电大---微积分初步答案完整版

合集下载

电大【微积分】初步形成性考核作业原体+答案

电大【微积分】初步形成性考核作业原体+答案

微积分初步形成性考核作业【原体+答案】一、填空题(每小题2分,共20分) 1.函数)2ln(1)(-=x x f 的定义域是 .解:020)2ln({>-≠-x x , 23{>≠x x所以函数)2ln(1)(-=x x f 的定义域是),3()3,2(+∞⋃2.函数xx f -=51)(的定义域是 .解:05>-x ,5<x所以函数xx f -=51)(的定义域是)5,(-∞3.函数24)2ln(1)(x x x f -++=的定义域是 .解:⎪⎩⎪⎨⎧≥->+≠+04020)2ln(2x x x ,⎪⎩⎪⎨⎧≤≤-->-≠2221x x x 所以函数24)2ln(1)(x x x f -++=的定义域是]2,1()1,2(-⋃-- 4.函数72)1(2+-=-x x x f ,则=)(x f.解:72)1(2+-=-x x x f 6)1(61222+-=++-=x x x 所以=)(x f 62+x5.函数⎩⎨⎧>≤+=0e2)(2x x x x f x,则=)0(f . 解:=)0(f 2202=+6.函数x x x f 2)1(2-=-,则=)(x f .解:x x x f 2)1(2-=-1)1(11222+-=-+-=x x x ,=)(x f 12+x7.函数1322+--=x x x y 的间断点是 .解:因为当01=+x ,即1-=x 时函数无意义 所以函数1322+--=x x x y 的间断点是1-=x8.=∞→xx x 1sinlim . 解:=∞→x x x 1sinlim 111sinlim =∞→xx x9.若2sin 4sin lim0=→kxxx ,则=k .解: 因为24sin 44sin lim 4sin 4sin lim 00===→→kkxkx x xk kx x x x所以2=k10.若23sin lim0=→kxxx ,则=k . 解:因为2333lim 33lim00===→→kx x sim k kx x sim x x 所以23=k 二、单项选择题(每小题2分,共24分)1.设函数2e e xx y +=-,则该函数是( ).A .奇函数B .偶函数C .非奇非偶函数D .既奇又偶函数解:因为y e e e e x y x x x x =+=+=-----22)()( 所以函数2e e xx y +=-是偶函数。

微积分基础-国家开放大学电大学习网形考作业题目答案

微积分基础-国家开放大学电大学习网形考作业题目答案

微积分基础一.单项选择题1.函数的定义域是().A.B.C.D.正确答案: C2.设函数,则f(x)=().A.x2-1B.x2-2C.x2-3D.x2-4正确答案: A3.设函数,则该函数是().A.奇函数B.偶函数C.非奇非偶函数D.既是奇函数又是偶函数正确答案: C4.极限=().A.-1B.1C.0D.不存在正确答案: C5.函数的间断点为( ).A.x=0B.x=1C.x=2D.x=3正确答案: D6.极限()A.1B.C.3D.不存在正确答案: C7.若,则().A.B.C.D.正确答案: C8.若函数,则()A.B.C.D.正确答案: C9.设,则=().A.B.C.D.正确答案: C10.设,则=().A.B.C.D.正确答案: A11.A.B.C.D.正确答案: B12.已知F(x)是f(x)的一个原函数,则()A.B.C.D.正确答案: C13.下列等式成立的是().A.B.C.D.正确答案: A 14.A.B.C.D.正确答案: B 15.A.B.C.D.以上说法都错误正确答案: A16.A.B.C.D.正确答案: B17.下列无穷积分收敛的是().A.B.C.D.正确答案: B18.以下微分方程阶数最高的是()。

A.B.C.D.正确答案: D19.下列微分方程中,()是线性微分方程。

A.B.C.D.正确答案: A20.微分方程y'=0的通解为().A.y=CxB.y=x+CC.y=CD.y=0正确答案: C21.若f(x)=sin x,则f "(0)=()A.1B.-1C.0D.ln3正确答案: C22.若f(x)=xcosx,则f ''(x)=().A.cos x + x sin xB.cos x - x sin xC.-2sin x - x cos xD.2sin x + x cos x正确答案: C23.函数的单调增加区间是()A.B.C.D.正确答案: A24.函数y=(x+1)2在区间(-2,2)是()A.单调增加B.单调减少C.先增后减D.先减后增正确答案: D25.函数的极大值点是()A.x=1B.x=0C.x=-1D.x=3正确答案: C26.A.1B.2C.0D.3正确答案: B27.A.x=1B.x=eC.x=-1D.x=0正确答案: D28.满足方程f '(x)=0的点一定是函数y=f(x)的().A.极值点B.最值点C.驻点D.间断点正确答案: C29.曲线y=e2x+1在x=2处切线的斜率是().A.e4B.e2C.2e4D.2正确答案: C30.下列结论中()不正确.A.f(x)在x=x0处连续,则一定在x0处可微.B.f(x)在x=x0处不连续,则一定在x0处不可导.C.可导函数的极值点一定发生在其驻点上.D.若f(x)在[a,b]内恒有f '(x)<0,则在[a,b]内函数是单调下降的.正确答案: A二.判断题1.偶函数的图像关于原点对称。

国家开放大学电大《微积分初步》20292030期末试题及答案

国家开放大学电大《微积分初步》20292030期末试题及答案

国家开放大学电大《微积分初步》2029-2030期末试题及答案国家开放大学电大《微积分初步》2029-2030期末试题及答案盗传必究一、填空题(每小题4分,本题共20分)1.函数,则。

2.。

3.曲线在点处的切线方程是。

4.若,则。

5.微分方程的阶数为。

二、单项选择题(每小题4分,本题共20分)1.设函数,则该函数是()。

A.非奇非偶函数 B.既奇又偶函数 C.偶函数D.奇函数 2.当时,下列变量中为无穷小量的是()。

A. B. C. D. 3.下列函数在指定区间上单调减少的是()。

A. B. C. D. 4.设,则()。

A. B. C. D. 5.下列微分方程中,()是线性微分方程。

A. B. C. D.三、计算题(本题共44分,每小题11分)1.计算极限。

2.设,求。

3.计算不定积分。

4.计算定积分。

四、应用题(本题16分)欲做一个底为正方形,容积为108立方米的长方体开口容器,怎样做法用料最省?试题答案及评分标准(仅供参考)一、填空题(每小题4分,本题共20分)1. 2. 3. 4. 5.5 二、单项选择题(每小题4分,本题共20分)1.D 2.C 3.B 4.C 5.A 三、(本题共44分,每小题11分)1.解:原式 2.解:3.解:= 4.解:四、应用题(本题16分)解:设长方体底边的边长为,高为,用材料为,由已知令,解得是唯一驻点,因为问题存在最小值,且驻点唯一,所以是函数的极小值点,即当,时用料最省。

2022-2023国家开放大学电大《微积分初步》期末试题及答案2024-2025国家开放大学电大《微积分初步》期末试题及答案国家开放大学电大专科《微积分初步》期末试题标准题库及答案(试卷号:2437)国家开放大学电大本科《文论专题》2029-2030期末试题及答案(试卷号:1250)国家开放大学电大本科《数据库应用技术》2029-2030期末试题及答案(试卷号:1256)。

【微积分初步】-形考作业1-4答案

【微积分初步】-形考作业1-4答案

电大【微积分初步】 形考作业1-4答案作业(一)————函数,极限和连续一、填空题(每小题2分,共20分)1.函数)2ln(1)(-=x x f 的定义域是 . 答案:),3()3,2[+∞ 提示:对于)2ln(1-x ,要求分母不能为0,即0)2ln(≠-x ,也就是3≠x ; 对于)2ln(-x ,要求02>-x ,即2>x ;所以函数)2ln(1)(-=x x f 的定义域是),3()3,2[+∞2.函数xx f -=51)(的定义域是 . 答案:)5,(-∞ 提示:对于x-51,要求分母不能为0,即05≠-x ,也就是5≠x; 对于x -5,要求05≥-x ,即5≤x ;所以函数xx f -=51)(的定义域是)5,(-∞3.函数24)2ln(1)(x x x f -++=的定义域是 . 答案:]2,1()1,2(--- 提示:对于)2ln(1+x ,要求分母不能为0,即0)2l n (≠+x ,也就是1-≠x ; 对于)2ln(+x ,要求02>+x ,即2->x ; 对于24x -,要求042≥-x ,即2≤x 且2-≥x ; 所以函数24)2ln(1)(x x x f -++=的定义域是]2,1()1,2(---4.函数72)1(2+-=-x x x f ,则=)(x f. 答案:62+x提示:因为6)1(72)1(22+-=+-=-x x x x f ,所以6)(2+=x x f5.函数⎩⎨⎧>≤+=0e02)(2x x x x f x,则=)0(f . 答案:2 提示:因为当0=x是在0≤x 区间,应选择22+x 进行计算,即220)0(2=+=f6.函数x x x f 2)1(2-=-,则=)(x f. 答案:12-x 提示:因为1)1(2)1(22--=-=-x x x x f ,所以1)(2-=x x f7.函数1322+--=x x x y 的间断点是 . 答案: 1-=x提示:若)(x f 在0x 有下列三种情况之一,则)(x f 在0x 间断:①在0x 无定义;②在0x 极限不存在;③在0x 处有定义,且)(lim 0x f x x → 存在,但)()(lim 00x f x f x x ≠→。

电大微积分初步形成性考核作业原体答案

电大微积分初步形成性考核作业原体答案

微积分初步形成性考核作业【原体+答案】一、填空题(每小题2分,共20分) 1.函数)2ln(1)(-=x x f 的定义域是.解:020)2ln({>-≠-x x , 23{>≠x x所以函数)2ln(1)(-=x x f 的定义域是),3()3,2(+∞⋃2.函数xx f -=51)(的定义域是.解:05>-x ,5<x所以函数xx f -=51)(的定义域是)5,(-∞3.函数24)2ln(1)(x x x f -++=的定义域是.解:⎪⎩⎪⎨⎧≥->+≠+04020)2ln(2x x x ,⎪⎩⎪⎨⎧≤≤-->-≠2221x x x 所以函数24)2ln(1)(x x x f -++=的定义域是]2,1()1,2(-⋃-- 4.函数72)1(2+-=-x x x f ,则=)(x f .解:72)1(2+-=-x x x f 6)1(61222+-=++-=x x x所以=)(x f 62+x5.函数⎩⎨⎧>≤+=0e02)(2x x x x f x ,则=)0(f .解:=)0(f 2202=+6.函数x x x f 2)1(2-=-,则=)(x f .解:x x x f 2)1(2-=-1)1(11222+-=-+-=x x x ,=)(x f 12+x7.函数1322+--=x x x y 的间断点是.解:因为当01=+x ,即1-=x 时函数无意义 所以函数1322+--=x x x y 的间断点是1-=x8.=∞→xx x 1sinlim . 解:=∞→x x x 1sinlim 111sinlim =∞→xx x9.若2sin 4sin lim0=→kxxx ,则=k .解: 因为24sin 44sin lim 4sin 4sin lim 00===→→kkxkx x xk kx x x x所以2=k10.若23sin lim0=→kxxx ,则=k . 解:因为2333lim 33lim00===→→kx x sim k kx x sim x x 所以23=k 二、单项选择题(每小题2分,共24分)1.设函数2e e xx y +=-,则该函数是( ).A .奇函数B .偶函数C .非奇非偶函数D .既奇又偶函数解:因为y e e e e x y x x x x =+=+=-----22)()( 所以函数2e e xx y +=-是偶函数。

国家开放大学电大《微积分初步》2023-2024期末试题及答案

国家开放大学电大《微积分初步》2023-2024期末试题及答案

国家开放大学电大《微积分初步》2023-2024期末试题及答案盗传必究一、填空题(每小题4分,本题共20分)1.函数x x x f -++=4)2ln(1)(的定义域是 。

2.若24sin lim 0=→kxx x ,则=k 。

3.曲线x y e =在点)1,0(处的切线方程是 。

4.=+⎰e 12d )1ln(d d x x x 。

5.微分方程1)0(,=='y y y 的特解为 。

二、单项选择题(每小题4分,本题共20分)1.设函数x x y sin =,则该函数是( )。

A .偶函数B .奇函数C .非奇非偶函数D .既奇又偶函数2.当=k ( )时,函数⎩⎨⎧=≠+=0,0,2)(2x k x x x f ,在0=x 处连续。

A .0B .1C .2D .33.下列结论中( )正确。

A .)(x f 在0x x =处连续,则一定在0x 处可微。

B .函数的极值点一定发生在其驻点上。

C .)(x f 在0x x =处不连续,则一定在0x 处不可导。

D .函数的极值点一定发生在不可导点上。

4.下列等式中正确的是( )。

A .)cos d(d sin x x x =B .)1d(d ln xx x =C .)d(d x x a x a =D .)d(2d 1x x x =5.微分方程x y y x y sin 4)(53='''+''的阶数为( )。

A .2B .3C .4D .5三、计算题(本题共44分,每小题11分)1.计算极限2386lim 222+-+-→x x x x x 。

2.设x x y 3cos ln +=,求y d 。

3.计算不定积分x x d )12(10⎰-。

4.计算定积分x x d ln 2e 1⎰。

四、应用题(本题16分)欲做一个底为正方形,容积为108立方米的长方体开口容器,怎样做法用料最省? 试题答案及评分标准(仅供参考)一、填空题(每小题4分,本题共20分)1.]4,1()1,2(-⋃-- 2.2 3.1+=x y 4.0 5.x y e =二、单项选择题(每小题4分,本题共20分)1.A 2.C 3.C 4.D 5.B三、(本题共44分,每小题11分)1.解:原式214lim )1)(2()2)(4(lim22-=--=----=→→x x x x x x x x 2.解:)sin (cos 312x x xy -+=' x x x xy d )cos sin 31(d 2-= 3.解:x x d )12(10⎰-=c x x x +-=--⎰1110)12(221)12(d )12(21 5.解:x x d ln 2e 1⎰-=21ln e x x 1e 1e e 2d 222e 12+=+-=⎰x xx 四、应用题(本题16分)解:设底边的边长为x ,高为h ,用材料为y ,由已知22108,108x h h x == x x x x x xh x y 432108442222+=⋅+=+= 令043222=-='x x y ,解得6=x 是唯一驻点, 且04322263>⨯+=''=x x y ,说明6=x 是函数的极小值点,所以当6=x ,336108==h 时用料最省。

电大专科微积分初步

电大专科微积分初步

最新电大专科微积分初步(总9页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除微积分初步复习题1、填空题(1)函数)2ln(1)(-=x x f 的定义域是 .答案:2>x 且3≠x . (2)函数24)2ln(1)(x x x f -++=的定义域是 .答案:]2,1()1,2(-⋃--(3)函数74)2(2++=+x x x f ,则=)(x f.答案:3)(2+=x x f(4)若函数⎪⎩⎪⎨⎧≥<+=0,0,13sin )(x k x xx x f 在0=x 处连续,则=k . 答案:1=k(5)函数x x x f 2)1(2-=-,则=)(x f . 答案:1)(2-=x x f(6)函数1322+--=x x x y 的间断点是 .答案:1-=x (7)=∞→xx x 1sinlim . 答案:1 (8)若2sin 4sin lim0=→kxxx ,则=k .答案:2=k(9)曲线1)(+=x x f 在)2,1(点的切斜率是 .答案:21(10)曲线x x f e )(=在)1,0(点的切线方程是 . 答案:e x y +=(11)已知x x x f 3)(3+=,则)3(f '= .答案:3ln 33)(2x x x f +=')3(f '=27()3ln 1+(12)已知x x f ln )(=,则)(x f ''= .答案:x x f 1)(=',)(x f ''=21x- (13)若x x x f -=e )(,则='')0(f .答案:x x x x f --+-=''e e 2)((14)函数y x =-312()的单调增加区间是 . 答案:),1(+∞(15)函数1)(2+=ax x f 在区间),0(∞+内单调增加,则a 应满足 .答案:0>a(16)若)(x f 的一个原函数为2ln x ,则=)(x f . 答案:x2(17)若⎰+=c x x x f 2sin d )(,则)(x f . 答案:x 2cos 2(18)若______________d os ⎰=x x c 答案:c x +sin (19)=⎰-2de x .答案:c x +-2e(20)='⎰x x d )(sin .答案:c x +sin(21)若⎰+=c x F x x f )(d )(,则⎰=-x x f d )32( .答案:c x F +-)32(21(22)若⎰+=c x F x x f )(d )(,则⎰=-x x xf d )1(2 . 答案:c x F +--)1(212 (23) .______d )2cos (sin 112=+-⎰-x x x x x 答案:32- (24)=+⎰e 12d )1ln(d d x x x. 答案:0(25)x x d e 02⎰∞-= .答案:21 (26)已知曲线)(x f y =在任意点x 处切线的斜率为x1,且曲线过)5,4(,则该曲线的方程是 .答案:12+=x y (27)由定积分的几何意义知,x x a a d 022⎰-= .答案:42a π(28)微分方程1)0(,=='y y y 的特解为 . 答案:x y e =(29)微分方程03=+'y y 的通解为 . 答案:x c y 3e -=(30)微分方程x y xy y sin 4)(7)4(3=+''的阶数为 . 答案:42.单项选择题(1)设函数2e e xx y +=-,则该函数是( ).A .奇函数B .偶函数C .非奇非偶函数D .既奇又偶函数 答案:B(2)下列函数中为奇函数是().A .x x sinB .2e e xx +- C .)1ln(2x x ++ D .2x x +答案:C(3)函数)5ln(4+++=x x xy 的定义域为( ).A .5->xB .4-≠xC .5->x 且0≠xD .5->x 且4-≠x 答案:D(4)设1)1(2-=+x x f ,则=)(x f ( ) A .)1(+x x B .2x C .)2(-x x D .)1)(2(-+x x 答案:C(5)当=k ( )时,函数⎩⎨⎧=≠+=0,0,2)(x k x e x f x 在0=x 处连续.A .0B .1C .2D .3 答案:D(6)当=k ( )时,函数⎩⎨⎧=≠+=0,,1)(2x k x x x f ,在0=x 处连续.A .0B .1C .2D .1- 答案:B (7)函数233)(2+--=x x x x f 的间断点是( ) A .2,1==x xB .3=xC .3,2,1===x x xD .无间断点 答案:A(8)若x x f x cos e )(-=,则)0(f '=( ). A. 2 B. 1 C. -1 D. -2 答案:C(9)设y x =lg 2,则d y =( ).A .12d x x B .1d x x ln10 C .ln10xx d D .1d x x答案:B(10)设)(x f y =是可微函数,则=)2(cos d x f ( ). A .x x f d )2(cos 2' B .x x x f d22sin )2(cos ' C .x x x f d 2sin )2(cos 2' D .x x x f d22sin )2(cos '- 答案:D(11)若3sin )(a x x f +=,其中a 是常数,则='')(x f ( ).A .23cos a x +B .a x 6sin +C .x sin -D .x cos 答案:C(1)函数2)1(+=x y 在区间)2,2(-是( ) A .单调增加 B .单调减少 C .先增后减 D .先减后增 答案:D(12)满足方程0)(='x f 的点一定是函数)(x f y =的( ). A .极值点 B .最值点 C .驻点 D . 间断点 答案:C(13)下列结论中( )不正确. A .)(x f 在0x x =处连续,则一定在0x 处可微. B .)(x f 在0x x =处不连续,则一定在0x 处不可导. C .可导函数的极值点一定发生在其驻点上.D .函数的极值点可能发生在不可导点上. 答案:A(14)下列函数在指定区间(,)-∞+∞上单调增加的是( ).A .x sinB .x eC .2xD .x -3 答案:B(15)下列等式成立的是( ).A .)(d )(d x f x x f =⎰B .)(d )(x f x x f ='⎰C .)(d )(d dx f x x f x=⎰ D .)()(d x f x f =⎰ 答案:C(16)以下等式成立的是( )A . )1d(d ln xx x = B .)(cos d d sin x x x =C .x xxd d = D .3ln 3d d 3xxx =答案:D(17)=''⎰x x f x d )(( )A. c x f x f x +-')()(B. c x f x +')(C. c x f x +')(212 D. c x f x +'+)()1(答案:A(18)下列定积分中积分值为0的是( ).A .x xx d 2e e 11⎰--- B .x x x d 2e e 11⎰--+ C .x x x d )cos (3⎰-+ππD .x x x d )sin (2⎰-+ππ答案:A(19)设)(x f 是连续的奇函数,则定积分=⎰aa x x f -d )(( )A .0B .⎰0-d )(ax x f C .⎰a x x f 0d )( D .⎰0-d )(2ax x f答案:A(20)下列无穷积分收敛的是( ). A .⎰∞+0d in x x s B .⎰∞+1d 1x xC .⎰∞+1d 1x xD .⎰∞+-02d e x x答案:D(21)微分方程0='y 的通解为( ).A .Cx y =B .C x y += C .C y =D .0=y 答案:C(22)下列微分方程中为可分离变量方程的是( )A.y x x y +=d d ; B. y xy x y +=d d ; C. x xy x y sin d d +=; D. )(d d x y x xy += 答案:B 3、计算题(1)423lim 222-+-→x x x x . 解:4121lim )2)(2()1)(2(lim 423lim 22222=+-=+---=-+-→→→x x x x x x x x x x x x (2)329lim 223---→x x x x解:234613lim )1)(3()3)(3(lim 329lim 33223==++=+-+-=---→→→x x x x x x x x x x x x (3)4586lim 224+-+-→x x x x x解:3212lim )1)(4()2)(4(lim 4586lim 44224=--=----=+-+-→→→x x x x x x x x x x x x x (4)设xx y 12e =,求y '.解: )1(e e 22121xx x y xx-+=')12(e 1-=x x(5)设x x y 3cos 4sin +=,求y '.解:)sin (cos 34cos 42x x x y -+=' (6)设xy x 2e 1+=+,求y '. 解:2121(21exx y x -+='+ (7)设x x x y cos ln +=,求y '.解:)sin (cos 12321x xx y -+=' x x tan 2321-= (8)x x d )12(10⎰- 解:c x x x x x +-=--=-⎰⎰111010)12(221)1d(2)12(21d )12( (9)x x x d 1sin2⎰解:c x x x x x x +=-=⎰⎰1cos 1d 1sin d 1sin 2(10)x x x d )e 4(e 22ln 0+⎰解:)e d(4)e 4(d )e 4(e 22ln 022ln 0x x x x x ++=+⎰⎰=3152)64216(31)e 4(2ln 03=-=+x (11)x xxd ln 51e1⎰+解:27)136(101)ln 51(101)ln 51()ln 51(51d ln 51121e1=-=+=++=+⎰⎰ee x x d x x x x (12)x x x d e 1⎰解:1e e d e ed e 1010101=-=-=⎰⎰xx x xx x x x(13)⎰π20d sin x x x解:1sin d cos cos d sin 20202020==+-=ππππ⎰⎰x x x x x x x x4、应用题(1)欲做一个底为正方形,容积为108立方米的长方体开口容器,怎样做法用料最省?解:设底边的边长为x ,高为h ,用材料为y ,由已知22108,108x h h x == 令043222=-='x x y ,解得6=x 是唯一驻点, 且04322263>⨯+=''=x x y ,说明6=x 是函数的极小值点,所以当6=x ,361082==h 用料最省. (2)用钢板焊接一个容积为43m 的正方形的水箱,已知钢板每平方米10元,焊接费40元,问水箱的尺寸如何选择,可使总费最低最低总费是多少11解:设水箱的底边长为x ,高为h ,表面积为S ,且有24x h = 所以,164)(22xx xh x x S +=+= 令0)(='x S ,得2=x , 因为本问题存在最小值,且函数的驻点唯一,所以,当1,2==h x 时水箱的面积最小.此时的费用为1604010)2(=+⨯S (元)。

2023年电大形成性考核微积分初步形成性考核册答案

2023年电大形成性考核微积分初步形成性考核册答案

微积分初步形成性考核作业(一)解答————函数,极限和持续一、填空题(每题2分,共20分)1.函数)2-ln(1)(x x f =旳定义域是)∞,3(∪)3,2(+2.函数xx f -51)(=旳定义域是)5,-3.函数2-4)2ln(1)(x x x f ++=旳定义域是]2,1-(∪)1-,2-(4.函数72-)1-(+=x x x f ,则=)(x f 62+x5.函数>+=e 0≤2)(2x x x x f x,则=)0(f 2 . 6.函数x x x f 2-)1-(2=,则=)(x f 1-2x7.函数13-2-2+=x x x y 旳间断点是1-=x8.=xx x 1sinlim ∞→ 1 . 9.若2sin 4sin lim0→=kxxx ,则=k 2 .10.若23sin lim0→=kxxx ,则=k 23二、单项选择题(每题2分,共24分)1.设函数2e exxy +=,则该函数是(B).A.奇函数 B.偶函数 C .非奇非偶函数 D.既奇又偶函数 2.设函数x x y sin 2=,则该函数是(A).A .奇函数 B.偶函数 C.非奇非偶函数 D.既奇又偶函数3.函数222)(xx xx f +=旳图形是有关(D)对称.A .x y = B.x 轴 C .y 轴 D .坐标原点4.下列函数中为奇函数是(C).A .x x sinB .x lnC .)1ln(2x x ++D .2x x + 5.函数)5ln(41+++=x x y 旳定义域为(ﻩD ﻩ). A.5->x B .4-≠x C .5->x 且0≠x D.5->x 且4-≠x6.函数)1-ln(1)(x x f =旳定义域是(D).A . )∞,1(+B .)∞,1(∪)1,0(+C .)∞,2(∪)2,0(+ D.)∞,2(∪)2,1(+ 7.设1-)1(2x x f =+,则=)(x f ( C )A .)1(+x xB .2x C .)2-(x x D.)1-)(2(x x + 8.下列各函数对中,(ﻩD)中旳两个函数相等.A .2)()(x x f =,x x g =)(ﻩB .2)(x x f =,x x g =)(C .2ln )(x x f =,9.当0→x 时,下列变量中为无穷小量旳是( C ). A.x 1 B .x x sin C .)1ln(x + D .2xx10.当=k ( B )时,函数=+=,≠,1)(2x k x x x f ,在0=x 处持续. A.0 B.1 C .2 D .111.当=k ( D )时,函数=+=,≠,2)(x k x e x f x 在0=x 处持续. A.0 B.1 C.2 D .3 12.函数23-3-)(2+=x x x x f 旳间断点是( A ) A.2,1==x xﻩ B.3=x ﻩC .3,2,1===x x x D.无间断点三、解答题(每题7分,共56分)⒈计算极限4-23-lim 222→x x x x +. 解:4-23-lim 222→x x x x +4121-lim )2-)(2()2-)(1-(lim 2→2→=+=+=x x x x x x x x 2.计算极限1-6-5lim 221→x x x x +解:1-6-5lim 221→x x x x +2716lim )1-)(1()6)(1-(lim 1→1→=++=++=x x x x x x x x3.3-2-9-lim 223→x x x x解:3-2-9-lim 223→x x x x 234613lim )3-)(1()3-)(3(lim 3→3→==++=++=x x x x x x x x4.计算极限45-86-lim 224→++x x x x x解:45-86-lim 224→++x x x x x 321-2-lim )4-)(1-()4-)(2-(lim 4→4→===x x x x x x x x5.计算极限65-86-lim 222→++x x x x x .解:65-86-lim 222→++x x x x x 23-4-lim )3-)(2-()4-)(2-(lim 2→2→===x x x x x x x x6.计算极限xx x 1--1lim→. 解:x x x 1--1lim→)1-1(lim)1-1()1-1)(1--1(lim 0→0→+=++=x x xx x x x x x 21-1-11lim→=+=x x7.计算极限xx x 4sin 1--1lim→解:x x x 4sin 1--1lim→)1-1(4sin )1-1)(1--1(lim0→++=x x x x x 81-)1-1(44sin 1lim 41-)1-1(4sin lim0→0→=+=+=x xx x x xx x8.计算极限2-44sin lim→+x x x .解:2-44sin lim→+x x x )24)(2-4()24(4sin lim→+++++=x x x x x16)24(44[lim 4)24(4sin lim 0→0→=++=++=x xxsim x x x x x微积分初步形成性考核作业(二)解答(除选择题)————导数、微分及应用一、填空题(每题2分,共20分)1.曲线1)(+=x x f 在)2,1(点旳斜率是21 2.曲线xx f e )(=在)1,0(点旳切线方程是1+=x y 3.曲线21x y =在点)1,1(处旳切线方程是03-2=+y x 4.=′)2(xxx22ln 25.若y = x (x – 1)(x – 2)(x – 3),则y ′(0) =_-66.已知x x x f 3)(3+=,则)3(f ′3ln 2727+=. 7.已知x x f ln )(=,则)(x f ′′=21x8.若xx x f e)(=,则=′′)0(f 29.函数2)1-(3x y =旳单调增长区间是)∞,1[+ 10.函数1)(2+=ax x f 在区间)∞,0(+内单调增长,则a 应满足0≥a二、单项选择题(每题2分,共24分) 1.函数2)1(+=x y 在区间)2,2-(是( D ) A .单调增长 B.单调减少 C.先增后减 D.先减后增2.满足方程0)(=′x f 旳点一定是函数)(x f y =旳( C ). A.极值点 B.最值点 C .驻点 D. 间断点 3.若x x f xcos e)(=,则)0(f ′=( C ). A . 2 B . 1 C. -1 D . -2 4.设x y 2lg =,则=y d ( B ). A .12d x x B .1d x x ln10 C.ln10xx d D.1d x x 5..设)(x f y =是可微函数,则=)2(cos d x f ( D ). A.x x f d )2(cos 2′ B.x x x f d22sin )2(cos ′ C.x x x f d 2sin )2(cos 2′ D .x x x f d22sin )2(cos ′6.曲线1e2+=xy 在2=x 处切线旳斜率是( C ).A.4e B .2e C.42e D .27.若x x x f cos )(=,则=′′)(x f ( C ). A.x x x sin cos + B .x x x sin -cos C .x x x cos -sin 2- D.x x x cos sin 2+8.若3sin )(a x x f +=,其中a 是常数,则=′′)(x f ( C ). A.23cos a x + B.a x 6sin + C .x sin - D .x cos9.下列结论中( A )不对旳. A.)(x f 在0x x =处持续,则一定在0x 处可微.B.)(x f 在0x x =处不持续,则一定在0x 处不可导. C.可导函数旳极值点一定发生在其驻点上.D.若)(x f 在[a ,b ]内恒有0)(<′x f ,则在[a ,b ]内函数是单调下降旳. 10.若函数f (x)在点x 0处可导,则( B )是错误旳.A.函数f (x)在点x0处有定义B.A x f x x =)(lim 0→,但)(≠0x f AC .函数f (x )在点x0处持续 D.函数f (x )在点x 0处可微11.下列函数在指定区间)∞, +上单调增长旳是( B ﻩ). A.sin x B.e x C.x 2ﻩ D .3 - x12.下列结论对旳旳有( A ).A .x0是f (x)旳极值点,且f ′(x 0)存在,则必有f ′(x 0) = 0 B.x 0是f (x )旳极值点,则x 0必是f (x )旳驻点 C.若f ′(x 0) = 0,则x 0必是f (x )旳极值点D .使)(x f ′不存在旳点x0,一定是f (x )旳极值点 三、解答题(每题7分,共56分)⒈设xx y 12e =,求y ′.解:x x xx e xe xe x xe y 112121-2)1-(2=+=′x e x 1)1-2(= 2.设x x y 3cos 4sin +=,求y ′.解:x x x y sin cos 3-4cos 42=′3.设x y x 1e1+=+,求y ′. 解:211-121xex y x ++=′4.设x x x y cos ln +=,求y ′. 解:x x x x x y tan -23cos sin 23=+=′ 5.设)(x y y =是由方程4-22=+xy y x 确定旳隐函数,求y d . 解:两边微分:0)(-22=++xdy ydx ydy xdx xdx ydx xdy ydy 2--2=dx xy xy dy -22-=6.设)(x y y =是由方程1222=++xy y x 确定旳隐函数,求y d . 解:两边对1222=++xy y x 求导,得:0)(222=′++′+y x y y y x0=′++′+y x y y y x ,)(-)(y x y y x +=′+,1-=′y dx dx y dy -=′=7.设)(x y y =是由方程4e e 2=++x x y x 确定旳隐函数,求y d . 解:两边微分,得:02=+++xdx dy xe dx e dx e yyxdx x e e dy xe yxy)2(-++=,dx xexe e dy yy x 2-++= 8.设1e )cos(=++yy x ,求y d . 解:两边对1e )cos(=++yy x 求导,得:0)sin()1(=′++′+y e y y x y0)sin(-)sin(-=′++′+ye y y x y y x)sin()]sin(-[y x y y x e y+=′+ )sin(-)sin(y x e y x y y++=′dx y x e y x dx y dy y )sin()sin(++=′=微积分初步形成性考核作业(三)解答(填空题除外)———不定积分,极值应用问题一、填空题(每题2分,共20分)1.若)(x f 旳一种原函数为2ln x ,则=)(x f 。

国家开放大学系统国家开放大学微积分基础所有答案

国家开放大学系统国家开放大学微积分基础所有答案

国家开放大学系统国家开放大学微积分基础所有答案【考查知识点:积分计算】设a≠0,则∫ab9d=选择一项:a.1/10aab10b.1/10aab10Cc.1/10ab10C答案是:正确答案是:1/10aab10C【考查知识点:积分的几何意义】已知由一条曲线y=f与轴及直线=a,=6 所围成的曲边梯形的面积为A=∫|f|d,则以下说法正确的是选择一项:a若在区间上,f>=-∫d答案是:若在区间上,f>0,则A=∫fd【考查知识点:积分的几何意义】f闭区间上连续,则由曲线y=f与直线=a,=by=0 所围成平面图形的面积为选择一项a.∫|f|db.|∫fd|c.∫fdd.|答案是:|∫fd|【考查知识点:导数与积分】下列等式成立的是().选择一项:d/d∫fd=f)b∫df=fcd∫f=fd∫fd答案是:正确答案是:d/d∫fd=f)【考查知识点:导数与积分】以下等式成立的是()选择一项:d/12=d12a.3d=d3/ln3b.d√=d√c.lnd=d1/)答案是:正确答案是:3d=d3/ln3【考查知识点:微分方程】微分方程有(3y4sin-ey=0的阶数是__回答答案是:正确答案是:3【考查知识点:积分计算】∫|-2|d= )答案:答案是:正确答案是:4考查知识点:积分的应用】∫cos/12 d=回答答案是:正确答案是:0【考查知识点:计算】4e2d= d答案:答案是:正确答案是:2【考查知识点:微分方程】y=e2是微分方程yny1-6y=0的解。

选择一项:对错答案是:正确答案是“对”。

【考查知识点:积分的应用】已知曲线y=f在点处切线的斜率为2,且曲线过点1,0,则该曲线方程为y=2-1。

选择一项:对错答案是:正确答案是“对”。

【考查知识点:导数与积分】∫fd=f-c选择一项:对错答案是:正确答案是“对”。

【考查知识点:积分计算】定积分∫cossind=0选择一项:对错答案是:正确答案是“对”。

国家开放大学电大专科《微积分初步》2022期末试题及答案(试卷号:2437)

国家开放大学电大专科《微积分初步》2022期末试题及答案(试卷号:2437)

国家开放大学电大专科《微积分初步》2022期末试题及答案(试卷号:2437)附衰辱数基本公式,积分基本公式S Jod-r =<*一、单项选择题(每小题4分,本题共20分)1. 设函数*=/蚯口,则谖曲数是( ).A.非奇菲偶函数B.既奇又偶函数 C 偶函数D.奇函敬2. 当 L O 时.卜列变址中为无穷小址的是]).CJnU+工)D.毛x3. F 列函数在指定区间(一8,十8)上箪调破少的如.A M :CO &ZB 5—J ; D. 2'4. 若+ c 则 = (。

且 <4射1)唯+心>0且心1》c^cLr =c r 4- c=且 a=l>(Irw)* = § C^mxJ^cosj-= — sinx(lanx) =—j —ros xr- 、, I(cou ) --------- r-7—sirr 工sinxclr = —COSJC 十 CJcosxcLr = siaz + f I —/it = Mnx 十 c J CO5J XI •:」厂.& = — COLT + CA. yB-sinjrA. In | Irix|5 .下列微分方程中.(A. y9sior—y «ylnxB. y y +«1式=c*C /+巧• = / D. yr' + kiy ・二、填空题(每小题4分,本题共20分)6.函教“了十I)=H'+2J,帅J/(工)=・7.limrsin 一= •L・X -----------------------8.曲*2在点(】.】)处的切线方程是•9.若 | 工>dr = sm2<r + <,则f(x> —・10.微分方程(*") + 4jryE =ycoju:的阶数为・三、计算题(每小题11分,本题共44分)11.计算很限1的牛4毋.r-X X十X—612.i5 y —^-2*•求心.13.计算不定积分(2x- l),f dx・.14.计葡:定积分fmirrrdx.四、应用题(本题16分)15.欲做一个底为正方形,容积为108立方米的长方体开口容器,怎样做法用料最省?试题答案及评分标准(仅供参考)一、单项选择曩(每小曩4分,本曩共20分11. D2. C3. B4. C5. A二、填空题(每小曩4分,本题共20分)6・JT2—17. 1c 1 .18・,=万工十万9. —4ain2x三、计■(第小・11分.本■共44分)11-解:原式瑚血"_・及;工?=lim ~~ =# <11分〉r^i Cx~"Z)\X*i 3)十 3 J12. «=—sinTx—^=4-2,ln2 (9分〉)足线性做分方程.2Vx dy= (2* ln2 —)cLr 2“15.解:设长方体底边的边长为工•高为》.用材料为”由已知x 3A«108Ji = i^JT因为问题存在最小值.且放点唯一•所以” =6是函教的极小值点.即当工=6.人=警=3(16 分)13.解』(2±-1尸£=$](2工-】)财2了- 1>=* (2x-l )u +cXCOS L T1cojurdx=siru :⑴分)令y'=2工一誓=0.解福x=6是唯-在点.(12 分)时用料-省.。

2025-2026国家开放大学电大《微积分初步》期末试题及答案

2025-2026国家开放大学电大《微积分初步》期末试题及答案

2025-2026国家开放大学电大《微积分初
步》期末试题及答案
2025-2026国家开放大学电大《微积分初步》期末试题及答案盗传必究一、填空题(每小题4分,本题共20分)⒈函数,则.⒉.⒊曲线在点处的切线方程是.⒋.⒌微分方程的阶数为.二、单项选择题(每小题4分,本题共20分)⒈下列函数()为奇函数. A. B. C. D.⒉当()时,函数在处连续. A.0 B.1 C. D.⒊函数在区间是() A.单调增加 B.单调减少 C.先增后减 D.先减后增⒋若,则(). A. B. C. D.⒌微分方程的通解为(). A. B. C. D.三、计算题(每小题11分,本题共44分)⒈计算极限.⒉设,求. ⒊计算不定积分⒋计算定积分四、应用题(本题16分)欲做一个底为正方形,容积为32立方米的长方体开口容器,怎样做法用料最省?试题答案及评分标准(仅供参考)一、填空题(每小题4分,本题共20分)⒈⒉⒊⒋⒌ 4 二、单项选择题(每小题4分,本题共20分)⒈D ⒉B ⒊D ⒋A ⒌C 三、计算题(每小题11分,本题共44分)⒈解:原式⒉解:
⒊解:= 4.解:
四、应用题(本题16分)解:设底的边长为,高为,用材料为,由已知,于是令,解得是唯一驻点,易知是函数的极小值点,也就是所求的最小值点,此时有,所以当,时用料最省.
1。

国家开放大学《微积分基础》下载作业参考答案

国家开放大学《微积分基础》下载作业参考答案

国家开放大学《微积分基础》下载作业参考答案提交作业方式有以下三种,请务必与辅导教师沟通后选择:1. 将此次作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,完成作业后交给辅导教师批阅.2. 在线提交word 文档.3. 自备答题纸张,将答题过程手工书写,并拍照上传.一、计算题(每小题5分,共60分)⒈计算极限. 解:原式= 2.计算极限. 解:原式 3.计算极限. 解:。

4.设,求.解:y '=32x12―4cos4xdy =(32x 12―4cos4x )dx5.设,求. 解:dy =(1x +1+1(x +1)2)dx632lim 223----→x x x x x 54)2()1(lim )2)(3()1)(3(lim 33=++=+-+-→→x x x x x x x x 2211lim 23x x x x →----11(1)(1)11lim lim (1)(3)32x x x x x x x x →-→-+--===+--46lim 222----→x x x x 46lim 222----→x x x x 4523lim )2)(2()2)(3(lim 22=--=+-+-=-→-→x x x x x x x x x x x y 4sin +=y d ln(1)1xy x x =+-+y d6.设,求. 解:dy =e x 2x ―1x7.计算不定积分 解:=―12∫xdcos2x =―12xcos2x +12∫cos2xdx=―12xcos2x +14sin2x +c8.计算不定积分.解:12∫d x 2+1x 2+1=12ln (x 2+1)+c9.计算不定积分 解:2∫de x =2e x +c10.计算定积分解:2∫10xde x =2|xe x |10―∫10e x dx =2(e x ―e x )10=2 11.计算定积分.解:=(x ln x )e 1=112.计算定积分. 解:=―∫π0xdsinx =―(xsinx |π0―∫π0sinxdx)=∫π0sinxdx=―cosx |π0=1+1=2二、应用题(每小题10分,共40分)1.欲做一个底为正方形,容积为108立方米的长方体开口容器,怎样做法用料最省? 解:设底边的边长为,高为,用材料为,由已知令,解得是唯一驻点, 1y x=+y d xx x d 2sin ⎰x x x d 2sin ⎰2d 1x x x +⎰x x x d e ⎰x x x d e 210⎰e1ln d x x ⎰e 1ln d x x ⎰π0cos d x x x ⎰π0cos d x x x ⎰x h y 22108,108xh h x ==x x x x x xh x y 432108442222+=⋅+=+=043222=-='xx y 6=x且,说明是函数的极小值点,所以当,时用料最省。

2028-2029国家开放大学电大《微积分初步》期末试题及答案

2028-2029国家开放大学电大《微积分初步》期末试题及答案

2028-2029国家开放大学电大《微积分初步》期末试题及答案2028-2029国家开放大学电大《微积分初步》期末试题及答案盗传必究一、填空题(每小题4分,本题共20分)1.函数,则。

2.若函数,在处连续,则。

3.函数的单调增加区间是。

4.。

5.微分方程的阶数为。

二、单项选择题(每小题4分,本题共20分)1.设函数,则该函数是()。

A.奇函数B.偶函数C.非奇非偶函数D.既奇又偶函数2.当时,下列变量为无穷小量的是()。

A.B.C.D.3.若函数f(x)在点x0处可导,则()是错误的。

A.函数f(x)在点x0处有定义B.函数f(x)在点x0处连续C.函数f(x)在点x0处可微D.,但4.若,则()。

A.B.C.D.5.下列微分方程中为可分离变量方程的是()。

A.B.C.D.三、计算题(本题共44分,每小题11分)1.计算极限。

2.设,求。

3.计算不定积分。

4.计算定积分。

四、应用题(本题16分)某制罐厂要生产一种体积为V的有盖圆柱形容器,问容器的底半径与高各为多少时可使用料最省?试题答案及评分标准(仅供参考)一、填空题(每小题4分,本题共20分)1.2.23.4.5.4二、单项选择题(每小题4分,本题共20分)1.B2.A3.D4.C5.B三、计算题(本题共44分,每小题11分)1.解:原式。

2.解:。

3.解:=。

4.解:。

四、应用题(本题16分)解:设容器的底半径为,高为,则其表面积为,由已知,于是,则其表面积为令,解得唯一驻点,由实际问题可知,当时可使用料最省,此时,即当容器的底半径与高分别为与时,用料最省。

最新国家开放大学电大《微积分初步》期末试题题库及答案

最新国家开放大学电大《微积分初步》期末试题题库及答案

最新国家开放大学电大《微积分初步》期末试题题库及答案盗传必究题库一一、填空题(每小题4分,本题共20分)1. 函a/(x + l) = x 2+2x + 7,则f(x)= c 「 sin 3x2.1im ----- = __________ .x3. 曲线y = x 2在点(1, 1)处的切线的斜率是.24. J ](sinxcos2x-x )dx = _____________5. _________________________________________ 微分方程9" +(y )4 cosx = e*的阶数为 二、单项选择题(每小题4分,本题共20分) 1 .函数f (x ) = ―1—的定义域是()・ln (x-l ) A. (l,+oo) B. (0,l)D(l,+8) C ・(1,2)D (2,+8) D. (0,2)u(2,+oo)A. 0B. 1C. 2D. -1 3.下列结论中正确的是( )・A. X 。

是/3)的极值点,则知必是/的驻点B. 使f\x )不存在的点x 0 一定是/3)的极值点・)时,函数f (x )= .3 [xsin — + 1,xk.'A 。

在x = 0处连续.x = 0C.若r(x o) = O,则Xo必是,⑴的极值点D.X。

是/3)的极值点,旦尸Oo)存在,则必有.广(工0)= 04.若函数 /'(x) = x +J^(x > 0),贝0 J /'(x)dx=().A.x + Vx + c12 2 |B.—x + —x2 +c2 3C.x2 +x + c31D.x2 + — x2 +c25.微分方程* = 0的通解为()・A.y = 0B.y - cC.y = x + cD.y = ex三、计算题(本题共44分,每小题11分)1 •计算极限Iim-V--5V + 6 .13 X2 -92.设y = x4x + cos3x,求⑪.3.计算不定积分j x sin xdx4.计算定积分j^e x(l + e x)2dx四、应用题(本题16分)用钢板焊接一个容积为411?的底为正方形的无盖水箱,已知钢板每平方米10元,焊接费40元,问水箱的尺寸如何选择,可使总费最低?最低总费是多少?试题答案及评分标准(仅供参考)一、填空题(每小题4分,本题共20分)1 291.x +62. 33.—4.5. 22 3二、单项选择题(每小题4分,木题共20分)四、应用题(木题16分)4解:设水箱的底边长为X ,高为h,表面积为S,且有h = — x 2 所以Sl+4劝“ +皿X10分因为本问题存在最小值,且函数的驻点唯一,所以,当x = 2,h = 1时水箱的表面积最小.题库二一、填空题(每小题4分,本题共20分)1. 函数f(x} = ―1— + V4-X 2的定义域是ln(x + l)---------l.c2.B3.D 4-A5.B 三、计算题(本题共44分,每小题11分)1.解:原式=lim-仃 一 2)(x — 3) = = La (x + 3)(x -3) a x + 3 6 11分2.解:V = 2/-3sin3x23 1 dy = (—x 2 -3sin3x)dx11分3.解:Jx sinxdx = -x cos x + J cos xdx = -x cos x + sinx + c11分4.解: Pe x (l + e x )2dx = J ,n2(l + e x )2d(l + e x ) = -(l + e x )3ln219T11分此时的费用为2X 10+40=160 (元) 16分io_x + i(ri.设函数歹=——-—,则该函数是(A.奇函数B.偶函数C.非奇非偶函数D.既奇又偶函数2.当XT 0时,下列变量中为无穷小量的是(A.B. x sinxC. ln(l + x)D.3.设y = lg2x 则dy =(A. —dx2xB. —dxXC. In10 、 --- dxD. xlnlO^4. 在切线斜率为2x的积分曲线族中,通过点(1,4)的曲线为()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微积分初步形成性考核作业(一)解答————函数,极限和连续一、填空题(每小题2分,共20分) 1.函数)2ln(1)(-=x x f 的定义域是 .解:020)2ln({>-≠-x x , 23{>≠x x所以函数)2ln(1)(-=x x f 的定义域是),3()3,2(+∞⋃2.函数xx f -=51)(的定义域是 .解:05>-x ,5<x 所以函数xx f -=51)(的定义域是)5,(-∞3.函数24)2ln(1)(x x x f -++=的定义域是 .解:⎪⎩⎪⎨⎧≥->+≠+04020)2ln(2x x x ,⎪⎩⎪⎨⎧≤≤-->-≠2221x x x 所以函数24)2ln(1)(x x x f -++=的定义域是]2,1()1,2(-⋃-- 4.函数72)1(2+-=-x x x f ,则=)(x f.解:72)1(2+-=-x x x f 6)1(61222+-=++-=x x x 所以=)(x f 62+x5.函数⎩⎨⎧>≤+=0e2)(2x x x x f x ,则=)0(f .解:=)0(f 2202=+6.函数x x x f 2)1(2-=-,则=)(x f .解:x x x f 2)1(2-=-1)1(11222+-=-+-=x x x ,=)(x f 12+x7.函数1322+--=x x x y 的间断点是 .解:因为当01=+x ,即1-=x 时函数无意义所以函数1322+--=x x x y 的间断点是1-=x8.=∞→xx x 1sinlim .解:=∞→x x x 1sinlim 111sinlim =∞→xx x9.若2sin 4sin lim0=→kxxx ,则=k .解: 因为24sin 44sin lim 4sin 4sin lim00===→→kkxkx x xk kx x x x 所以2=k10.若23sin lim 0=→kxxx ,则=k .解:因为2333lim 33lim 00===→→kx x sim k kx x sim x x所以23=k 二、单项选择题(每小题2分,共24分)1.设函数2e e xx y +=-,则该函数是( ).A .奇函数B .偶函数C .非奇非偶函数D .既奇又偶函数解:因为y e e e e x y xx x x =+=+=-----22)()( 所以函数2e e xx y +=-是偶函数。

故应选B2.设函数x x y sin 2=,则该函数是( ).A .奇函数B .偶函数C .非奇非偶函数D .既奇又偶函数 解:因为y x x x x x y -=-=--=-sin )sin()()(22所以函数x x y sin 2=是奇函数。

故应选A3.函数222)(xx x x f -+=的图形是关于( )对称.A .x y =B .x 轴C .y 轴D .坐标原点解:因为)(222222)()()(x f x x x f x x x x -=+-=+⋅-=----- 所以函数222)(xx x x f -+=是奇函数从而函数222)(xx x x f -+=的图形是关于坐标原点对称的 因此应选D4.下列函数中为奇函数是().A .x x sinB .x lnC .)1ln(2x x ++D .2x x + 解:应选C5.函数)5ln(41+++=x x y 的定义域为( ). A .5->x B .4-≠x C .5->x 且0≠x D .5->x 且4-≠x解:⎩⎨⎧>+≠+0504x x ,⎩⎨⎧->-≠54x x ,所以应选D6.函数)1ln(1)(-=x x f 的定义域是( ).A . ),1(+∞B .),1()1,0(+∞⋃C .),2()2,0(+∞⋃D .),2()2,1(+∞⋃解:⎩⎨⎧>-≠-010)1ln(x x ,⎩⎨⎧>≠12x x ,函数)1ln(1)(-=x x f 的定义域是),2()2,1(+∞⋃,故应选D7.设1)1(2-=+x x f ,则=)(x f ( )A .)1(+x xB .2x C .)2(-x x D .)1)(2(-+x x 解:1)1(2-=+x x f ]2)1)[(1()1)(1(-++=-+=x x x x )2()(-=x x x f ,故应选C8.下列各函数对中,()中的两个函数相等.A .2)()(x x f =,x x g =)( B .2)(x x f =,x x g =)(C .2ln )(x x f =,x x g ln 2)(= D .3ln )(x x f =,x x g ln 3)(= 解:两个函数相等必须满足①定义域相同②函数表达式相同,所以应选D9.当0→x 时,下列变量中为无穷小量的是( ). A .x 1 B .x x sin C .)1ln(x + D .2xx 解:因为0)1ln(lim 0=+→x x ,所以当0→x 时,)1ln(x +为无穷小量,所以应选C10.当=k ( )时,函数⎩⎨⎧=≠+=0,0,1)(2x k x x x f ,在0=x 处连续.A .0B .1C .2D .1- 解:因为1)1(lim )(lim 2=+=→→x x f x x ,k f =)0(若函数⎩⎨⎧=≠+=0,0,1)(2x k x x x f ,在0=x 处连续,则)(lim )0(0x f f x →=,因此1=k 。

故应选B11.当=k ( )时,函数⎩⎨⎧=≠+=0,,2)(x k x e x f x 在0=x 处连续.A .0B .1C .2D .3 解:3)2(lim )(lim )0(0=+===→→xx x e x f f k ,所以应选D12.函数233)(2+--=x x x x f 的间断点是( ) A .2,1==x xB .3=xC .3,2,1===x x xD .无间断点解:当2,1==x x 时分母为零,因此2,1==x x 是间断点,故应选A 三、解答题(每小题7分,共56分)⒈计算极限423lim 222-+-→x x x x .解:423lim222-+-→x x x x 4121lim )2)(2()2)(1(lim 22=+-=-+--=→→x x x x x x x x 2.计算极限165lim 221--+→x x x x解:165lim221--+→x x x x 2716lim )1)(1()6)(1(lim 11=++=-++-=→→x x x x x x x x 3.329lim 223---→x x x x解:329lim 223---→x x x x 234613lim )3)(1()3)(3(lim 33==++=-+-+=→→x x x x x x x x 4.计算极限4586lim 224+-+-→x x x x x解:4586lim 224+-+-→x x x x x 3212lim )4)(1()4)(2(lim 44=--=----=→→x x x x x x x x 5.计算极限6586lim 222+-+-→x x x x x .解:6586lim 222+-+-→x x x x x 234lim )3)(2()4)(2(lim 22=--=----=→→x x x x x x x x 6.计算极限xx x 11lim--→. 解:x x x 11lim--→)11(lim )11()11)(11(lim 00+--=+-+---=→→x x xx x x x x x 21111lim-=+--=→x x7.计算极限xx x 4sin 11lim--→解:x x x 4sin 11lim--→)11(4sin )11)(11(lim 0+-+---=→x x x x x 81)11(44sin 1lim 41)11(4sin lim00-=+--=+--=→→x xx x x xx x8.计算极限244sin lim-+→x x x .解:244sin lim-+→x x x )24)(24()24(4sin lim++-+++=→x x x x x16)24(44sin lim 4)24(4sin lim 00=++=++=→→x xxx x x x x微积分初步形成性考核作业(二)解答(除选择题)————导数、微分及应用一、填空题(每小题2分,共20分) 1.曲线1)(+=x x f 在)2,1(点的斜率是 .解:xx f 21)(=',斜率21)1(='=f k 2.曲线xx f e )(=在)1,0(点的切线方程是 . 解:xe xf =')( ,斜率1)0(0=='=e f k所以曲线xx f e )(=在)1,0(点的切线方程是:1+=x y 3.曲线21-=xy 在点)1,1(处的切线方程是.解:2321--='x y ,斜率21211231-=-='==-=x x x y k所以曲线21-=xy 在点)1,1(处的切线方程是:)1(211--=-x y ,即:032=-+y x 4.=')2(x. 解:=')2(x xxxx22ln 22ln 212=⋅5.若y = x (x – 1)(x – 2)(x – 3),则y '(0) =.解:6)3)(2)(1()0(-=---='y6.已知x x x f 3)(3+=,则)3(f '=.解:3ln 33)(2xx x f +=',)3(f '3ln 2727+=7.已知x x f ln )(=,则)(x f ''= .解:x x f 1)(=',21)(xx f -='' 8.若xx x f -=e )(,则='')0(f .解:x xxe ex f ---=')(,x x x x x xe e xe e e x f -----+-=---=''2)()(, ='')0(f 2-9.函数y x =-312()的单调增加区间是 .解:0)1(6≥-='x y ,1≥x ,所以函数y x =-312()的单调增加区间是),1[+∞ 10.函数1)(2+=ax x f 在区间),0(∞+内单调增加,则a 应满足 .解:02)(≥='ax x f ,而0>x ,所以0≥a 二、单项选择题(每小题2分,共24分) 1.函数2)1(+=x y 在区间)2,2(-是( D ) A .单调增加 B .单调减少C .先增后减D .先减后增2.满足方程0)(='x f 的点一定是函数)(x f y =的( C ). A .极值点 B .最值点 C .驻点 D . 间断点 3.若x x f xcos e)(-=,则)0(f '=( C ).A . 2B . 1C . -1D . -2 4.设y x =lg2,则d y =( B ). A .12d x x B .1d x x ln10 C .ln10x x d D .1d xx 5..设)(x f y =是可微函数,则=)2(cos d x f ( D ).A .x x f d )2(cos 2'B .x x x f d22sin )2(cos 'C .x x x f d 2sin )2(cos 2'D .x x x f d22sin )2(cos '- 6.曲线1e2+=xy 在2=x 处切线的斜率是( C ).A .4e B .2e C .42e D .2 7.若x x x f cos )(=,则='')(x f ( C ).A .x x x sin cos +B .x x x sin cos -C .x x x cos sin 2--D .x x x cos sin 2+ 8.若3sin )(a x x f +=,其中a 是常数,则='')(x f ( C ).A .23cos a x + B .a x 6sin + C .x sin - D .x cos9.下列结论中( B )不正确. A .)(x f 在0x x =处连续,则一定在0x 处可微. B .)(x f 在0x x =处不连续,则一定在0x 处不可导. C .可导函数的极值点一定发生在其驻点上.D .若)(x f 在[a ,b ]内恒有0)(<'x f ,则在[a ,b ]内函数是单调下降的. 10.若函数f (x )在点x 0处可导,则( B )是错误的.A .函数f (x )在点x 0处有定义B .A x f x x =→)(lim 0,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微11.下列函数在指定区间(,)-∞+∞上单调增加的是( B ). A .sin x B .e x C .x 2 D .3 - x 12.下列结论正确的有( A ).A .x 0是f (x )的极值点,且f '(x 0)存在,则必有f '(x 0) = 0B .x 0是f (x )的极值点,则x 0必是f (x )的驻点C .若f '(x 0) = 0,则x 0必是f (x )的极值点D .使)(x f '不存在的点x 0,一定是f (x )的极值点三、解答题(每小题7分,共56分)⒈设xx y 12e =,求y '.解:x x xx e xe xe x xe y 1121212)1(2-=-+='x e x 1)12(-=2.设x x y 3cos 4sin +=,求y '. 解:x x x y sin cos 34cos 42-=' 3.设xy x 1e 1+=+,求y '. 解:211121x ex y x -+='+ 4.设x x x y cos ln +=,求y '. 解:x x x x x y tan 23cos sin 23-=-+=' 5.设)(x y y =是由方程422=-+xy y x 确定的隐函数,求y d . 解:两边微分:0)(22=+-+xdy ydx ydy xdx xdx ydx xdy ydy 22-=- dx xy xy dy --=226.设)(x y y =是由方程1222=++xy y x 确定的隐函数,求y d . 解:两边对1222=++xy y x 求导,得:0)(222='++'+y x y y y x 0='++'+y x y y y x ,)()(y x y y x +-='+,1-='y dx dx y dy -='=7.设)(x y y =是由方程4e e 2=++x x y x 确定的隐函数,求y d . 解:两边微分,得:02=+++xdx dy xe dx e dx e yyxdx x e e dy xe yxy)2(++-=,dx xexe e dy yy x 2++-= 8.设1e )cos(=++yy x ,求y d . 解:两边对1e )cos(=++yy x 求导,得: 0)sin()1(='++'+-y e y y x y 0)sin()sin(='++'-+-ye y y x y y x )sin()]sin([y x y y x e y+='+- )sin()sin(y x e y x y y+-+=' dx y x e y x dx y dy y)sin()sin(+-+='=微积分初步形成性考核作业(三)解答(填空题除外)———不定积分,极值应用问题一、填空题(每小题2分,共20分)1.若)(x f 的一个原函数为2ln x ,则=)(x f 2ln 2x x x c -+ 。

相关文档
最新文档