数字图像处理第4章直方图和灰度变换
遥感数字图像处理复习资料(1-4章)
第一章概论1、按图像的明暗程度和空间坐标的连续性,可以分为数字图像和模拟图像。
数字图像:可用计算机存储和处理,空间坐标和灰度均不连续。
模拟图像:计算机无法直接处理,空间坐标和明暗程度连续变化。
2遥感数字图像中的像素值称为亮度值(灰度值/DN值),它的高低由传感器所探测到的地物电磁波的辐射强度决定。
2、遥感数字图像处理的主要内容包括以下三个方面:图像增强、图像校正、信息提取。
1)图像增强:用来改善图像的对比度,突出感兴趣的地物信息,提高图像大的目视解译效果,它包括灰度拉伸、平滑、锐化、滤波、变换(K—L/K—T)、彩色合成、代数运算、融合等。
图像显示:为了理解数字图像中的内容,或对处理结果进行对比。
图像拉伸:为了提高图像的对比度(亮度的最大值与最小值的比值),改善图像的显示效果。
2)图像校正(恢复/复原):为了去除和压抑成像过程中由各种因素影响而导致的图像失真。
注意:图像校正包括辐射和几何校正,前者通过辐射定标和大气校正等处理将像素值由灰度级改变为辐照度或反射率,后者利用已有的参照系修改像素坐标,使得图像能够与地图匹配或多景图像之间可以相互匹配。
3)信息提取:从校正后的遥感数据中提取各种有用的地物信息。
包括图像分割、分类等。
图像分割:用于从背景中分割出感兴趣的地物目标。
分割的结果可作为监督分类的训练区。
图像分类:按照特定的分类系统对图像中像素的归属类别进行划分。
3、遥感数字图像处理系统:硬件系统(输入、存储、处理、显示、输出),软件系统。
4、数字图像处理的两种观点:离散方法(空间域)、连续方法(频率域)2.遥感图像的获取和存储1、遥感是遥感信息的获取、传输、处理以及分析判读和应用的过程。
遥感的实施依赖于遥感系统2、遥感系统是一个从地面到空中乃至整个空间,从信息收集、储存、传输、处理到分析、判读、应用的技术体系,主要包括遥感试验、信息获取(传感器、遥感平台)、信息传输、信息处理、信息应用等5个部分。
数字图像处理第四章作业
第四章图像增强1.简述直方图均衡化处理的原理和目的。
拍摄一幅较暗的图像,用直方图均衡化方法处理,分析结果。
原理:直方图均衡化处理的“中心思想”是把原始图像的灰度直方图从比较集中的某个灰度区间变成在全部灰度范围内的均匀分布。
也就是对图像进行非线性拉伸,重新分配图像像素值,使一定灰度范围内的像素数量大致相同。
把给定图像的直方图分布改变成“均匀”分布直方图分布目的:直方图均衡化是图像处理领域中利用图像直方图对对比度进行调整的方法。
它通常用来增加许多图像的局部对比度,尤其是当图像的有用数据的对比度相当接近的时候。
通过直方图均衡化,亮度可以更好地在直方图上分布。
这样就可以用于增强局部的对比度而不影响整体的对比度,直方图均衡化通过有效地扩展常用的亮度来实现这种功能。
Matlab程序如下:clc;RGB=imread('wxf.jpg'); %输入彩色图像,得到三维数组R=RGB(:,:,1); %分别取三维数组的一维,得到红绿蓝三个分量G=RGB(:,:,2); %为R G B。
B=RGB(:,:,3);figure(1)imshow(RGB); %绘制各分量的图像及其直方图title('原始真彩色图像');figure(2)subplot(3,2,1),imshow(R);title('真彩色图像的红色分量');subplot(3,2,2), imhist(R);title('真彩色图像的红色分量直方图');subplot(3,2,3),imshow(G);title('真彩色图像的绿色分量');subplot(3,2,4), imhist(G);title(' 的绿色分量直方图');subplot(3,2,5),imshow(B);title('真彩色图像的蓝色分量');subplot(3,2,6), imhist(B);title('真彩色图像的蓝色分量直方图');r=histeq(R); %对个分量直方图均衡化,得到个分量均衡化图像g=histeq(G);b=histeq(B);figure(3),subplot(3,2,1),imshow(r);title('红色分量均衡化后图像');subplot(3,2,2), imhist(r);title('红色分量均衡化后图像直方图');subplot(3,2,3),imshow(g);title('绿色分量均衡化后图像');subplot(3,2,4), imhist(g);title('绿色分量均衡化后图像直方图');subplot(3,2,5), imshow(b);title('蓝色分量均衡化后图像');subplot(3,2,6), imhist(b);title('蓝色分量均衡化后图像直方图');figure(4), %通过均衡化后的图像还原输出原图像newimg = cat(3,r,g,b); %imshow(newimg,[]);title('均衡化后分量图像还原输出原图');程序运行结果:原始真彩色图像均衡化后分量图像还原输出原图图1.1 原始图像与均衡化后还原输出图像对比通过matlab仿真,由图1.1比较均衡化后的还原图像与输入原始真彩色图像,输出图像轮廓更清晰,亮度明显增强。
(完整版)数字图像处理每章课后题参考答案
数字图像处理每章课后题参考答案第一章和第二章作业:1.简述数字图像处理的研究内容。
2.什么是图像工程?根据抽象程度和研究方法等的不同,图像工程可分为哪几个层次?每个层次包含哪些研究内容?3.列举并简述常用表色系。
1.简述数字图像处理的研究内容?答:数字图像处理的主要研究内容,根据其主要的处理流程与处理目标大致可以分为图像信息的描述、图像信息的处理、图像信息的分析、图像信息的编码以及图像信息的显示等几个方面,将这几个方面展开,具体有以下的研究方向:1.图像数字化,2.图像增强,3.图像几何变换,4.图像恢复,5.图像重建,6.图像隐藏,7.图像变换,8.图像编码,9.图像识别与理解。
2.什么是图像工程?根据抽象程度和研究方法等的不同,图像工程可分为哪几个层次?每个层次包含哪些研究内容?答:图像工程是一门系统地研究各种图像理论、技术和应用的新的交叉科学。
根据抽象程度、研究方法、操作对象和数据量等的不同,图像工程可分为三个层次:图像处理、图像分析、图像理解。
图像处理着重强调在图像之间进行的变换。
比较狭义的图像处理主要满足对图像进行各种加工以改善图像的视觉效果。
图像处理主要在图像的像素级上进行处理,处理的数据量非常大。
图像分析则主要是对图像中感兴趣的目标进行检测和测量,以获得它们的客观信息从而建立对图像的描述。
图像分析处于中层,分割和特征提取把原来以像素描述的图像转变成比较简洁的非图形式描述。
图像理解的重点是进一步研究图像中各目标的性质和它们之间的相互联系,并得出对图像内容含义的理解以及对原来客观场景的解释,从而指导和规划行为。
图像理解主要描述高层的操作,基本上根据较抽象地描述进行解析、判断、决策,其处理过程与方法与人类的思维推理有许多相似之处。
第三章图像基本概念1.图像量化时,如果量化级比较小时会出现什么现象?为什么?答:当实际场景中存在如天空、白色墙面、人脸等灰度变化比较平缓的区域时,采用比较低的量化级数,则这类图像会在画面上产生伪轮廓(即原始场景中不存在的轮廓)。
数字图像处理 灰度变换ppt课件
BIT
1
第4章 图像的灰度变换
4.1 灰度变换的基本方法 4.2 二值化和阈值处理 4.3 灰度的线性变换 4.4 灰度的非线性变换
第4章 图像的灰度变换
第2页
4.1 灰度变换的基本方法
背景
– 图像质量差:获取图像时光照不正常、噪声影响及发生畸 变
– 改善图像质量
»图像增强:不考虑图像质量下降的原因(方法包括灰度变 换、平滑处理等)
I
>> imshow(I), figure, imshow(J)
>> K = imadjust(I,[0.0 1],[0.3 0.7]);
>> figure, imshow(K)
J
K
第4章 图像的灰度变换
第16页
4.3 灰度的线性变换
(2)窗口灰度变换
– 保留灰度级在[ L, U ]间的值,将大于 U 的灰度 值置为255,小于 L 的灰度置为0 g
第4章 图像的灰度变换
第10页
4.2 二值化和阈值处理
双固定阈值法
– 预先为灰度图像设定两个阈值T1和T2,把灰度值 小于给定阈值T1的像素灰度置为0;大于T1且小 于T2的像素灰度置为255;大于T2的像素灰度置 为0
– 函数表达式
0, g(x, y) 255,
f (x, y) T 1
第4章 图像的灰度变换
第15页
4.3 灰度的线性变换
MatLab函数
– J = imadjust (I, [low_in high_in] , [low_out high_out]) – 例:
>> I = imread('pout.tif');
数字信号图像处理-灰度直方图
(0.1) 灰度直方图不能表示出有某灰度级的像素在什么位置,也不能直接显示出图像内容,但是具有统计特征的直方图却能描述该图像的灰度分布特征,使人们从中得到诸如总体明亮程度、对比度、对象物的可分性等与图像质量有关的灰度分布概貌,成为一些处理方法的重要依据。
变换直方图使其达到较理想分布,能起到增强图像的效果。
面积为A 的连续图像f(x,y)经过数字化后,成为M 行N 列的数字图像f(m,n)。
一般而言在数字图像f(x,y)中取不同灰度值的像素数目是不同的。
直方图是用于表达图像灰度分布情况的统计图表。
其横坐标是灰度值r ,纵坐标是出现这个灰度值的概率密度p(r)(对连续图像f(x,y)而言),或者出现这个灰度值的概率值p(r i )(对数字图像f(m,n))而言。
(1) 连续图像f(x,y)的直方图 0()()p()lim r A r r A r r r A →+-=⋅ 且有maxmin ()1r r p r dr =⎰(2) 数字图像f(m,n)的情况下,设图像像素的灰度值为r 0,r 1,…,r L-1,则概率p(r i )为:(i=0,1,…,L -1)且有 尽管灰度直方图不能表示出有某灰度级的像素在什么位置,更不能直接显示图像内容,但是具有统计特性的直方图却能描述该图像的灰度分布特性,使人们从中得到诸如总体明亮程度、对比度、对象物的可分性等于图像质量有关的灰度分布概貌,成为一些处理方法的重要依据。
imhist(I,N)函数绘制直方图。
其中N 表示长度,缺省值为256.Histeq(I,N)函数实现直方图均衡化,该命令对灰度图像I 进行变换,返回有N 级灰度的的图像J 。
N 的缺省值为64(当N 小于I 中灰度级数时,J 的直方图更为平坦)。
PS:直方图均衡化后,图像直方图趋于平坦化,且灰度间隔被拉大,从而有利于图像的分析和识别。
(理论上说直方图均衡化就是通过变换函数将原图的直方图调整为平坦的直方图,然后用此均衡直方图校正图像。
数字图像处理文档-直方图均衡&灰度线性变换&灰度拉伸
技术报告摘要:本文档为数字图像处理程序的技术报告。
程序主要功能为读入8位或24位位图,并可选择性对其进行直方图均衡、灰度线性变换、灰度拉伸等操作。
该文档从算法原理和算法实现两方面,通过对算法的文字表述、函数的功能介绍以及主要代码分析注释,阐述了该程序进行图像处理时的方法,并通过实验测试和分析实验结果,验证了程序的正确性和可靠性。
关键词:直方图均衡灰度线性变换灰度拉伸1、任务说明⏹打开一幅图像,进行直方图均衡。
将灰度线性变化,将灰度拉伸。
⏹用C语言或JAVA编程序读出图像文件,并利用算法进行灰度拉伸。
2、算法原理(背景意义,基本算法,扩展算法)2.1直方图均衡直方图均衡化是将原图像通过某种变换,得到一幅灰度直方图为均匀分布的新图像的方法。
设图像均衡化处理后,图像的直方图是平直的,即各灰度级具有相同的出现频数,那么由于灰度级具有均匀的概率分布,图像看起来就更清晰了。
在离散情况下,共有L个灰度级,其中第k个灰度级rk出现的像素个数为nk,图像的总像素个数为N,则第k个灰度级出现的概率为:P r(r k)=n kN0≤r k≤1,k=0,1,…,L−1进行均匀化处理的变换函数为:s k=T[r k]=∑P r(r j)=kj=0∑n jN kj=0r k=T−1[s k]2.2灰度线性变换灰度的线性变换就是将图像中所有的点按照线性灰度变换函数进行变换。
该线性灰度变换函数f(x)是一个一维线性函数:f(x)=fA*x+fB灰度变换方程为:D2=f(D1)=k*D+d式中参数k为线性函数的斜率,d为线性函数的在y轴上的截距,D1为输入图像的灰度,D2为输出的图像灰度。
当k>1时,输出的图像的对比度增大,图像的像素值在变换后全部增大,整体显示效果增强;当0<k<1时,输出图像的对比度和整体效果都将削弱;当k<0时,原图像较量的区域变暗,较暗的区域则变亮,当k=-1,d=255时,输出图像的灰度正好反转;当k=1且d!=0时,操作仅仅使所有像素的灰度值上移或下移,其效果是使整个图像更亮或更暗;当k=1,d=0时,输出图像和输入图像相同。
灰度直方图的概念灰度变换的原理
取样定理
取样定理的意义:取样定理指出了要使取 样信号能不失真地描述原信号,其采样频 率必须大于或等于信号所含有最高截止频 率的2倍
傅立叶频谱特点
从分布上看,频谱中心位于屏幕中心,呈 辐射状分布:离中心点越近,频率越低, 能量越大;反之。频率越高,能量越小。 频谱中心反映图像平均亮度,低频区域反 映图像实体细节,高频区域反映图像边缘 轮廓。
直方图线性(尺度)变换
s
255 255
g
g
b
gb
g b
P(s)
ga
ga
a
a b
255
f
P(r)
结果分析?
a
b
255
直方图均衡化和指定化
直方图均衡化是对在图像中像素个 数多的灰度级进行展宽,而对像素个 数少的灰度级进行缩减,将直方图的 分布变成均匀分布,从而达到清晰图 像的目的。 直方图指定化是把已知直方图的图 像变为期望直方图的图像。
第六章 图像恢复与重建
图像退化因素 退化模型的框图及描述 三种最常见的有约束的图像恢复方法及其条件 什么是盲目去卷积恢复? 什么是图像的几何畸变?
第七章 图像特征与分析
图像分析的目的 图像特征的种类 图像的形态运算包括哪些? 什么是图像纹理?纹理分析的主要方法? 图像形状的体现形式有哪些?形状分析有哪 些方法?
第四章 图像分割
图像分割的概念 图像分割的理论基础与方法 边界搜索跟踪的原理 门限化分割的原理 差分、梯度、拉普拉斯边缘检测的原理 区域生长法的原理(具体分析)
第五章 图像编码与压缩
图像数据冗余度概念,压缩编码的分类 帧内预测的原理与工作过程(对DPCM的原理和过程 进行分析) 帧间预测的原理与应用 变换编码能实现压缩的原理及应用 行程编码的原理及应用 哈夫曼编码的原理及应用(具体计算,包括熵、编码 平均长度、编码效率) JPEG压缩标准的压缩步骤
图像增强—灰度变换及直方图均衡化试验目的试验原理及知识点
图像增强—灰度变换及直方图均衡化一、实验目的1、了解图像增强的目的及意义,加深对图像增强的感性认识,巩固所学理论知识。
2、掌握直接灰度变换的图像增强方法。
3、掌握灰度直方图的概念及其计算方法;4、掌握直方图均衡化的计算过程;二、实验原理及知识点1、图像增强是指按特定的需要突出一幅图像中的某些信息,同时,消弱或去除某些不需要的信息的处理方法。
其主要目的是处理后的图像对某些特定的应用比原来的图像更加有效。
图像增强可以在空间域中执行,也可以在变换域中执行。
2、空间域指的是图像平面本身,在空间域内处理图像是直接对图像的像素进行处理。
空间域处理方法分为两种:灰度级变换、空间滤波。
空间域技术直接对像素进行操作,其表达式为g(x,y)=T[f(x,y)]其中f(x,y)为输入图像,g(x,y)为输出图像,T是对图像f进行处理的操作符,定义在点(x,y)的指定邻域内。
定义点(x,y)的空间邻近区域的主要方法是,使用中心位于(x,y)的正方形或长方形区域。
此区域的中心从原点(如左上角)开始逐像素点移动,在移动的同时,该区域会包含不同的邻域。
T应用于每个位置(x,y),以便在该位置得到输出图像g。
在计算(x,y)处的g值时,只使用该领域的像素。
2、灰度变换T的最简单形式是使用领域大小为1×1,此时,(x,y)处的g值仅由f在该点处的亮度决定,T也变为一个灰度变换函数。
由于灰度变换函数仅取决于亮度的值,而与(x,y)无关,所以亮度函数通常可写做如下所示的简单形式:s=T(r)其中,r表示图像f中相应点(x,y)的亮度,s表示图像g中相应点(x,y)的亮度。
灰度拉伸又叫对比度拉伸是最基本的一种灰度变换,使用简单的分段线性变换函数,可以提高灰度的动态范围,适用于低对比度图像的处理,增强对比度。
3、直方图是多种空间城处理技术的基础。
直方图操作能有效地用于图像增强。
除了提供有用的图像统计资料外,直方图固有的信息在其他图像处理应用中也是非常有用的,如图像压缩与分割。
图像灰度变换、二值化、直方图
图像灰度变换、⼆值化、直⽅图1、灰度变换1)灰度图的线性变换Gnew = Fa * Gold + Fb。
Fa为斜线的斜率,Fb为y轴上的截距。
Fa>1 输出图像的对⽐度变⼤,否则变⼩。
Fa=1 Fb≠0时,图像的灰度上移或下移,效果为图像变亮或变暗。
Fa=-1,Fb=255时,发⽣图像反转。
注意:线性变换会出现亮度饱和⽽丢失细节。
2)对数变换t=c * log(1+s)c为变换尺度,s为源灰度,t为变换后的灰度。
对数变换⾃变量低时曲线斜率⾼,⾃变量⼤时斜率⼩。
所以会放⼤图像较暗的部分,压缩较亮的部分。
3)伽马变换y=(x+esp)γ,x与y的范围是[0,1], esp为补偿系数,γ为伽马系数。
当伽马系数⼤于1时,图像⾼灰度区域得到增强。
当伽马系数⼩于1时,图像低灰度区域得到增强。
当伽马系数等于1时,图像线性变换。
4)图像取反⽅法1:直接取反imgPath = 'E:\opencv_pic\src_pic\pic2.bmp';img1 = imread(imgPath); % 前景图img0 = 255-img1; % 取反景图subplot(1,2,1),imshow(img1),title('原始图像');subplot(1,2,2),imshow(img0),title('取反图像');⽅法2:伽马变换Matlab:imadjust(f, [low_in, high_in], [low_out, high_out], gamma)[low_in, high_in]范围内的数据映射到 [low_out, high_out],低于low的映射到low_out, ⾼于high的映射到high_out. imgPath = 'E:\opencv_pic\src_pic\pic2.bmp';img1 = imread(imgPath); % 前景图img0 = imadjust(img1, [0,1], [1,0]);subplot(1,2,1),imshow(img1),title('原始图像');subplot(1,2,2),imshow(img0),title('取反图像');2、⼆值化1)rgb2gray⼀般保存的灰度图是24位的灰度,如果改为8bit灰度图。
数字图像处理总复习(14)(1)
2.图像锐化与图像平滑有何区别与联系?
第三章 (不考计算题) 频域滤波的物理含义 傅立叶变换性质 频域滤波的基本方法
第四章 灰度基本变换(线形、非线性) 直方图处理(定义、直方图规定化、均衡化) 算术逻辑运算(帧差分,帧平均) 空间滤波(均值、中值、KNN) 同态滤波(滤波流程) 边缘检测(一阶,二阶,循环卷积) 图像锐化与图像平滑 真彩色图像处理与伪彩色图像处理
第一章图像数字图像处理灰度图像的概念图像工程定义分类图像的表达图像文件格式bmp文件第二章视觉感知要素图像采样和量化颜色模型像素之间的基本关系邻接连通距离度量第三章不考计算题频域滤波的物理含义傅立叶变换性质频域滤波的基本方法第四章灰度基本变换线形非线性直方图处理定义直方图规定化均衡化算术逻辑运算帧差分帧平均空间滤波均值中值knn同态滤波滤波流程边缘检测一阶二阶循环卷积图像锐化与图像平滑真彩色图像处理与伪彩色图像处理第五章图像编码与压缩不考计算图像编码的基本概念图像编码的方法第六章图像恢复颜色模型第七章图像分割图像的阈值分割图像的梯度分割图像边缘检测第八章目标的表达和描述目标表达目标的描述第九章形态学运算膨胀腐蚀开运算闭运算?除电磁波谱图像外按成像来源进行划分的话常见的计算机图像还包三种类型
8. 直方图修正有哪两种方法?二者有何主要区别于 联系?
方法:直方图均衡化和直方图规定化。
区别:直方图均衡化得到的结果是整幅图对比度的增 强,但一些较暗的区域有些细节仍不太清楚,直方图 规定化处理用规定化函数在高灰度区域较大,所以变 换的结果图像比均衡化更亮、细节更为清晰。联系: 都是以概率论为基础的,通过改变直方图的形状来达 到增强图像对比度的效果。
实验一 灰度变换及直方图变换
实验一图像空域增强——灰度变换一.实验内容:图像灰度变换二.实验目的:1、理解、掌握对数变换、幂次变换、对比度拉伸的原理方法2、了解图像灰度级的概率分布情况,掌握直方图均衡化原理和方法3、编程实现图像的对数变换、幂次变换、对比度拉伸、直方图均衡化三.实验步骤:1.获取实验用图像:Fig3.05(a).jpg. 使用imread函数将图像读入Matlab;并对其进行对数变换(令c=1);应用sublpot在同一个图像窗口中显示原图像及对数变换后的图像,分别用title标注。
原理:对数变换的一般表达式为:s c r=+log(1)其中c是一个常数,并假设0r≥。
该种变换是一窄带低灰度输入图像映射为一宽带输出值。
相应的是输入灰度的高调整值。
可以利用这种变换来扩展被压缩的高值图像中的暗像素。
我们用matlab编程获取了图像Fig3.05(a).jpg,并对其进行对数变换,所得结果如下图1所示:原始图像对数变换图1分析图像:比较上面两幅图像,我们会发现经过对数变换后的图像的细节可见程度比原始图像更明显些,在原始图像中最亮的像素显示为重点,灰度低的像素(恰恰是重要的)却观察不到。
经过对数变换扩展灰度低的像素从而使暗像素观察的很清楚。
实验结果分析:经过matlab编程很好地对原始图像进行了对数变换,并取得了很好的效果,达到了实验地目的。
程序如下:clear all;close all;clc;f=imread('D:\实验一灰度变换及直方图变换\Fig3.05(a).jpg');s=log(1+double(f));subplot(1,2,1);imshow(f);title('原始图像');subplot(1,2,2);imshow(s);title('对数变换');2.产生灰度变换函数T1,使得:0.3r r < 0.35s = 0.105 + 2.6333(r – 0.35) 0.35 ≤r ≤0.651 + 0.3(r – 1) r > 0.65用T1对原图像Fig3.10(b).jpg进行处理,在同一窗口显示处理前后的图像。
电子信息工程《数字图像处理》总复习题(第1-7章)(1)
电⼦信息⼯程《数字图像处理》总复习题(第1-7章)(1)第⼀章引⾔⼀.填空题1. 图像可以分为物理图像和虚拟图像两种。
其中,采⽤数学的⽅法,将由概念形成的物体进⾏表⽰的图像是虚拟图像。
2. 数字图像是⽤⼀个数字阵列来表⽰的图像。
数字阵列中的每个数字,表⽰数字图像的⼀个最⼩单位,称为像素。
3. 数字图像处理可以理解为两个⽅⾯的操作:⼀是从图像到图像的处理,如图像增强等;⼆是从图像到⾮图像的⼀种表⽰,如图像测量等。
4. 数字图像处理包含很多⽅⾯的研究内容。
其中,图像重建的⽬的是根据⼆维平⾯图像数据构造出三维物体的图像。
⼆.简答题1. 数字图像处理的主要研究内容包含很多⽅⾯,请列出并简述其中的4种。
①图像数字化:将⼀幅图像以数字的形式表⽰。
主要包括采样和量化两个过程。
②图像增强:将⼀幅图像中的有⽤信息进⾏增强,同时对其⽆⽤信息进⾏抑制,提⾼图像的可观察性。
③图像的⼏何变换:改变图像的⼤⼩或形状。
④图像变换:通过数学映射的⽅法,将空域的图像信息转换到频域、时频域等空间上进⾏分析。
⑤图像识别与理解:通过对图像中各种不同的物体特征进⾏定量化描述后,将其所期望获得的⽬标物进⾏提取,并且对所提取的⽬标物进⾏⼀定的定量分析。
2. 简述图像⼏何变换与图像变换的区别。
①图像的⼏何变换:改变图像的⼤⼩或形状。
⽐如图像的平移、旋转、放⼤、缩⼩等,这些⽅法在图像配准中使⽤较多。
②图像变换:通过数学映射的⽅法,将空域的图像信息转换到频域、时频域等空间上进⾏分析。
⽐如傅⾥叶变换、⼩波变换等。
3. 简述数字图像处理的⾄少4种应⽤。
①在遥感中,⽐如⼟地测绘、⽓象监测、资源调查、环境污染监测等⽅⾯。
②在医学中,⽐如B超、CT机等⽅⾯。
③在通信中,⽐如可视电话、会议电视、传真等⽅⾯。
④在⼯业⽣产的质量检测中,⽐如对⾷品包装出⼚前的质量检查、对机械制品质量的监控和筛选等⽅⾯。
⑤在安全保障、公安⽅⾯,⽐如出⼊⼝控制、指纹档案、交通管理等。
数字图像处理第四章部分答案(全手打来自文库)
6,7→7
8
求变换后的匹配直方图
p(j)
0.14 0.22 0.25 0.33 0.06
4.5
解:已知通过图像平均法可以将噪声均方差降低到原来的 1/ m ,m 为用于平均的图像个数,
所以 g=1/10 n= 1/ m n
所以 M=100,T=3.33 秒
4.8 解:对提示表达式进行傅里叶变换得
4.2
解:1、[0,15]=3/2[0,10]; 2、[15,25]=15+[10,20]-10; 3、[25,30]=25+1/2([20,30]-20);
4.4
直方图均衡化
步
计算方法或公式
骤
1 列出图像灰度级(i 或 j)
2 计算原始直方图:p(i)=ni∕n
计算结果
0
1
2
3
4
5
6
7
0.14 0.22 0.25 0.17 0.10 0.06 0.03 0.03
4
计算原始累积直方图 pi 0.14 0.36 0.61 0.78 0.88 0.94 0.97 1.00
5
计算规定累积直方图 pj 0
0
0
0.19 0.44 0.65 0.89 1.00
6
按照 pi→ pj 找到对应的 3
4
5
6
6
6
7
7
i和j
7
确定变换关系 i→j
0→3 1→4 2→5 3,4,5→6
0.14
(j)=nj∕n
直方图规定化
0.22 0.25 0.17 0.10 0.12步 Nhomakorabea 计算方式
计算结果
1
列出图像灰度级 i,j 0
数字图像处理 第四章图像增强
Pr(rk) 0.19 0.25 0.21 0.16 0.08 0.06
0.03
0.02
计算每个sk对应的像素数目 计算均衡化后的直方图
Tr
Sk并
sk
nsk Ps(sk)
0.19
1/7
0.44
3/7
S0=1/7 S1=3/7 S2=5/7
790 0.19 1023 0.25 850 0.21
0.65
✓ 校正后的原始图像 f (i, j) C g(i, j) gc(i, j)
9
灰度级校正注意问题:
对降质图像进行逐点灰度级校正所获得的图像, 其中某些像素的灰度级值有可能要超出记录器 件或显示器输入灰度级的动态范围,在输出时 还要采用其他方法来修正才能保证不失真地输 出。
降质图像在数字化时,各像素灰度级都被量化 在离散集合中的离散值上,但经校正后的图像 各像素灰度极值并不一定都在这些离散值上, 因此必须对校正后的图像进行量化。
),使得结果图像s的直方图Ps(s)为一个常数
Pr(r)
Ps(s)
直方图均衡化 T(r)
r
s
26
直方图均衡化理论基础
-1 由概率论可知,若Pr(r)和变换函数s=T(r)已知,r=T (s)是单 调增长函数,则变换后的概率密度函数Ps(s)可由Pr(r)得到:
分 布 函 数 Fs(s)sp( s s) ds=rp( r r) dr
✓ 计算均衡后的直方图
s k 计
T( rk)
k
=
i 0
P(r
r
)
i
k i 0
ni n
s k并
round( sk计 * (L L 1
1))
j
第四讲 灰度直方图变换
直方图均衡化是将原图像通过某种变换,得到一幅灰度 直方图为均匀分布的新图像的方法。
直方图均衡化
连续图像直方图均衡化
先讨论连续变化图像的均衡化问题,然后推广到离 散的数字图像上。
设r和s分别表示归一化了的原图像灰度和经直方图 修正后的图像灰度。即
3 3/7 656 0.16 0.81 6/7
4 4/7 329 0.08 0.89 6/7 6/7 985 0.24
5 5/7 245 0.06 0.95 1
6 6/7 122 0.03 0.98 1
7 1 81 0.02 1 1 1 448 0.11
k rk nk Pr(rk) 0 0 790 0.19 1 1/7 1023 0.25 2 2/7 850 0.21 3 3/7 656 0.16 4 4/7 329 0.08 5 5/7 245 0.06 6 6/7 122 0.03 7 1 81 0.02
1023 0.25
850 0.21 985 0.24 448 0.11
本例题可编程实现 方法一(image35.m) %本程序绘出直方图均匀化的变换函数 %以及变化前后的直方图 k=0:7; rk=k/7; nk=[790 1023 850 656 329 245 122 81]; n=sum(nk(:)); Pr=nk/n; subplot(131) stem(rk,Pr) xlabel('rk') ylabel('P_r(r_k)') title('均匀化前的直方图') Tr=cumsum(Pr,2); %沿列的方向求累积和 subplot(132) stem(rk,Tr) xlabel('rk') ylabel('s_k=T(r_k)') title('变换函数')
2.直方图与灰度处理
(0,0)点出发,经 过多个分段节点,最 终到达(255,255) 点,这之间所有的直 线线段将组成一个线 性函数。
y y1 x x1 y y1 y2 xy yx x 1 2 1 2 x1 x2 x1 x2
y 255 y2 255( y2 x2 ) x 255 x2 255 x2
1 6 1 3 1 1 2 4 6 4 4 3 3 3 6 5 6 6 4 5 2 2 4 6 6 6 6 2 4 6 6 1 6 6 3 6
h [5,4,5,6,2,14]
灰度直方图示例(1)
灰度直方图示例(2)
灰度直方图示例(3)
基于直方图的灰度处理(1)
• 灰度处理:处理过程只与像素的灰度有关系,与
• 灰度:像素的颜色(值) • 直方图:用横坐标表示不
同特性,纵坐标表示与特 性对应的值,值的大小用 直方柱高度表示的图形。 灰度直方图:横坐标表示 灰度值,纵坐标表示图像 中具有该灰度值的像素的 个数。
•
什么是灰度直方图(2)
• 灰度直方图的统计:遍历图像中的所有像素,将
•
属于同一灰度的像素个数累加起来。 像素的空间信息丢失,只记录其灰度分布状况。
y y1 x x1 y( x x1 ) ( y2 y1 ) y1 x2 x1
y 255 y2 255( y2 x2 ) x 255 x2 255 x2
灰度非线性拉伸(2)
• 作用:可将整个灰度分布域[0,255]中的不
同区域按照不同的灰度分布调整要求进行 有一定曲度的拉伸或挤压,以便更有效地 增强目标内容,削弱无效信息。
• •
像素的位置无关。 假设对横坐标为 x 、纵坐标为 y 的像素 f ( x, y) g , 经过灰度处理,其输出的灰度值为 f ( x, y) T ( g ) 。这 T 里 f ( x, y) 是处理后图像的像素,表示灰度处理函数。 直方图处理的步骤:(1)针对原始灰度分布范围 内的每一个灰度 g ,计算其经 T 处理后的灰度值, 获得灰度映射表;(2)遍历图像中所有像素,将 每个像素根据灰度值映射表更新为新灰度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-算法思想: 设: {rk}是原图象的灰度级, {zk}是符合指定直方图结果图象的灰度级 我们的目标是:找到一个灰度级变换H,有: z = H(r)
-算法步骤: 1) 对{rk}、{zk}分别做直方图均衡化
为原始图像灰度分布的PDF,
2) 求G变换的逆变换 z = G-1 (v)
为希望得到的PDF。
图像灰度直方图
4.2.2 (1)直方图只包含了图像中某一灰度值的像素出现
的概率信息,而丢失了其所在位置的信息。 (2)图像与直方图之间是多对一的映射关系。
图像与直方图间的多对一关系
(3) 由于直方图是对具有相同灰度值的像素统计得到的, 因此,一幅图像各子区的直方图之和就等于该图像全图的直方 图。
4.2 直 方 图
4.2.1 基本概念
概率密度函数(Probability Density Function (PDF) ) :设r表示图像中像素灰度级,它可看作是一个随机变 量。作归一化处理后,被限定在[0, 1]之内。假定对 每一瞬间它是连续的随机变量,那么就可以用pr(r)来 表示原始图像的灰度分布。
数字图像处理第4章直方图 和灰度变换
第四章 图像增强与平滑
4.1 背景知识 4.2 直方图 4.3 灰度变换 4.4 图像噪声 4.5 去除噪声 4.6 图像锐化 4.7 图像的伪彩色处理
图像处理中最具有吸引力的领域之一
增强的首要目标是处理图像,使其比原始图像更适合于 特定应用。其技术主要包括直方图修改处理、图像平 滑、图像锐化及彩色处理等。
钟楼图像及直方图 (a)钟楼图像;(b)钟楼图像的直方图
4.2.4
一幅给定图像的灰度级分布在0≤r≤1范围内,可以对[0, 1 ]区间内的任一个r值进行如下变换:
s=T(r)
通过上述变换,每个原始图像的像素灰度值r都对应产生一个s 值。变换函数T(r)应满足下列条件:
(1) 在0≤r≤1区间内,T(r)值单调增加; (2) 对于0≤r≤1, 有 0≤T(r)≤1。
用幂次变换进
人
的
行对比度增强
脊
椎
。相应的伽马
骨
折
值分别为0.6,
的
核
0.4和0.3 (c始终
单调递增的灰度级变换函数
由概率论理论可知,如果pr(r) 和变换函数T(r)已知,且T(r) 满足条件(1),则变换变量s的概率密度函数ps (s) 可由以下公 式得到:
由上式可见,通过变换函数T(r)可以控制图像灰度级的概率 密度函数改变图像的灰度层次。这就是直方图修改技术的理论 基础。
4.2.5 直方图均衡化处理 直方图均衡化处理是以累积分布函数变换法为基
2. 对数变换
这种变换来扩展被 压缩的高值图像中 的暗像素。频谱值 的范围从0到106或 更高的情况是常见 的。当计算机处理 像这样的无误数字 时,图像显示系统 通常不能如实地再 现如此大范围的强 度值。
3. 幂次变换
随着γ值的变化将简 单地得到一族变换 曲线。如预期的一 样,我们看到图中 γ>1的值和γ<1的 值产生的曲线有相 反的效果。用于图 像获取、打印和显 示的各种装置根据 幂次规律进行响应 。
直方图的分解
4.2.3
在离散形式下, 用rk代表离散灰度级,用pr(rk)代表pr(r),并 且有下式成立:
式中:nk为图像中出现rk级灰度的像素数,n是图像像素总数,而 nk/n即为频数。在直角坐标系中做出rk与pr(rk)的关系图形,即称 为ena图像;(b) Lena图像的直方图
图像增强的方法分为两大类:空间域方法和频域方法 。
当图像为视觉解释而进行处理时,由观察者最后判断 特定方法的效果。图像质量的视觉评价是一种高度主 观的过程,因此,定义一个“理想图像”标准,通过这 个标准去比较算法的性能。
4.1 背景知识
“空间域增强”是指增强构成图像的像素。空 间域方法是直接对这些像素操作的过程。空 间域处理可由下式定义:
例:
原始直方图
规定化直方图
均衡化处理后的直方图数据
结果直方图数据
直 方 图 规 定 化 处 理 结 果 图
4.3 灰 度 变 换
4.3.1
图像增强常用的三 种类型函数:线性 函数(正比/反比) 、对数函数(对数/ 反对数)、幂函数 (N次幂/N次方根 )。
1. 图像反转
该处理适用于 增强嵌入图像 暗色区域的白 色或灰色细节 ,特别是当黑 色面积占主导 地位时。
3) 根据均衡化的概念,s,v都是常量 用 s替代v有 z = G-1 (s)
2) 求G-1和T的复合变换,有: z = G-1 (T(r)) = G-1T(r) H = G-1T
-算法实现: 1)求出灰度级变换T 2)求出灰度级变换G,同时求出逆变换G-1 3)通过T和G-1求出复合变换H 4)用H对图象做灰度级变换
概率密度曲线:用直角坐标系的横轴代表 灰度级r,纵轴代表灰度级的概率密度函数 pr(r),可作出一条曲线。这条曲线在概率 论中就是概率密度曲线。
图像灰度分布的概率密度函数
直方图 (Histogram): 灰度直方图是灰度级的函数,它表示图像中具有某
种灰度级的像素的个数,反映了图像中每种灰度出现 的频率。灰度直方图的横坐标是灰度级,纵坐标是该 灰度级出现的频度,它是图像最基本的统计特征。
础的直方图修正法。假定变换函数为
式中:ω是积分变量, 函数。
是r的累积分布
直方图均衡化处理
当灰度级是离散值时,
式中:l是灰度级的总数目,pr(rk)是取第k级灰度值的概率,nk 是图像中出现第k级灰度的次数,n是图像中像素总数。则:
其反变换式为
直方图均衡化处理举例:书P58
经直方图均衡化后的Lena图像及直方图 (a) 经直方图均衡化后的Lena图像; (b) 均衡化后的Lena图像的直方图
直方图均衡化处理的特征: ➢ 自动化处理; ➢ 图像动态范围增加; ➢ 灰度简并现象。
4.2.6 直方图规定化处理(直方图匹配)
-算法来源背景:
• 直方图均衡化的缺陷:不能用于交互方式 的图象增强应用,因为直方图均衡化只能 产生唯一结果。
• 希望通过一个指定的函数(如高斯函数) 或用交互图形产生一个特定的直方图。