,求二面角E-BD-C的大小.图3解:∵BS=BC,SE=EC,∴SC⊥BE,又∵SC⊥DE,∴SC⊥面BDE.∴SC⊥BD.又∵BD⊥SA,∴BD⊥面SAC.∴∠EDC为二面角E-BD-C的平面角.设SA=a,则SB=BC=2a.∵BC⊥AB,SA⊥平面ABC.∴BC⊥SB.∴SC=2a,∠SCD=30°.∴∠EDC=60°,即二面角E-BD-C的大小为60°.4.面积射影法所谓面积射影法,就是根据三角形及其在某一个平面上的射影面积之间的关系,利用cosθ=S射S来计算二面角的一种方法(其中θ为二面角).【例4】在正方体ABCD-A1B1C1D1中,K∈BB1,M∈CC1,且BK=14BB1,CM=34CC1,求平面AKM与ABCD所成角的大小.图4解:连结AC,则由题意可知,△ABC是△AKM在平面AC上的射影.设平面AKM与ABCD所成角为θ,则cosθ=S射S=S△ABCS△AKM.令正方体的棱长为4,∴S△ABC=12AB•A C=12×4×4=8.在△AKM中,AK=12+42=17,AM=42+42+32=41,KM=42+22=20.由海伦公式可知S△AKM=221,∴cosθ=421,θ=arccos421.5.法向量法法向量法是通过求与二面角垂直的两个向量所成的角,继而利用这个角与二面角的平面角相等或互补的关系,求出二面角的一种方法.【例5】如图5,过正方形ABCD的顶点A作PA⊥平面ABCD,设PA=AB=ɑ,求平面PAB 和平面PCD所成的二面角的大小.图5解:以A为射点建立直角坐标系(如图5所示),则P(0,0,a),D(0,a,0),C(a,a,0).设平面PCD的法向量为n=(x,y,z),则n•PD=0,n•CD=0.即(x,y,z)•(0,a,-a)=0,(x,y,z)•(-a,0,0)=0.∴y=-z,x=0.即n=(0,1,-1).又AD成为平面PAB的法向量,而cos〈AD,n〉=(0,a,0)•(0,1,-1)a•2=22,∴AD与n所成的角为45°.因此平面PAB和平面PCD所成的角为45°.6.垂线法是指先利用待定系数法确定垂足,再利用公式求出二面角的大小.【例6】如图6,在四棱锥P—ABCD中,底面ABCD为矩形,PD⊥底面ABCD,E是AB上一点,PE⊥EC,已知PD=2,CD=2,AE=12,求(1)异面直线PD与EC的距离;(2)二面角E-PC-D的大小.图6解:(1)略.(2)以D为原点,DA、DC、DP分别为x,y,z轴建立空间直角坐标系.作DG⊥PC,可设G(0,y,z).由DG•PC=0得(0,y,z)•(0,2,-2)=0,即z=2y.故可取DG=(0,1,2).作EF⊥PC于F,设F(0,m,n),则EF=(-32,m-12,n).由EF•PC=0,得(-32,m-12,n)•(0,2,-2)=0,即2m-1-2n=0.又由F在PC上得n=-22m+2,故m=1,n=22,EF=(-32,12,22).因EF⊥PC,DG⊥PC,故二面角E-PC-D的平面角θ的大小为向量EF与DG的夹角.故cosθ=DG•EF|DG|•|EF|=22,∴θ=π4.故二面角E-PC-D的大小为π4.(责任编辑金铃)。
立体几何二面角求法
立体几何二面角求法
立体几何中的二面角是指两个平面的夹角,其中一个平面是由立体图形的两个面组成的。
二面角是非常重要的几何概念,它在计算立体图形的体积、表面积和角度时都有很多应用。
二面角的求法有很多种,其中比较常用的方法有以下几种:
1. 用余弦定理求解
在立体图形中,二面角的两个平面可以看做是两个三角形的平面。
如果已知两个三角形的边长及它们之间的夹角,就可以用余弦定理求出二面角的大小。
2. 用向量求解
向量是几何中非常重要的概念,可以用来表示空间中的点和方向。
如果已知二面角的两个平面的法向量,就可以用向量求解的方法求出二面角的大小。
3. 用三维坐标系求解
在三维坐标系中,可以用向量表示空间中的点和方向。
如果已知二面角的两个平面在三维坐标系中的方程式,就可以用向量求解的方法求出二面角的大小。
以上是三种比较常用的二面角求解方法,不同的方法适用于不同的情况。
在实际应用中,根据具体的问题选择合适的方法可以提高计算的效率。
- 1 -。
立体几何二面角5种常见解法
立体几何二面角大小的求法二面角的类型和求法可用框图展现如下:一、定义法:直接在二面角的棱上取一点(特殊点),分别在两个半平面内作棱的垂线,得出平面角,用定义法时,要认真观察图形的特性; 例、 如图,已知二面角α-а-β等于120°,PA ⊥α,A ∈α,PB ⊥β,B ∈β. 求∠APB 的大小.例、在四棱锥P-ABCD 中,ABCD 是正方形,PA⊥平面ABCD ,PA=AB=a ,求二面角B-PC-D 的大小。
jA BCDPHPOBA二、三垂线定理法:已知二面角其中一个面内一点到一个面的垂线,用三垂线定理或逆定理作出二面角的平面角;例、在四棱锥P-ABCD 中,ABCD 是平行四边形,PA⊥平面ABCD ,PA=AB=a ,∠ABC=30°,求二面角P-BC-A 的大小。
例、(2003北京春)如图,ABCD-A 1B 1C 1D 1是长方体,侧棱AA 1长为1,底面为正方体且边长为2,E 是棱BC 的中点,求面C 1DE 与面CDE 所成二面角的正切值.ABCDA 1B 1C 1D 1EO例、ΔABC 中,∠A=90°,AB=4,AC=3,平面ABC 外一点P 在平面ABC 内的射影是AB 中点M ,二面角P —AC—B 的大小为45°。
求(1)二面角P —BC —A 的大小;(2)二面角C —PB —A 的大小例、(2006年陕西试题)如图4,平面α⊥平面β,α∩β=l ,A ∈α,B ∈β,点A 在直线l 上的射影为A 1,点B 在l 的射影为B 1,已知AB=2,AA 1=1,BB 1=2,求:二面角A 1-AB -B 1的大小.B 1AαA 1 LE F三、垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个半平面的交线所成的角即为平面角,由此可知,二面角的平面角所在的平面与棱垂直;例、空间的点P 到二面角βα--l 的面α、β及棱l 的距离分别为4、3、3392,求二面角βα--l 的大小.四、射影法:(面积法)利用面积射影公式S 射=S 原cos θ,其中θ为平面角的大小,此方法不必在图形中画出平面角;例、在四棱锥P-ABCD 中,ABCD 为正方形,PA⊥平面ABCD ,PA =AB =a ,求平面PBA 与平面PβαlCBA例、如图,设M为正方体ABCD-A1B1C1D1的棱CC1的中点,求平面BMD1与底面ABCD所成的二面角的大小。
六种方法求二面角的大小
六种方法求二面角的大小河北省武邑县职教中心 053400 李凤迎 李洪涛求二面角的大小是高考立体几何题中的重要题型,它几乎涉及到了立体几何中的所有知识点,考查到了所有思想和方法,具有很强的综合性.我们要根据题目环境条件的不同灵活地采用适当的方法.下面总结一下二面角的常见求法,以供大家学习和参考.一、定义法例1. 在三棱锥A BCD -中,AB AC AD BC ===,CD BD =,90BAC ∠=,90BDC ∠=,求二面角A BC D --的大小.分析 因为ABC ∆和BCD ∆是有公共边的等腰三角形,此时宜采用“定义法”.解答 取BC 的中点O ,连接OA 、OD ,因为OA 、OD 分别为等腰ABC ∆和BCD ∆的中线,所以AO BC ⊥,DO BC ⊥,则AOD ∠即为所求二面角A BC D --的平面角.设AB a =,则AD a =,AO =,2OD a =,在AOD ∆中,因为2222a a ⎫⎛⎫+=⎪ ⎪⎪ ⎪⎝⎭⎝⎭,即222AO OD AD +=,所以90AOB ∠=,所以二面角A BC D --大小为90.说明 当二面角的两个面是有公共边的等腰三角形和矩形的组合时,可采用“定义法”;当二面角的两个面是关于公共边对称的两个全等三角形时,同时取公共边上的高,由定义可作出二面角的平面角.变式训练1 (2008年高考题)在四棱锥A BCDE -中,底面BCDE 为矩形,侧面ABC ⊥底面BCDE ,2BC =, CD =,AB AC =.设侧面ABC 为等边三角形,求二面角C AD E --的大小. 二、三垂线定理法例2. 在三棱锥P ABC -中,AP BP BC==,90APB ABC ∠=∠=,面APB ⊥面PBC .(1)求证:APB ABC ⊥面面;(2)求二面角P AC B --的大小.分析 由(1)中APB ABC ⊥面面可知,此时宜采用“三垂线定理法”作出二面角P AC B --的平面角.只需过P 作PO AB ⊥于O ,过O 作OH AC ⊥于H ,连接PH ,则PHO∠即为所求. 解答 (1)略.(2)过P 作PO AB ⊥于O ,过O 作OH AC ⊥于H ,连接PH .因为APB ABC ⊥面面,=APB ABC AB 面面,PO APB ⊂面,PO AB ⊥,所以DCO ABO HCA B PEGOB DCAPO ABC ⊥面,则OH 为斜线PH 在面ABC 内的射影.又因为AC OH ⊥,所以AC PH ⊥(三垂线定理),则PHO ∠即为所求.设AP a =,则PB BC a ==.在Rt APB ∆中2PO AO a ==,在Rt ABC ∆中AC =,由Rt AOH ∆∽Rt ABC ∆得OH BC AO AC=,所以BC OH AO AC =⋅2a ==,又因为PO ABC ⊥面,OH ABC ⊂面,所以PO OH ⊥,则在Rt ABC ∆中,tan PO PHO HO ∠===60PHO ∠=,即二面角P AC B --的大小为60.说明 当题目中有一条从一个半平面内的一点到另一个半平面的垂线段时,可采用“三垂线定理法”.垂线段可由题目中的线面垂直、面面垂直等条件作出.变式训练2 如图,三棱柱111ABC A B C -,底面是边长为的正三角形,点1A 在底面ABC 上的射影O 恰是BC 的中点.若侧棱1AA 和底面ABC 所成的角为45时,求二面角1A AC B --的正切值.三、垂面法例3. 已知P 为二面角l αβ--内一点,PA α⊥于A ,PB β⊥于B ,且3PA =,4PB =若ABC S ∆=l αβ--的度数为______.分析 由已知得l PAB ⊥面.设PAB l O =面,连接,OA OB ,则l OA ⊥,l OB ⊥,则AOB ∠即为二面角l αβ--的平面角,且180AOB P ∠+∠=.要想求AOB ∠,只需由ABC ∆的面积公式求出P ∠即可.解答 因为1sin 2ABC S PA PB P ∆=⋅⋅⋅∠134sin 2P =⋅⋅⋅∠=所以sin 2P ∠=,所以60P ∠=或120,又因为180AOB P ∠+∠=,从而=120AOB ∠或60.说明 180AOB P ∠+∠=可作为结论使用.若给出ABP ∆的三边,则可通过余弦定理l OA BPβαHC 1B 1A 1OC B A求出P ∠的度数.变式训练 3 已知P 为二面角l αβ--内一点,PA α⊥于A ,PB β⊥于B ,且7PA =,8PB =,13AB =,则二面角l αβ--的度数为______.四、面积射影法例4. 在三棱锥中P ABC -,,D E 分别为PBC ∆、ABC ∆的重心,若DE ABC ⊥∆面,PBC ABC ∆∆=S ,则二面角P BC A --的大小为______.分析 易证DE ∥PA ,则PA ABC ⊥面,则PBC ∆的射影为ABC ∆,此时宜采用“面积射影法”.解答 设二面角为θ,因为,D E 分别为PBC ∆、ABC ∆的重心,则可得=MD MEDP EA,所以DE ∥PA .又因为DE ABC ⊥面,所以PA ABC ⊥面.因为cos ABC PBC S θ∆∆=S ==45θ=. 说明 当题目中涉及斜面三角形面积和相应射影三角形面积时,可采用“面积射影法”求二面角的大小.变式训练4 若一正四棱锥的表面积与其底面积满足关系式21=x x S S x++表底,则其侧面与底面所成的二面角的范围是______.五、三正弦定理法例5. (2012年全国新课标卷)在直三棱柱ABC A B C '''-中,12AC BC AA '==,D 是棱AA '的中点,DC BD '⊥.(1)证明:DC BC '⊥;(2)求二面角A BD C ''--的大小.分析 考察面BDC '内的直线DC ',易求90BDC '∠=,即2sin 1θ=;取A B ''的中点N ,则C N ABB A '''⊥面,则C DN '∠即为直线DC '与ABB A ''面所成的角,且1sin 2C DN '∠=,即11sin 2θ=,最后代入公式即可求出二面角的大小.解答 因为DA C ''∆和DAC ∆均为等腰直角三角形,所以DC DC '⊥.又因为DC BC '⊥,所以DC DBC '⊥面,从而DC DB '⊥,即2sin sin 901θ==;取A B ''的中点N ,连接DN ,则C N A B '''⊥.又因为AA C N ''⊥,所以C N ABB A '''⊥面,则C DN'∠M EDC BAPB B'A'C'AD N即为直线DC '与ABB A ''面所成的角.设2AA a '=,则AC BC a ==,因为2C N a '=,D C '=,即11sin sin 2C N C DN CD θ''=∠==.由12sin sin sin θθθ=得1sin 2θ=,又据题意知所求二面角为锐二面角,所以30θ=.说明 当其中一个半平面内的一条直线与另一个半平面、二面角的棱所成的角的正弦值容易求出时,可采用“三正弦定理法”.变式训练 5 如图,平面角为锐角的二面角EF αβ--,若A EF ∈,AG α⊂,45GAE ∠=,若AG 与β所成的角为30,则该二面角的大小为______.六、向量法例6. 题目同例5.分析 由(1)可证BC CC A A ''⊥面,则BC CA ⊥,所以,,CA CB CC '两两互相垂直,此时可以采用“向量法”求二面角的大小.解答 (1) 略.(2)建立如图所示的空间直角坐标系.设所求二面角为θ,平面BDC '的法向量为()1,,n x y z =,又因为()101DC '=-,,,()012BC '=-,,,则1100DC n BC n ⎧'⋅=⎪⎨'⋅=⎪⎩,即020x z y z -+=⎧⎨-+=⎩,取1x =,则2y =,1z =,所以()11,2,1n =;同理设平面ABB A ''的法向量为2n ,取AB 的中点M ,则可知CM ABB A ''⊥面,所以取211==,022n CM ⎛⎫⎪⎝⎭,,又因为121212cos ,n n n n nn ⋅=32==,由题意知所求二面角为锐二面角,所以30θ=. 说明 向量法又俗称“万能法”.当题目中出现三条线段具有或可以证明存在两两互相垂直的位置关系时,可采用“向量法”.但计算时一定要认真,并且要根据所求二面角是锐二面角还是钝二面角合理取舍.变式训练 6 如图,在直三棱柱111A B C ABC -中,AB AC ⊥,2AB AC ==,14AA =,点D 是BC 的中点.求平面1ADC 与平面1ABA 所成二面角的正弦值.βαGE FA(参考答案:1.π- 2. 2;3.60;4.6090θ≤<;5.45;6.sinθ=.)。
五种方法求二面角及练习题
五种方法求二面角及练习题一、 定义法:从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。
1.如图,在棱长为a 的正方体ABCD —A 1B 1C 1D 1中,求: (1)二面角C 1—BD —C 的正切值(2)二面角11B BC D --2.如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面ABCD ,2AD =,2DC SD ==,点M 在侧棱SC 上,ABM ∠=60,M 在侧棱SC 的中点(1)求二面角S AM B --的余弦值。
AB CD A 1D 1 C 1 B 1二、三垂线法:三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.通常当点P 在一个半平面上则通常用三垂线定理法求二面角的大小。
1. 如图,在直四棱柱ABCD-A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB 111111图,在四棱锥ABCD P -中,底面ABCD 是矩形.已知ο60,22,2,2,3=∠====PAB PD PA AD AB .(Ⅰ)证明⊥AD 平面PAB ;(Ⅱ)求异面直线PC 与AD 所成的角的大小; (Ⅲ)求二面角A BD P --的大小.三.补棱法本法是针对在解构成二面角的两个半平面没有明确交线的求二面角题目时,要将两平面的图形补充完整,使之有明确的交线(称为补棱),然后借助前述的定义法与三垂线法解题。
即当二平面没有明确的交线时,一般用补棱法解决1.已知斜三棱柱ABC —A 1B 1C 1的棱长都是a ,侧棱与底面成600的角,侧面BCC 1B 1⊥底面ABC 。
(1)求证:AC 1⊥BC ;(2)求平面AB 1C 1与平面 ABC 所成的二面角(锐角)的大小。
EABCFE 1 A 1B 1C 1D 1 DACBB 1C 1AL2: 如图5,E 为正方体ABCD -A 1B 1C 1D 1的棱CC 1的中点,求平面AB 1E 和底面A 1B 1C 1D 1所成锐角的余弦值.3如图所示,四棱锥P -ABCD 的底面ABCD 是边长为1的菱形,∠BCD =60°,E 是CD 的中点,PA ⊥底面ABCD ,PA =2. (Ⅰ)证明:平面PBE ⊥平面PAB ;(Ⅱ)求平面PAD 和平面PBE 所成二面角(锐角)的大小.角的平面角(锐角).ABCEDPA 1D 1 B 1C 1 E DBCA图5分析 平面AB 1E 与底面A 1B 1C 1D 1交线即二面角的棱没有给出,要找到二面角的平面角,. 四、向量法向量法解立体几何中是一种十分简捷的也是非常传统的解法,可以说所有的立体几何题都可以用向量法求解,用向量法解立体几何题时,通常要建立空间直角坐标系,写出各点的坐标,然后将几何图中的线段写成用坐标法表示的向量,进行向量计算解题。
高中数学解题方法---二面角大小的几种求法
∴∠EDF= 3a2
+ 3a 2 − 8a 2 2 ⋅ 3a 2
=
1 3
1. 在三棱锥 P-ABC 中,∠ APB= ∠ BPC= ∠ CPA=600,求二面角 A-PB-C 的
余弦值。
Pபைடு நூலகம்
Q N
B
M A
2 / 14
C
2. 如图,已知二面角 α-а-β 等于 120°,PA⊥α,A∈α,PB⊥β,B∈β,求 ∠APB 的大小。
5 / 14
A
α
为 A1,点 B 在 l 的射影为 B1,已知 AB=2,AA1=1,BB1= 2,求:二面角 A1 -AB-B1 的大小。
三、垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个半 平面的交线所成的角即为平面角,由此可知,二面角的平面角所在的平面与棱 垂直。
例 在四棱锥 P-ABCD 中,ABCD 是正方形,PA⊥平面 ABCD,PA=AB=a,
二、三垂线法:已知二面角其中一个面内一点到一个面的垂线,用三垂线 定理或逆定理作出二面角的平面角。
三、垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个半 平面的交线所成的角即为平面角,由此可知,二面角的平面角所在的平面与棱 垂直。
II. 寻找无棱二面角的平面角的方法 ( 射影面积法、平移或延长(展) 线(面)法 )
P
A
O B
3. 在四棱锥 P-ABCD 中,ABCD 是正方形,PA⊥平面 ABCD,PA=AB=a,
求二面角 B-PC-D 的大小。
P
H
jA
D
B
C
二、三垂线法:已知二面角其中一个面内一点到一个面的垂线,用三垂线
定理或逆定理作出二面角的平面角。
求二面角的方法
解题宝典空间角主要包括异面直线所成的角、直线与平面所成的角、二面角.二面角是指从一条直线出发的两个半平面所组成的图形.求二面角的大小是一类常见的问题.本文重点介绍求二面角大小的四种方法:定义法、向量法、面积投影法、三垂线定理法.一、定义法过二面角棱上的任一点,在两个半平面内分别作与棱垂直的射线,则两射线所成的角叫做二面角的平面角.一般地,要求得二面角的大小只需要求出二面角的平面角的大小即可.在求二面角的大小时,我们可以根据二面角的平面角的定义来求解.首先在二面角的棱上选取一点,在两个面内作棱的垂线,则两条垂线的夹角,即为二面角的平面角,求得平面角的大小即可得到二面角的大小.例题:如图1,在长方体ABCD-A1B1C1D1中,底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明:BE⊥EB1C1;(2)若AE=A1E,求二面角B-EC-C1正弦值.图1图2解:(1)略;(2)由(1)知∠BEB1=90°.由题设知Rt△ABE≌Rt△A1B1E,所以∠AEB=45°,故AE=AB,AA1=2AB.如图2所示,在平面BCE内过B点作BM⊥CE于点M,取棱CC1的中点N,连结MN,EN.因为EC1=EC,所以EN⊥CC1,所以ΔCEN为直角三角形.因为BC⊥BE,所以ΔCEB为直角三角形.令AB=1,则BC=NC=1,BE=EN=2,CE=3,所以RtΔBEC≌RtΔNEC,所以MN⊥EC,则∠BMN即为二面角B-EC-C1的平面角.在RtΔBEC中,sin∠BCE=BE CE=BM BC,所以BM=,MN.在ΔBMN中,cos∠BMN=BM2+MN2-BN22BM∙MN=-12,则sin∠BMN=,故二面角B-EC-C1正弦值.利用定义法求二面角的大小的关键是作出二面角的平面角.在作图的过程中要充分利用题目条件中隐含的垂直关系,如等腰三角形三线合一的性质、菱形或正方形的对角线相互垂直、直角三角形中勾股定理及其逆定理等.另外在构造二面角的平面角时,常用的方法还有垂面法,即经过两个面的垂线的平面与两个平面的交线所夹的角即为二面角的平面角.二、三垂线法三垂线法是指利用三垂线定理求作二面角的平面角,求得二面角大小的方法.在求作二面角的平面角时,需过其中一个面内的一点作另一个面的垂线,再经过垂足作棱的垂线,连接该点与棱上的垂足,进而构造出与二面角的平面角相关的角,再结合图形中的垂直关系求得二面角的大小.以上述例题为例.解:如图3,连接BD,AC,交点为O,过点O作CE的垂线,垂足为P,连接BP.由三垂线定理可知BP垂直于CE,所以∠BPO即为所求二面角平面角的补角.设AB=1,由(1)可知AE=1,所以BE=2,CE=3.因为BC⊥BE,所以ΔBCE为直角三角形,所以RtΔBCP∽RtΔBCE.陈秀林图342解题宝典所以BP.在Rt△BOP 中,sin ∠BPO =BC BP=,即所求二面角正弦值为.此法与定义法的不同之处是将所求二面角的相关角置于直角三角形中,从而使解题的过程更加简洁.三、向量法向量法是通过空间向量的坐标运算,将所求的二面角转化为两个平面的法向量的夹角的方法.解题的思路是通过建立空间直角坐标系,求出两个平面的法向量,根据向量的数量积公式求出夹角,再利用法向量的夹角与二面角的关系来确定二面角的大小.值得说明的是,二面角的平面角与法向量的夹角的关系是相等或互补.以上述例题为例.解:(2)由(1)知∠BEB 1=90°.由题设知Rt△ABE ≌Rt△A 1B 1E ,所以∠AEB =45°,故AE =AB ,AA 1=2AB .以D 为坐标原点,建立如图4所示的空间直角坐标系D -xyz ,则C (0,1,0),B (1,1,0),C 1(0,1,2),E (1,0,1),所以 CB =(1,0,0),CE =(1,-1,1),CC 1=(0,0,2).设平面BCE 的法向量为n =(x ,y ,z ),则ìíî CB ∙n =0,CE ∙n =0,即{x =0,x -y +z =0,令y =-1,得n =(0,-1,-1).设平面ECC 1的法向量为m =(x ,y ,z ),则ìíî CC 1∙m =0,CE ∙m =0,即{2z =0,x -y +z =0,令x =1得m=(1,1,0).于是cos m,n =m ∙n |m |∙|n |=-12.所以二面角B -EC-C 1平面角正弦值为.向量的引入降低了立体几何问题的难度,但对同学们的运算能力提出了更高的要求.求法向量的原则是先找后求,即如果存在一条已知的直线与二面角的某一个平面垂直,则该直线的方向向量即可视为此平面的法向量.四、投影法投影法,即为构造出二面角的两个平面中的一个平面在另外一个平面内的投影,从而利用此平面与其投影的夹角θ来判断所求二面角的大小的方法.若该平面与其投影的面积分别为S 1,S 2,则cos θ=S 1S 2.θ与所求二面角的关系有两种,即相等或互补.以上述例题为例.解:如图5,连接BD 交AC 于点O ,连接EO .因为四边形ABCD 为正方形,所以BD ⊥AC ,所以点B 在面C 1CE 内的投影,三角形EOC 为ECB 的投影.设棱AB =1,由(1)可知AE =1,则AC =BE =2,EC =3,所以三角形OCE 的面积为S 1=12∙OC ∙AE =12,三角形BCE 的面积为S 2=12BC ∙BE =12×1×2.所以S 2S 1=42=12.所以面BCE 与面ECC 1所成锐二面角的余弦值为12,故二面角的正弦值为.在本题中,三角形ECB 与其在面ECC 1上的投影EOC 的夹角即为所求二面角的补角,而两角互补,则其正弦值相等,所以可直接利用投影法来求解.一般地,求二面角的问题主要有两类,即求有棱二面角的大小和无棱二面角的大小,虽然图形有所不同,但解题的方法基本上一致.同学们在解题的过程中要注意仔细审题,择优而用.(作者单位:江苏省大丰高级中学)图5图443。
二面角的多种求法(最新经典版)
六种方法求二面角从全国19份高考试卷中我们知道,立体几何题中命有求二面角大小的试题共有12份,并都为分值是12分的大题,足以说明这一知识点在高考中的位置,据有关专家分析,它仍然是2010年高考的重点,因此,我们每位考生必须注意,学会其解题方法,掌握其解题技巧,是十分重要的。
一、 定义法:从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。
本定义为解题提供了添辅助线的一种规律。
如例1中从二面角S —AM —B 中半平面ABM 上的一已知点(B )向棱AM 作垂线,得垂足(F );在另一半平面ASM 内过该垂足(F )作棱AM 的垂线(如GF ),这两条垂线(BF 、GF )便形成该二面角的一个平面角,再在该平面角内建立一个可解三角形,然后借助直角三角函数、正弦定理与余弦定理解题。
例1(2009全国卷Ⅰ理)如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面ABCD,AD =2DC SD ==,点M 在侧棱SC 上,ABM ∠=60°(I )证明:M 在侧棱SC 的中点 (II )求二面角S AM B --的大小。
证(I )略解(II ):利用二面角的定义。
在等边三角形ABM 中过点B作BF AM ⊥交AM 于点F ,则点F 为AM 的中点,过F 点在平面ASM 内作GF AM ⊥,GF 交AS 于G ,连结AC ,∵△ADC ≌△ADS ,∴AS-AC ,且M 是SC 的中点, ∴AM ⊥SC , GF ⊥AM ,∴GF ∥AS ,又∵F 为AM 的中点,∴GF 是△AMS 的中位线,点G 是AS 的中点。
则GFB ∠即为所求二面角. ∵2=SM ,则22=GF ,又∵6==AC SA ,∴2=AM ∵2==AB AM ,060=∠ABM ∴△ABM 是等边三角形,∴3=BF在△GAB 中,26=AG ,2=AB ,090=∠GAB ,∴211423=+=BG FG366232222113212cos 222-=-=⨯⨯-+=⋅-+=∠FB GF BG FB GF BFG ∴二面角S AM B --的大小为)36arccos(-练习1(2008山东)如图,已知四棱锥P -ABCD ,底面ABCD 为菱形,P A ⊥平面ABCD ,60ABC ∠=︒,E ,F 分别是BC , PC 的中点. (Ⅰ)证明:AE ⊥PD ;(Ⅱ)若H 为PD 上的动点,EH 与平面P AD 所成最大角E —AF —C 的余弦值. 分析:第1题容易发现,可通过证AE ⊥AD 后推出AE ⊥平面APD ,使命题获证,而第2题,则首先必须在找到最大角正切值有关的线段计算出各线段的长度之后,考虑到运用在二面角的棱AF 上找到可计算二面角的平面角的顶点S ,和两边SE 与SC ,进而计算二面角的余弦值。
二面角大小的求法
二面角大小的求法:一、定义法:直接在二面角的棱上取一点(特殊点),分别在两个半平面内作棱的垂线,得出平面角,用定义法时,要认真观察图形的特性;例1 在四棱锥P-ABCD中,ABCD是正方形,PA⊥平面ABCD,PA=AB=a,求二面角B-PC—-D的大小。
二、三垂线法:已知二面角其中一个面内一点到一个面的垂线,用三垂线定理或逆定理作出二面角的平面角;例2 在四棱锥P-ABCD中,ABCD是平行四边形,PA⊥平面ABCD,PA=AB=a,∠ABC=30°,求二面角P-BC-A的大小。
[基础练习]1.二面角是指()A 两个平面相交所组成的图形B 一个平面绕这个平面内一条直线旋转所组成的图形C 从一个平面内的一条直线出发的一个半平面与这个平面所组成的图形D 从一条直线出发的两个半平面所组成的图形2.平面α与平面β、γ都相交,则这三个平面可能有()A 1条或2条交线B 2条或3条交线C 仅2条交线D 1条或2条或3条交线3.在300的二面角的一个面内有一个点,若它到另一个面的距离是10,则它到棱的距离是( )A 5B 20C 210 D225 4.在直二面角α-l-β中,Rt ΔABC 在平面α内,斜边BC 在棱l 上,若AB 与面β所成的角为600,则AC 与平面β所成的角为 ( ) A 300 B 450 C 600 D 1200 5.如图,射线BD 、BA 、BC 两两互相垂直,AB=BC=1,BD=26, 则弧度数为3π的二面角是( ) A D-AC-B B A-CD-B C A-BC-D D A-BD-C6.△ABC 在平面α的射影是△A 1B 1C 1,如果△ABC 所在平面和平面α成θ角,有 A S △A1B1C1=S △ABC ·sinθ B S △A1B1C1= S △ABC ·cosθ C S △ABC =S △A1B1C1·sinθ D S △ABC =S △A1B1C1·cosθ 7.如图,若P 为二面角M-l-N 的面N 内一点,PB ⊥l ,B 为垂足,A 为l 上一点,且∠PAB=α,PA 与平面M 所成角为β,二面角M-l-N 的大小为γ,则有 ( )A sin α=sin βsin γB sin β=sin αsin γC sin γ=sin αsin βD 以上都不对8.在600的二面角的棱上有两点A 、B ,AC 、BD 分别是在这个二面角的两个面内垂直于AB 的线段,已知:AB=6,AC=3,BD=4,则CD= 。
高考中二面角大小的求法
高考中二面角大小的求法二面角的大小,是高中数学的重点与难点,同时也是高考的热点,常考常新,其求法各式各样,尤其是向量法出现之前的高考,得凭借某些技巧,根据定义构造平面角,有时难度还是很大的,但通过现象看本质,我们也可以引申出一些求二面角大小的模式——定义法、三垂线法、垂面法等,另外还有求二面角大小的通法——向量法。
本文结合高考题,来谈谈这几种方法的应用,希望大家在考试过程中迅速识别模式,快速求出二面角的大小。
一、定义法二面角平面角的定义有三个条件:1、顶点在棱上;2、边分别在两个半平面内。
3、边与棱垂直。
因为空间的两条垂直不直观,难以识别,且顶点在棱上没有固定位置,具有开放性,这就造成了平面角位置的变化多端,不易作出,但高考中的易作出的平面角顶点往往在特殊的位置,比如等腰三角形底边的中点;以棱为全等三角形公共边的垂足等。
只举两例说明:例1(2004年全国理)如右图,已知四棱锥P—ABCD,PB⊥AD,侧面PAD为边长等于2的正三角形,底面ABCD为菱形,侧面PAD与底面ABCD所成的二面角为120°。
(1)求点P到平面ABCD的距离。
(2)求面APB与面CPB所成二面角的大小解:我们只求二面角的大小(以下例题同),即第2问。
取PB的中点G,PC的中点F,连结EG、AG、GF,则AG⊥PB,FG∥BC,FG= BC,∵AD⊥⊥PB,∴BC⊥PB,FG⊥PB,∴∠AGF是所求二面角的平面角。
∵AD⊥面POB,∴AD⊥EG,又PE=BE= ,∴EG⊥PB,且PEG=60°。
在Rt△PEG中,EG=PE?cos60°= ,在Rt△GAE中,AE= AD=1,于是tan∠GAE= = ,又∠AGF=π—∠GAE,所以所求二面角的大小为π—arctan= .本题就是利用等腰三角形底边上的中点与顶点的连线垂直于底边,以及平移垂直于棱的射线到中点构造二面角的平面角,利用平面角的定义使问题得以解决的。
二面角求值方法八种
二面角求值方法八种【摘要】在奥妙无穷的空间形式里,二面角的平面角总是以量的大小决定着某些图形的空间形式,使得立体几何研究中,求二面角的大小成为了一个“角量计算”的重要内容。
那么怎样去求二面角的大小呢?笔者通过自身的实践,总结出常见的八种求法。
【关键词】二面角;二面角求值;八种1定义法1.1定义:二面角求值的“定义法”就是依二面角的平面角的定义,通过对线线垂直关系的研究,首先将空间角转化为平面角,然后依据解三角形的相关知识或某些公理体系的保证求出这个平面角,从而达到求二面角大小的数学方法。
它体现了“回到定义中去”是数学解题的根本方法。
1.2用“定义法”求二面角大小的解题思路是:求作二面角的平面角→证明这个平面角是所求→解出这个二面角。
1.3求作二面角的平面角应把握的原则:先找后作。
常见的作法有两种:其一,根据定义或图形的特征作。
其二,根据三垂线定理(或逆定理)作。
此法难点在于找到平面的垂线,解决的办法:先找面面垂直,利用面面垂直的性质定理找到面的垂线,作棱的垂线,连接垂足与面的垂线的端点,利用线线垂直得出所求角是二面角的平面角。
1.4常见的线线垂直的判断方法有:①三垂线定理及逆定理。
②等腰三角形“中线是高线”的性质。
③勾股定理的逆定理。
④菱形对角线互相垂直的性质。
⑤线面垂直则线线垂直的性质。
⑥同一法(有公共边的全等三角形中,公共边上的垂足相同)例1(2005年全国卷Ⅰ.18):已知四棱锥P-ABCD的底面是直角梯形,AB//DC,∠DAB=90°,PA⊥底面ABCD且PA=AD=DC=12AB=1,M是PB的中点,求平面AMC与平面BMC所成二面角的大小。
解:过点A作AN⊥CM,垂足为N,连BN,过点M作MQ⊥AB,垂足为Q,连QN,QC,由三垂线的逆定理知:MC⊥NQ,由三垂线定理知:BN⊥MC,故∠ANB为所求二面角的平面角。
由勾股定理的逆定理知:BC⊥AC,再由三垂线定理知:BC⊥PC,由直角三角形中线的性质有:MA=MC,由等面积求高法知:AN=NB=305,在△ANB 中,由余弦定理有:cos∠ANB=AN2+BN2-AB22AN·BN=-23,从而所求二面角的大小是:π-arccos23题评:本例也可以先证△AMC≌△BMC,再利用“同一法”得出BN⊥MC。
高考数学二面角10种求法及锐钝角的判断
二面角10种求法及判断锐钝角二面角大小的求法中知识的综合性较强,方法的灵活性较大,一般而言,二面角的大小往往转化为其平面角的大小,从而又化归为三角形的内角大小,在其求解过程中,主要是利用平面几何、立体几何、三角函数等重要知识。
求二面角大小的关键是,根据不同问题给出的几何背景,恰在此时当选择方法,作出二面角的平面角,有时亦可直接运用射影面积公式求出二面角的大小。
1.概念法顾名思义,概念法指的是利用概念直接解答问题。
例1:如图所示,在四面体ABCD 中,1AC AB ==,2CD BD ==,3AD =。
求二面角A BC D --的大小。
分析:四面体ABCD 的各个棱长都已经给出来了,这是一个典型的根据长度求角度的问题。
解:设线段BC 的中点是E ,接AE 和DE 。
根据已知的条件1AC AB ==,2CD BD ==,可以知道AE BC ⊥且DE BC ⊥。
又BC 是平面ABC 和平面DBC 的交线。
根据定义,可以得出:AED ∠即为二面角A BC D --的平面角。
可以求出32AE =,3DE =,并且3AD =。
根据余弦定理知:2222223()(3)372cos 243232AE DE ADAED AE DE+-+-∠===-⨯⨯⨯ 即二面角A BC D --的大小为7arccos4π-。
同样,例2也是用概念法直接解决问题的。
例2:如图所示,ABCD 是正方形,PB ABCD ⊥平面,1PB AB ==,求二面角A PD C --的大小。
解:作辅助线CE PD ⊥于点E ,连接AC 、AE 。
由于AD CD =,PA PC =,所以PAD PCD ≅三角形三角形。
即AE PD ⊥。
由于CE PD ⊥,所以AEC ∠即为所求的二面角的大小。
通过计算可以得到:2PC =,3PD =,又1CD =,在三角形PCD 中可以计算得到63CE =。
由此可以得到:63AE CE ==,又2AC =。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[0,π]
l
l
横卧式
l
l
A
A
o
o
B
l
Bo
定义法 垂面法 三垂线法
A
B
C
A1
B1
C1
射影面积法
cos S射影多边形
S多边形
m n
设 m 和 n 分别为平面 , 的法向量,二面角
l 的大小为 ,向量 m、n 的夹角为 ,
l
n
结论① 或
结论② 平面 与平面 所成的二面
角 的计算公式是:
nm
nm
arccos
arccos
nm
nm
l
m
(当二面角为锐角、直角时)
(当二面角钝角时)
例1、如图,在底面是一直角梯形的四棱锥S-ABCD中, AD∥BC,
n=(1解,题2,过1程) 实现了程序化,是一种有效∴方θ=法ar。ccos
6 3
故面SCD与面SBA所成的角大小为arccos 6
3
例2、已知D、E分别是正三棱柱ABC一A1B1C1的侧棱AA1和BB1上
的点,且A1D=2B1E=B1C1.求过D、E、C1的平面与棱柱的下底面
所成二面角的大小.
A
二面角为锐角
4
向量法
课堂练习:如图, 直四棱柱ABCD-A1B1C1D1的底面是梯形, AB∥CD,AD⊥DC,CD=2,DD1=DA=AB=1,P、Q 分别 是CC1、C1D1的中点,求二面角B-PQ-D的大小。
解:建立如图所示的坐标系D---xyz,,则
z
D1
Q
C1
B1,1,0, P(0,2, 1),Q(0,1,1) A(1,0,0),
∴FC1⊥A1C1.
又面AA1C1C⊥面A1B1C1,FC1在面A1B1C1内,
B1 F
∴FC1⊥面AA1C1C.而DC1在面AA1C1C内,
∴FC1⊥DC1. ∴∠DC1A1是二面角D-FC1-A1的平面角.
由已知A1D=B1C=A1C1,∴∠DC1A1=
4故所求二面角的大小为
4
例2、已知D、E分别是正三棱柱ABC一A1B1C1的侧棱AA1和BB1上
2 DA (1,0,0), BP (1,1, 1), BQ (1,0,1).
2
D
x
A1
B1
因DA⊥面PQD,所以 DA是面PDQ的法向量。设
A
B
P
y
C
n (x, y, z) 为面BPQ的法向量,则
n BP, n BQ
x
y
1 2
z
0,
x z 0
∴△ADE∽△BCE ∴EA=AB=SA
F
A
D
又∵SA⊥AE ∴△SAE为等腰直角三角形,F为中点,
E
AF 1 SE 2 SA 2
2
2
2
又∵DA⊥平面SAE,AF⊥SE
∴由三评垂注线:定理常得规D法F⊥求SE解步骤:一作:作出或找出相应空间角;
∴∠DFA二为证二面:角通的过平面简角单, 的判断或推理得到相应角;三求:通过计
∴ta算nD求FA出=相DF应AA 的22角。即所求二面角的正切值.
例1、如图,在底面是一直角梯形的四棱锥S-ABCD中, AD∥BC, ∠ABC=90°,SA⊥平面AC,SA=AB=BC=1,1AD= .
求面SCD与面SAB所成的角的大小。
2
解法3:(向量法) 如图,建立空间直角坐标系,
z
则A(0,0,0),B(0,1,0),C(-1,1,0),
∠ABC=90°,SA⊥平面AC,SA=AB=BC=1,A1D= .
求面SCD与面SAB所成的角的大小。
2
解法2:(三垂线定理法) 延长CD、BA交于点E,连结SE, S
SE即平面CSD与平面BSA的交线. 又∵DA⊥平面SAB,∴过A点作SE的垂线交于F.如图.
B
C
∵AD= 1 BC 且AD∥BC 2
S
r 令易 设 n知平rnrD••(平面x0评或平两uDuD,u面 Su得其面个uCuS12注1rDrS,:补角基CA:0的角,本0B0)通,的法)往步y得过S法向的往骤(此02向量常很,,,例z量为x规不通120可y,为。方简过12nr1以1y即z法单求mu)=r,看(是 。 两00x出=,构 利 个(:0y造 用 平,,求12三 建 面z二,)角 立 法,面0∵形 空 向)c;面角o求 间 量sS大解 直 的A小Bnu, 角 夹r与,(mu其 坐 角r面空关 标 来S间C键 系 达Dmu面mxurr又,到所•A面nrnr成是避解角=角作开决12等的B出了问1于二二“题D6面二面作的=角面角、目为角36的证的锐y”,角Cθ
∠ABC=90°,SA⊥平面AC,SA=AB=BC=1,A1 D= .
求面SCD与面SAB所成的角的大小。
2
S
法1:可用射影面积法来求,这里只要求
出S△SCD与S△SAB即可,
B
C
故所求的二面角θ应满足
ቤተ መጻሕፍቲ ባይዱ
cos SSAB
S SCD
1 11
=
2 1
3
2
2
2
A
D
6
=
3
例1、如图,在底面是一直角梯形的四棱锥S-ABCD中, AD∥BC,
xz z 2y
cos n, DA n DA 2
n DA 3
从图中可知,二面角B-PQ-D为锐角, 因此二面角B-PQ-D的大小为 arccos2
3
如图,正三棱柱 ABC A1B1C1 的底面边长为3,侧棱
3 AA1 2
3 ,D是CB延长线上一点,且BD BC 。求二面角
而
ur uuur m • DE 0
3x y z 0
ur uuuur m • DC1 0
2y 2z 0
不妨设x 0, 得y z 1
m (0,1,1) cos(n, m) 2 2
D
y
A1
E
C1
x
B1
面A1B1C1与面DEC1所成角的
A
解: (几何法)在平面A1B1B内延长DE和A1B1交于F,则
B
F是面DEC1与面A1B1C1的公共点,C1也是这两个面的公共
点,连结C1F,C1F为这两个面的交线,所求的二面角就是
D
D-C1F-A1.
∵ A1D∥B1E,且A1D=2B1E,. ∴E、B1分别为DF和A1F的中点A. 1 E
C1
∵A1B1=B1F=B1C1,
的所点 成,二且面角A1D的=大2B小1E. =B1C1.求过D、E、C1的平面与A棱z柱的下底面A
解:(向量法)建立如图的空间直角坐标系 A xyz,
B
则,B1( 3,1,0) E( 3,1,1)
C1(0,2,0) D(0,0r,2) 易知平面A1B1C1的法向量为 =n(0,0,1),
设平面DEC1的法向量为 m=(x,y,z),
B1 AD B 的大小。
A
A1
C B D
C1 B1