2017年湖南省高中数学联合竞赛试题 Word版含答案

合集下载

2017年全国高中数学联合竞赛试题(B卷)

2017年全国高中数学联合竞赛试题(B卷)

2017年全国高中数学联合竞赛一试(B 卷)一、填空题:本大题共8个小题,每小题8分,共64分。

1、在等比数列{}n a 中,22=a ,333=a ,则2017720111a a a a ++为2、设复数z 满足i z z 22109+=+,则z 的值为3、设)(x f 是定义在R 上的函数,若2)(x x f +是奇函数,x x f 2)(+是偶函数,则)1(f 的值 为在平面直角坐标系xOy 中,椭圆C 的方程为110922=+y x ,F 是C 的焦点,A 为C 的右顶点,P 是C 上位于第一象限内的动点,则四边形OAPF 的面积最大值为4、在ABC ∆中,若C A sin 2sin =,且三条边c b a ,,成等比数列,则A cos 的值为5、在正四面体ABCD 中,F E ,分别在棱AC AB ,上,满足4,3==EF BE ,且EF 与面BCD 平行,则DEF ∆的面积为 .6、在平面直角坐标系xOy 中,点集{}1,0,1,|),(-==y x y x K ,在K 中随机取出三个点,则这三个点两两之间距离不超过2的概率为7、设a 为非零实数,在平面直角坐标系xOy 中,二次曲线0222=++a ay x 的焦距为4,则实数a 的值为 .8、若正整数c b a ,,满足c b a 1000100102017≥≥≥,则数组),,(c b a 的个数为二、解答题:本大题共3小题,共56分。

解答应写出文字说明、证明过程或演算步骤。

9、(本题满分16分) 设为实数,不等式x x a 252-<-对所有[]2,1∈x 成立,求实数a 的取值范围。

10、(本题满分20分)设数列{}n a 是等差数列,数列{}n b 满足221n n n n a a a b -=++, ,2,1=n(1)证明:数列{}n b 也是等差数列;(2) 设数列{}n a 、{}n b 的公差均是0≠d ,并且存在正整数t s ,,使得t s b a +是整数,求1a 的最小值。

2017年全国高中数学联合竞赛一试和加试(A卷)试题及答案考点分析

2017年全国高中数学联合竞赛一试和加试(A卷)试题及答案考点分析

2017年全国高中数学联合竞赛一试和加试(A 卷)试题及答案考点分析2017年全国高中数学联合竞赛一试卷〉参考答案及评分标准说明孑1.评阅试卷时*请依据本评分标淮.填空趣只设S 分和o 分两档1其他备题的 评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次.N 如果考生的解??方法和本解答不同+只要思路合理"步骤1E 确,在评卷时训 参苇本评分标准适为划分档次评仆.解芥题中第9小题*分対--个栉次.第10. 11小题5分为一个档次,不得增加其他中间档次*一、填空题;本大题共*小题,每小題*分,共64分.设八龙)屣走文任H 上的噌数,对任意实^xfTf(x+3)f(x-4) = -l.又 当0冬“V7时・/(x)=log 3(9-x)・则/X-100)的値为 ____________________________ ・答案;■齐比庄平面現角坐标系xQy 中.fffiEfC 的方程为芝■ +匚=1, F 为C 的上煉点,A 的右顶点.戶是(?上位丁第象限内的別点*则四边Jg OAPF 的面积 的燧大值为 ”解:易知#(3,0), F(O,D.设尸的酸掠圧(3ws 罠JTB 抽叭,w九秤=孔加 V S s^r- = | ■ 3 ■sin 0 + | ■ I ■ 3 cos!〔中 y : — arctan —.当(9 — arctanVTo 时.四边形OAPF iff | 积的fit 大備为卫■土*解:由篆件知,/U + 14) = ---------------- = f (x} t 所以./<x + 7)2.若实数工j 满足”F 4- 2 cosy = 1 .则x — cos y 的収值范围足i _______ 答案:H1,広+ 1].解:由 +.Y 1- 1 -2cos yG[-l > 故GX 时F 可以収?Th 由于扌U+1)'—1的恤域筍-h J5 + 1],从而X-CGSJ 的耿值范围是[一匕J5 + 1]・si n ( 4 *} +4. 若一个三位数中任总两个相邻数码的差均不超过1,则称其为“平稳数”.平稳数的个数是____________ ・答案:75. _解:考虑平稳数赢.若6 = 0,则。

2017年湖南省高中数学联合竞赛试题 (PDF版)

2017年湖南省高中数学联合竞赛试题 (PDF版)

A1
P
K
D
1 1 1 3 1 3 ,选 A 因此,VD-ABC= ×S△ABC×AD= ( 1 1 ) 3 3 2 2 4 48
3、已知椭圆 C:ALx2 y 2 1 ,对于任意实数 k,椭圆 C 被下列直线中所截得弦长,与被直线 l: 8 4 y=kx+1 所截得的弦长不可能相等的是 A.kx+y+k=0 B. kx-y-1=0 C. kx+y-k=0 D. kx+y-2=0 x2 y 2 1 是关于原点 O 对称的中心对称图形,也是关于 x 轴、y 轴对称的轴对 8 4 称图形,∴只要两条直线关于原点成中心对称或者关于 x 轴、y 轴成轴对称,那么它们被椭圆所 截的弦一定是等长的。选 D n 4、对任意正整数 n 与 k(k≤n),用 f(n,k)表示不超过[ ] 且与 n 互质的正整数的个数(其中[x]表示 k
3 48
B.
3 24
C.
3 16
D.
3 12
解:取 B1C1 的中点 K,BC 的中点 L,在矩形 A1KLA 中(如图),
3 3 2 ,故 A1P= A1K= 。 ∵AB=BC=CA=1,∴AL=A1K= 2 3 3
又 AA1=2,由△ALD∽△AA1P 知 AD A1P AL 1 , AA1 4
( S n 1) 2 2S 1 , 2 2 an1 S n1 S n ,∴-(Sn-1) =Sn+1Sn-Sn ,即 S n 1 n Sn Sn
S 1 因此 S n 1 1 S n 1 ,故 1 n 1, Sn S n 1 1 S n 1 S n 1
12、设函数 f(x)是定义在(-,0)上的可导函数,其导数为 f(x),且有 2f(x)+xf(x)>x2,则不等式 (x+2017)2f(x+2017)-f(-1)>0 的解集为__________。 解:∵x<0,2f(x)+xf(x)>x2,∴2xf(x)+x2f(x)<x3<0,故 x2f(x)为(-,0)上的减函数。 不等式(x+2017)2f(x+2017)-f(-1)>0 即(x+2017)2f(x+2017)>(-1)2f(-1), 因此,x+2017<0 且 x+2017<-1,故 x<-2018。 三、解答题(本大题共 4 个小题,满分 72 分。解答需要有完整的推理过程或演算步骤。) 13、(本小题满分 16 分) 在锐角△ABC 中,sinA= (1)求 sin2(B+C)+ sin 2

2017年全国高中数学联合竞赛试题和解答(A卷)

2017年全国高中数学联合竞赛试题和解答(A卷)

2017年全国高中数学联赛A卷一试一、填空题1•设f(x)是定义在R上的函数,对任意实数x有f(x 3) f(x_4) = -1 .又当0辽X ::: 7时,f (x) =log2(9 —x),则f(—100)的值为______________2•若实数x, y满足x2+2cosy =1,贝U x — cosy的取值范围是___________2 23.在平面直角坐标系xOy中,椭圆C的方程为:x y 1 , F为C的上焦点,A为C的9 10右顶点,P是C上位于第一象限内的动点,则四边形OAPF的面积的最大值为 _____________ . 4•若一个三位数中任意两个相邻数码的差不超过1,则称其为“平稳数”.平稳数的个数是5•正三棱锥P - ABC中,AB =1 , AP =2,过AB的平面:将其体积平分,则棱PC与平面a所成角的余弦值为___________ .6•在平面直角坐标系xOy中,点集K =〈x,y)x, y - -1,0,1】在K中随机取出三个点,贝U这三点中存在两点之间距离为J5的概率为______________7•在ABC中,M是边BC的中点,N是线段BM的中点若.A ABC的面积为3J3,则AM AN的最小值为______________ •8•设两个严格递增的正整数数列也Jb n 1满足:a®:::2017,对任意正整数n,有a n^ =a n* +a n,b n+ =2b n,则a 的所有可能值为___________ •二、解答题9•设k,m为实数,不等式x2—kx —m兰1对所有la,b】成立证明:b—a兰2应.10•设/必必是非负实数,满足x1 x2 X3 =1,求(x1 3x2 5X3)(X1 •—-)的最3 5小值和最大值•11.设复数Z1,Z2满足Re(z1) 0, ReZ) 0,且Re(才)=Re(z;) = 2(其中Re(z)表示复数z的实部)•(1)求Re⑵Z2)的最小值;(2)求N +2 + Z2 + 2 —乙—Z2的最小值•2017年全国高中数学联赛 A 卷二试.如图,在:ABC 中,AB=AC , I 为:ABC 的内心,以A 为圆心,AB 为半径作圆 M , 以I 为圆心,IB 为半径作圆 『2,过点B , I 的圆r 3与】1,丨2分别交于点P,Q (不同于点B ).设IP 与BQ 交于 点R .证明:BR_CR 二.设数列^aj 定义为 Q =1 ,a + nQ 兰 n,a n + = Jn =1,2,….求满足an- n,a n A n,a r ::: r < 32的正整数r 的个数•三•将33 33方格纸中每个小方格染三种颜色之一,使得每种颜色的小方格的个数相等 •若相邻连个小方格的颜色不同,则称它们的公共边为“分隔边”•试求分隔边条数的最小值•四•设m,n 均是大于1的整数,m_n , a 1,a 2/' ,a n 是n 个不超过 m 的互不相同的正整数, 且a 「a 2,…,a .互素•证明:对任意实数x ,均存在一个i (1 一 i 一 n ),使得2017年全国高中数学联赛A 卷一试答案1.答案:丄解:由黃件知*广(工+[4) = _—-——=r 所以dA-100)= <(-100 + 14x7)= === ~/(5) log-422a i x2 m(m 1)II X ,这里| y 表示实数y到与它最近的整数的距离答案:[-1*若+1] *解:由于 v'-1-2cosr^[-1. 3J* 故[-点间.由cw r --— 可知» v -cos v-x --------------- ----- -(.V - U : - 1.阖此当 r =[时,1- 7 'A g 和有最小值|(这时$可以S1-):当V - V'时 * A cos r 有最大值Jj I (这时F 可以取 2由于+的值域是[7 巧+ 1]・从而x-eosy 的取值范围是[-1, V3 + IL3.答第芈.£r解:易知卫⑶0)} F(0, 1). i 殳P 的坐标是(3cos<9, J?6审询,W 0冷・则盈>S — s 叫州F 屮 」辺神|——(vTOcosf/ I .sin//)= —^―sin(^ + ip) *2 2arctati ^1" 当/y-ardanVlO 时・四边形Oz 尸尸面积的最大值为芒叵. 10 24.答案:75. _解;考虑平稳数赢*若b = 0,则□ = ), c 怎{01}「有2个平稳数.若B=l ・JWX 仏2},虫{0丄2"有2x3 = 6个平稳数・, ^r2<6<8,则口,匚€少一1",占+ 1八 有7x3x3 = 63个平稳数.若b = 9、则{8,9} 1有2x2 = 4个平稳数.综上可知,平橈数的个数是2 + 6 +利+ 4=方・5.-丄 j.Jiihim 11WTT …答案:看解:设血PC 的中点分別为H ,则易证平而卫&灯就是平面口.由中线 长公式知5 I gg 」"土 %—; 2KMMC 石 故棱PC 与平面任所戒角的余弦值为婕.106.解:易知K 中有9个点,故在K 中粗机取出三个点的 方式数为C : = 84种.将K 中的点按右图标记为其中有8 对点之问的葩奥为J?.由对称性,考虑取厶局两点的情 况.则剩下的一个点有7种取法,这样有7x8 = 56个三点 组(不计每组中三点的次序人对每个4G = U,--S 8). K中恰有4宀4乜两点与之距證为{这里下标按模8理解).因而恰有 卩,心/』(心kN …⑻这$个三点组被计了两次.从而满足条件的三点组个 数为56-8 = 48・进而所求概率为—=-.S4 77.答案土 C 卜I 解:由条件知f AMACt AN故2'?斗 4I ,-?—-1' ][ ( I —' I TAM AN - -{Jfi + ^C]*| -.4B + - JC - - 3|AB^ +|^C| -4JS-Jtj.由于 ^3 = S 曲北=|jC | ■ sin J = |^45||/1C| r 所以 AB AC — 4* 进2 4步可得 AH AC — .4( I €0> .4 — 2* 从而IV/r所以 KM = JIC')- -PC --(2^= ---- T2文易知直线/<在平滴。

湖南省2017年高中数学联赛预赛试题

湖南省2017年高中数学联赛预赛试题

2017年湖南省高中数学联合竞赛试卷一、选择题(本大题共6个,每小题5分,满分30分)1. 设集合{}1,2,3,....,2017X =,集合{(,,),,,S x y z x y z X =∈且三条件,,x y z y z x z x y <<<<<<恰好有一个成}立,若(,,),(,,)x y z S z w x S ∈∈,则下列选项正确的是( )A. (,,)(,,)y z w S x y w S ∈∉且B. (,,)(,,)y z w S x y w S ∈∈且C. (,,)(,,)y z w S x y w S ∉∈且D. (,,)(,,)y z w S x y w S ∉∉且2.已知点P 为正三棱柱111ABC A B C -上底面111A B C ∆的中心,作平面BCD AP ⊥,与棱1AA 交于点D,若122AA AB ==,则三棱锥D ABC -的体积为( )A.48 B. 24 C. 16 D. 123.已知椭圆C: 22184x y +=,对于任意实数k,椭圆C 被下列直线所截得弦长,与被直线:1l y kx =+所得弦长不可能相等的是( )A. 0kx y k ++=B. 10kx k --=C. 0kx y k +-=D. 20kx y +-=4.对任意正整数n 与k ()k n ≤,用(,)f n k 表示不超过n k ⎡⎤⎢⎥⎣⎦且与n 互质的正整数个数,则(100,3)f =( )A. 11B. 13C. 14D. 195.如果111A B C ∆三个内角的余弦值分别等于222A B C ∆的三个内角的正弦值,则( ) A. 111A B C ∆是锐角三角形,222A B C ∆也是锐角三角形 B. 111A B C ∆是钝角三角形,222A B C ∆也是钝角三角形 C. 111A B C ∆是锐角三角形,222A B C ∆也是钝角三角形 D. 111A B C ∆是钝角三角形, 222A B C ∆也是锐角三角形6.将石子摆在如果所示的梯形形状,称具有“梯形” 结构的石子数依次构成的数列{}n a : 5,9,14,20,,,,,,,,,,,为“梯形数列”,根据梯形的构成,可知624a =( )• • • • • •• • • • • • • • •• • • • • • • •• • • • •A.166427B.196248C.196249D.196250二、填空题(本大题共6个,每小题8分,满分48分)7.已知函数()f x 满足()()(),(1)3f m n f m f n f +==,则22(1)(2)(2)(4)(1)(3)f f f f f f ++++22(3)(6)(4)(8)(5)(7)f f f f f f ++++=_________8.已知,,A B C 为圆O 的三点,且1()2AO AB AC =+,则AB AC ⋅=__________9.已知复数z ,若方程248430(x zx i i -++=为虚数单位)有实数根,则复数z 的Z 的最小值=_________10.对于正整数n,定义!(1)(2).......21n n n n =--⋅,记12!.....12!3!(1)!n nS n n ⎡⎤=+++-⎢⎥+⎣⎦, 2017S =________11.当0x π≤≤,且3sin2xtan x =____________ 12.设函数()f x 是定义在(),0-∞上的可导函数,其导函数为()f x ',有22()()f x xf x x '+>, 则不等式2(2017)(2017)(1)0x f x f ++-->的解集_______________13.(16分) 在锐角ABC ∆中,sin A ,a,b,c 为A,B,C 的对边, (1)求2sin 2()sin 2B CB C +++的值 (2)若4a =,求当AB AC ⋅取最大值时ABC ∆的面积14.(16分)已知数列{}n a 满足211(1)2,()n n n s a a n N s ++-==-∈,其中n S {}n a 的前n 项和, (1)求证:11n s ⎧⎫⎨⎬-⎩⎭为等差数列(2)若对于任意的n,均有:12(1)(1).....(1)n s s s kn +++≥,试求k 的最大值.15.(20分) 已知,a b R +∈,a b ≠(1ln 2a b a ba lnb -+<- (2)如果,a b 是函数()ln 2017f x x x =-的零点,证明:2ab e > (此题目有错误,省竞委已经做了声明)16.(20分) 已知AB 是椭圆22:1(,0,)C mx ny m n m n +=>≠上的斜率为1的弦,AB 的垂直平分线与椭圆交于CD 两点,设CD 的中点F,CD 交于AB 于E (1)求证:2224CD AB EF -= (2)求证:四点ABCD 共圆四、加试(每大题20分)(发哥给学生考时个人加的)(1) 在锐角ABC ∆,证明:(2)设12,,...,0n a a a >,证明:....(3)给定正整数k,a,b,若对于任意正整数n,都有:n k n k a n b n ++,证明:a=b(4)对于给定正整数3n ≥,任取12...,n x x x <<<,求211211n n i j i j n ni ji j x x f x x ====⎛⎫- ⎪⎝⎭=-∑∑∑∑的最大值.。

2017年全国高中数学联赛A卷和B卷试题和答案(word版)全文

2017年全国高中数学联赛A卷和B卷试题和答案(word版)全文

可编辑修改精选全文完整版2017年全国高中数学联赛A 卷一试一、填空题1.设)(x f 是定义在R 上的函数.对任意实数x 有1)4()3(-=-⋅+x f x f .又当70<≤x 时.)9(log )(2x x f -=.则)100(-f 的值为__________.2.若实数y x ,满足1cos 22=+y x .则y x cos -的取值范围是__________.3.在平面直角坐标系xOy 中.椭圆C 的方程为1109:22=+y x .F 为C 的上焦点.A 为C 的右顶点.P 是C 上位于第一象限内的动点.则四边形OAPF 的面积的最大值为__________.4.若一个三位数中任意两个相邻数码的差不超过1.则称其为“平稳数”.平稳数的个数是 。

5.正三棱锥P-ABC 中.AB=1.AP=2.过AB 的平面α将其体积平分.则棱PC 与平面α所成角的余弦值为________.6.在平面直角坐标系xOy 中.点集}{1,0,1,),(-==y x y x K .在K 中随机取出三个点.则这三点中存在两点之间距离为5的概率为__________.7.在ABC ∆中.M 是边BC 的中点.N 是线段BM 的中点.若3π=∠A .ABC ∆的面积为3.则AN AM ⋅的最小值为__________.8.设两个严格递增的正整数数列{}{}n n b a ,满足:20171010<=b a .对任意正整数n .有n n n a a a +=++12.n n b b 21=+.则11b a +的所有可能值为__________.二、解答题9.设m k ,为实数.不等式12≤--m kx x 对所有[]b a x ,∈成立.证明:22≤-a b .10.设321,,x x x 是非负实数.满足1321=++x x x .求)53)(53(321321x x x x x x ++++的最小值和最大值.11.设复数21,z z 满足0)Re(1>z .0)Re(2>z .且2)Re()Re(2221==z z (其中)Re(z 表示复数z 的实部). (1)求)Re(21z z 的最小值; (2)求212122z z z z --+++的最小值.2017年全国高中数学联赛A 卷二试一.如图.在ABC ∆中.AC AB =.I 为ABC ∆的内心.以A 为圆心.AB 为半径作圆1Γ.以I 为圆心.IB 为半径作圆2Γ.过点I B ,的圆3Γ与1Γ,2Γ分别交于点Q P ,(不同于点B ).设IP 与BQ 交于点R .证明:CR BR ⊥二.设数列{}n a 定义为11=a . ,2,1,,,,1=⎩⎨⎧>-≤+=+n n a n a n a n a a n n n n n .求满足20173≤<r a r 的正整数r 的个数.三.将3333⨯方格纸中每个小方格染三种颜色之一.使得每种颜色的小方格的个数相等.若相邻连个小方格的颜色不同.则称它们的公共边为“分隔边”.试求分隔边条数的最小值.四.设n m ,均是大于1的整数.n m ≥.n a a a ,,,21 是n 个不超过m 的互不相同的正整数.且n a a a ,,,21 互素.证明:对任意实数x .均存在一个)1(n i i ≤≤.使得x m m x a i )1(2+≥.这里y 表示实数y 到与它最近的整数的距离.2017年全国高中数学联赛A卷一试答案1.2.3.4.5.7.8.9.10.11.2017年全国高中数学联赛A卷二试答案一.二.三.四.2017年全国高中数学联合竞赛一试(B 卷)一、填空题:本大题共8个小题,每小题8分,共64分.1.在等比数列{}n a 中.2a =.3a =则1201172017a a a a ++的值为 .2.设复数z 满足91022z z i +=+.则||z 的值为 .3.设()f x 是定义在R 上的函数.若2()f x x +是奇函数.()2xf x +是偶函数.则(1)f 的值为 . 4.在ABC ∆中.若sin 2sin A C =.且三条边,,a b c 成等比数列.则cos A 的值为 .5.在正四面体ABCD 中.,E F 分别在棱,AB AC 上.满足3BE =.4EF =.且EF 与平面BCD 平行.则DEF ∆的面积为 .6.在平面直角坐标系xOy 中.点集{(,)|,1,0,1}K x y x y ==-.在K 中随机取出三个点.则这三个点两两之间距离均不超过2的概率为 .7.设a 为非零实数.在平面直角坐标系xOy 中.二次曲线2220x ay a ++=的焦距为4.则a 的值为 .8.若正整数,,a b c 满足2017101001000a b c ≥≥≥.则数组(,,)a b c 的个数为 .二、解答题 (本大题共3小题.共56分.解答应写出文字说明、证明过程或演算步骤.)9.设不等式|2||52|x xa -<-对所有[1,2]x ∈成立.求实数a 的取值范围.10.设数列{}n a 是等差数列.数列{}n b 满足212n n n n b a a a ++=-.1,2,n =.(1)证明:数列{}n b 也是等差数列;(2)设数列{}n a 、{}n b 的公差均是0d ≠.并且存在正整数,s t .使得s t a b +是整数.求1||a 的最小值.11.在平面直角坐标系xOy 中.曲线21:4C y x =.曲线222:(4)8C x y -+=.经过1C 上一点P 作一条倾斜角为45的直线l .与2C 交于两个不同的点,Q R .求||||PQ PR ⋅的取值范围.2017年全国高中数学联合竞赛加试(B 卷)一、(本题满分40分)设实数,,a b c 满足0a b c ++=.令max{,,}d a b c =.证明:2(1)(1)(1)1a b c d +++≥-二、(本题满分40分)给定正整数m .证明:存在正整数k .使得可将正整数集N +分拆为k 个互不相交的子集12,,,k A A A .每个子集i A 中均不存在4个数,,,a b c d (可以相同).满足ab cd m -=.三、(本题满分50分)如图.点D 是锐角ABC ∆的外接圆ω上弧BC 的中点.直线DA 与圆ω过点,B C 的切线分别相交于点,P Q .BQ 与AC 的交点为X .CP 与AB 的交点为Y .BQ 与CP 的交点为T .求证:AT 平分线段XY .四、(本题满分50分)设1220,,,{1,2,,5}a a a ∈.1220,,,{1,2,,10}b b b ∈.集合{(,)120,()()0}i j i j X i j i j a a b b =≤<≤--<.求X 的元素个数的最大值.一试试卷答案1.答案:89 解:数列{}n a 的公比为33232a q a ==.故120111201166720171201118()9a a a a a a q a a q ++===++. 2.答案:5。

湖南省三湘名校教育联盟2017届高三第三次大联考试题数学理Word版含答案bybao

湖南省三湘名校教育联盟2017届高三第三次大联考试题数学理Word版含答案bybao

三湘名校教育联盟●2017届高三第三次大联考理科数学第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.已知集合{}{}32|31,|4120x A x B x x x +=<=-->,则()R C A B = A. [)3,2-- B.(],3-∞- C. [)()3,26,--+∞ D.()()3,26,--+∞2.已知命题:p ABC ∆中,若A B >,则cos cos A B >,则下列命题为真命题的是A. p 的逆命题B. p 是否命题C. p 逆否命题D. p 的否定3.已知函数()f x 是定义在R 上周期为4的奇函数,当02x <<时,()2log f x x =,则()722f f ⎛⎫+= ⎪⎝⎭A. 1B. 1-C. 0D. 24.执行如图所示的程序框图,若输入x 的值为1,输出n 的值为N,则在区间[]1,4-上随机选取一个数M,1M N ≥-的概率为 A. 15 B. 25 C. 35 D. 455.欧拉公式cos sin ix e x i x =+(i 为虚数单位)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到了复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”,根据欧拉公式可知,表示的复数2i e 在复平面内位于A.第一象限B. 第二象限C. 第三四象限D.第四象限6.函数cos ln x y x=-的图象大致是 7.()9214x x x ⎛⎫-+ ⎪⎝⎭的展开式中5x 的系数为 A. 36 B. -144 C. 60 D.-608.如图是一个四面体的三视图,三个正方形的边长均为2,则四面体外接球的体积为A.32π B. 43π43π D. 3π 9.体育课排球发球项目考试的规则是:每位同学最多可发球3次,一旦发球成功,则停止发球,否则一直发到3次为止.设某学生一次发球成功的概率为()0p p ≠,发球次数为X ,则X 的期望() 1.75E X >,则p 的取值范围是 A. 70,12⎛⎫ ⎪⎝⎭ B. 7,112⎛⎫ ⎪⎝⎭ C. 10,2⎛⎫ ⎪⎝⎭ D.1,12⎛⎫ ⎪⎝⎭10.一个等比数列的前三项的积为2,最后三项的积为4,且所有项的积为64,则该数列的项数为A. 13B. 12C. 11D. 1011.如图,抛物线()220y px p =>和圆220x y px +-=,直线l 经过抛物线的焦点,依次交抛物线与圆于A,B,C,D 四点,2AB CD ⋅=则p 的值为 A. 222212.已知函数()()33f x ax a x =+-在[]1,1-的最大值为3,则实数a 的取值范围是 A. 3,32⎡⎤-⎢⎥⎣⎦ B. 3,122⎡⎤-⎢⎥⎣⎦C. []3,3-D. []3,12- 第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分.13.已知正项等差数列{}n a 的前n 项和为n S ,3040S =,则38a a ⋅的最大值为 .14.已知实数,x y 满足2220x y x y y +≤⎧⎪+≥⎨⎪≥⎩,则z ax y =+的最小值为1,则a = .15.以40km/h 向北偏东30航行的科学探测船上释放了一个探测气球,气球顺风向向正东飘去,3min 后气球上升到1km 处,从探测船上观察气球的仰角为30,则气球的水平漂移速度是为 km/h. 16.已知平面向量,a b 满足2a b ==,存在单位向量e ,使得()()0a e b e -⋅-=,则a b -的取值范围为 .三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.(本题满分12分)已知函数()()sin sin ,0.3f x x x πωωω⎛⎫=-+> ⎪⎝⎭(1)若()f x 在[]0,π上的值域为3,12⎡⎤-⎢⎥⎣⎦,求ω的取值范围; (2)若()f x 在0,3π⎡⎤⎢⎥⎣⎦上单调,且()003f f π⎛⎫+= ⎪⎝⎭,求ω的值. 18.(本题满分12分)为了研究一种昆虫的产卵数y 和温度x 是否有关,现收集了7组观测数据列于下表中,并做出了散点图,发现样本点并没有分布子啊某个带状区域内,两个变量并不呈现线性相关关系,现分别用模型①212y C x C =+与模型;②34C x C y e +=作为产卵数y 和温度x 的回归方程来建立两个变量之间的关系.(1)在答题卡上分别画出y 关于t 的散点图,z 关于x 的散点图,根据散点图判断哪一个模型更适宜作为回归方程类型?(给出判断即可,不必说明理由);(2)根据表中数据,分别建立两个模型下y 关于x 的回归方程;并子啊两个模型下分别估计温度为的产卵数.(1234,,,C C C C 与估计值均精确到小数点后两位)(参考数据:4.65 4.85 5.05104.58,127.74,156.02e e e ≈≈≈)(3)若模型①、②的相关指数计算分别为22120.82,0.96.R R ==,请根据相关指数判断哪个模型的拟合效果更好.19.(本题满分12分)已知三棱台111ABC A B C -中,11114,222,1AB BC AC AC AA CC ======,平面11ABB A ⊥平面11ACC A(1)求证:1BB ⊥平面11ACC A ;(2)点D 为AB 上一点,二面角1D CC B --的大小为30,求BC 与平面1DCC 所成角的正弦值.20.(本题满分12分)一张半径为4的圆形纸片的圆心为12,F F 是圆内一个定点,且122F F =,P 是圆上一个动点,把纸片折叠使得2F 与P 重合,然后抹平纸片,折痕为CD,设CD 与半径1PF 的交点为Q,当P 在圆上运动时,则Q 点的轨迹为曲线为E,以12F F 所在的直线为x 轴,12F F 的中垂线为y 轴建立平面直角坐标系,如图.(1)求曲线E 的方程;(2)曲线E 与x 轴的交点为12,A A (1A 在2A 的左侧),与x 轴不重合的动直线l 过点2F 且与E 交于M,N 两点(其中M 在x 轴上方),设直线12,A M A N 交于点T ,求证:动点T 恒在定直线l '上,并求出l '的方程.21.(本题满分12分)已知函数()()22ln .f x x x x a =--(1)若()f x 在定义域上为单调递减函数,求实数a 的取值范围;(2)是否存在实数a ,使得()0f x ≤恒成立,且()f x 有唯一零点,若存在,求出满足(),1,a n n n Z ∈+∈的n 的值,若不存在,请说明理由. 请考生在第22、23两题中任选一题作答,如果两题都做,则按照所做的第一题给分;作答时,请用2B 铅笔将答题卡上相应的题号涂黑。

2017年全国高中数学联合竞赛一试(A卷)(含参考答案及评分标准)

2017年全国高中数学联合竞赛一试(A卷)(含参考答案及评分标准)

答案: 13, 20 . 解:由条件可知: a1 , a2 , b1 均为正整数,且 由于 ,故 . .反复运用 {an } 的递推关系知 , 因此 而 21a1 a10 b10 512b1 2b1 (mod 34) , ,故有 . 另一方面,注意到 ,有 . 当 当 时,①,②分别化为 时,①,②分别化为 ,此时 当 . ,得到唯一的正整数 ,无解. ,得到唯一的正整数 ,故 ②
( x1 + 3x2 + 5 x3 )( x1 +
x2 x3 1 5x + ) = ( x1 + 3x2 + 5 x3 )(5 x1 + 2 + x3 ) 3 5 5 3 2 1 1 5x ≤ ⋅ ( x1 + 3x2 + 5 x3 ) + (5 x1 + 2 + x3 ) 5 4 3
1 PP PF 1 1 P 2F 1 2 4 2 PF 1 2 P 2 F2 PP 1 2 4 2 , ………………15 分 (例如, 当 z1 z2 2 2 i 时,F2 恰是 PP 等号成立当且仅当 F2 位于线段 PP 1 2 上 1 2 的中点) . 综上可知, z1 2 z2 2 z1 z2 的最小值为 4 2 . …………20 分
① ② ③
a b a b ab f k m 1 . 2 2 2
由① ② 2 ③知, a b ( a b) 2 4, =f ( a ) f ( b ) 2 f 2 2 故ba 2 2 .
2
1 14 ………………10 分 = 6 x1 + x2 + 6 x3 20 3 1 9 2 ≤ ( 6 x1 + 6 x2 + 6 x3 ) = , 20 5 1 1 9 = x1 = , x2 0, = x3 当 时不等式等号成立,故欲求的最大值为 . ………20 分 2 2 5 11. ( 本 题 满 分 20 分 ) 设 复 数 z1 , z2 满 足 Re( z1 ) 0, Re( z2 ) 0 , 且

2017年全国高中数学联合竞赛试题及解答.(A卷)

2017年全国高中数学联合竞赛试题及解答.(A卷)



2 2 1 AM AN 3 AB AC 4 AB AC , 8
由 3 S ABC
1 3 AB AC sin A AB AC 得 AB AC 4 2 4
2
所以 AB AC 2 ,所以 3 AB
AC 8 3 ,当且仅当 AB
x x1 3x 2 5 x3 x1 2 3
★解析:由柯西不等式

x3 的最小值和最大值。 5 x2 5 x3 3 x3 5 1
2
x x x1 3x 2 5 x3 x1 x1 3 x 2 x1 2 3 3 5
当 x1 1 , x 2 0 , x 3 0 时取等号,故所求的最小值为 1 ; 又 x1 3 x 2 5 x 3 x1

x 2 x3 1 5x x1 3 x 2 5 x 3 5 x1 2 x 3 3 5 5 3
2
512 b1 ② 55
★证明:记 f ( x ) x kx m , x a, b ,则 f ( x ) 1,1 。于是
2
f (a ) a 2 ka m 1 ①; f (b) b 2 kb m 1 ② ab ab 2 ab )( ) k( ) m 1 ③ 2 2 2 ①+②- 2 ③知 f(
2017 年全国高中数学联合竞赛一试(A 卷)
一、填空题:本大题共 8 个小题,每小题 8 分,共 64 分。 2017A1、设 f ( x ) 是定义在 R 上函数,对任意的实数 x 有 f ( x 3) f ( x 4) 1 ,又当 0 x 7 时, f ( x ) log 2 (9 x ) ,则 f ( 100) 的值为 ◆答案:

(完整版)湖南省2017年普通高中学业水平考试数学试卷版含解析

(完整版)湖南省2017年普通高中学业水平考试数学试卷版含解析
hing at a time and All things in their being are good for somethin
湖南省普通高中学业水平考试试卷 数 学
1. 如图是一个几何体的三视图,则该几何体为
A. 圆柱 B. 圆锥 C. 圆台 D. 球 【答案】C 【解析】根据正视图,侧视图可知,该几何体不是圆柱圆锥,也不是球,从俯视图可以确定 该几何体是圆台,故选 C. 2. 已知元素 a ∈{0,1,2,3},且 a {0,1,2},则 a 的值为 A. 0 B. 1 C. 2 D. 3 【答案】D 【解析】因为元素 a ∈{0,1,2,3},且 a {0,1,2},所以该元素是 3,故选 D. 3. 在区间[0,5]内任取一个实数,则此数大于 3 的概率为
hing at a time and All things in their being are good for somethin
结果是不是无限个,其次要分析每个结果是不是等可能的,符合以上两点才是几何概型问题, 确定是几何概型问题后,要分析时间的度量是用长度还是面积,体积等,然后代入几何概型 概率公式即可. 4. 某程序框图如图所示,若输入 x 的值为 1,则输出 y 的值是
计算.
试题解析:(1)因为 ,所以 a= ,于是向量 2a+b=

(2)因为 a∥b,所以
,又因为
,所以

所以
.
点睛:本题考查了向量平行的坐标运算,以及正弦和差公式及余弦函数的性质,属于中档题.
-7-
hing at a time and All things in their being are good for somethin
利用解方程得思想处理通项公式问题,利用分组求和、裂项相消、错位相减法等方法求数列

2017年全国高中数学联赛二试试题及答案解析.pdf

2017年全国高中数学联赛二试试题及答案解析.pdf

2010年全国高中数学联合竞赛加试 试题参考答案及评分标准(A 卷)说明:1. 评阅试卷时,请严格按照本评分标准的评分档次给分.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,10分为一个档次,不要增加其他中间档次。

一、(本题满分40分)如图,锐角三角形ABC 的外心为O ,K 是边BC 上一点(不是边BC 的中点),D 是线段AK 延长线上一点,直线BD 与AC 交于点N ,直线CD 与AB 交于点M .求证:若OK ⊥MN ,则A ,B ,D ,C 四点共圆.证明:用反证法.若A ,B ,D ,C 不四点共圆,设三角形ABC 的外接圆与AD 交于点E ,连接BE 并延长交直线AN 于点Q ,连接CE 并延长交直线AM 于点P ,连接PQ .因为2PK =P 的幂(关于⊙O )+K 的幂(关于⊙O ) ()()2222PO rKOr =−+−,同理 ()()22222QK QO rKOr =−+−,所以 2222PO PK QO QK −=−,故 OK ⊥PQ . (10分)由题设,OK ⊥MN ,所以PQ ∥MN ,于是AQ APQN PM=. ① 由梅内劳斯(Menelaus )定理,得1NB DE AQBD EA QN⋅⋅=, ② 1MC DE APCD EA PM⋅⋅=. ③ 由①,②,③可得NB MCBD CD=, (30分) 所以ND MDBD DC=,故△DMN ∽ △DCB ,于是DMN DCB ∠=∠,所以BC ∥MN ,故OK ⊥BC ,即K 为BC 的中点,矛盾!从而,,,A B D C 四点共圆. (40分)注1:“2PK =P 的幂(关于⊙O )+K 的幂(关于⊙O )”的证明:延长PK 至点F ,使得PK KF AK KE ⋅=⋅, ④则P ,E ,F ,A 四点共圆,故PFE PAE BCE ∠=∠=∠,从而E ,C ,F ,K 四点共圆,于是PK PF PE PC ⋅=⋅, ⑤⑤-④,得 2PK PE PC AK KE =⋅−⋅=P 的幂(关于⊙O )+K 的幂(关于⊙O ). 注2:若点E 在线段AD 的延长线上,完全类似.二、(本题满分40分)设k 是给定的正整数,12r k =+.记(1)()()f r f r r r ==⎡⎤⎢⎥,()()l f r = (1)(()),2l f f r l −≥.证明:存在正整数m ,使得()()m f r 为一个整数.这里,x ⎡⎤⎢⎥表示不小于实数x 的最小整数,例如:112⎡⎤=⎢⎥⎢⎥,11=⎡⎤⎢⎥.证明:记2()v n 表示正整数n 所含的2的幂次.则当2()1m v k =+时,()()m f r 为整数.下面我们对2()v k v =用数学归纳法.当0v =时,k 为奇数,1k +为偶数,此时()111()1222f r k k k k ⎛⎞⎡⎤⎛⎞=++=++⎜⎟⎜⎟⎢⎥⎝⎠⎢⎥⎝⎠为整数. (10分)假设命题对1(1)v v −≥成立.对于1v ≥,设k 的二进制表示具有形式1212222v v v v v k αα++++=+⋅+⋅+",FE Q PO NM KDC B A这里,0i α=或者1,1,2,i v v =++". (20分)于是 ()111()1222f r k k k k ⎛⎞⎡⎤⎛⎞=++=++⎜⎟⎜⎟⎢⎥⎝⎠⎢⎥⎝⎠2122kk k =+++ 11211212(1)2()222v v v vv v v ααα−++++=+++⋅++⋅+++""12k ′=+, ①这里1121122(1)2()22v v v v v v v k ααα−++++′=++⋅++⋅+++"".显然k ′中所含的2的幂次为1v −.故由归纳假设知,12r k ′′=+经过f 的v 次迭代得到整数,由①知,(1)()v f r +是一个整数,这就完成了归纳证明. (40分) 三、(本题满分50分)给定整数2n >,设正实数12,,,n a a a "满足1,1,2,,k a k n ≤=",记12,1,2,,kk a a a A k n k+++=="".求证:1112nnk k k k n a A ==−−<∑∑. 证明:由01k a <≤知,对11k n ≤≤−,有110,0kni ii i k a k an k ==+<≤<≤−∑∑. (10分)注意到当,0x y >时,有{}max ,x y x y −<,于是对11k n ≤≤−,有11111kn n k i i i i k A A a a n k n ==+⎛⎞−=−+⎜⎟⎝⎠∑∑11111n ki i i k i a a n k n =+=⎛⎞=−−⎜⎟⎝⎠∑∑ 11111max ,n k i i i k i a a n k n =+=⎧⎫⎛⎞<−⎨⎬⎜⎟⎝⎠⎩⎭∑∑111max (),n k k nk n ⎧⎫⎛⎞≤−−⎨⎬⎜⎟⎝⎠⎩⎭1k n=−, (30分) 故111nnnk kn k k k k a AnA A ===−=−∑∑∑()1111n n nk n k k k AA A A −−===−≤−∑∑111n k k n −=⎛⎞<−⎜⎟⎝⎠∑12n −=. (50分) 四、(本题满分50分)一种密码锁的密码设置是在正n 边形12n A A A "的每个顶点处赋值0和1两个数中的一个,同时在每个顶点处涂染红、蓝两种颜色之一,使得任意相邻的两个顶点的数字或颜色中至少有一个相同.问:该种密码锁共有多少种不同的密码设置?解:对于该种密码锁的一种密码设置,如果相邻两个顶点上所赋值的数字不同,在它们所在的边上标上a ,如果颜色不同,则标上b ,如果数字和颜色都相同,则标上c .于是对于给定的点1A 上的设置(共有4种),按照边上的字母可以依次确定点23,,,n A A A "上的设置.为了使得最终回到1A 时的设置与初始时相同,标有a 和b 的边都是偶数条.所以这种密码锁的所有不同的密码设置方法数等于在边上标记a ,b ,c ,使得标有a 和b 的边都是偶数条的方法数的4倍. (20分)设标有a 的边有2i 条,02n i ⎡⎤≤≤⎢⎥⎣⎦,标有b 的边有2j 条,202n i j −⎡⎤≤≤⎢⎥⎣⎦.选取2i 条边标记a 的有2in C 种方法,在余下的边中取出2j 条边标记b 的有22jn i C −种方法,其余的边标记c .由乘法原理,此时共有2in C 22jn i C −种标记方法.对i ,j 求和,密码锁的所有不同的密码设置方法数为222222004n n i i j n n i i j C C −⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦−==⎛⎞⎜⎟⎜⎟⎜⎟⎝⎠∑∑. ①这里我们约定001C =. (30分)当n 为奇数时,20n i −>,此时22221202n i j n i n i j C −⎡⎤⎢⎥⎣⎦−−−==∑. ② 代入①式中,得()()2222222221222000044222n n i n n i j i n i i n i n n i n n i j i i C C C C −⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎢⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦−−−−====⎛⎞⎜⎟==⎜⎟⎜⎟⎝⎠∑∑∑∑ 0022(1)(21)(21)nnkn kk n kk n n nn k k C C −−===+−=++−∑∑ 31n =+. (40分)当n 为偶数时,若2n i <,则②式仍然成立;若2ni =,则正n 边形的所有边都标记a ,此时只有一种标记方法.于是,当n 为偶数时,所有不同的密码设置的方法数为222222004n n i i j n n i i j C C −⎡⎤⎡⎤⎢⎥⎢⎣⎦⎣⎦−==⎛⎞⎜⎟=⎜⎟⎜⎟⎝⎠∑∑()122210412n i n i n i C ⎡⎤−⎢⎣⎦−−=⎛⎞⎜⎟×+⎜⎟⎜⎟⎝⎠∑ ()222124233n i n i n n i C ⎡⎤⎢⎣⎦−−==+=+∑.综上所述,这种密码锁的所有不同的密码设置方法数是:当n 为奇数时有31n+种;当n 为偶数时有33n+种. (50分)。

2017年湖南省高中数学联合竞赛

2017年湖南省高中数学联合竞赛
< Y < ,Y < < , < <Y
中恰有一个成立 }. 若 ( ,y,z)∈ S,且 ( ,W, )∈ S,则 下列 选项 正确 的为 ( ). (A)(Y, ,W)∈ S,且 x,Y,W) S (B)(Y, ,W)∈ 5,且 ( ,Y,W)∈ S (c)(Y, ,W) S,且 ( ,Y,W)∈ S
的解集为— — . 三 、解答题 (共 72分 )
13.(16分)在锐角△ c中,sin A=竽,
(D).s为钝角三角形 , 为锐角三角形 且 a,b、C为 、 B、 C的对边.
6.如 图 1,将石 子摆成 梯形 形状 ,称具有 “梯形”结构 的石 子数依 次构成 的数列 {a }:
接下来 ,在 图 G中新 增加一条 边 1)21) ,得 到一个新 图 G ,则 G 的团数 W =3.由(1)的 证明 ,图 G 最 多 含有 27条 边 ,从 而 ,图 G最 多含有 27—1=26条边 ,同样与题设 矛盾.
因此 ,图 G中必 然含有 一个 4一 团 ,即必 然有 四名选手 ,他们之 问均互 相 比赛过.
厂(100,3)的值为 ( ).

(A)1 1 (B)13 (C)14 (D)19
Hale Waihona Puke 上 的可导 函数 ,其 导 函数 为 -厂 ( ),且 2f( ) + ( )> .贝0
5.若三角形 s的三个内角的余弦值分别等
( +2 017) +2 017)一 一1)>0
于三角形 的三个 内角的正弦值 ,则( ). (A).s、 均为锐角三角形 (B).s、 均为钝角三角形 (c) 为锐 角三角形 , 为钝角三角形
(B)196 248
(C)196 249
(D)196 250

【新文案】2017年湖南省普通高中学业水平考试卷数学(含答案)

【新文案】2017年湖南省普通高中学业水平考试卷数学(含答案)
A {1,2} ; B {2,3} ; C {1,3} ; D {1,2,3}
2 已知 a、 b、 c R ,则( … ) A, a+c>b+c B a c b c
C acbc
D a+c b c
3,下列几何体中,正视图。侧视图和俯视图都相同的是
()
A, 圆柱 ; B 圆锥
; C 球 ; D 三菱柱
4 已知圆 C 的方程为: (x 1)2 + ( y 2) 2 =4,则圆心坐标与半径分别为(
A {1,2} ; B {2,3} ; C {1,3} ; D {1,2,3}
2 已知 a、 b、 c R ,则( … ) A, a+c>b+c B a c b c
C acbc
D a+c b c
3,下列几何体中,正视图。侧视图和俯视图都相同的是
()
A, 圆柱 ; B 圆锥
; C 球 ; D 三菱柱
4 已知圆 C 的方程为: (x 1)2 + ( y 2) 2 =4,则圆心坐标与半径分别为(
2017 年湖南省普通高中学业水平考试卷
数学
本试题卷包括选择题,填空题和解答题三部分,时量
120 分钟,每分 100 分
一、选择题:本大题共 10 小题,每小题 4 分,满分 40 分,在每小题给出的四个选项中,
只有一项是符合题目要求
1 已知集合 M = {1,2} , N ={2,3} , 则 MUN =( )
A 1; B 3 ; C 2 ;D 7
2017 年湖南省普通高中学业水平考试卷
数学
本试题卷包括选择题,填空题和解答题三部分,时量
120 分钟,每分 100 分
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年湖南省高中数学联合竞赛试题一、选择题:本大题共6个小题,每小题5分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}1,2,,2017X =L ,集合(){,,,,S x y z x y z X =∈,且三条件x y z <<,y z x <<,z x y <<恰有一个成立},若(),,x y z S ∈,且(),,z w x S ∈,则下列选项正确的是( )A .(),,y z w S ∈且(),,x y w S ∉B .(),,y z w S ∈且(),,x y w S ∈C .(),,y z w S ∉且(),,x y w S ∈D .(),,y z w S ∉且(),,x y w S ∉2.已知点P 为正三棱柱111ABC A B C -上底面111A B C ∆的中心,作平面BCD AP ⊥,与棱1AA 交于D ,若122AA AB ==,则三棱锥D ABC -的体积为( )A .48 B .24 C .16 D .123.已知椭圆C :22184x y +=.对于任意实数k ,椭圆C 被下列直线中所截得弦长,与被直线l :1y kx =+所截得的弦长不可能相等的是( )A .0kx y k ++=B .10kx y --=C .0kx y k +-=D .20kx y +-=4.对任意正整数n 与k (k n ≤),用(),f n k 表示不超过n k⎡⎤⎢⎥⎣⎦且与n 互质的正整数的个数(其中[]x 表示不超过x 的最大整数),则()100,3f =( ) A .11 B .13 C .14 D .195.如果111A B C ∆的三个内角的余弦值分别等于222A B C ∆的三个内角的正弦值,则( ) A .111A B C ∆是锐角三角形,222A B C ∆也是锐角三角形 B .111A B C ∆是钝角三角形,222A B C ∆也是钝角三角形 C .111A B C ∆是锐角三角形,222A B C ∆则是钝角三角形 D .111A B C ∆是钝角三角形,222A B C ∆则是锐角三角形6.将石子摆成如图所示的梯形形状,称具有“梯形”结构的石子数依次构成的数列{}n a :5,9,14,20,…,为“梯形数列”。

根据“梯形”的构成,可知624a =( )A .166247B .196248C .196249D .196250二、填空题(每题6分,,每小题8分,满分48分,将答案填在答题纸上)7.已知函数()f x 满足()()()f m n f m f n +=,()13f =,则()()()()()()22122413f f f f f f ++++()()()()()()22364857f f f f f f +++= .8.已知A ,B ,C 为O e 上三点,且()12AO AB AC =+uuu r uu u r uuu r ,则数量积AB AC ⋅=uu u r uuu r . 9.已知z C ∈,若关于x 的方程248430x zx i -++=(i 为虚数单位)有实数根,则复数z 的模z 的最小值是 .10.对正整数n ,定义()()!1221n n n n =--⋅⋅⋅L ,记()12!12!3!1!n nS n n ⎛⎫=+++- ⎪ ⎪+⎝⎭L ,则2017S = .11.设0x ≤≤π,3sin2x=tan x = .12.设函数()f x 是定义在(),0-∞上的可导函数,其导数为()f x ,且有()()22f x xf x x +>,则不等式()()()22017201710x f x f ++-->的解集为 .三、解答题 (本大题共4小题,共72分.解答应写出文字说明、证明过程或演算步骤.)13.在锐角ABC ∆中,sin A =,且a ,b ,c 为角A ,B ,C 的对边. (1)求()2sin 2sin2B CB C +++的值; (2)若4a =,试求当AB AC ⋅uu u r uuu r取得最大值时,ABC ∆的面积ABC S ∆的值.14.已知数列{}n a 满足12a =,()211n n nS a S +-=-(*n ∈N ),其中n S 为{}n a 的前n 项和.(1)求证:11n S ⎧⎫⎨⎬-⎩⎭为等差数列;(2)若对任意的n ,均有()()()12111n S S S kn +++≥L ,试求k 的最大值. 15.已知a ,b +∈R ,且a b ≠. (1ln ln 2a b a ba b -+<<-; (2)如果a ,b 是()ln 2017f x x x =-的两个零点,求证:2ab e >.16.如图所示,AB 是椭圆221mx ny +=(0m n >>,m n ≠)的斜率等于1的弦,AB 的垂直平分线与椭圆交于两点C ,D ,设CD 的中点为F ,CD 交AB 于点E . (1)求证:2224CD AB EF -=; (2)求证:四点A ,B ,C ,D 共圆.2017年湖南省高中数学联合竞赛试题参考答案一、选择题1-3:BAD 4-6:BCD二、填空题7.24 8.0 9.12008-11.12512.2018x <- 三、解答题13.解:(1)∵锐角ABC ∆中,sin 9A =,∴1cos 9A =,()sin 9B C +=()1cos 9B C +=-,于是()2sin 2sin 22B C B C +++=111992⎛⎫-- ⎪⎛⎫⎝⎭⨯-+= ⎪⎝⎭.(2)∵1cos 9AB AC bc A bc ⋅==uu u r uu u r ,再由余弦定理,有2216162cos 9b c bc A bc =+-≥,因此bc 的最大值为9,此时,1sin 2ABC S bc A ∆==.14.解:(1)∵()2111n n n n nS a S S S ++--==-,∴()2211n n n n S S S S +--=-,即121n n nS S S +-=, 因此111n n n S S S +--=,故1111111n n n n S S S S +==+---,这说明11n S ⎧⎫⎨⎬-⎩⎭是一个以1111111S a ==--为首项,1为公差的等差数列; (2)由(1)可知()11111n n n S =+-⨯=-,∴211n n S n++=. 于是不等式()()()12111n S S S kn +++≥L ,即35721123n kn n+⋅⋅⋅⋅≥L , ∴135721123n k n n +≤⋅⋅⋅⋅⋅L 对任意的*n ∈N 恒成立, 记()135721123n g n n n +=⋅⋅⋅⋅⋅L ,则()135********n g n n n ++=⋅⋅⋅⋅⋅+L 231n n +⋅+, 于是()()()()21231g n n n g n n ++==+2222121n n n nn n +++>++,即()g n 是关于n 的增函数. 故()g n 的最小值为()13g =,∴3k ≤,即k 的最大值为3. 15.解:(1)∵a ,b +∈R ,且a b ≠,∴不妨设0a b >>.则一方面,ln ln ln ln 2a b a b a b a b -+<⇔->-()212ln 1a a b a b a a b b b⎛⎫- ⎪-⎝⎭⇔>++, 记1a x b =>,则不等式()21ln 1x x x -⇔>+4ln 21x x ⇔+>+,再记()4ln 1h x x x =++,则()()()()22211411x h x x x x x -'=-=++,由()0h x '=得1x =, 并且1x >时,()0h x '>,所以()h x 在()1,+∞上为增函数,故()()12h x h >=.ln ln ln a b a a b b -<⇔-ln a b <⇔<,记1t =>,则不等式12ln 0t t t⇔+-<, 设()12ln g t t t t =+-,则()()2221211t g t t t t --'=--=,由()0g t '=得1t =,并且1t >时,()0g t '<,所以()g t 在()1,+∞上为减函数,故()()10g t g <=.ln ln 2a b a ba b -+<<-. (2)∵a ,b 是()ln 2017f x x x =-的两个零点, ∴ln 2017a a =……①且ln 2017b b =……②,①②两式相减,得()ln ln 2017a b a b -=-1ln ln 2017a b a b -⇒=-, 由(1)已证ln ln 2a b a b a b -+<-,故122017a b a b +>⇒+22017>, ①②两式相加,得()ln ln 2017a b a b +=+, 因而()()ln 20172ab a b =+>, 故2ab e >.16.证:(1)设AB :y x a =+,代入221mx ny +=, 整理,得()22210m n x anx na +++-=于是,2A B anx x m n+=-+,21A B na x x m n -=+,∴()2224A B A B AB x x x x ⎡⎤=+-⎣⎦()()228m n mna m n +-=+,同时,AB 的中点坐标为,an am E m n m n ⎛⎫-⎪++⎝⎭.再设CD :y x b =-+,代入221mx ny +=, 整理,得()22210m n x bnx nb +-+-=于是,2C D bnx x m n+=+,21C D nb x x m n -=+,∴()2224C D C D CD x x x x ⎡⎤=+-=⎣⎦()()228m n mnb m n +-+,同时,CD 的中点坐标为,bn bm F m n m n ⎛⎫⎪++⎝⎭. ∴()()()()2222222n a b m b a EFm n m n +-=+++()()()22222n a b m b a m n ++-=+,注意到,1EF CD k k ==-⇒()()n a b m a b +=-, ∴()()222228mn a b CD AB m n --==+()()()()()222288mn a b a b n a b m n m n -++=++,并且()()()22222244n a b m b a EFm n ++-=⋅+()()2228n a b m n +=+,因此,2224CD AB EF -=.(2)由(1)已证2224CD AB EF -=, 又E 为AB 的中点,F 为CD 的中点, ∴2CD FD =,2AB EB =,于是222FD EF EB =+,事实上,222EF EB BF +=, 因而,AF BF FD FC ===, 故A ,B ,C ,D 四点共圆,且圆心为F .。

相关文档
最新文档