三年级奥数用还原法解题

合集下载

三年级奥数:还原法解题,逆向思维解题方法

三年级奥数:还原法解题,逆向思维解题方法

三年级奥数:还原法解题,逆向思维解题方法
还原法也叫倒推法,还原法解题的特征是必须从问題的结果入手,反用题目中的条件,最后求出原有的数量。

我们把能够使用还原原法解题的问题就叫做还原问题或倒推问题。

符号、线段图和图表是解还原问题的三种常用方法。

今天我们重点学习符号还原。

符号还原:用流程图表示某个数经过加、减、乘、除的变化过程,然后从结果入手倒推,倒推时符号相反。

下面我们就通过一些具体的例子来说明一下。

例题1
当我们在倒推的时候,需要注意原来那一步是加的,倒推就要变成减,原来是乘的就要变成除。

这种类型的题目,需要我们找准倒推的方式,有些小朋友经常容易漏掉推算的步骤,或者没有变符号,导致前功尽弃。

例题2
在画流程图的时候,遇到“一半”可以用除以2表示。

根据题目给出的最后结果3往前倒推,除以2的对应就是乘以2。

若题目中出现的是“一半多几”,则画图时要减掉这个多的,若出现“一半少几”,则画图时要加上这个少的。

下面我们用例题3来具体说明这样的问题。

例题3
当我们在画流程图时,要注意,多用的时要减去的,因为流程中的每下一步都是用过后剩下的数,同样的道理少用的要加上。

下面我们来看一些练习:
1、一个数加上3,乘以4,除以5,再减去6,结果是2,求这个数是多少?
2、一个数加上8,乘以8,除以8,结果还是8,这个数是多少?
3、一桶油,第一次用去全部的一半,第二次用去余下的一半,还剩12千克,求这桶油原来有多少千克?
答案请往下翻,(做完再看答案哦)。

参考答案:1、7;2、0;3、48。

奥数班三年级第3讲 还原问题

奥数班三年级第3讲  还原问题

200克
110克
10
100克
12
43
110克
(43+12) × 2 =110克
(110-10) × 2 =200克
7
【典型例题】
例5:甲、乙、丙、丁四个同学共有彩色玻璃弹子100颗,甲给乙13颗, 乙给丙18颗,丙给丁16颗,丁给甲2颗,这时四人的弹子数相同。他们 原来每人各有弹子多少颗?
甲 13颗 乙 18颗 丙 16颗 丁
×2
+5
÷5
-3
(5)
( 10 )
( 15 )
(3 )
0
÷2
-5
×5
+3
答:这个数是5。
10
【课堂精练】
2.妈妈买来一批苹果,第一次吃了全部的一半少5千克,第二次吃了余 下的一半还少10千克,还剩22千克,你知道这批苹果共有多少千克吗?
38千克
24千克
5 19千克
10
12千克
22
24千克
(22 - 10) × 2 =24千克 (24 - 5) × 2 =38千克
4.抽屉里有若干个玻璃球,小军每次拿了其中的一半再放回一个,这
样一共拿了三次,抽屉中还有3个玻璃球,问原来抽屉中有多少个玻璃
球?
10米
5米
1
6米 3米
1
(3- 1)×2=4米
4米 2米
1
3
(4- 1)×2=6米
(6- 1)×2=10米
13
【课堂精练】
5.桌上放着三盘橘子共45只,如果从第一盘拿4只放到第二盘,再从第 二盘拿出7只放到第三盘,那么三盘子中的橘子只数就完全相等。问原

30本
5本 丙
30本

三年级奥数用还原法解题

三年级奥数用还原法解题

三年级奥数用还原法解题【一】一个数加上10,再减6,得29,求这个数。

练习1、一个数减5,再乘以3,得15,求这个数。

2、一个数加上7,减2,再除以2,得8,求这个数。

【二】甲、乙、丙三各有一些图书。

甲给乙1本,乙给丙2本,则三人各有5本。

问原来甲、乙、丙三人各有多少本?练习1、小华、小西、小国三人各有一些铅笔。

如果小华给小西1支,小西给小国2支,则三人各有3支。

问原来三人各有多少支?2、有三堆木柴,如果把第一堆的木柴移2根到第二堆,把第二堆的木柴移4根到第三堆,这时三堆的木柴数量相等,都是10根。

这三堆木柴原来各有多少根?【三】某数加上3,乘以5,再减去8,等于12。

求某数。

练习1、一个数加上5,乘以5,再减去5最后除以5,结果还是5,这个数是几?2、一个数的3倍加上5,减去7,乘以4得40,求这个数。

【四】某班小图书室第1天借出了存书的一半,第2天又借出40本,还剩22本。

小图书室原有图书多少本?练习1、三(1)班学生进行大扫除。

一半学生去支援一年级,剩下的一半去扫清洁区,最后还有8人留下扫教室。

三(1)班共有多少学生?2、一根铁管,第1次截去3米,第2次截去剩下的一半,还剩4米。

这根铁管原来长多少米?【五】甲、乙、丙三人各有一些连环画,甲给乙2本,乙给丙4本后,三人的本数同样多,乙原来比丙多多少本?练习1、小浩、小亮、小静各有气球若干个,如果小浩给小亮8个,小亮给小静7个后,三人的个数同样多,小亮原来比小静多几个?2、甲、乙、丙三人各有一些邮票,如果甲借给乙16张,乙又送给丙7张,这时三人的邮票张数同样多,原来乙和丙哪个人的邮票多,多几张?【六】书架上有上、中、下三层,一共分放了192本书。

现在从上层取出3本放入中层,又从中层取出8本放入下层。

这时三层书架所放的书本数相同,这个书架的上、中、下三层原来各有多少本书?练习1、亮亮、宁宁、晶晶三人共带了30元钱。

宁宁给亮亮2元,亮亮用去3元,晶晶给宁宁2元后三人的钱数正好相等,问原来亮亮、宁宁、晶晶各有多少钱?2、王、张、刘三位小朋友共有邮票150枚,现在他们交换邮票,王给刘12枚,刘给张18枚,张给王20枚,这样,三人的邮票数相等。

小学奥数三年级奥数还原法逆推法解题

小学奥数三年级奥数还原法逆推法解题

例2: 小马虎在做一道加法题目时,把个位上的5看
成了9,把十位上的8看成了3,结果得到的“和” 是123。问:正确的结果应是多少?
利用还原法。因为把个位上的5看成9,所以多 加了4;又因为把十位上的8看成3,所以少加了50。 在用还原法做题时,多加了的4应减去,多减了的 50应加上。 解:123-4+50=169。
3.一群蚂蚁搬家,原存一堆食物,第一天运出 总数的一半少12克,第二天运出剩下的一半少12克, 结果窝里还剩下43克,问蚂蚁原有食物_____克?
4.小乐爷爷今年的年龄数减去15后,除以4,再 减去6之后,乘以10,恰好是100。问:小乐爷爷今 年多少岁?
5.粮库内有一批面粉,第一次运出总数的一半 多3吨,第二次运出剩下的一半少7吨,还剩4吨。问: 粮库里原有面粉多少吨?
二次用去余下的一半少10米,第三次用去15米, 最后还剩7米,这捆电线原有多少米?
利用还原法。第二次用完还剩下15+7=22 (米),第一次用完还剩下(22-10)×2=24 (米),原来电线长(24+3)×2=54(米)。
解:[(15+7-10)×2+3]×2=54(米)。 答:这捆电线原有54米。
对于有些问题,当顺着题目条件的叙述去寻找 解法时,往往有一定的困难,但是,如果改变思考 顺序,从问题叙述的最后结果出发,一步一步倒着 思考,一步一步往回算,原来加的用减,减的用加, 原来乘的用除,除的用乘,那么问题便容易解决。
这种解题方法叫做逆推法或还原法。
猪八戒非常喜欢吃西瓜,所以
自己种了很多又大又甜的西瓜。终 于等到西瓜成熟了,猪八戒真是喜 出望外。第一天他吃了西瓜的一半 还多2个,第二天他吃了剩下的西 瓜的一半还多2个,第三天他吃了 剩下西瓜的一半,还剩下2个。小 朋友们,你们知道猪八戒种了多少 西瓜吗?

15三年级奥数班第十五讲——“还原”解题

15三年级奥数班第十五讲——“还原”解题

15三年级奥数班第十五讲——“还原”解题预览说明:预览图片所展示的格式为文档的源格式展示,下载源文件没有水印,内容可编辑和复制远辉教育春季奥数班数学学案主讲人:杨老师学生:三年级电话:第十五讲——“还原”解题专题简析:“一个数加上3,乘3,再减去3,最后除以3,结果还是3,这个数是几?”像这样已知一个数的变化过程和最后的结果,求原来的数,我们通常把它叫做“还原问题”。

解答还原问题,一般采用倒推法,简单说,就是倒过来想。

解答还原问题,我们可以根据题意,从结果出发,按它变化的相反方向一步步倒着推想,直到问题解决。

同时,可利用线段图表格帮助理解题意。

例题简析:【例题1】小芳问爷爷现在多大年纪。

爷爷说:“把我的年龄加上25再除以4,减去15后乘10,正好是100岁。

”问爷爷现在多少岁?举一反三:1. 小明问爷爷今年多大年纪。

爷爷说:“把我的年纪加上18,除以4,再减去20,然后用3乘,恰好是27岁。

”问爷爷现在多少岁?2. 牧童正在草地上放羊,一位旅行者问牧童:“你这群羊有多少只?”牧童回答:“把我的羊的只数除以6,乘以3,加上2,再乘2,正好等于100.请你算算我有多少只羊?”3. 四年级的小红与小英正在玩扑克牌游戏。

小红手中的牌“J”代表11、“Q”代表12、“K”代表13,小红叫小英任意抽一张牌,把代表这张牌的数字先减去6,再加上9,然后除以3,最后乘2,小英依次算好后告诉小红最后的得数是10,请问小英抽到的是哪张牌?【例题2】甲、乙、丙三人各有一些连环画,甲给乙3本,乙给丙5本后,三人的本数同样多。

乙原来比丙多多少本?举一反三:1. 小松、小明、小航各有玻璃球若干个,如果小松给小明10个,小明给小航6个后,三人的个数同样多。

2. 2,甲、乙、丙三个组各有一些图书,如果甲组借给乙组13本后,乙组又送给丙组6本,这时三个组的图书本数同样多。

原来乙组和丙组哪组的图书多,多几本?3. 3,甲、乙、丙三个小朋友各有年历卡若干张,如果甲给乙13张,乙给丙23张,丙给甲3张,那么他们每人各有30张。

三年级上册数学课件 奥数 还原法解题

三年级上册数学课件 奥数 还原法解题
15÷3=5(条)
第三缸: 5-3=2(条) 第二缸: 5+3-2=6(条)
第一缸: 5+2=7(条)
.520520.
练2、学校乒乓球队有三盒乒乓球,王教练从第一 盒中取出 12只放入第二盒,又从第二盒中取出 18 只放入第三盒,再从第三盒中取出 27只放入第一 盒,这是三盒乒乓球都是 80只,求原来三个盒子 里各有多少只乒乓球?
2、仓库里有一批粮食,第一天运出全部粮食的一半 多6吨,第二天运出余下的一半少 8吨,这是仓库里还 剩下38吨粮食没有运。求仓库里原来有粮食多少吨?
.520520.
例4、桃园里有三个箩筐,共装着 60个桃子。欧欧 先从第一筐拿出 7个桃子放入第二筐;又从第二筐 拿出8个桃子放入第三筐,这时三个箩筐的桃子数 相等。原来每个箩筐放了多少个桃子?
100
答:这段公路的全长是700米。
.520520.
练1、元元读一本科幻小说,第一天读了全书的一半多 30页,第二天读了余下的一半多 16页,还剩下 64页没 有读。求这本科幻小说一共有多少页?
原:
30
(160+30)×2 = 380
16
( 64+16)×2 = 160
64
答:这本科幻小说一共有380页。
原:
2 2
( 52-2 )×2 = 100 ( 28- 2 )×2 = 52
28
答:婆婆早晨带了100个鸡蛋去早市。
.520520.
练1、仓库里有一批粮食,第一天运出全部粮食的一半 还少50吨,第二天运出余下粮食的一半还少 80吨,这 时仓库里还剩下 120吨粮食没有运。求仓库里原来有粮 食多少吨?
126-55+35=106
.520520.
练1、小明做一道加法题,错误地把其中一个加数 38看成了88, 算出得数是156。那么这道题的正确答案是多少?

(完整版)三年级奥数--还原问题

(完整版)三年级奥数--还原问题

还原问题例1:小刚的奶奶今年年龄减去7后,缩小9倍,再加上2之后,扩大10倍,恰好是100岁。

小刚的奶奶今年多少岁?练习一1,在□里填上适当的数。

20×□÷8+16=262,一个数的3倍加上6,再减去9,最后乘上2,结果得60.这个数是多少?3,小红问王老师今年多大年纪,王老师说:“把我的年纪加上9,除以4,减去2,再乘上3,恰好是30岁.”王老师今年多少岁?例2:某商场出售洗衣机,上午售出总数的一半多10台,下午售出剩下的一半多20台,还剩95台。

这个商场原来有洗衣机多少台?练习二1,粮库内有一批大米,第一次运出总数的一半多3吨,第二次运出剩下的一半多5吨,还剩下4吨。

粮库原有大米多少吨?2,爸爸买了一些橘子,全家人第一天吃了这些橘子的一半多1个,第二天吃了剩下的一半多1个,第三天又吃掉了剩下的一半多1个,还剩下1个。

爸爸买了多少个橘子?3,某水果店卖菠萝,第一次卖掉总数的一半多2个,第二次卖掉了剩下的一半多1个,第三次卖掉第二次卖后剩下的一半多1个,这时只剩下一外菠萝。

三次共卖得48元,求每个菠萝多少元?例3:小明、小强和小勇三个人共有故事书60本。

如果小强向小明借3本后,又借给小勇5本,结果三个人有的故事书的本数正好相等。

这三个人原来各有故事书多少本?练习三1,甲、乙、丙三个小朋友共有贺年卡90张。

如果甲给乙3张后,乙又送给丙5张,那么三个人的贺年卡张数刚好相同。

问三人原来各有贺年卡多少张?2,小红、小丽、小敏三个人各有年历片若干张。

如果小红给小丽13张,小丽给小敏23张,小敏给小红3张,那么他们每人各有40张。

原来三个人各有年历片多少张?3,甲、乙、丙、丁四个小朋友有彩色玻璃弹子10颗,甲给乙13颗,乙给丙18颗,丙给丁16颗,四人的个数相等。

他们原来各有弹子多少颗?例4:甲乙两桶油各有若干千克,如果要从甲桶中倒出和乙桶同样多的油放入乙桶,再从乙桶倒出和甲桶同样多的油放入甲桶,这时两桶油恰好都是36千克。

【15】三年级奥数-还原问题

【15】三年级奥数-还原问题

还原问题编号:15【学习提示】“一个数加上3,乘3,再减去3,最后除以3,结果还是3,这个数是几?”像这样已知一个数的变化过程和最后的结果,求原来的数,我们通常把它叫做“还原问题”。

解答还原问题,一般采用倒推法,简单说,就是倒过来想。

例1:一个减24加上15,再乘8得432,求这个数。

练习一1,一个数加上3,乘3,再减去3,最后除以3,结果还是3。

这个数是几?2,一个数的4倍加上6减去10,再乘2得88,求这个数。

3,一个数缩小2倍,再缩小2倍得80,求这个数。

例2:一段布,第一次剪去一半,第二次又剪去余下的一半,还剩8米。

这段布原来长多少米?思路导航:根据题意,画出线段图。

练习二1,某水果店卖西瓜,第一次卖掉总数的一半,第二次卖掉剩下的一半,这时还剩10只西瓜。

原有西瓜多少只?2,某人乘船从甲地到乙地,行了全程的一半时开始睡觉,当他睡醒时发现船又行了睡前剩下的一半,这时离乙地还有40千米。

甲、乙两地相距多少千米?3,有一箱苹果,第一次取出全部的一半多1个,第二次取出余下的一半多1个,箱里还剩下10个。

箱里原有多少个苹果?例3:甲、乙、丙三人各有一些连环画,甲给乙3本,乙给丙5本后,三人的本数同样多。

乙原来比丙多多少本?练习三1,小松、小明、小航各有玻璃球若干个,如果小松给小明10个,小明给小航6个后,三人的个数同样多。

2,甲、乙、丙三个组各有一些图书,如果甲组借给乙组13本后,乙组又送给丙组6本,这时三个组的图书本数同样多。

原来乙组和丙组哪组的图书多,多几本?3,甲、乙、丙三个小朋友各有年历卡若干张,如果甲给乙13张,乙给丙23张,丙给甲3张,那么他们每人各有30张。

原来3人各有年历卡多少张?例4:李奶奶卖鸡蛋,她上午卖出总数的一半多10个,下午又卖出剩下的一半多10个,最后还剩65个鸡蛋没有卖出。

李奶奶原来有多少个鸡蛋?思路导航:根据题意,画出线段图。

练习四1,竹篮内有若干个李子,取它的一半又1枚给第一人,再取余下的一半又2枚给第二人,还剩6枚。

2019-2020年三年级数学 奥数讲座 用还原法解题

2019-2020年三年级数学 奥数讲座 用还原法解题

2019-2020年三年级数学奥数讲座用还原法解题专题简析:“一个数加上3,乘3,再减去3,最后除以3,结果还是3,这个数是几?”像这样已知一个数的变化过程和最后的结果,求原来的数,我们通常把它叫做“还原问题”。

解答还原问题,一般采用倒推法,简单说,就是倒过来想。

解答还原问题,我们可以根据题意,从结果出发,按它变化的相反方向一步步倒着推想,直到问题解决。

同时,可利用线段图表格帮助理解题意。

例题1 一个减24加上15,再乘8得432,求这个数。

思路导航:我们可以从最后的结果432出发倒着推想。

最后是乘8得432,如果不乘8,那应该是432÷8=54;如果不加上15,应该是54-15=39;如果不减去24,那应该是39+24=63。

因此,这个数是63。

练习一1.一个数加上3,乘3,再减去3,最后除以3,结果还是3。

这个数是几?2.一个数的4倍加上6减去10,再乘2得88,求这个数。

3.一个数缩小2倍,再缩小2倍得80,求这个数。

例题2 一段布,第一次剪去一半,第二次又剪去余下的一半,还剩8米。

这段布原来长多少米?思路导航:根据题意,画出线段图。

?米8米余下的一半全长的一半从上面的线段图可以看出:剩下的8米和余下的一半同样多,那么原长的一半是:8×2=16米,原来长:16×2=32米。

练习二1.某水果店卖西瓜,第一次卖掉总数的一半,第二次卖掉剩下的一半,这时还剩10只西瓜。

原有西瓜多少只?2.某人乘船从甲地到乙地,行了全程的一半时开始睡觉,当他睡醒时发现船又行了睡前剩下的一半,这时离乙地还有40千米。

甲、乙两地相距多少千米?3.有一箱苹果,第一次取出全部的一半多1个,第二次取出余下的一半多1个,箱里还剩下10个。

箱里原有多少个苹果?例题3 甲、乙、丙三人各有一些连环画,甲给乙3本,乙给丙5本后,三人的本数同样多。

乙原来比丙多多少本?思路导航:因为乙给丙5本后,两人同样多,可知乙比丙多5×2=10本,而这10本中又有3本是甲给的,所以原来乙比丙多10-3=7本。

三年级奥数-还原问题

三年级奥数-还原问题
“还原”解题
专题解析:
“一个数加上3,乘3,再减去3,最后除以3, 结果还是3,这个数是几?”像这样已知一个数的 变化过程和最后的结果,求原来的数,我们通常把 它叫做“还原问题”。解答还原问题,一般采用倒 推法,简单说,就是倒过来想。
解答还原问题,我们可以根据题意,从结果出 发,按它变化的相反方向一步步倒着推想,直到问 题解决。同时,可利用线段图表格帮助理解题意。
例2:
甲、乙、丙三人各有一些连环画,甲给乙3 本,乙给丙5本后,三人的本数同样多。乙 原来比丙多多少本?
举一反三2
1、小松、小明、小航各有玻璃球若干个, 如果小松给小明10个,小明给小航6个后, 三人的个数同样多。小明原来比小航多几 个玻璃球?
2、甲、乙、丙三个组各有一些图书,如 果甲组借给乙组13本后,乙组又送给 丙组6本,这时三个组的图书本数同样 多。原来乙组和丙组哪组的图书多, 多几本?
2、三个书架上共有336本书。如果从第一个书架 上拿出4本书放到第二个书架上,再从第二个书 架上拿出5本书放到第三个书架上,那么此时三 个书架上书的本数相等,原来你三个书架各有多 少本书?
3、某数加上8,减去4,乘以2,除以6,等于10, 这个数是多少?
4、公共汽车从起点开出,停靠第一站有10人下车, 5人上车,停靠第二站,只有8人上车。停靠第三 站时,只有7人下车,这时车上还有28人,车在 起点站开出时有乘客多少人?
2、两棵树上共有麻雀28只,从第一棵树上飞走 一半到第二棵树上,又从第二棵树上飞走3只到 第一颗树上,这时第二棵树上的麻雀比第一棵树 上的麻雀多6只。问最初第一棵树上有多少只?
综合练习
1、李师傅加工一批零件,第一天加工了这批零件 的一半多10个,第二天又加工了剩下的一半多10 个,这时还剩16个零件没加工,问这批零件共有 多少个?

三年级奥数第十一讲 用还原法解题

三年级奥数第十一讲  用还原法解题

三年级奥数第十一讲用还原法解题------------------------------------------作者xxxx------------------------------------------日期xxxx三年级数学提升班学生姓名:第十一讲:用还原法解题不想当元帅的士兵,不是一个好士兵,因为他没有上进心,没有进取心。

——拿破仑知识纵横“一个数加上3,乘以3,再减去3,最后除以3,结果还是3,这个数是几呢?”像这样已知一个数的变化过程和最后的结果,求原来的数,我们通常把它叫做“还原问题”。

解答“还原问题”,一般采用倒推法,简单说,就是倒过来想。

解答还原问题,我们可以根据题意,从结果出发,按它变化的相反方向一步步倒着想,直到解决问题为止,同时,可利用线段图、表格帮助理解题意。

例题求解【例1】一段布,第一次剪去一半,第二次又剪去一半,还剩下8米,这段布原来长多少米?【例2】小刚问一位大伯有多大年纪,大伯说:“把我的年纪加上9,用4除,减去15,用10乘,恰好是20.”这位大伯有多少岁?【例3】甲、乙、丙三人各有一些连环画,甲给乙3本,乙给丙5本后,三个人书的本数同样多,乙原来比丙多多少本?【例4】李奶奶卖鸡蛋,她上午卖出总数的一半多10个,下午又卖出剩下的一半多10个,最后还剩65个鸡蛋没有卖出,李奶奶原来有多少个鸡蛋?【例5】货场原有煤若干吨,第一次运出原有煤的一半,第二次运进450吨,第三次又运出现有煤的一半又50吨,结果剩余煤的2倍时1200吨,货场原有煤多少吨?【例6】有一筐苹果,甲取出一半又1个,乙取出余下的一半又1个,丙再取出余下的一半又1个,这时筐里还剩下1个苹果,这筐苹果共值6元6角,问每个苹果平均值多少钱?学力训练1.一个数加上3,减去4,乘以5,除以6,得10,求这个数。

2.一个数加上6,乘以6,再减去6,最后除以6,结果还是6,这个数是几?3.一瓶果汁,妈妈喝了一半后,明明喝了剩下的一半,最后剩下50毫升,这瓶果汁原来有多少毫升?4.一桶油连桶共重110千克,油用去一般后连桶还有70千克,桶内原有油多少千克?5.小刚问小明:“你今年几岁”?小明回答:“用我的年龄数减去8,乘以7,加上6,除以5,正好等于4.”小明今年多少岁?6.某人乘船从甲地到乙地,行了全程的一半时开始睡觉,当他醒来时发现船又行了睡觉前剩下的一半,这时离乙地还有40千米,问甲、乙两地相距多少千米?7.小松、小明、小航各有玻璃球若干个,如果小松给小明10个,小明给小航6个后,三人的个数同样多,小明原来比小航多几个?家长签字:。

三年级奥数-用还原法解题讲义和练习

三年级奥数-用还原法解题讲义和练习

用还原法解题讲义用还原法解题,一般用倒退法,简单说,就是倒过来想。

根据题意,从结果出发,按它变化的相反方向一步步倒着推想。

例1:一个数减24加上15,再乘以8得432,求这个数。

分析:我们从最后结果432出发倒着推理。

最后乘以8得432,要还原就应该除以8,即:432÷8=54;加上15,要还原就应该减15,即:54-15=39;减24,要还原就应该加上24,即:39+24=63。

列式如下:432÷8-15+24=63答:这个数是63。

例2:甲、乙、丙三人各有一些连环画,甲给乙3本,乙给丙5本后,三个人的本数同样多,乙原来比丙多多少本?分析:根据“乙给丙5本后,三个人的本数同样多”可知乙比丙多2个5本:5×2=10本;而这10本中有3本是甲给乙的,要还给甲3本,乙就只比丙多10-3=7本。

列式如下:5×2=10本10-3=7本答:乙原来比丙多7本。

例3:李奶奶卖鸡蛋,她上午卖出总数的一半多10个,下午又卖出剩下的一半多10个,最后还剩65个鸡蛋没有卖出。

李奶奶原来有多少个鸡蛋?线段图:余下的一半多10个总数的一半多10个剩下65个分析:从图中可以看出,剩下的65个鸡蛋加上10个就等于余下的一半。

余下的个数=(65+10)×2=150(个)。

而余下的150个加上10个就等于总数的一半,总数=(150+10)×2=320(个)。

列式如下:余下的个数=(65+10)×2=150(个)总数=(150+10)×2=320(个)。

答:李奶奶原来有320个鸡蛋。

例4:小红、小青、小宁都喜爱画片。

如果小红给小青11张画片,小青给小宁20张画片,小宁给小红5张画片,那么他们三人的画片张数同样多。

已知他们三人共有画片150张,他们三人原来各有画片多少张?分析:根据“三人共有画片150张”,可知平均每人有150÷3=50张。

再对照体重条件,把各人的画片还原。

三年级奥数还原问题

三年级奥数还原问题

还原问题知识结构一、还原问题已知一个数,经过某些运算之后,得到了一个新数,求原来的数是多少的应用问题,它的解法常常是以新数为基础,按运算顺序倒推回去,解出原数,这种方法叫做逆推法或还原法,这种问题就是还原问题.还原问题又叫做逆推运算问题.解这类问题利用加减互为逆运算和乘除互为逆运算的道理,根据题意的叙述顺序由后向前逆推计算.在计算过程中采用相反的运算,逐步逆推.二、解还原问题的方法在解题过程中注意两个相一是运算次序与原来相反;二是运算方法与原来相反.反:方法:倒推法。

口诀:加减互逆,乘除互逆,要求原数,逆推新数.关键:从最后结果出发,逐步向前一步一步推理,每一步运算都是原来运算的逆运算,即变加为减,变减为加,变乘为除,变除为乘.列式时还要注意运算顺序,正确使用括号.重难点(1)还原法的知识点(2)画图在解题过程中的应用例题精讲【例1】一个数减16 加上24,再除以7得36,求这个数.你知道这个数是几吗考点】计算中的还原问题【难度】 1 星【题型】解答关键词】可逆思想方法解析】36 7 24 16 244.答案】244巩固】少先队员采集树种子,采得的个数是一个有趣的数.把这个数除以5,再减去25,还剩25,你算一算,共采集了多少个树种子?考点】计算中的还原问题【难度】 1 星【题型】解答关键词】可逆思想方法解析】(25 25) 5 250 (个),即共采集了250 个树种子.答案】250例 2 】 学学做了这样一道题: 某数加上 10,乘以 10 ,减去 10,除以 10,其结果等于 10,求这个数. 小朋友,你知道答案吗?考点】计算中的还原问题 【难度】 1 星 【题型】解答 关键词】可逆思想方法 解析】根据题意,一个数,经过加法、乘法、减法、除法的变化,得到结果10,根据加、减法与乘、除法的互逆运算,倒着往前计算.10 10 100 ,100 10 110 ,110 10 11, 11 10 1综合算式为:(10 10 10) 10 10 (100 10) 10 10 110 10 10 11 10 1 所以这个数为 1.解这种还原问题的关键是从最后结果出发,逐步向前一步一步推理,每一步运算都是原来运算的 逆运算,即变加为减,变减为加,变乘为除,变除为乘.列式时还要注意运算顺序,正确使用括 号,这种逆向思维的方法是数学中常用的思维方法.答案】 1巩固】学学做了这样一道题:一个数加上 3,减去 5,乘以 4,除以 6得 16,求这个数.小朋友,你知道答案吗?考点】计算中的还原问题 【难度】 1 星 【题型】解答 关键词】可逆思想方法 解析】根据题意,一个数,经过加法、减法、乘法、除法的变化,得到结果10,根据加、减法与乘、除法的互逆运算,倒着往前计算.答案】 26例 3 】 一捆电线, 第一次用去全长的一半多 3 米,第二次用去余下的一半少 10 米,第三次用去 15 米, 最后还剩 7 米。

三年级奥数:还原问题

三年级奥数:还原问题

还原问题一、知识要点一些应用题,如果从条件分析解答不太容易,但如果从题目所求的问题入手进行思考分析,利用已知条件一步步倒着推理,就比较容易解决问题,这种倒过来思考问题的方法,就是还原法。

用还原法解题,关键是从最后一步结果出发,依照题意顺次逐步向前推理,每一步运算都是原来运算的逆运算,即变加为减,变减为加,变乘为除,变除为乘,同时列式时要注意运算顺序,并正确使用括号。

二、经典例题例1、某数加上5,乘以5,减去5,除以5,其结果等于5,这个数是多少?皮皮鲁不想再做小孩子,想快快长大,这时出现了一位白胡子老爷爷,他说可以帮助皮皮鲁实现愿望,而皮皮鲁不太相信。

他就问老爷爷多大年纪了?例2、老爷爷回答他说:“我的岁数加上5,然后除以6,接着乘以7,最后减去5,不多不少刚好100岁。

”你能帮皮皮鲁算出老爷爷今年多少岁吗?皮皮鲁终于如愿以藏长大了,来到一家百货公司上班,他负责销售电视机。

当他上了两天班之后,经理来巡视了。

例3、皮皮鲁第一天卖出总数的一半少6台,第二天卖出余下的一半多10台,这时还剩18台。

经理问她这批彩电原本一共有多少台?体验训练1一个数减24加上15,再乘以8得432。

求这个数.例4、妈给家里买了一些水果,第一天他们一家三口吃了全部的一半,第二天又吃了剩下的一半,第三天吃了剩下的一半还多一个,这时只剩下2个桃子。

问:小明妈妈买了多少个桃子。

例5、做一道加法算式题时,由于粗心,将个位上的5看作9,把十位上的8看作3,结果所得的和是123,正确的答案是多少?例6、小红、小青都喜欢画片。

如果小红给小青11张画片,小青给皮皮鲁20张画片,皮皮鲁给小红5张画片,那么他们三人的画片张数同样多。

已知他们三人共用画片150张,他们三人原来各有画片多少张?*例7、三堆棋子共96枚,小华先从第一堆里拿出和第二堆棋子数相等的棋子放入第二堆;再从第二堆棋子数相等的棋子放入第二堆;再从第二堆中拿出与第三堆棋子数相等的棋子放入第三堆;最后又从第三堆拿出与第一堆棋子数相等的棋子放入第一堆,这时,三堆棋子数正好相等,问三堆棋子数原来各有多少枚?三、课后作业1、一个数加上3,乘以4,减去2,除以9,结果等于2,这个数是多少?2、一根电线,第一次用去全长的一半,第二次再用去余下的一半,这时还剩6米,这根电线原来长多少米?3、妈妈去商店购物,买第一件商品时用去所带钱数的一半,买第二件商品用去余下钱数的一半,这时妈妈身上还剩120元,妈妈原来身上一共带有多少钱?4、小红在做一道减法算式时,将减数十位上的8看成3,个位上的0看成6,这样减出的差是61,正确的差应是多少?5、3只笼子里共养鸡18只,如果从第1只笼子里取4只放进第2只笼子里,再从第2只笼子里取3只放到第3只笼子里,最后从第3只笼子里取2只放回第一只笼子里,三只笼子里的鸡就一样多了,求3只笼子里原来各养鸡多少只?。

三年级奥数还原法逆推法解

三年级奥数还原法逆推法解

解析
根据题意,小红先吃了2颗糖果,又吃了3颗糖果,最后 剩下5颗糖果。所以小红原来有的糖果数量是2颗+3颗+5 颗=10颗。
复杂加减法还原问题
例题1
甲、乙两人同时从A地出 发去B地,甲每分钟走60 米,乙每分钟走70米。经 过10分钟后,两人相距多 少米?
解析
根据题意,甲每分钟走60 米,乙每分钟走70米。经 过10分钟后,甲走了 60×10=600米,乙走了 70×10=700米。所以两 人相距的距离是700米600米=100米。
无法确定初始状态
在某些问题中,难以确定 问题的初始状态,增加了 解题的难度。
拓展延伸:更高年级奥数解题方法介绍
01
02
03
04
归纳法
通过观察和比较一类问题的特 殊情况,从而推断出这类问题
的一般性结论。
构造法
通过构造一个满足问题条件的 数学模型或实例,从而证明某
个结论或解决某个问题。
极端化思想
通过考虑问题的极端情况或特 殊情况,从而找到问题的解决
04
注意事项与误区提示
避免陷入思维定势
打破常规思维
在解决奥数问题时,避免被常规思维束缚,要敢于尝试新的 解题思路和方法。
多样化解题方法
鼓励孩子探索多种解题方法,培养他们的发散思维和创新能 力。
注意审题和细节处理
仔细阅读题目
在解题前,要确保充分理解题意,明确题目要求和限制条件。
关注细节信息
注意题目中的细节信息,如单位、范围等,这些细节可能会影响解题过程和结果 。
逆推法
从问题或结பைடு நூலகம்出发,逆向追溯, 寻找能使问题成立的充分条件, 最终归结到已知条件或已成立的 事实上。

三年级上册数学奥数还原法解题

三年级上册数学奥数还原法解题

里还剩下30吨粮食没有运。求仓库里原来有粮食多少
吨?
原:
18 (50+18) ×2=136
5 (30-5) ×2=50
30
复习、1、一个数减去10,然后除以2,乘3,加上 7最后得37,求这个数是多少?
2、仓库里有一批粮食,第一天运出全部粮食的一半 多6吨,第二天运出余下的一半少8吨,这是仓库里还 剩下38吨粮食没有运。求仓库里原来有粮食多少吨?
例4、桃园里有三个箩筐,共装着60个桃子。欧欧 先从第一筐拿出7个桃子放入第二筐;又从第二筐 拿出8个桃子放入第三筐,这时三个箩筐的桃子数 相等。原来每个箩筐放了多少个桃子?
60÷3=20(个)
第三筐: 20-8=12(个) 第二筐: 20+8-7=21(个)
第一筐: 20+7=27(个)
练1、三只金鱼缸里共有15条金鱼,如果从第一缸 里取出2条金鱼放入第二缸,再从第二缸取出3条 金鱼放入第三缸,那么三只金鱼缸里的金鱼就一样 多,求原来每只金鱼缸里各有多少条金鱼?
100
答:这段公路的全长是700米。
练1、元元读一本科幻小说,第一天读了全书的一半多 30页,第二天读了余下的一半多16页,还剩下64页没 有读。求这本科幻小说一共有多少页?
原:
30
(160+30)×2 = 380
16
( 64+16)×2 = 160
64
答:这本科幻小说一共有380页。
练2、有一筐橙子,第一次取出全部的一半还多10个, 第二次取出余下的还多5个,最后还剩下5个,求这筐 橙子一共有多少个?
12
答:这桶油原来重48千克。
练1、一根电线,电工第一次用去了全长的一半, 第二次用去了剩下的一半,还剩16米,求这根电 线原来长多少米?

三年级奥数第三十周 用还原法解题

三年级奥数第三十周  用还原法解题

第三十周用还原法解题专题简析:“一个数加上3,乘3,再减去3,最后除以3,结果还是3,这个数是几?”像这样已知一个数的变化过程和最后的结果,求原来的数,我们通常把它叫做“还原问题”.解答还原问题,一般采用倒推法,简单说,就是倒过来想.解答还原问题,我们可以根据题意,从结果出发,按它变化的相反方向一步步倒着推想,直到问题解决.同时,可利用线段图表格帮助理解题意.例题1 一个减24加上15,再乘8得432,求这个数.思路导航:我们可以从最后的结果432出发倒着推想.最后是乘8得432,如果不乘8,那应该是432÷8=54;如果不加上15,应该是54-15=39;如果不减去24,那应该是39+24=63.因此,这个数是63.练习一1,一个数加上3,乘3,再减去3,最后除以3,结果还是3.这个数是几?2,一个数的4倍加上6减去10,再乘2得88,求这个数.3,一个数缩小2倍,再缩小2倍得80,求这个数.例题 2 一段布,第一次剪去一半,第二次又剪去余下的一半,还剩8米.这段布原来长多少米?思路导航:根据题意,画出线段图.8米余下的一半全长的一半从上面的线段图可以看出:剩下的8米和余下的一半同样多,那么原长的一半是:8×2=16米,原来长:16×2=32米.练 习 二1,某水果店卖西瓜,第一次卖掉总数的一半,第二次卖掉剩下的一半,这时还剩10只西瓜.原有西瓜多少只?2,某人乘船从甲地到乙地,行了全程的一半时开始睡觉,当他睡醒时发现船又行了睡前剩下的一半,这时离乙地还有40千米.甲、乙两地相距多少千米3,有一箱苹果,第一次取出全部的一半多1个,第二次取出余下的一半多1个,箱里还剩下10个.箱里原有多少个苹果?例题3 甲、乙、丙三人各有一些连环画,甲给乙3本,乙给丙5本后,三人的本数同样多.乙原来比丙多多少本?思路导航:因为乙给丙5本后,两人同样多,可知乙比丙多5×2=10本,而这10本中又有3本是甲给的,所以原来乙比丙多10-3=7本.练习三1,小松、小明、小航各有玻璃球若干个,如果小松给小明10个,小明给小航6个后,三人的个数同样多.2,甲、乙、丙三个组各有一些图书,如果甲组借给乙组13本后,乙组又送给丙组6本,这时三个组的图书本数同样多.原来乙组和丙组哪组的图书多,多几本?3,甲、乙、丙三个小朋友各有年历卡若干张,如果甲给乙13张,乙给丙23张,丙给甲3张,那么他们每人各有30张.原来3人各有年历卡多少张?例题4 李奶奶卖鸡蛋,她上午卖出总数的一半多10个,下午又卖出剩下的一半多10个,最后还剩65个鸡蛋没有卖出.李奶奶原来有多少个鸡蛋?思路导航:根据题意,画出线段图.剩下65个从图上可以看出,最后剩下的65个鸡蛋加上10个正好是余下的一半,余下的一半为65+10=75个,所以上午卖出后余下75×2=150个;150个加上10个就是总数的一半,所以总数的一半是150+10=160个,总数为:160×2=320个.练习四1,竹篮内有若干个李子,取它的一半又1枚给第一人,再取余下的一半又2枚给第二人,还剩6枚.竹篮内原有李子多少枚?2,王叔叔拿工资若干元,从工资中拿出一半多10元存入银行,又拿出余下的一半多5元买米、米,剩下80元买菜.王叔叔拿工资多少元?3,妈妈买来一些橘子,小明第一天吃了一半多2个,第二天吃了剩下的一半少2个,还剩下5个.妈妈买了多少个橘子?例题5 小红、小青、小宁都喜爱画片,如果小红给小青11张画片,小青给小宁20张画片,小宁给小红5张画片,那么他们三人的画片张数同样多.已知他们共有画片150张,他们三人原来各有画片多少张?思路导航:三人画片进行交换,其总张数是不会改变的.交换以后三人张数相等,那每人应有:150÷3=50张.再对照题中条件,把各人的画片还原,便可得到他们三人原来画片的张数.小红:50+11=61张;小青:50-11+20=59张;小宁:50-20+5=35张.练习五1,三筐苹果共放90千克,如果从甲筐取出15千克放入乙筐,从乙筐取出20千克放入丙筐,从丙筐取出17千克放入甲筐,这时三筐苹果就同样重.甲、乙、丙筐原来各有苹果多少千克?2,三年级三个班共有学生156人,若从一班调5人到二班,从二班调8人到三班,从三班调4人到一班,这时每个班的人数正好相同.三个班原来各有学生多少人?3,小林、小方、军军、小敏四个好朋友都爱看书,如果小林给小方10本书,小方给军军12本书,军军给小敏20本,小敏再给小林14本,四个人书的本数同样多.已知他们共有112本书,他们4人原来各有多少本书?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用还原法解题
例1、小明问爷爷今年多大年纪,爷爷说:“把我的年龄加上18,除以4,再减去20,然后用9乘,这时恰好是27岁。

”问爷爷现在多少岁?
同类练习:
1、小明今年的年龄乘7,家伙是哪个4,除以6,减去7,再除以3,正好等于1,
请你算一算小明今年几岁?
2、有一位老人,把他今年的年龄加上16,用5除,再减去10,最后用10乘恰
好是100岁,这位老人今年多少岁?
3、小明问小华,“你今年几岁?”小华回答说:“用我的年龄数减去8,乘7,加
上6,除以5,正好等于4,“小华今年多少岁?例2、小李做一道整数加法算式时,把一个加数个位上的6错写成9,把另一个加数十位上的8错写成3,结果得出和是123,正确的答案应该是?
同类练习:
1、大刘在计算加法时,把一个加数十位上的5错写成3,把另一个加数上个位
上的6错写成2,所得的和是374,正确的和应该是多少?
2、豆豆在计算加法时,把一个加数个位上的6错写成9,把另一个加数百位上
的8错写成3,所得的和是637,原来两个数相加的正确答案是多少?
例3、小马虎在做一道数学题时,把被减数十位上的6错写成9,减数个位上的9错写成6,最后所得的差是326,求这道题正确的答案是?
同类练习:
1、大明在做题时,把被减数个位上的3错写成8,把十位上的6错写成10,这
样算得差是200,正确的差是多少?
2、小明在一道减法算式,把减数十位上的8错写成5,个位上的7错写成1,
结果求出错误的差是236,正确的差是多少?
3、小彬在做题时,把减数十位上的9错写成6,把被减数百位上的3错写成8,
这样算得的差是806,正确的差是多少?
例4、小马虎在计算一道题目时,把某数乘3加20,误看成某数除以3减20,得数是72,某数是多少?正确的得数是多少?
同类练习:
1、小丽在计算一道题时,把某数乘4加20,误看成某数除以4减20,得数为
10,某数是多少?正确的结果是多少?
2、小粗心在计算一道题时,把某数除以2减4,误看成某数乘2家4,得数是
24,正确的结果应该是多少?例5:小华在计算时,把3×(□+5)里的括号抄漏了,看成3×□+5,结果等于65,正确的结果应该是多少?
同类练习:
1、小明在做计算时,把4×(□+3),抄成4×□+3,结果得39,正确的结
果应该是多少?
2、晨晨做计算时,把270÷(□-3)抄成270÷□-3,结果等于6,正确的
得数是多少?
例6、李奶奶卖鸡蛋,她上午卖出鸡蛋总数的一半多10个,下午又卖出剩下的一半多10个,最后还剩65个鸡蛋没有卖出,林奶奶原来有多少个鸡蛋?
同类练习:
1、竹篮里有若干个李子,取它的一半多1个给第一个人,再取余下的一半多2
个给第二个人,这时还剩下6个李子,竹篮内原有李子多少个?
2、王叔叔四月份工资若干元,他从工资中拿出一半多10元存入银行,又拿出
余下的一半多5元买生活用品,剩下的80元买菜,王叔叔四月份工资是多少元?
3、妈妈买来一些桔子,小明第一天吃了一半多2个,第二天吃剩下的一半少2
个,这时还剩下5个桔子,妈妈买了多少个桔子?
例7、小红、小青、小宁都喜爱画片,如果小红花给小青11张画片,小青给小宁20张画片,小宁给小红5张画片,那么他们三人的画片数同样多,已知他们三人共有画片150张,他们三人原来各有画片多少张?
同类练习:
1、甲、乙、丙三筐苹果共90千克,如果从甲筐中取出15千克苹果放入乙筐,
从乙筐取出20千克苹果放入丙筐,从丙筐取出17千克苹果放入甲筐,这时三筐苹果同样重,甲、乙、丙三筐原来各有多少千克?
2、甲、乙、丙三人各有连环画若干本,如果甲给乙5本,乙给丙10本,丙给
甲15本,那么三人所有连环画都是35本,他们原来各有多少本?
综合练习:
1、一个数加上5,减去7,乘4,除以6得6,这个数是多少?
2、小红做一道加法算式时,把十位上的2错看成7,把个位上的9错看成6,
结果得出的和是397,正确的答案应该是多少?
3、小明做一道数学题,把被减数十位上的5错看成8,减数个位上的9错看作6,
最后所得的差是457,求这题的正确答案应是多少?
4、小明在计算一道题目时,把某数乘5加20,误看成某数除以5减20,得数是
10,某数是多少?正确的得数是多少?
5、小芳在计算一道题时,把5×(□+7)错写成5×□+7,计算结果是32,
求□=?正确的计算结果是多少?
6、小红、小丽、小华三人分苹果,小红得的比总数的一半多1个,小丽得的比
剩下的一半多1个,小华得10个,问原来有多少个苹果?
7、农贸市场一农妇卖鸡蛋,第一次卖出总数的一半少8个,第二次卖出剩余的
一半多4个,第三次卖出又余下的一半多5个,这时还剩下4个鸡蛋,问这农妇原来有鸡蛋多少个?
8、一桶油连通重16千克,用去一半油后,连桶重9千克,原来有油多少千克?
桶重多少千克?
9、甲、乙、丙三组共有图书120本,如果甲组向乙组借4本,乙组向丙组借6
本,丙组向甲组借8本,结果三组所有图书刚好相等,问甲、乙、丙三个组
原有图书多少本?
10、两棵树上共有麻雀28只,从第一棵树上飞走一半麻雀到第二棵树,又从第
二棵树上飞走3只麻雀到第一棵树上,这时第二棵树上的麻雀比第一棵树上的麻雀多6只,问最初第一棵树上有多少只麻雀?。

相关文档
最新文档