大物试题库资料

合集下载

大学物理考试试题库经典版(含答案)

大学物理考试试题库经典版(含答案)

第一章 质点运动学基本要求:1、掌握位矢、位移、速度、加速度、角速度和角加速度等物理量。

2、能计算速度、加速度、角加速度、切向加速度和法向加速度等。

教学重点:位矢、运动方程,切向加速度和法向加速度。

教学难点:角加速度、切向加速度和法向加速度。

主要内容:本章首先从描述物体机械运动的方法问题入手,阐述描述运动的前提——质点理想模型、时间和空间的量度,参照系坐标系。

其次重点讨论描写质点和刚体运动所需要的几个基本物理量(如位移、速度、加速度、角速度、角加速度等)及其特性(如相对性、瞬时性、矢量性)。

(一)时间和空间研究机械运动,必然涉及时间、空间及其度量.我们用时间反映物体运动的先后顺序及间隔,即运动的持续性.现行的时间单位是1967年第13届国际计量大会规定的,用铯(133Cs )原子基态的两个超精细能级间跃迁相对应的辐射周期的9 192 631 770倍为1秒.空间反映物质的广延性.空间距离为长度,长度的现行单位是1983年10月第17届国际计量大会规定的,把光在真空中1/299 792 458秒内走过的路程定义为1米.(二)参照系和坐标系宇宙间任何物质都在运动,大到地球、太阳等天体,小到分子、原子及各种基本粒子,所以说,物质的运动是普遍的、绝对的,但对运动的描述却是相对的.比如,在匀速直线航行的舰船甲板上,有人放开手中的石子,他看到石子作自由落体运动,运动轨迹是一条直线,而站在岸边的人看石子作平抛运动,运动轨迹是一条抛物线.这是因为他们站在不同的物体上.因此,要描述一个物体的运动,必须先确定另一个物体作为标准,这个被选作标准的物体叫参照系或参考系.选择哪个物体作为参照系,主要取决于问题的性质和研究的方便.在研究地球运动时,多取太阳为参照系,当研究地球表面附近物体的运动时,一般以地球为参照系.我们大部分是研究地面上物体的运动,所以,如不特别指明,就以地球为参照系. (三)质点实际的物体都有一定的大小和形状,物体上各点在空中的运动一般是不一样的.在某些情况下,根据问题的性质,如果物体的形状和大小与所研究的问题关系甚微,以至可以忽略其大小和形状,这时就可以把整个物体看作一个没有大小和形状的几何点,但是它具有整个物体的质量,这种具有质量的几何点叫质点.必须指出质点是一种理想的物理模型.同样是地球,在研究它绕太阳公转时,把它看作质点,在研究它的自转时,又把它看作刚体. (四)速度0d limd t t t∆→∆==∆r r v速度v 是矢量,其方向沿t 时刻质点在轨迹上A 处的切线,它的单位是m ·s -1.(五)加速度220d d lim d d t t t t ∆→∆===∆v v ra加速度a 是速度v 对时间的一阶导数,或者是位矢r 对时间的二阶导数.它的单位是m ·s -2. (六)圆周运动圆周运动是最简单、最基本的曲线运动,2d ,d n vv a a tRτ==习题及解答: 一、填空题1. 一质点作半径为R 的匀速圆周运动,在此过程中质点的切向加速度的方向 改变 ,法向加速度的大小 不变 。

大物下期末考试试题及答案

大物下期末考试试题及答案

大物下期末考试试题及答案试题一:牛顿第二定律的应用题目:一个质量为5kg的物体在水平面上受到一个水平方向的力F=20N,求物体的加速度。

答案:根据牛顿第二定律,力F等于质量m乘以加速度a,即F=ma。

将已知数值代入公式,得到20N = 5kg * a,解得a = 20N / 5kg =4m/s²。

试题二:动能定理的应用题目:一个质量为2kg的物体从静止开始,受到一个恒定的力F=10N,经过4秒后,物体的动能增加了多少?答案:根据动能定理,力F做的功等于物体动能的增加量。

力F做的功W=F*d,其中d是物体移动的距离。

由牛顿第二定律,F=ma,得a=F/m=10N/2kg=5m/s²。

物体移动的距离d=1/2*a*t²=1/2*5m/s²*(4s)²=40m。

因此,W=F*d=10N*40m=400J。

所以物体的动能增加了400J。

试题三:动量守恒定律的应用题目:一个质量为3kg的物体以10m/s的速度向正北方向运动,与一个质量为2kg的物体以5m/s的速度向正南方向运动相撞。

如果碰撞后两物体粘在一起,求它们共同的速度大小和方向。

答案:碰撞前后系统的总动量守恒。

设碰撞后物体共同的速度为v,方向为北为正。

则碰撞前的总动量为:3kg*10m/s - 2kg*5m/s =25kg*m/s。

碰撞后的总动量为:(3kg + 2kg)*v。

根据动量守恒,25kg*m/s = 5kg*v,解得v = 5m/s。

因此,碰撞后物体共同的速度大小为5m/s,方向向北。

试题四:简谐振动的周期公式题目:一个质量为1kg的弹簧振子,其弹簧常数为100N/m。

当振子从平衡位置开始做简谐振动,求其振动周期。

答案:简谐振动的周期公式为T = 2π * √(m/k),其中m是振子的质量,k是弹簧常数。

将已知数值代入公式,得到T = 2π *√(1kg/100N/m) = 2π * √(0.01s²) = 2π * 0.1s = 0.2πs。

大学物理试题库及答案

大学物理试题库及答案

大学物理试题库及答案一、选择题1. 光在真空中的速度是()。

A. 299,792,458 m/sB. 299,792,458 km/sC. 300,000,000 m/sD. 300,000,000 km/s答案:A2. 根据牛顿第二定律,力等于质量乘以()。

A. 加速度B. 速度C. 位移D. 时间答案:A二、填空题1. 光年是天文学中用来表示________的单位。

答案:距离2. 根据热力学第二定律,不可能从单一热源吸热使之完全变为________而不产生其他效果。

答案:功三、计算题1. 一个质量为2kg的物体在水平面上受到10N的恒定力作用,求物体的加速度。

答案:根据牛顿第二定律,F=ma,所以a=F/m=10N/2kg=5m/s²。

2. 一个物体从高度为h=10m的平台上自由落下,忽略空气阻力,求物体落地时的速度。

答案:使用公式v²=2gh,其中g=9.8m/s²,代入h=10m,得到v=√(2*9.8*10)m/s=14.14m/s。

四、简答题1. 简述电磁波的产生原理。

答案:电磁波是由变化的电场和磁场相互作用产生的,当电场变化时产生磁场,磁场变化时又产生电场,如此循环往复,形成电磁波。

2. 解释为什么在空气阻力可以忽略的情况下,所有物体在相同高度自由下落的加速度相同。

答案:根据牛顿第二定律,F=ma,对于自由下落的物体,作用力只有重力,即F=mg,所以a=F/m=g。

因此,所有物体的加速度都等于重力加速度g,与物体的质量无关。

五、实验题1. 描述如何使用弹簧秤测量物体的质量。

答案:将待测物体挂在弹簧秤的挂钩上,读取弹簧秤的读数,即为物体的重力。

根据公式m=F/g,其中F为弹簧秤读数,g为重力加速度,计算出物体的质量。

2. 描述如何使用伏安法测量电阻的阻值。

答案:将待测电阻与电源、电流表、电压表串联,闭合电路,记录电流表和电压表的读数。

根据欧姆定律,R=V/I,其中V为电压表读数,I为电流表读数,计算出电阻的阻值。

大学物理试题题库及答案

大学物理试题题库及答案

大学物理试题题库及答案一、选择题(每题2分,共20分)1. 光在真空中的传播速度是()。

A. 299792458 m/sB. 300000000 m/sC. 299792458 km/sD. 300000000 km/s2. 根据牛顿第二定律,物体的加速度与作用力成正比,与物体的质量成反比。

那么,当作用力增加一倍时,物体的加速度()。

A. 增加一倍B. 减少一半C. 保持不变D. 无法确定3. 一个物体从静止开始自由下落,其下落过程中,重力做功的功率与时间的关系是()。

A. 线性增加B. 指数增加C. 先增加后减少D. 保持不变4. 根据热力学第一定律,一个封闭系统的内能变化等于系统与外界交换的热量与系统对外做的功之和。

如果一个系统既没有热量交换也没有做功,那么它的内能()。

A. 增加B. 减少C. 保持不变5. 电磁波谱中,波长最短的是()。

A. 无线电波B. 微波C. 红外线D. 伽马射线6. 根据麦克斯韦方程组,变化的磁场会产生()。

A. 电场B. 磁场C. 重力场D. 温度场7. 一个理想的弹簧振子,其振动周期与振幅无关,与()有关。

A. 弹簧的劲度系数B. 振子的质量C. 弹簧的劲度系数和振子的质量D. 振子的质量与重力加速度8. 根据量子力学,一个粒子的波函数可以描述粒子的()。

A. 位置B. 动量C. 能量D. 位置和动量的概率分布9. 根据狭义相对论,当一个物体以接近光速的速度运动时,其质量会()。

A. 增加B. 减少C. 保持不变10. 在理想气体状态方程PV=nRT中,R代表的是()。

A. 气体常数B. 温度C. 压力D. 体积二、填空题(每题2分,共20分)1. 根据库仑定律,两个点电荷之间的力与它们的电荷量乘积成正比,与它们之间距离的平方成反比,其比例系数是______。

2. 欧姆定律表明,导体中的电流与两端电压成正比,与导体的电阻成反比,其数学表达式为______。

3. 一个物体在水平面上以恒定加速度运动,其位移与时间的关系可以表示为s = __________。

大物实验考试题库及答案

大物实验考试题库及答案

大物实验考试题库及答案1. 题目:请简述牛顿第三定律的内容,并举例说明其在日常生活中的应用。

答案:牛顿第三定律指的是作用力和反作用力的关系,即当一个物体对另一个物体施加力时,另一个物体也会对第一个物体施加一个大小相等、方向相反的力。

例如,在踢足球时,脚对足球施加一个向前的力,足球也会对脚施加一个相等大小、方向相反的力,这就是为什么踢足球时脚会感到疼痛。

2. 题目:解释什么是光的干涉现象,并描述双缝实验中观察到的干涉条纹。

答案:光的干涉现象是指两束或多束相干光波相遇时,由于光波的叠加而产生明暗相间的条纹。

在双缝实验中,当光通过两个紧密排列的缝隙时,从缝隙出来的光波会在屏幕上产生干涉条纹。

这些条纹是由于来自两个缝隙的光波相互叠加,形成构造性干涉(亮条纹)和破坏性干涉(暗条纹)的结果。

3. 题目:描述欧姆定律的数学表达式,并解释其物理意义。

答案:欧姆定律的数学表达式为 \( V = IR \),其中 \( V \) 代表电压,\( I \) 代表电流,\( R \) 代表电阻。

欧姆定律描述了在电路中,通过导体的电流与导体两端的电压成正比,与导体的电阻成反比。

物理意义是,当电阻一定时,电压越高,电流越大;当电压一定时,电阻越大,电流越小。

4. 题目:解释什么是电磁感应,并说明法拉第电磁感应定律的内容。

答案:电磁感应是指在变化的磁场中,导体中会产生电动势的现象。

法拉第电磁感应定律表明,导体中产生的电动势与穿过导体的磁通量变化率成正比。

数学表达式为 \( \mathcal{E} = -\frac{d\Phi_B}{dt} \),其中 \( \mathcal{E} \) 代表电动势,\( \Phi_B \) 代表磁通量,\( t \) 代表时间。

负号表示感应电动势的方向与磁通量变化的方向相反。

5. 题目:描述理想气体状态方程,并解释其各参数的含义。

答案:理想气体状态方程为 \( PV = nRT \),其中 \( P \) 代表气体的压强,\( V \) 代表气体的体积,\( n \) 代表气体的摩尔数,\( R \) 代表理想气体常数,\( T \) 代表气体的绝对温度。

大物试题答案

大物试题答案

大物试题答案第一部分:选择题1. 答案:B2. 答案:C3. 答案:A4. 答案:D5. 答案:C6. 答案:B7. 答案:A8. 答案:B9. 答案:C10. 答案:D第二部分:填空题11. 答案:速度12. 答案:0.0613. 答案:等于14. 答案:反比15. 答案:2.516. 答案:平行17. 答案:电势差18. 答案:真实倒立缩小19. 答案:2:120. 答案:3000N第三部分:简答题21. 答案:物理量22. 答案:牛顿第一定律23. 答案:滑动摩擦力24. 答案:简谐振动25. 答案:变压器26. 答案:透镜公式27. 答案:2.5×10^4 J28. 答案:焦距29. 答案:凸透镜30. 答案:光的全反射第四部分:计算题31. 答案:45 m/s32. 答案:15 Hz33. 答案:10 N34. 答案:0.2 C35. 答案:10 Ω36. 答案:600 J37. 答案:约为 102.04 kHz38. 答案:5.4 Ω39. 答案:5.0×10^6 ohm·m40. 答案:12.5 V第五部分:解答题41. 答案:由于答案内容较长,建议直接参阅附件中的答案解析。

42. 答案:由于答案内容较长,建议直接参阅附件中的答案解析。

43. 答案:由于答案内容较长,建议直接参阅附件中的答案解析。

44. 答案:由于答案内容较长,建议直接参阅附件中的答案解析。

45. 答案:由于答案内容较长,建议直接参阅附件中的答案解析。

附件:大物试题答案解析题目解析:1. 题目一解析根据题目要求,我们需要选择一个正确的答案。

选项B是正确答案。

2. 题目二解析题目要求选择一个正确答案,选项C是正确答案。

3. 题目三解析根据题目要求,选项A是正确答案。

4. 题目四解析根据题目要求,选项D是正确答案。

5. 题目五解析题目要求选择一个正确答案,选项C是正确答案。

......(以下省略)总结:本次大物试题共包括选择题、填空题、简答题、计算题和解答题等多个题型,共计40道题目。

大物期末考试题及答案

大物期末考试题及答案

大物期末考试题及答案一、选择题(每题2分,共20分)1. 根据牛顿第二定律,物体的加速度与作用力成正比,与物体的质量成反比。

以下哪个选项正确描述了这一定律?A. F = maB. F = ma^2C. F = m/aD. F = 1/(ma)答案:A2. 一个物体从静止开始自由下落,其下落距离与时间的关系为:A. s = gtB. s = 1/2 gtC. s = 1/2 g(t^2)D. s = gt^2答案:C3. 根据能量守恒定律,以下哪个选项正确描述了能量守恒?A. 能量可以被创造或消灭B. 能量守恒定律只适用于封闭系统C. 能量可以在不同形式之间转换,但总量保持不变D. 能量守恒定律不适用于微观粒子答案:C4. 以下哪个选项正确描述了动量守恒定律?A. 动量守恒定律只适用于碰撞过程B. 动量守恒定律适用于所有物理过程C. 动量守恒定律只适用于没有外力作用的系统D. 动量守恒定律只适用于宏观物体答案:C5. 以下哪个选项正确描述了波的干涉条件?A. 波源必须相同B. 波源必须不同C. 波的频率必须相同D. 波的振幅必须相同答案:C6. 以下哪个选项正确描述了光的折射现象?A. 光线在不同介质中传播速度会改变B. 光线在不同介质中传播方向不变C. 光线在不同介质中传播速度不变D. 光线在不同介质中传播方向总是改变答案:A7. 根据热力学第一定律,以下哪个选项正确描述了能量的转换?A. ΔE = Q + WB. ΔE = Q - WC. ΔE = Q / WD. ΔE = W / Q答案:B8. 以下哪个选项正确描述了理想气体的状态方程?A. PV = nRTB. PV = nT/RC. PV = RTD. PV = nR答案:A9. 以下哪个选项正确描述了电磁感应现象?A. 变化的磁场可以产生电流B. 电流可以产生磁场C. 磁场可以产生电流D. 电流可以产生变化的磁场答案:A10. 以下哪个选项正确描述了相对论中时间膨胀现象?A. 运动的物体在运动方向上的长度会变长B. 运动的物体在运动方向上的时间会变慢C. 运动的物体在垂直于运动方向上的长度会变短D. 运动的物体在垂直于运动方向上的时间会变慢答案:B二、填空题(每空1分,共10分)11. 牛顿第一定律又称为________定律。

大学物理试题讲解及答案

大学物理试题讲解及答案

大学物理试题讲解及答案一、选择题(每题2分,共20分)1. 光在真空中的传播速度是()。

A. 3×10^5 km/sB. 3×10^8 m/sC. 3×10^9 km/sD. 3×10^11 m/s答案:B2. 根据牛顿第二定律,力和加速度的方向()。

A. 总是相同B. 总是相反C. 有时相同,有时相反D. 无关答案:A3. 一个物体的质量为2kg,受到的力为10N,那么它的加速度是()。

A. 5 m/s^2B. 10 m/s^2C. 20 m/s^2D. 无法确定答案:A4. 一个点电荷在电场中从静止开始运动,其电势能将()。

A. 增加B. 减少C. 保持不变D. 先增加后减少答案:B5. 根据热力学第一定律,一个系统在绝热过程中()。

A. 内能增加B. 内能减少C. 内能不变D. 无法确定答案:D6. 光的折射定律表明,入射角和折射角的关系是()。

A. 入射角大,折射角小B. 入射角小,折射角大C. 入射角和折射角成正比D. 入射角和折射角成反比答案:C7. 一个物体在自由下落过程中,其动能和重力势能的关系是()。

A. 动能增加,重力势能减少B. 动能减少,重力势能增加C. 动能和重力势能之和保持不变D. 动能和重力势能之和增加答案:C8. 根据麦克斯韦方程组,电磁波的传播速度是()。

A. 光速的一半B. 光速C. 超过光速D. 低于光速答案:B9. 在理想气体定律中,气体的压强与体积成()。

A. 正比B. 反比C. 无关D. 先正比后反比答案:B10. 根据欧姆定律,电阻两端的电压与通过电阻的电流之间的关系是()。

A. 正比B. 反比C. 无关D. 先正比后反比答案:A二、填空题(每题2分,共20分)1. 牛顿第三定律指出,作用力和反作用力大小相等、方向相反、作用在_________上。

答案:不同物体2. 在国际单位制中,力的单位是_________。

大学物理考试题库及答案

大学物理考试题库及答案

大学物理考试题库及答案一、选择题(每题2分,共20分)1. 在国际单位制中,下列哪个单位不是基本单位?A. 米(m)B. 千克(kg)C. 秒(s)D. 瓦特(W)答案:D2. 一个物体在平直道路上做匀速运动,下列哪个因素不会影响物体的运动状态?A. 道路摩擦力B. 道路坡度C. 物体质量D. 物体速度答案:C3. 下列哪个现象表明地球是圆的?A. 星星在夜空中闪烁B. 船只在海平面上逐渐消失C. 地平线D. 月亮的形状变化答案:B4. 关于牛顿第三定律,下列说法正确的是:A. 作用力与反作用力大小相等,方向相反B. 作用力与反作用力大小不等,方向相反C. 作用力与反作用力大小相等,方向相同D. 作用力与反作用力大小不等,方向相同答案:A5. 下列哪个物理量是标量?A. 速度B. 力C. 加速度D. 路程答案:D6. 一个物体从静止开始沿着光滑斜面下滑,下列哪个因素会影响物体的加速度?A. 物体质量B. 斜面角度C. 重力加速度D. 物体与斜面之间的摩擦力答案:B7. 下列哪个现象与电磁感应无关?A. 发电机B. 变压器C. 电动机D. 麦克斯韦方程组答案:D8. 光在真空中的传播速度约为:A. 1×10^5 km/sB. 3×10^5 km/sC. 1×10^8 m/sD. 3×10^8 m/s答案:D9. 下列哪个物理现象可以用光的波动理论解释?A. 光的直线传播B. 光的反射C. 光的折射D. 光的衍射答案:D10. 下列哪个物理学家提出了万有引力定律?A. 伽利略B. 牛顿C. 开普勒D. 卡文迪许答案:B二、填空题(每题2分,共20分)1. 国际单位制中的基本单位有:米(m)、千克(kg)、秒(s)、安培(A)、开尔文(K)、摩尔(mol)和坎德拉(cd)。

2. 牛顿第二定律的数学表达式为:F = ma。

3. 在真空中,光的速度为:3×10^8 m/s。

大物复习资料汇总

大物复习资料汇总

4.2.5 MV 232X 10 3X 1002:.AT =iR质量为100g 的水蒸汽,温度从积不变的情况下加热,需热量= ? o二 7.7K5x831120 C 升高到150 C,若视水蒸汽为理想气体,体Qv = ?在压强不变的情况下加热,需热量 Qp解:1()(加4的斥尔数 m 100 50 v=—=——=—mol Jtf IS 9喝。

是多原子分子::二6Q*3*8.31*30 = 4155/4皆 v93.50Q p = vC p M = y * 4* 8.31*30 = 5540J•定量的单原子理想气体在等压膨胀过程中对外作的功A/Q = 2/5,若为双原子理想气体,则比值解:A 与吸收的热量 Q 之比A/Q = 27 oAE =皿任—八;—2单原子分子:i = 3;CP ,+ 2双原子分子:1=5由刚性双原子分子组成的理想气体,温度为 T 时,贝U 1mol 该理想气体的内能为???5/2RTiff解:一1.储有氧气的容器以速度 V = 100m • s-1运动,假设该容器突然停止,全部定向运动 的动能都变为气体分子热运动的动能,问容器中的氧气的温度将会上升多少? 解,氧气:Z = 5M2 25. 原在标准状况下的 2mol 的氢气,经历一过程吸热 500J,问:(1)若该过程是等容过程,气体对外作功多少?末态压强 P =? (2)若该过程是等压过强,末态温度 T =?, 气体对外作功多少?解:初态:标准状况^=1.013*105?«7;=2731氢气:i=5A _QAT =^-=1000=12K(1)等容过程人末态温度 T r = T 0+AT=285K末态压强 P 二 F 0 T=1.01 3* 105*285= 1.057* 105PaT 。

273等压过程A=.RT Q p J 2R Tp p2T p二 T 0:T =281.6K6. 2mol 多原子理想气体,从状态(P0 ,V0 ,T0)o 开始作准静态绝热 膨胀,体积增大到原体积的3倍,则膨胀后气体压强P= 解:多原子分子:i=6i +24比热比: 二」i 3绝热过程:PV 二P0V0V0 7所以:P =P0(一)V2 2A Q *500 =142.9Ji 2 72Q♦ (i 2)R2* 7*8.31(2)7. 在高温热源为127C,低温热源为27C之间工作的卡诺热机,对外做净功8000JL维持低温热源温度不变,提高高温热源温度, 使其对外做净功100004若这两次循环该热机都工作在相同的两条绝热线之间,试求:(1) 后一个卡诺循环的效率;(2) 后一个卡诺循环的高温热源的温度解:(1)T!=127o C=400K;T2=27°C=300K=1-& =25%T iQ, -32000JQ2= Q, - A = 24000JT2二T2= 300K Q2 = Q2= 2 4 0 J 0A =10000J Q, = A2Q2二24000J=A /Q2=10000/34000 二29.4%(2)又十半丁1=严=器=425K=152O C8. 一卡诺热机在每次循环过程中都要从温度为400K的高温热源吸热418J,向低温热源放热334・4J,低温热源温度为?320K解:由得a人L二鈿=320所以(3)气体吸收的热量 。

大物考题完整版

大物考题完整版

静电场(一)1. 有一带负电荷的金属球,其附近某点的场强为E ,若在该点放一带正电的点电荷q ,测得所受的电场力为f ,则(3)(1) E=f/q (2)E> f/q (3)E< f/q2、在闭合高斯面内有一带电量Q 的点电荷,将电荷从面内移到高斯面外后,高斯面上的电场强度_变化___(填变化或不变),通过闭合高斯面的电通量为__0__。

3、如图,直角三角形ABC 的A 点上,有正电荷q 1,B 点上有负电荷q 2,求C的大小和方向。

(设AC=l 1,BC =l 2)解:112014q E lπε=222024q E l πε=2201214E l l πε==,212221q l arctg q l θ=4、电荷Q 均匀分布在长为l 的细杆AB 上,P 点位于AB 的延长线上,且与B 相距为d ,求P 点的电场强度。

解:⎰+-===)11(444122ld d l Q x dx E xdxdE πεπελλπε5、设电量Q 均匀分布在半径为R 的的半圆周上(如图),求圆心O 处的电场强度。

解:如图所示,在半圆周上去电荷元dl ,,所以,dq 在O 点产生的场强,大小为,各电荷元在O 点产生的场强大小相等,方向各异,且分布在以O 为顶点的半圆内,由对称性,各电荷元在O 点产生的垂直x 轴的场强分量为相互抵消,而平行x 轴的分类则相互加强,对给定点O 处,R 为常量,则有于是得均匀带电半圆环圆心处O 点的场强方向沿X 轴正向,大小为静电场强度(二)1、 如图所示, 把单位正电荷从一对等量异号电荷的连线中点,沿任意路径移到无穷远处时,电场力作功为___0__。

2、在点电荷Q 旁作一高斯面S ,包围Q ,在S 面外再引入另一点电荷通过S 面的电通量有无变化?_不变化____。

S 面上各处的电场强度有无变化?_有变化___。

3、+q 1C -q 2l E 1ABP+q电场力作功从该点移动到无穷远处则把试验电荷试验电荷势为以知静电场中某点的电C,103.0100v,-80⨯=-q解:-3.0×10-6J4、如图所示的电场分布,则A 点的电势比B 点的电势__高__(填高、低、相等)5、两个同心的球面半径分别为R 1和R 2(R 1<R 2),带电量分别为q 1和q 2, 则在小球面内距球心为r 1处一点的电势为______________,在两球面之间距球心为r 2处一点的电势为_______________。

大学物理试题题库及答案

大学物理试题题库及答案

大学物理试题题库及答案一、选择题(每题3分,共30分)1. 光在真空中的传播速度是:A. 300,000 km/sB. 299,792 km/sC. 299,792 km/hD. 3×10^8 m/s答案:D2. 根据牛顿第三定律,作用力和反作用力的关系是:A. 作用力和反作用力大小相等,方向相反B. 作用力和反作用力大小不等,方向相反C. 作用力和反作用力大小相等,方向相同D. 作用力和反作用力大小不等,方向相同答案:A3. 以下哪个是电磁波谱中波长最长的部分?A. 无线电波B. 微波C. 红外线D. 紫外线答案:A4. 热力学第一定律表明能量守恒,其数学表达式为:A. ΔQ = ΔU + WB. ΔQ = ΔU - WC. ΔQ = ΔH + WD. ΔQ = ΔH - W答案:A5. 以下哪个是描述电磁场的基本方程?A. 麦克斯韦方程组B. 牛顿运动定律C. 热力学第二定律D. 欧姆定律答案:A6. 根据量子力学,电子在原子中的运动状态由什么决定?A. 电子的质量B. 电子的电荷C. 电子的能级D. 电子的自旋答案:C7. 以下哪个是描述光的干涉现象的实验?A. 杨氏双缝实验B. 费马原理C. 牛顿环实验D. 光电效应实验答案:A8. 以下哪个是描述电磁波的传播速度的公式?A. c = λfB. c = 1/√(μ₀ε₀)C. c = E/BD. c = 3×10^8 m/s答案:B9. 以下哪个是描述电磁感应现象的定律?A. 法拉第电磁感应定律B. 欧姆定律C. 库仑定律D. 洛伦兹力定律答案:A10. 根据相对论,物体的质量会随着其速度的增加而增加,这个现象称为:A. 质量守恒B. 质量增加C. 质量不变D. 质量减少答案:B二、填空题(每题3分,共30分)1. 光速在真空中的速度是______ m/s。

答案:3×10^82. 牛顿第三定律表明,作用力和反作用力大小______,方向______。

(完整版)大学物理试题库(后附详细答案)

(完整版)大学物理试题库(后附详细答案)

普通物理试题库一、选择题1. 质点沿轨道AB 作曲线运动,速率逐渐减小,图中哪一种情况正确地表示了质在C 处的加速度?(A) (B) (C) (D)2.一质点沿x 轴运动的规律是542+-=t t x (SI 制)。

则前三秒内它的 ( ) (A)位移和路程都是3m ; (B)位移和路程都是-3m ; (C)位移是-3m ,路程是3m ; (D)位移是-3m ,路程是5m 。

3. 一质点的运动方程是j t R i t R r ϖϖϖωωsin cos +=,R 、ω为正常数。

从t =ωπ/到t =ωπ/2时间内(1)该质点的位移是( )(A) -2R i ϖ; (B) 2R i ϖ; (C) -2j ϖ; (D) 0。

(2)该质点经过的路程是( )(A) 2R ; (B) R π; (C) 0; (D) ωπR 。

4. 一细直杆AB ,竖直靠在墙壁上,B 端沿水平方向以速度v ϖ滑离墙壁,则当细杆运动到图示位置时,细杆中点C 的速度( )(A)大小为v/2,方向与B 端运动方向相同;(B)大小为v /2,方向与A 端运动方向相同;(C)大小为v /2, 方向沿杆身方向; 角。

(D)大小为θcos 2v,方向与水平方向成 θ5. 某人以4km/h 的速率向东前进时,感觉风从正北吹来,如将速率增加一倍,则感觉风从东北方向吹来。

实际风速与风向为 ( )(A)4km/h ,从北方吹来; (B)4km/h ,从西北方吹来; (C)24km/h ,从东北方吹来; (D) 24km/h ,从西北方吹来。

6. 质量为0.25kg 的质点,受i t F ϖϖ =(N)的力作用,t =0时该质点以v ϖ=2j ϖm/s 的速度通过坐标原点,该质点任意时刻的位置矢量是 ( )(A)22t i ϖ+2j ϖm ;(B)j t i t ϖϖ2323+m ;(C)j t i t ϖϖ343243+m ;(D) 条件不足,无法确定。

(完整版)大学物理试题库及答案详解【考试必备】

(完整版)大学物理试题库及答案详解【考试必备】

第一章 质点运动学1 -1 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,速率为v,t 至(t +Δt )时间内的位移为Δr , 路程为Δs , 位矢大小的变化量为Δr ( 或称Δ|r |),平均速度为v ,平均速率为v .(1) 根据上述情况,则必有( ) (A) |Δr |= Δs = Δr(B) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d s ≠ d r (C) |Δr |≠ Δr ≠ Δs ,当Δt →0 时有|d r |= d r ≠ d s (D) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d r = d s (2) 根据上述情况,则必有( )(A) |v |= v ,|v |= v (B) |v |≠v ,|v |≠ v (C) |v |= v ,|v |≠ v (D) |v |≠v ,|v |= v分析与解 (1) 质点在t 至(t +Δt )时间内沿曲线从P 点运动到P′点,各量关系如图所示, 其中路程Δs =PP′, 位移大小|Δr |=PP ′,而Δr =|r |-|r |表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt →0 时,点P ′无限趋近P 点,则有|d r |=d s ,但却不等于d r .故选(B).(2) 由于|Δr |≠Δs ,故ts t ΔΔΔΔ≠r ,即|v |≠v . 但由于|d r |=d s ,故tst d d d d =r ,即|v |=v .由此可见,应选(C). 1 -2 一运动质点在某瞬时位于位矢r (x,y )的端点处,对其速度的大小有四种意见,即(1)t r d d ; (2)t d d r ; (3)t s d d ; (4)22d d d d ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛t y t x .下述判断正确的是( )(A) 只有(1)(2)正确 (B) 只有(2)正确(C) 只有(2)(3)正确 (D) 只有(3)(4)正确分析与解trd d 表示质点到坐标原点的距离随时间的变化率,在极坐标系中叫径向速率.通常用符号v r 表示,这是速度矢量在位矢方向上的一个分量;td d r表示速度矢量;在自然坐标系中速度大小可用公式t s d d =v 计算,在直角坐标系中则可由公式22d d d d ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=t y t x v 求解.故选(D).1 -3 质点作曲线运动,r 表示位置矢量, v 表示速度,a 表示加速度,s 表示路程, a t表示切向加速度.对下列表达式,即(1)d v /d t =a ;(2)d r /d t =v ;(3)d s /d t =v ;(4)d v /d t |=a t. 下述判断正确的是( )(A) 只有(1)、(4)是对的 (B) 只有(2)、(4)是对的 (C) 只有(2)是对的 (D) 只有(3)是对的分析与解 td d v表示切向加速度a t,它表示速度大小随时间的变化率,是加速度矢量沿速度方向的一个分量,起改变速度大小的作用;trd d 在极坐标系中表示径向速率v r (如题1 -2 所述);ts d d 在自然坐标系中表示质点的速率v ;而t d d v 表示加速度的大小而不是切向加速度at.因此只有(3) 式表达是正确的.故选(D). 1 -4 一个质点在做圆周运动时,则有( ) (A) 切向加速度一定改变,法向加速度也改变 (B) 切向加速度可能不变,法向加速度一定改变 (C) 切向加速度可能不变,法向加速度不变 (D) 切向加速度一定改变,法向加速度不变分析与解 加速度的切向分量a t起改变速度大小的作用,而法向分量a n 起改变速度方向的作用.质点作圆周运动时,由于速度方向不断改变,相应法向加速度的方向也在不断改变,因而法向加速度是一定改变的.至于a t是否改变,则要视质点的速率情况而定.质点作匀速率圆周运动时, a t恒为零;质点作匀变速率圆周运动时, a t为一不为零的恒量,当a t改变时,质点则作一般的变速率圆周运动.由此可见,应选(B).*1 -5 如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动.设该人以匀速率v 0 收绳,绳不伸长且湖水静止,小船的速率为v ,则小船作( )(A) 匀加速运动,θcos 0v v =(B) 匀减速运动,θcos 0v v = (C) 变加速运动,θcos 0v v =(D) 变减速运动,θcos 0v v = (E) 匀速直线运动,0v v =分析与解 本题关键是先求得小船速度表达式,进而判断运动性质.为此建立如图所示坐标系,设定滑轮距水面高度为h,t 时刻定滑轮距小船的绳长为l ,则小船的运动方程为22h l x -=,其中绳长l 随时间t 而变化.小船速度22d d d d h l t llt x -==v ,式中t l d d 表示绳长l 随时间的变化率,其大小即为v 0,代入整理后为θlh l cos /0220v v v =-=,方向沿x 轴负向.由速度表达式,可判断小船作变加速运动.故选(C).讨论 有人会将绳子速率v 0按x 、y 两个方向分解,则小船速度θcos 0v v =,这样做对吗?1 -6 已知质点沿x 轴作直线运动,其运动方程为32262t t x -+=,式中x 的单位为m,t 的单位为 s .求:(1) 质点在运动开始后4.0 s 内的位移的大小; (2) 质点在该时间内所通过的路程;(3) t =4 s 时质点的速度和加速度.分析 位移和路程是两个完全不同的概念.只有当质点作直线运动且运动方向不改变时,位移的大小才会与路程相等.质点在t 时间内的位移Δx 的大小可直接由运动方程得到:0Δx x x t -=,而在求路程时,就必须注意到质点在运动过程中可能改变运动方向,此时,位移的大小和路程就不同了.为此,需根据0d d =tx来确定其运动方向改变的时刻t p ,求出0~t p 和t p ~t 内的位移大小Δx 1 、Δx 2 ,则t 时间内的路程21x x s ∆+∆=,如图所示,至于t =4.0 s 时质点速度和加速度可用tx d d 和22d d t x两式计算.解 (1) 质点在4.0 s 内位移的大小m 32Δ04-=-=x x x(2) 由 0d d =tx 得知质点的换向时刻为s 2=p t (t =0不合题意)则m 0.8Δ021=-=x x xm 40Δ242-=-=x x x所以,质点在4.0 s 时间间隔内的路程为m 48ΔΔ21=+=x x s(3) t =4.0 s 时1s0.4s m 48d d -=⋅-==t t xv2s0.422m.s 36d d -=-==t t x a1 -7 一质点沿x 轴方向作直线运动,其速度与时间的关系如图(a)所示.设t =0 时,x =0.试根据已知的v -t 图,画出a -t 图以及x -t 图.分析 根据加速度的定义可知,在直线运动中v -t 曲线的斜率为加速度的大小(图中AB 、CD 段斜率为定值,即匀变速直线运动;而线段BC 的斜率为0,加速度为零,即匀速直线运动).加速度为恒量,在a -t 图上是平行于t 轴的直线,由v -t 图中求出各段的斜率,即可作出a -t 图线.又由速度的定义可知,x -t 曲线的斜率为速度的大小.因此,匀速直线运动所对应的x -t 图应是一直线,而匀变速直线运动所对应的x –t 图为t 的二次曲线.根据各段时间内的运动方程x =x (t ),求出不同时刻t 的位置x ,采用描数据点的方法,可作出x -t 图.解 将曲线分为AB 、BC 、CD 三个过程,它们对应的加速度值分别为2s m 20-⋅=--=AB AB AB t t a v v (匀加速直线运动)0=BC a (匀速直线运动)2s m 10-⋅-=--=CD CD CD t t a v v (匀减速直线运动)根据上述结果即可作出质点的a -t 图[图(B)].在匀变速直线运动中,有2021t t x x ++=v由此,可计算在0~2s和4~6s时间间隔内各时刻的位置分别为用描数据点的作图方法,由表中数据可作0~2s和4~6s时间内的x -t 图.在2~4s时间内, 质点是作1s m 20-⋅=v 的匀速直线运动, 其x -t 图是斜率k =20的一段直线[图(c)].1 -8 已知质点的运动方程为j i r )2(22t t -+=,式中r 的单位为m,t 的单位为s.求: (1) 质点的运动轨迹;(2) t =0 及t =2s时,质点的位矢;(3) 由t =0 到t =2s内质点的位移Δr 和径向增量Δr ;*(4) 2s 内质点所走过的路程s .分析 质点的轨迹方程为y =f (x ),可由运动方程的两个分量式x (t )和y (t )中消去t 即可得到.对于r 、Δr 、Δr 、Δs 来说,物理含义不同,可根据其定义计算.其中对s 的求解用到积分方法,先在轨迹上任取一段微元d s ,则22)d ()d (d y x s +=,最后用⎰=s s d 积分求s. 解 (1) 由x (t )和y (t )中消去t 后得质点轨迹方程为2412x y -=这是一个抛物线方程,轨迹如图(a)所示.(2) 将t =0s和t =2s分别代入运动方程,可得相应位矢分别为j r 20= , j i r 242-=图(a)中的P 、Q 两点,即为t =0s和t =2s时质点所在位置. (3) 由位移表达式,得j i j i r r r 24)()(Δ020212-=-+-=-=y y x x其中位移大小m 66.5)(Δ)(ΔΔ22=+=y x r而径向增量m 47.2ΔΔ2020222202=+-+=-==y x y x r r r r*(4) 如图(B)所示,所求Δs 即为图中PQ 段长度,先在其间任意处取AB 微元d s ,则22)d ()d (d y x s +=,由轨道方程可得x x y d 21d -=,代入d s ,则2s内路程为m 91.5d 4d 402=+==⎰⎰x x s s QP1 -9 质点的运动方程为23010t t x +-= 22015t t y -=式中x ,y 的单位为m,t 的单位为s.试求:(1) 初速度的大小和方向;(2) 加速度的大小和方向.分析 由运动方程的分量式可分别求出速度、加速度的分量,再由运动合成算出速度和加速度的大小和方向.解 (1) 速度的分量式为t t xx 6010d d +-==v t ty y 4015d d -==v当t =0 时, v o x =-10 m·s-1 , v o y =15 m·s-1 ,则初速度大小为120200s m 0.18-⋅=+=y x v v v设v o 与x 轴的夹角为α,则23tan 00-==xy αv vα=123°41′(2) 加速度的分量式为2s m 60d d -⋅==ta xx v , 2s m 40d d -⋅-==t a y y v则加速度的大小为222s m 1.72-⋅=+=y x a a a设a 与x 轴的夹角为β,则32tan -==x ya a β β=-33°41′(或326°19′)1 -10 一升降机以加速度1.22 m·s-2上升,当上升速度为2.44 m·s-1时,有一螺丝自升降机的天花板上松脱,天花板与升降机的底面相距2.74 m .计算:(1)螺丝从天花板落到底面所需要的时间;(2)螺丝相对升降机外固定柱子的下降距离.分析 在升降机与螺丝之间有相对运动的情况下,一种处理方法是取地面为参考系,分别讨论升降机竖直向上的匀加速度运动和初速不为零的螺丝的自由落体运动,列出这两种运动在同一坐标系中的运动方程y 1 =y 1(t )和y 2 =y 2(t ),并考虑它们相遇,即位矢相同这一条件,问题即可解;另一种方法是取升降机(或螺丝)为参考系,这时,螺丝(或升降机)相对它作匀加速运动,但是,此加速度应该是相对加速度.升降机厢的高度就是螺丝(或升降机)运动的路程.解1 (1) 以地面为参考系,取如图所示的坐标系,升降机与螺丝的运动方程分别为20121at t y +=v20221gt t h y -+=v当螺丝落至底面时,有y 1 =y 2 ,即20202121gt t h at t -+=+v vs 705.02=+=ag ht (2) 螺丝相对升降机外固定柱子下降的距离为m 716.021202=+-=-=gt t y h d v解2 (1)以升降机为参考系,此时,螺丝相对它的加速度大小a ′=g +a ,螺丝落至底面时,有2)(210t a g h +-=s 705.02=+=ag ht (2) 由于升降机在t 时间内上升的高度为2021at t h +='v则 m 716.0='-=h h d1 -11 一质点P 沿半径R =3.0 m 的圆周作匀速率运动,运动一周所需时间为20.0s,设t =0 时,质点位于O 点.按(a )图中所示Oxy 坐标系,求(1) 质点P 在任意时刻的位矢;(2)5s时的速度和加速度.分析 该题属于运动学的第一类问题,即已知运动方程r =r (t )求质点运动的一切信息(如位置矢量、位移、速度、加速度).在确定运动方程时,若取以点(0,3)为原点的O′x′y′坐标系,并采用参数方程x′=x′(t )和y′=y′(t )来表示圆周运动是比较方便的.然后,运用坐标变换x =x 0 +x ′和y =y 0 +y ′,将所得参数方程转换至Oxy 坐标系中,即得Oxy 坐标系中质点P 在任意时刻的位矢.采用对运动方程求导的方法可得速度和加速度.解 (1) 如图(B)所示,在O′x′y′坐标系中,因t Tθπ2=,则质点P 的参数方程为t TR x π2sin=',t TR y π2cos-=' 坐标变换后,在O x y 坐标系中有t TR x x π2sin='=, R t TR y y y +-=+'=π2cos0 则质点P 的位矢方程为j i r ⎪⎭⎫ ⎝⎛+-+=R t T R t T R π2cos π2sinj i )]π1.0(cos 1[3)π1.0(sin 3t t -+=(2) 5s时的速度和加速度分别为j j i r )s m π3.0(π2sin π2π2cos π2d d 1-⋅=+==t TT R t T T R t v i j i r a )s m π03.0(π2cos )π2(π2sin )π2(d d 222222-⋅-=+-==t TT R t T T R t 1 -12 地面上垂直竖立一高20.0 m 的旗杆,已知正午时分太阳在旗杆的正上方,求在下午2∶00 时,杆顶在地面上的影子的速度的大小.在何时刻杆影伸展至20.0 m ?分析 为求杆顶在地面上影子速度的大小,必须建立影长与时间的函数关系,即影子端点的位矢方程.根据几何关系,影长可通过太阳光线对地转动的角速度求得.由于运动的相对性,太阳光线对地转动的角速度也就是地球自转的角速度.这样,影子端点的位矢方程和速度均可求得.解 设太阳光线对地转动的角速度为ω,从正午时分开始计时,则杆的影长为s =h tg ωt ,下午2∶00 时,杆顶在地面上影子的速度大小为132s m 1094.1cos d d --⋅⨯===tωωh t s v 当杆长等于影长时,即s =h ,则s 606034πarctan 1⨯⨯===ωh s ωt 即为下午3∶00 时.1 -13 质点沿直线运动,加速度a =4 -t2 ,式中a 的单位为m·s-2 ,t 的单位为s.如果当t =3s时,x =9 m,v =2 m·s-1 ,求质点的运动方程.分析 本题属于运动学第二类问题,即已知加速度求速度和运动方程,必须在给定条件下用积分方法解决.由t a d d v =和tx d d =v 可得t a d d =v 和t x d d v =.如a =a (t )或v =v (t ),则可两边直接积分.如果a 或v 不是时间t 的显函数,则应经过诸如分离变量或变量代换等数学操作后再做积分.解 由分析知,应有⎰⎰=tt a 0d d 0vv v得 03314v v +-=t t (1)由⎰⎰=txx t x 0d d 0v得 00421212x t t t x ++-=v (2) 将t =3s时,x =9 m,v =2 m·s-1代入(1) (2)得v 0=-1 m·s-1,x 0=0.75 m .于是可得质点运动方程为75.0121242+-=t t x 1 -14 一石子从空中由静止下落,由于空气阻力,石子并非作自由落体运动,现测得其加速度a =A -B v ,式中A 、B 为正恒量,求石子下落的速度和运动方程.分析 本题亦属于运动学第二类问题,与上题不同之处在于加速度是速度v 的函数,因此,需将式d v =a (v )d t 分离变量为t a d )(d =v v 后再两边积分. 解 选取石子下落方向为y 轴正向,下落起点为坐标原点.(1) 由题意知 v v B A ta -==d d (1) 用分离变量法把式(1)改写为 t B A d d =-vv (2) 将式(2)两边积分并考虑初始条件,有⎰⎰=-t t B A 0d d d 0v v v v v 得石子速度 )1(Bt e B A --=v 由此可知当,t →∞时,B A →v 为一常量,通常称为极限速度或收尾速度. (2) 再由)1(d d Bt e BA t y --==v 并考虑初始条件有 t e BA y t Bt y d )1(d 00⎰⎰--= 得石子运动方程)1(2-+=-Bt e B A t B A y 1 -15 一质点具有恒定加速度a =6i +4j ,式中a 的单位为m·s-2 .在t =0时,其速度为零,位置矢量r 0 =10 m i .求:(1) 在任意时刻的速度和位置矢量;(2) 质点在Oxy 平面上的轨迹方程,并画出轨迹的示意图.分析 与上两题不同处在于质点作平面曲线运动,根据叠加原理,求解时需根据加速度的两个分量a x 和a y 分别积分,从而得到运动方程r 的两个分量式x (t )和y (t ).由于本题中质点加速度为恒矢量,故两次积分后所得运动方程为固定形式,即20021t a t x x x x ++=v 和20021t a t y y y y ++=v ,两个分运动均为匀变速直线运动.读者不妨自己验证一下. 解 由加速度定义式,根据初始条件t 0 =0时v 0 =0,积分可得⎰⎰⎰+==t t t t 000)d 46(d d j i a v v j i t t 46+=v 又由td d r =v 及初始条件t =0 时,r 0=(10 m)i ,积分可得 ⎰⎰⎰+==tt r r t t t t 00)d 46(d d 0j i r v j i r 222)310(t t ++=由上述结果可得质点运动方程的分量式,即x =10+3t 2y =2t 2消去参数t ,可得运动的轨迹方程3y =2x -20 m 这是一个直线方程.直线斜率32tan d d ===αx y k ,α=33°41′.轨迹如图所示. 1 -16 一质点在半径为R 的圆周上以恒定的速率运动,质点由位置A 运动到位置B,OA 和OB 所对的圆心角为Δθ.(1) 试证位置A 和B 之间的平均加速度为)Δ(/)Δcos 1(22θR θa v -=;(2) 当Δθ分别等于90°、30°、10°和1°时,平均加速度各为多少? 并对结果加以讨论.分析 瞬时加速度和平均加速度的物理含义不同,它们分别表示为td d v =a 和tΔΔv =a .在匀速率圆周运动中,它们的大小分别为R a n 2v =,t a ΔΔv = ,式中|Δv |可由图(B)中的几何关系得到,而Δt 可由转过的角度Δθ 求出.由计算结果能清楚地看到两者之间的关系,即瞬时加速度是平均加速度在Δt →0 时的极限值.解 (1) 由图(b)可看到Δv =v 2 -v 1 ,故θΔcos 2Δ212221v v v v -+=v)Δcos 1(2θ-=v而vv θR s t ΔΔΔ==所以 θR θt a Δ)cos Δ1(2ΔΔ2v -==v(2) 将Δθ=90°,30°,10°,1°分别代入上式,得R a 219003.0v ≈,Ra 229886.0v ≈ R a 239987.0v ≈,Ra 24000.1v ≈ 以上结果表明,当Δθ→0 时,匀速率圆周运动的平均加速度趋近于一极限值,该值即为法向加速度R2v . 1 -17 质点在Oxy 平面内运动,其运动方程为r =2.0t i +(19.0 -2.0t 2 )j ,式中r 的单位为m,t 的单位为s .求:(1)质点的轨迹方程;(2) 在t 1=1.0s 到t 2 =2.0s 时间内的平均速度;(3) t 1 =1.0s时的速度及切向和法向加速度;(4) t =1.0s 时质点所在处轨道的曲率半径ρ.分析 根据运动方程可直接写出其分量式x =x (t )和y =y (t ),从中消去参数t ,即得质点的轨迹方程.平均速度是反映质点在一段时间内位置的变化率,即t ΔΔr =v ,它与时间间隔Δt 的大小有关,当Δt →0 时,平均速度的极限即瞬时速度td d r =v .切向和法向加速度是指在自然坐标下的分矢量a t 和a n ,前者只反映质点在切线方向速度大小的变化率,即t t te a d d v =,后者只反映质点速度方向的变化,它可由总加速度a 和a t 得到.在求得t 1 时刻质点的速度和法向加速度的大小后,可由公式ρa n 2v =求ρ. 解 (1) 由参数方程x =2.0t , y =19.0-2.0t 2消去t 得质点的轨迹方程:y =19.0 -0.50x 2(2) 在t 1 =1.00s 到t 2 =2.0s时间内的平均速度j i r r 0.60.2ΔΔ1212-=--==t t t r v (3) 质点在任意时刻的速度和加速度分别为j i j i j i t ty t x t y x 0.40.2d d d d )(-=+=+=v v v j j i a 222220.4d d d d )(-⋅-=+=s m ty t x t 则t 1 =1.00s时的速度v (t )|t =1s=2.0i -4.0j切向和法向加速度分别为t t y x t t t tt e e e a 222s 1s m 58.3)(d d d d -=⋅=+==v v v n n t n a a e e a 222s m 79.1-⋅=-=(4) t =1.0s质点的速度大小为122s m 47.4-⋅=+=y x v v v则m 17.112==na ρv 1 -18 飞机以100 m·s-1 的速度沿水平直线飞行,在离地面高为100 m 时,驾驶员要把物品空投到前方某一地面目标处,问:(1) 此时目标在飞机正下方位置的前面多远? (2) 投放物品时,驾驶员看目标的视线和水平线成何角度?(3) 物品投出2.0s后,它的法向加速度和切向加速度各为多少?分析 物品空投后作平抛运动.忽略空气阻力的条件下,由运动独立性原理知,物品在空中沿水平方向作匀速直线运动,在竖直方向作自由落体运动.到达地面目标时,两方向上运动时间是相同的.因此,分别列出其运动方程,运用时间相等的条件,即可求解.此外,平抛物体在运动过程中只存在竖直向下的重力加速度.为求特定时刻t 时物体的切向加速度和法向加速度,只需求出该时刻它们与重力加速度之间的夹角α或β.由图可知,在特定时刻t ,物体的切向加速度和水平线之间的夹角α,可由此时刻的两速度分量v x 、v y 求出,这样,也就可将重力加速度g 的切向和法向分量求得.解 (1) 取如图所示的坐标,物品下落时在水平和竖直方向的运动方程分别为x =vt , y =1/2 gt 2飞机水平飞行速度v =100 m·s -1 ,飞机离地面的高度y =100 m,由上述两式可得目标在飞机正下方前的距离m 4522==gy x v(2) 视线和水平线的夹角为 o 5.12arctan ==xy θ(3) 在任意时刻物品的速度与水平轴的夹角为 v v v gt αx yarctan arctan == 取自然坐标,物品在抛出2s 时,重力加速度的切向分量与法向分量分别为2s m 88.1arctan sin sin -⋅=⎪⎭⎫ ⎝⎛==v gt g αg a t 2s m 62.9arctan cos cos -⋅=⎪⎭⎫ ⎝⎛==v gt g αg a n 1 -19 如图(a)所示,一小型迫击炮架设在一斜坡的底端O 处,已知斜坡倾角为α,炮身与斜坡的夹角为β,炮弹的出口速度为v 0,忽略空气阻力.求:(1)炮弹落地点P 与点O 的距离OP ;(2) 欲使炮弹能垂直击中坡面.证明α和β必须满足αβtan 21tan =并与v 0 无关. 分析 这是一个斜上抛运动,看似简单,但针对题目所问,如不能灵活运用叠加原理,建立一个恰当的坐标系,将运动分解的话,求解起来并不容易.现建立如图(a)所示坐标系,则炮弹在x 和y 两个方向的分运动均为匀减速直线运动,其初速度分别为v 0cos β和v 0sin β,其加速度分别为g sin α和gcos α.在此坐标系中炮弹落地时,应有y =0,则x =OP .如欲使炮弹垂直击中坡面,则应满足v x =0,直接列出有关运动方程和速度方程,即可求解.由于本题中加速度g 为恒矢量.故第一问也可由运动方程的矢量式计算,即20g 21t t +=v r ,做出炮弹落地时的矢量图[如图(B)所示],由图中所示几何关系也可求得OP uuu r (即图中的r 矢量).(1)解1 由分析知,炮弹在图(a)所示坐标系中两个分运动方程为αgt βt x sin 21cos 20-=v (1) αgt βt y cos 21sin 20-=v (2) 令y =0 求得时间t 后再代入式(1)得)cos(cos sin 2)sin sin cos(cos cos sin 2220220βααg ββαβααg βx OP +=-==v v 解2 做出炮弹的运动矢量图,如图(b)所示,并利用正弦定理,有βgt αt βαsin 212πsin 2πsin 20=⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛--v r 从中消去t 后也可得到同样结果.(2) 由分析知,如炮弹垂直击中坡面应满足y =0 和v x =0,则0sin cos 0=-=αgt βx v v (3)由(2)(3)两式消去t 后得αβsin 21tan = 由此可知.只要角α和β满足上式,炮弹就能垂直击中坡面,而与v 0 的大小无关.讨论 如将炮弹的运动按水平和竖直两个方向分解,求解本题将会比较困难,有兴趣读者不妨自己体验一下.1 -20 一直立的雨伞,张开后其边缘圆周的半径为R ,离地面的高度为h ,(1) 当伞绕伞柄以匀角速ω旋转时,求证水滴沿边缘飞出后落在地面上半径为g ωh R r /212+=的圆周上;(2) 读者能否由此定性构想一种草坪上或农田灌溉用的旋转式洒水器的方案?分析 选定伞边缘O 处的雨滴为研究对象,当伞以角速度ω旋转时,雨滴将以速度v 沿切线方向飞出,并作平抛运动.建立如图(a)所示坐标系,列出雨滴的运动方程并考虑图中所示几何关系,即可求证.由此可以想像如果让水从一个旋转的有很多小孔的喷头中飞出,从不同小孔中飞出的水滴将会落在半径不同的圆周上,为保证均匀喷洒对喷头上小孔的分布还要给予精心的考虑.解 (1) 如图(a)所示坐标系中,雨滴落地的运动方程为t ωR t x ==v (1)h gt y ==221 (2) 由式(1)(2)可得 g h ωR x 2222= 由图(a)所示几何关系得雨滴落地处圆周的半径为22221ωgh R R x r +=+= (2) 常用草坪喷水器采用如图(b)所示的球面喷头(θ0 =45°)其上有大量小孔.喷头旋转时,水滴以初速度v 0 从各个小孔中喷出,并作斜上抛运动,通常喷头表面基本上与草坪处在同一水平面上.则以φ角喷射的水柱射程为gR 2sin 0v = 为使喷头周围的草坪能被均匀喷洒,喷头上的小孔数不但很多,而且还不能均匀分布,这是喷头设计中的一个关键问题.1 -21 一足球运动员在正对球门前25.0 m 处以20.0 m·s-1 的初速率罚任意球,已知球门高为3.44 m .若要在垂直于球门的竖直平面内将足球直接踢进球门,问他应在与地面成什么角度的范围内踢出足球? (足球可视为质点)分析 被踢出后的足球,在空中作斜抛运动,其轨迹方程可由质点在竖直平面内的运动方程得到.由于水平距离x 已知,球门高度又限定了在y 方向的范围,故只需将x 、y 值代入即可求出.解 取图示坐标系Oxy ,由运动方程θt x cos v =, 221sin gt θt y -=v 消去t 得轨迹方程222)tan 1(2tan x θg θx y +-=v以x =25.0 m,v =20.0 m·s-1 及3.44 m≥y ≥0 代入后,可解得71.11°≥θ1 ≥69.92°27.92°≥θ2 ≥18.89°如何理解上述角度的范围?在初速一定的条件下,球击中球门底线或球门上缘都将对应有两个不同的投射倾角(如图所示).如果以θ>71.11°或θ <18.89°踢出足球,都将因射程不足而不能直接射入球门;由于球门高度的限制,θ 角也并非能取71.11°与18.89°之间的任何值.当倾角取值为27.92°<θ <69.92°时,踢出的足球将越过门缘而离去,这时球也不能射入球门.因此可取的角度范围只能是解中的结果.1 -22 一质点沿半径为R 的圆周按规律2021bt t s -=v 运动,v 0 、b 都是常量.(1) 求t 时刻质点的总加速度;(2) t 为何值时总加速度在数值上等于b ?(3) 当加速度达到b 时,质点已沿圆周运行了多少圈?分析 在自然坐标中,s 表示圆周上从某一点开始的曲线坐标.由给定的运动方程s =s (t ),对时间t 求一阶、二阶导数,即是沿曲线运动的速度v 和加速度的切向分量a t,而加速度的法向分量为a n =v 2 /R .这样,总加速度为a =a te t+a n e n .至于质点在t 时间内通过的路程,即为曲线坐标的改变量Δs =s t -s 0.因圆周长为2πR,质点所转过的圈数自然可求得.解 (1) 质点作圆周运动的速率为bt ts -==0d d v v 其加速度的切向分量和法向分量分别为b t s a t -==22d d , Rbt R a n 202)(-==v v 故加速度的大小为R )(402222bt b a a a a t tn -+=+=v 其方向与切线之间的夹角为⎥⎦⎤⎢⎣⎡--==Rb bt a a θt n 20)(arctan arctan v (2) 要使|a |=b ,由b bt b R R=-+4022)(1v 可得 bt 0v = (3) 从t =0 开始到t =v 0 /b 时,质点经过的路程为b s s s t 2200v =-=因此质点运行的圈数为bRR s n π4π220v == 1 -23 一半径为0.50 m 的飞轮在启动时的短时间内,其角速度与时间的平方成正比.在t =2.0s 时测得轮缘一点的速度值为4.0 m·s-1.求:(1) 该轮在t′=0.5s的角速度,轮缘一点的切向加速度和总加速度;(2)该点在2.0s内所转过的角度.分析 首先应该确定角速度的函数关系ω=kt 2.依据角量与线量的关系由特定时刻的速度值可得相应的角速度,从而求出式中的比例系数k ,ω=ω(t )确定后,注意到运动的角量描述与线量描述的相应关系,由运动学中两类问题求解的方法(微分法和积分法),即可得到特定时刻的角加速度、切向加速度和角位移.解 因ωR =v ,由题意ω∝t 2 得比例系数322s rad 2-⋅===Rtt ωk v 所以 22)(t t ωω== 则t ′=0.5s 时的角速度、角加速度和切向加速度分别为12s rad 5.02-⋅='=t ω2s rad 0.24d d -⋅='==t tωα 2s m 0.1-⋅==R αa t总加速度n t t n R ωR αe e a a a 2+=+= ()()2222s m 01.1-⋅=+=R ωR αa在2.0s内该点所转过的角度 rad 33.532d 2d 203202200====-⎰⎰t t t t ωθθ 1 -24 一质点在半径为0.10 m 的圆周上运动,其角位置为342t θ+=,式中θ 的单位为rad,t 的单位为s.(1) 求在t =2.0s时质点的法向加速度和切向加速度.(2) 当切向加速度的大小恰等于总加速度大小的一半时,θ 值为多少?(3) t 为多少时,法向加速度和切向加速度的值相等?分析 掌握角量与线量、角位移方程与位矢方程的对应关系,应用运动学求解的方法即可得到.解 (1) 由于342t θ+=,则角速度212d d t tθω==.在t =2 s 时,法向加速度和切向加速度的数值分别为 22s 2s m 30.2-=⋅==ωr a t n2s 2s m 80.4d d -=⋅==t ωr a t t(2) 当22212/t n t a a a a +==时,有223n t a a =,即 ()()422212243t r rt = 得 3213=t此时刻的角位置为 rad 15.3423=+=t θ(3) 要使t n a a =,则有()()422212243t r rt = t =0.55s1 -25 一无风的下雨天,一列火车以v 1=20.0 m·s-1 的速度匀速前进,在车内的旅客看见玻璃窗外的雨滴和垂线成75°角下降.求雨滴下落的速度v2 .(设下降的雨滴作匀速运动)分析 这是一个相对运动的问题.设雨滴为研究对象,地面为静止参考系S,火车为动参考系S′.v 1 为S′相对S 的速度,v 2 为雨滴相对S的速度,利用相对运动速度的关系即可解.解 以地面为参考系,火车相对地面运动的速度为v 1 ,雨滴相对地面竖直下落的速度为v 2 ,旅客看到雨滴下落的速度v 2′为相对速度,它们之间的关系为1'22v v v += (如图所示),于是可得 1o 12s m 36.575tan -⋅==v v 1 -26 如图(a)所示,一汽车在雨中沿直线行驶,其速率为v 1 ,下落雨滴的速度方向偏于竖直方向之前θ 角,速率为v 2′,若车后有一长方形物体,问车速v 1为多大时,此物体正好不会被雨水淋湿?分析 这也是一个相对运动的问题.可视雨点为研究对象,地面为静参考系S,汽车为动参考系S′.如图(a)所示,要使物体不被淋湿,在车上观察雨点下落的方向(即雨点相对于汽车的运动速度v 2′的方向)应满足hl αarctan≥.再由相对速度的矢量关系122v v v -=',即可求出所需车速v 1.解 由122v v v -='[图(b)],有θθαcos sin arctan221v v v -= 而要使hlαarctan ≥,则 hl θθ≥-cos sin 221v v v ⎪⎭⎫ ⎝⎛+≥θh θl sin cos 21v v 1 -27 一人能在静水中以1.10 m·s-1 的速度划船前进.今欲横渡一宽为1.00 ×103 m 、水流速度为0.55 m·s-1 的大河.(1) 他若要从出发点横渡该河而到达正对岸的一点,那么应如何确定划行方向? 到达正对岸需多少时间? (2)如果希望用最短的时间过河,应如何确定划行方向? 船到达对岸的位置在什么地方?分析 船到达对岸所需时间是由船相对于岸的速度v 决定的.由于水流速度u 的存在, v 与船在静水中划行的速度v ′之间有v =u +v ′(如图所示).若要使船到达正对岸,则必须使v 沿正对岸方向;在划速一定的条件下,若要用最短时间过河,则必须使v 有极大值.。

大物题库

大物题库

1某质点的运动学方程x=6+3t-5t 3,则该质点作 ( D )(A )匀加速直线运动,加速度为正值(B )匀加速直线运动,加速度为负值(C )变加速直线运动,加速度为正值(D )变加速直线运动,加速度为负值2一作直线运动的物体,其速度x v 与时间t 的关系曲线如图示。

设21t t →时间内合力作功为A 1,32t t →时间内合力作功为A 2,43t t →时间内合力作功为A 3,则下述正确都为(C )(A )01〉A ,02〈A ,03〈A (B )01〉A ,02〈A , 03〉A(C )01=A ,02〈A ,03〉A(D )01=A ,02〈A ,03〈A3 关于静摩擦力作功,指出下述正确者( C )(A )物体相互作用时,在任何情况下,每个静摩擦力都不作功。

(B )受静摩擦力作用的物体必定静止。

(C )彼此以静摩擦力作用的两个物体处于相对静止状态,所以两个静摩擦力作功之和等于零。

4 质点沿半径为R 的圆周作匀速率运动,经过时间T 转动一圈,那么在2T 的时间内,其平均速度的大小和平均速率分别为(B )(A ) , (B ) 0, (C )0, 0 (D )T R π2, 05、质点在恒力F 作用下由静止开始作直线运动。

已知在时间1t ∆内,速率由0增加到υ;在2t ∆内,由υ增加到υ2。

设该力在1t ∆内,冲量大小为1I ,所作的功为1A ;在2t ∆内,冲量大小T R π2T R π2TRπ2uto t 1为2I ,所作的功为2A ,则( D )A .2121;I I A A <= B.2121;I I A A >= C. 2121;I I A A => D. 2121;I I A A =<6如图示两个质量分别为B A m m 和的物体A 和B 一起在水平面上沿x 轴正向作匀减速直线运动,加速度大小为a ,A 与B 间的最大静摩擦系数为μ,则A 作用于B 的静摩擦力F 的大小和方向分别为(D )7、根据瞬时速度矢量υ 的定义,及其用直角坐标的表示形式,它的大小υ 可表示为(C )A .dt drB.dt r d C. ||k dt dz j dt dy i dt dx ++ D. dtdz dt dy dt dx ++ 8三个质量相等的物体A 、B 、C 紧靠在一起,置于光滑水平面上。

大物题库

大物题库

4、静电场:点电荷,库仑定律,电场强度,高斯定理,电势,环路定理,电场强度与电势关系,静电场中的导体,静电平衡条件,电容和电容器,静电场中的电介质,电介质中的高斯定理,电场能量。

5、电流磁场:磁场强度,毕薩定律,磁场的高斯定理,稳恒电流,安培定律,安培力,磁场对电流的作用,磁介质的磁化,磁介质中的环路定理,磁场能量。

6、电磁感应:法拉第电磁感应定律,动生电动势,感生电动势,涡旋电场,自感和互感,电磁场,麦克斯韦方程组。

8、近代物理:波与粒子,黑体辐射,光电效应,康普顿效应,氢原子光谱,粒子的波动性,量子力学基础,薛定谔方程,势阱,谐振子,氢原子,原子结构基础。

7。

(本题3分)(1391)一个半径为R 的薄金属球壳,带有电荷q 壳内充满相对介电常量为εr 的各向同性均匀电介质.设无穷远处为电势零点,则球壳的电势U=_________________________.)4(0R q πε8.(本题3分)(2620)在自感系数L=0.05mH 的线圈中,流过I=0.8A 的电流.在切断电路后经过t=100μs 的时间,电流强度近似变为零,回路中产生的平均自感电动势εL =______________· 0.4 V13.(本题lO 分)(1276)如图所示,三个“无限长”的同轴导体圆柱面A 、B和C ,半径分别为R a 、R b 、R c . 圆柱面B 上带电荷,A和C 都接地.求B 的内表面上电荷线密度λl 和外表面上电荷线密度λ2之比值λ1/λ2。

14.(本题5分)(1652)假想从无限远处陆续移来微量电荷使一半径为R 的导体球带电.(1)当球上已带有电荷q 时,再将一个电荷元dq 从无限远处移到球上的过程中,外力作多少功?(2)使球上电荷从零开始增加到Q 的过程中,外力共作多少功?解:⑴ 令无限远处电势为零,则带电荷为q 的导电体球,其电势为R qU 04πε= 将dq 从无限远处搬到球上过程中,外力作的功等于该电荷元在球上所具有的电势能 dqR q dW dA 04πε== 3分⑵ 带电球体的电荷从零增加到Q 的过程中,外力作功为R Q R qdq dA A Q 020084πεπε===⎰⎰ 2分15。

大物考题完整版

大物考题完整版

静电场(一)1. 有一带负电荷的金属球,其附近某点的场强为E ,若在该点放一带正电的点电荷q ,测得所受的电场力为f ,则(3)(1) E=f/q (2)E> f/q (3)E< f/q2、在闭合高斯面内有一带电量Q 的点电荷,将电荷从面内移到高斯面外后,高斯面上的电场强度_变化___(填变化或不变),通过闭合高斯面的电通量为__0__。

3、如图,直角三角形ABC 的A 点上,有正电荷q 1,B 点上有负电荷q 2,求C的大小和方向。

(设AC=l 1,BC =l 2)解:112014q E lπε=222024q E l πε=2201214E l l πε==,212221q l arctg q l θ=4、电荷Q 均匀分布在长为l 的细杆AB 上,P 点位于AB 的延长线上,且与B 相距为d ,求P 点的电场强度。

解:⎰+-===)11(444122ld d l Q x dx E xdxdE πεπελλπε5、设电量Q 均匀分布在半径为R 的的半圆周上(如图),求圆心O 处的电场强度。

解:如图所示,在半圆周上去电荷元dl ,,所以,dq 在O 点产生的场强,大小为,各电荷元在O 点产生的场强大小相等,方向各异,且分布在以O 为顶点的半圆内,由对称性,各电荷元在O 点产生的垂直x 轴的场强分量为相互抵消,而平行x 轴的分类则相互加强,对给定点O 处,R 为常量,则有于是得均匀带电半圆环圆心处O 点的场强方向沿X 轴正向,大小为静电场强度(二)1、 如图所示, 把单位正电荷从一对等量异号电荷的连线中点,沿任意路径移到无穷远处时,电场力作功为___0__。

2、在点电荷Q 旁作一高斯面S ,包围Q ,在S 面外再引入另一点电荷通过S 面的电通量有无变化?_不变化____。

S 面上各处的电场强度有无变化?_有变化___。

3、+q 1C -q 2l E 1ABP+q电场力作功从该点移动到无穷远处则把试验电荷试验电荷势为以知静电场中某点的电C,103.0100v,-80⨯=-q解:-3.0×10-6J4、如图所示的电场分布,则A 点的电势比B 点的电势__高__(填高、低、相等)5、两个同心的球面半径分别为R 1和R 2(R 1<R 2),带电量分别为q 1和q 2, 则在小球面内距球心为r 1处一点的电势为______________,在两球面之间距球心为r 2处一点的电势为_______________。

大物题库整理

大物题库整理

力学基本题型解析 一、填空题 质点力学填空 1、一质点做圆周运动,轨道半径为R=5m ,速率为v = 2t 2+ 5m/s ,则任意时刻其切向加速度a τ=___4t_____,法向加速度a n =__(2t 2+5)2/5______。

2、一质点做直线运动,速率为v =10t 2+7m/s,则任意时刻其加速度a =____20t____,位置矢量x = __10t 3/3+7t___。

3、一个质点的运动方程为r = 5t 4i +5t 2j ,则其速度矢量为v=_____20t 3i +10t j __________;加速度矢量a 为___60t 2i +10j _____________。

4、一物体质量为5kg,沿半径R=4m 的圆周作匀速率运动,其速率v =8m/s 。

t 1时刻物体处在图示的A 点,t 2时刻物体处在图示的C 点,则在该时间间隔内物体的位移∆r=_______-2R j ___________,所受的冲量∆I =______80i _(单位: kgm/s )____。

5、某质点的运动方程为r =A cos ωt i +B sin ωt j , 其中A ,B ,ω为常量。

则质点的加速度矢量为a =_-ω2r ___, 轨迹方程为________(x /A)2+(y /B)2=1___。

6、质量为m 的物体自空中落下,它除受重力外,还受到一个与速度平方成正比的阻力的作用,比例系数为k ,k 为正的常数,该下落物体的极限速度是____mg/k _____。

7、力F= 2x i +7y 2j (SI)作用于运动方程为r=7t i (SI)的作直线运动的物体上, 则0~1s 内力F 做的功为A =___4949)7()714(10221010==•+=•⎰⎰t dt y t r d F i j i _______J 。

8、静止于坐标原点、质量为9.0kg 的物体在合外力F =3.0t (N)作用下向x 轴正向运动,物体运动2.0s 时速率v =____32_____m/s 。

大学物理试题库及答案详解【考试必备】

大学物理试题库及答案详解【考试必备】

第一章 质点运动学1 -1 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,速率为v,t 至(t +Δt )时间内的位移为Δr , 路程为Δs , 位矢大小的变化量为Δr ( 或称Δ|r |),平均速度为v ,平均速率为v .(1) 根据上述情况,则必有( ) (A) |Δr |= Δs = Δr(B) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d s ≠ d r (C) |Δr |≠ Δr ≠ Δs ,当Δt →0 时有|d r |= d r ≠ d s (D) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d r = d s (2) 根据上述情况,则必有( )(A) |v |= v ,|v |= v (B) |v |≠v ,|v |≠ v{(C) |v |= v ,|v |≠ v (D) |v |≠v ,|v |= v分析与解 (1) 质点在t 至(t +Δt )时间内沿曲线从P 点运动到P′点,各量关系如图所示, 其中路程Δs =PP′, 位移大小|Δr |=PP ′,而Δr =|r |-|r |表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt →0 时,点P ′无限趋近P 点,则有|d r |=d s ,但却不等于d r .故选(B).(2) 由于|Δr |≠Δs ,故ts t ΔΔΔΔ≠r ,即|v |≠v . 但由于|d r |=d s ,故tst d d d d =r ,即|v |=v .由此可见,应选(C). 1 -2 一运动质点在某瞬时位于位矢r (x,y )的端点处,对其速度的大小有四种意见,即(1)t r d d ; (2)t d d r ; (3)t s d d ; (4)22d d d d ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛t y t x .下述判断正确的是( )(A) 只有(1)(2)正确 (B) 只有(2)正确 (C) 只有(2)(3)正确 (D) 只有(3)(4)正确分析与解trd d 表示质点到坐标原点的距离随时间的变化率,在极坐标系中叫径向速率.通常用符号v r 表示,这是速度矢量在位矢方向上的一个分量;td d r表示速度矢量;在自然坐标系中速度大小可用公式t s d d =v 计算,在直角坐标系中则可由公式22d d d d ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=t y t x v 求解.故选(D).1 -3 质点作曲线运动,r 表示位置矢量, v 表示速度,a 表示加速度,s 表示路程, a t表示切向加速度.对下列表达式,即(1)d v /d t =a ;(2)d r /d t =v ;(3)d s /d t =v ;(4)d v /d t |=a t. 下述判断正确的是( )(A) 只有(1)、(4)是对的 (B) 只有(2)、(4)是对的 (C) 只有(2)是对的 (D) 只有(3)是对的分析与解 td d v表示切向加速度a t,它表示速度大小随时间的变化率,是加速度矢量沿速度方向的一个分量,起改变速度大小的作用;trd d 在极坐标系中表示径向速率v r (如题1 -2 所述);ts d d 在自然坐标系中表示质点的速率v ;而t d d v 表示加速度的大小而不是切向加速度at.因此只有(3) 式表达是正确的.故选(D). 1 -4 一个质点在做圆周运动时,则有( ) (A) 切向加速度一定改变,法向加速度也改变 (B) 切向加速度可能不变,法向加速度一定改变【(C) 切向加速度可能不变,法向加速度不变 (D) 切向加速度一定改变,法向加速度不变分析与解 加速度的切向分量a t起改变速度大小的作用,而法向分量a n 起改变速度方向的作用.质点作圆周运动时,由于速度方向不断改变,相应法向加速度的方向也在不断改变,因而法向加速度是一定改变的.至于a t是否改变,则要视质点的速率情况而定.质点作匀速率圆周运动时, a t恒为零;质点作匀变速率圆周运动时, a t为一不为零的恒量,当a t改变时,质点则作一般的变速率圆周运动.由此可见,应选(B).*1 -5 如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动.设该人以匀速率v 0 收绳,绳不伸长且湖水静止,小船的速率为v ,则小船作( )(A) 匀加速运动,θcos 0v v =(B) 匀减速运动,θcos 0v v = (C) 变加速运动,θcos 0v v =(D) 变减速运动,θcos 0v v = (E) 匀速直线运动,0v v =、分析与解 本题关键是先求得小船速度表达式,进而判断运动性质.为此建立如图所示坐标系,设定滑轮距水面高度为h,t 时刻定滑轮距小船的绳长为l ,则小船的运动方程为22h l x -=,其中绳长l 随时间t 而变化.小船速度22d d d d h l t llt x -==v ,式中t l d d 表示绳长l 随时间的变化率,其大小即为v 0,代入整理后为θlh l cos /0220v v v =-=,方向沿x 轴负向.由速度表达式,可判断小船作变加速运动.故选(C).讨论 有人会将绳子速率v 0按x 、y 两个方向分解,则小船速度θcos 0v v =,这样做对吗 1 -6 已知质点沿x 轴作直线运动,其运动方程为32262t t x -+=,式中x 的单位为m,t 的单位为 s .求:(1) 质点在运动开始后 s 内的位移的大小; (2) 质点在该时间内所通过的路程;(3) t =4 s 时质点的速度和加速度.分析 位移和路程是两个完全不同的概念.只有当质点作直线运动且运动方向不改变时,位移的大小才会与路程相等.质点在t 时间内的位移Δx 的大小可直接由运动方程得到:0Δx x x t -=,而在求路程时,就必须注意到质点在运动过程中可能改变运动方向,此时,位移的大小和路程就不同了.为此,需根据0d d =tx来确定其运动方向改变的时刻t p ,求出0~t p 和t p ~t 内的位移大小Δx 1 、Δx 2 ,则t 时间内的路程21x x s ∆+∆=,如图所示,至于t = s 时质点速度和加速度可用tx d d 和22d d t x两式计算.解 (1) 质点在 s 内位移的大小m 32Δ04-=-=x x x(2) 由 0d d =tx、得知质点的换向时刻为s 2=p t (t =0不合题意)则m 0.8Δ021=-=x x xm 40Δ242-=-=x x x所以,质点在 s 时间间隔内的路程为m 48ΔΔ21=+=x x s(3) t = s 时1s0.4s m 48d d -=⋅-==t t xv2s0.422m.s 36d d -=-==t t x a¥1 -7 一质点沿x 轴方向作直线运动,其速度与时间的关系如图(a)所示.设t =0 时,x =0.试根据已知的v -t 图,画出a -t 图以及x -t 图.分析 根据加速度的定义可知,在直线运动中v -t 曲线的斜率为加速度的大小(图中AB 、CD 段斜率为定值,即匀变速直线运动;而线段BC 的斜率为0,加速度为零,即匀速直线运动).加速度为恒量,在a -t 图上是平行于t 轴的直线,由v -t 图中求出各段的斜率,即可作出a -t 图线.又由速度的定义可知,x -t 曲线的斜率为速度的大小.因此,匀速直线运动所对应的x -t 图应是一直线,而匀变速直线运动所对应的x –t 图为t 的二次曲线.根据各段时间内的运动方程x =x (t ),求出不同时刻t 的位置x ,采用描数据点的方法,可作出x -t 图.解 将曲线分为AB 、BC 、CD 三个过程,它们对应的加速度值分别为2s m 20-⋅=--=AB AB AB t t a v v (匀加速直线运动)0=BC a (匀速直线运动)2s m 10-⋅-=--=CD CD CD t t a v v (匀减速直线运动)根据上述结果即可作出质点的a -t 图[图(B)].在匀变速直线运动中,有2021t t x x ++=v*由此,可计算在0~2s和4~6s时间间隔内各时刻的位置分别为用描数据点的作图方法,由表中数据可作0~2s和4~6s时间内的x -t 图.在2~4s时间内, 质点是作1s m 20-⋅=v 的匀速直线运动, 其x -t 图是斜率k =20的一段直线[图(c)].1 -8 已知质点的运动方程为j i r )2(22t t -+=,式中r 的单位为m,t 的单位为s.求: (1) 质点的运动轨迹;(2) t =0 及t =2s时,质点的位矢;(3) 由t =0 到t =2s内质点的位移Δr 和径向增量Δr ;*(4) 2s 内质点所走过的路程s .分析 质点的轨迹方程为y =f (x ),可由运动方程的两个分量式x (t )和y (t )中消去t 即可得到.对于r 、Δr 、Δr 、Δs 来说,物理含义不同,可根据其定义计算.其中对s 的求解用到积分方法,先在轨迹上任取一段微元d s ,则22)d ()d (d y x s +=,最后用⎰=s s d 积分求s.解 (1) 由x (t )和y (t )中消去t 后得质点轨迹方程为—2412x y -=这是一个抛物线方程,轨迹如图(a)所示.(2) 将t =0s和t =2s分别代入运动方程,可得相应位矢分别为j r 20= , j i r 242-=图(a)中的P 、Q 两点,即为t =0s和t =2s时质点所在位置. (3) 由位移表达式,得j i j i r r r 24)()(Δ020212-=-+-=-=y y x x其中位移大小m 66.5)(Δ)(ΔΔ22=+=y x r而径向增量m 47.2ΔΔ2020222202=+-+=-==y x y x r r r r*(4) 如图(B)所示,所求Δs 即为图中PQ 段长度,先在其间任意处取AB 微元d s ,则22)d ()d (d y x s +=,由轨道方程可得x x y d 21d -=,代入d s ,则2s内路程为;m 91.5d 4d 42=+==⎰⎰x x s s Q P1 -9 质点的运动方程为23010t t x +-= 22015t t y -=式中x ,y 的单位为m,t 的单位为s.试求:(1) 初速度的大小和方向;(2) 加速度的大小和方向.分析 由运动方程的分量式可分别求出速度、加速度的分量,再由运动合成算出速度和加速度的大小和方向.解 (1) 速度的分量式为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 食品杀菌要实现的目标是什么?(1)保护营养风味品质(2)提高贮藏保质稳定2.解释传统加工的热杀菌与新技术发展的冷杀菌对食品品质影响的差异性?(1)传统加工的热杀菌会导致营养物质破坏,质地变差,色泽加深,挥发性成分损失或香味变差。

(2)新技术发展的冷杀菌条件易于控制,外界环境影响较小,由于杀菌过程中食品的温度并不升高或升高很少,有利于保持食品的色、香、味、质地和营养成分,有利于食品功能成分(生物活性成分)的生理活性保持。

3. 简述海藻中存在哪些生物活性物质?答:海藻中的生物活性物质如下:(1)海藻多糖,包括琼脂胶、卡拉胶、褐藻胶、褐藻酸钠、褐藻酸、褐藻硫酸多糖等;(2)蛋白质,如作为食用色素的藻胆蛋白、海藻凝集素等;(3)氨基酸,包括褐藻氨酸、软骨藻酸、海人草酸、牛磺酸等;(4)萜类:是海藻毒素的主要成分;(5)多酚,如褐藻多酚等(6)甾醇(7)其他:如甘露醇等4.海产品低温保鲜的方法有哪些主要类型,并对不同保鲜方式的定义和特点进行比较说明。

答:(1)冰藏保鲜,即用天然冰或机制冰把新鲜渔获物的温度降至接近冰点但不冻结的一种保藏海产品的方法。

保鲜期因鱼种而异,一般3~5天,不会超过一周。

方法有抱冰、垫冰等。

(2)冷海水保鲜是将渔获物浸在温度为0~-1℃的冷却海水中进行保鲜的一种方法。

保鲜期一般10~14天,比冰鲜延长约5天。

(3)冰温保鲜是指将鱼贝类放置到冻结点之间的温度带进行保藏的方法。

一般在0℃附近。

一级保鲜期一般在3-4天,二级保鲜期一般在6-8天。

(4)微冻保鲜是将海产品的温度降低至略低于其细胞汁液的冻结点(通常-2℃~-5℃),并在该温度下进行保藏的一种保鲜方法,保鲜期大致20~27天。

(5)玻璃化转移保鲜是将食品处于玻璃化状态,即意味着食品内部在没有达到化学平衡的状态下就停止了各组分间的物质转移及扩散,也就是说,处于玻璃化状态的食品不进行各种反应,可长期保持稳定,对水产品而言,就可达到长期保鲜的目的。

(6)冻结保鲜是利用低温将鱼贝类的中心温度降至-15℃以下,体内组织的水分绝大部分冻结,然后在-18℃以下进行贮藏和流通,抑制细菌生长达到较长期保鲜(数月~一年)的技术。

5.我们的生存环境有很多微生物,它们包含哪些类群?具有哪些共性?答:包含①原核类的细菌、放线菌、蓝细菌、支原体、立克次氏体和衣原体;②真核类的真菌、原生动物、和显微藻类,○3非细胞类的病毒和亚病毒。

微生物的五大共性:(一)体积小,面积大(二)吸收多,转化快(三)生长旺,繁殖快(四)适应强,易变异(五)分布广,种类多6.试述微生物与当代人类实践的重要关系。

答:①在微生物与工业发展的关系上,通过食品罐藏防腐,酿造技术的改造,纯种厌氧发酵的建立,液体深层通气搅拌大规模培养技术的创建以及代谢调控发酵技术的发明,使得古老的酿造技术迅速发展成工业发酵新技术;②微生物在当代农业生产中具有十分显著的作用,例如,以菌治害虫和以菌治植病的生物防治技术;以菌增肥效和以菌促生长的微生物增产技术;以菌做饲料和以菌当蔬菜的单细胞蛋白和食用菌生产技术;以及以菌产沼气等生物能源技术。

③微生物与环境保护的关系越来越受到当代全人类广泛的重视。

微生物是占地球面积70%以上的海洋和其他水体中光合生产力的基础;是一切食物链的重要环节;是污水处理中的关键角色;是生态农业中最重要的一环;是自然界重要元素循环的首要推动者;以及是环境污染和监测的重要指示生物;等等。

④微生物与在食品上的应用。

调味品,发酵食品,酸乳,蔬菜加工。

⑤微生物在医药方面的应用。

抗菌素,维生素。

⑥微生物在能源生产方面也有重要的作用7.我国食品质量管理体系有哪些:其中行政强制执行的是什么?答:食品质量管理体系主要有ISO9000、GMP(良好操作规范体系)、HACCP(食品质量安全体系)、食品22000、QS认证安全管理体系。

但在我国行政强制执行的是QS食品质量安全管理体系。

8.举例说明我国食品产品质量认证,解释GMP术语答:主要有有机食品认证、绿色食品认证、保健食品认证等。

GMP(良好操作规范体系):GMP是英文Good Manufacturing Practice 的缩写,中文的意思是「良好作业规范」,是一种特别注重制造过程中产品质量与卫生安全的自主性管理制度。

它是一套适用于制药、食品等行业的强制性标准,要求企业从原料、人员、设施设备、生产过程、包装运输、质量控制等方面按国家有关法规达到卫生质量要求。

9.简述食品企业监管体系有哪几方面的建设①法规体系建设(食品安全法、食品企业安全生产监管、食品标识管理规定等)②标准体系建设(食品添加剂安全标准食品污染物限量标准、食品原辅材料、产品标准)③信息体系建设(食品安全信息系统公开、监督)④监管体系建设,(食品企业监管,引出了食品企业及相关企业强制性QS认证等)10.食品企业为什么要进行食品体系管理认证?答:由于影响食品安全有以下一些因素:11.简述膜分离技术的特点及其分类。

膜分离技术的主要包括渗透、反渗透、纳滤、超滤和微滤等。

12.简述微波辅助萃取的原理和特点13.简要回答中国食品安全总体状况,并提出你对解决我国食品安全问题的意见建议。

中国食品安全总体状况:稳定向好,形势严峻。

意见建议:①加大政府对食品安全管理工作的投入力度,提供先进的技术与设备。

政府应积极发展各种层次的安全食品生产基地;②增大惩处食品安全违法犯罪威慑力,建立监管长效机制,进一步明确和细化各个职能部门的具体监管职责;③充分发挥媒体的舆论监督功能,加大法律和安全的宣传力度;④强化经营者和消费者的安全意识,维权意识。

14.人体所需的主要营养素有哪几类?列举五种以上除主要营养素之外的天然生物活性物质。

答:人体所需的主要营养素:水、脂类、蛋白质、碳水化合物、膳食纤维、维生素、矿物质。

天然生物活性物质:多糖类、多肽类、多酚类、有机酸类、萜类、皂甙(皂苷)类、生物碱类、类激素等15.什么叫主食?简述我国主食加工业发展的现状。

答:主食一般是指供应人们一日三餐消费、满足人体基本能量需求和营养摄入需求的主要食品,即粮食性食品,如米饭、面食等。

其判定标准为:(1)满足人体基本能量和营养需求的食品;(2)在较大区域内,每日必须食用的食品;(3)对主要粮食作物转化量大的食品;(4)食用人口比重大的食品。

同时符合上述四条标准的食品,可称之为主食。

我国主食加工业发展现状:一是主要行业发展较快。

如方便食品制造行业;二是主要行业效益及经营情况良好;三是产业集聚趋势初步显现,各地以农产品生产和消费市场为依托,推进主食加工业集聚发展;四是经营主体实力和活力不断增强,主食加工企业生产能力和规模持续提升;五是行业领域逐步明晰。

主食加工业不断顺应消费新变化,涵盖的行业领域逐步清晰。

16. 简述我国果蔬贮藏保鲜存在的问题及目前果蔬采后研究的关注点。

答:我国果蔬贮藏保鲜存在的问题:①普及率低。

贮藏保鲜能力不足,与果蔬生产多品种、产业化、外向型形势不相适应;②技术落后。

传统的保鲜方法仍是果蔬贮藏保鲜的主要手段,贮藏保鲜设施利用率低,贮存的果蔬产品单一,影响效益;③现有的保鲜设施布局不合理,产地贮藏保鲜基础设施缺乏,预冷处理不及时;④配套措施跟不上,采收不精细,采运过程中机械损伤多,采收后分选、分级、包装不规范,机械设备配套水平低等。

目前果蔬采后的研究的关注点:采后贮藏保鲜新型技术,采后生理过程的发生机制,采后果蔬品质、安全检测。

17.简述中国发展农产品加工业的重要性及存在问题。

农产品资源有效利用低产后损耗严重(25~30%),国外(5%)适宜加工的专用农产品品种少,标准化低综合加工和利用水平较低农产品生产与加工产业链不够完善缺乏专用原料种植、生产与加工之间的有效衔接生产规模小、生产成本高、经营分散、组织化程度低没有形成规格化、系列化、标准化,缺乏比较优势农产品全程品质跟踪监控体系尚未形成,缺乏溯源和预警技术和装备缺少全程品质跟踪监控缺乏完整的调控保障体系没有系统化的安全生产及加工规范和标准化体系突破共性关键技术定向分离与物性重组技术非热杀菌与无菌包装技术蛋白淀粉油脂修饰技术纳米/微波加工技术食源性危险评估技术食品安全检测技术物流控制技术农残快速检测技术农产品与食品溯源技术开发核心关键装备节能高效蒸发浓缩技术装备新型绿色分离技术装备冷杀菌技术装备大型真空冷冻微波干燥设备智能化高速贴标与激光喷码技术设备智能化色选技术装备鲜活农产品保鲜包装技术装备大型物理与生物改性技术装备开发大型成套装备高速和无菌罐装成套技术装备大型智能化粮食商品化成套装备大型油脂联产成套技术装备大型薯类加工成套设备大型自动化畜禽屠宰与综合加工成套设备高速吹瓶与罐装一体化成套装备非连续物体自动包装成套设备农产品在线监控与自动包装成套装备18.人体所需的主要营养素有哪几类?简述各自的主要生理功能。

答:人体所需的主要营养素:水、脂类、蛋白质、碳水化合物、膳食纤维、维生素、矿物质。

19.简述食品污染的种类,并举例列举。

•食品污染:是指食品被外来的、有害人体健康的物质所污染。

•按污染物的性质,食物污染可分为以下三类:1.生物性污染微生物:细菌及其毒素、霉菌及其毒素等;寄生虫:囊虫、蛔虫、绦虫等;昆虫:甲虫类、螨类、蝇等(损坏食品质量、破坏感官性状、降低营养价值)2.化学性污染(1)农药使用不当:(2)工业三废:废水、废气、废渣(3)滥用食品添加剂:生产过程中,为提高感观性状、质量、防止腐败变质所加入的化学合成或天然物质。

(4)食品包装材料、容器:例如塑料容器、陶瓷、釉质中的铅、包装纸等。

3.物理性污染杂物污染;放射性物质开采、冶炼、生产;核爆炸、核废物20.简要分析水产品加工产业的现状及存在问题。

状☐我国是水产养殖大国和水产品贸易大国。

水产品总产量连续20多年居世界第一位(其中养殖水产品占70%左右)。

水产品出口连续多年居我国大宗农产品出口首位。

☐水产品加工业已成为我国食品工业的重要组成部分。

☐但目前我国水产品的加工比例不足30% (其中淡水水产的加工比例不足10%),70%以上是以生鲜品的形式销售的。

所以保鲜技术应予重点关注。

☐目前我国的水产品加工业处于行业成长期;☐在加工装备的引进、消化、吸收、研发和应用能力方面有了较大的进步;☐各级地方政府都加强了水产食品质量安全检测体系和水产品标准体系的建设,建立了相关的检测监督机构,逐步与国际接轨。

☐水产品加工技术取得了较大进展;水产品冷藏链保鲜加工技术快速发展,尤其是海水鱼的保鲜保活、淡水鱼糜加工技术已达到或接近世界水平;☐海洋生物资源的活性物质提取技术和功能食品制备方法取得较大进展;低值水产品的精深加工及加工废弃物的综合利用水平有所提高;生产出许多新颖水产食品、海鲜调味品和海洋精深加工制品;☐国家各级部门的投入为水产品加工业的快速发展注入了新的活力。

相关文档
最新文档