微分方程的算子算法【精选】

合集下载

微分算子法

微分算子法

高阶常微分方程的微分算子法撰写摘自《大学数学解题法诠释》 .徐利治,.冯克勤,.方兆本,.徐森林,.1999高阶方程的求解自然要比一阶方程更为困难,即使是对于线性微分方程。

但是有一个例外:常系数线性微分方程。

我们可以完整的求出它的通解来,所以常系数线性方程的求解,主要精力是集中在讨论对应的非齐次方程的特解。

本节主要讨论微分算子法。

1.求方程230y y y ''''''--=的通解. 解 记()n n yD y =,将方程写成32230D y D y Dy --=或32(23)0D D D y --=我们熟知,其实首先要解特征方程32230D D D --=得0,1,3D =-故知方程有三特解31,,x xe e -,由于此三特解为线性无关,故立得通解3123x xy C C e C e -=++注:本题方程为齐次常系数三阶常微分方程,线性常微分方程的一般形状是1111()()()()()n n n n n n n d y d y dy L y a x a x dx dx dx a x y f x ---=++++=L 其中系数1(),,()n a x a x L 是某区间(,)a b 上的连续函数,上述方程又可写成11()(()())n n n L y D a x D a x y -≡+++L()f x =可以把上面括号整体看作一种运算,常称为线性微分算子。

本题中各()i a x 均为实常数,今后也仅对实常系数的情形来进一步发展线性微分算子方法。

2.求解 61160y y y y ''''''-+-=解 写成 32(6116)0D D D y -+-=从特征方程3206116D D D =-+-(1)(2)(3)D D D =---解得 1,2,3D =共三实根,故可立即写成特解23123x x xy C e C e C e =++3.求解 39130y y y y ''''''-++=解 写成 32(3913)0D D D y -++= 或 2(1)(413)0D D D y +-+= 特征方程 2(1)(413)0D D D +-+=有根1,23D i =-±,故对应的特解是x e -,2cos3xe x ,2sin 3x e x 从而通解是22123cos3sin 3x x xy C e C e x C e x -=++4.求(4)45440yy y y y ''''''-+-+=之通解.解 写成432(4544)0D D D D y -+-+=或 22(2)(1)0D D y -+=特征根是2,2,D i =±,对应的特解应是22,,cos ,sin x x e xe x x ,故写成通解21234()()cos sin x y x e C C x C x C x =+++5.求1(cos )y y x -''+=的通解解 本题为非齐次方程,先求出对应的齐次方程0y y ''+=的通解,写成2(1)0D y +=,可知特征根为i ±,相应的通解为112cos sin y C x C x =+设原方程有特解形为*12()cos ()sin y C x x C x x =+其中12,C C 为待定函数,常数变异告诉我们,应求解下面的方程组12112()cos ()sin 0()(cos )()(sin )(cos )C x x C x x C x x C x x x -⎧''+=⎪⎨''''+=⎪⎩或12112()cos ()sin 0()sin ()cos (cos )C x x C x x C x x C x x x -⎧''+=⎪⎨''-+=⎪⎩(方程组右端为原方程非齐次项1(cos )x -),解得1sin ()cos xC x x'=-,2()1C x '=或 1()ln cos C x x =,2()C x x =最后得通解为1*()()()y x y x y x =+12cos sin cos ln cos sin C x C x x x x x=+++ 注 对常系数方程,在应用上,不常运用常数变异法,对于特殊非齐次项的常系数方程,下文将提供更简捷的办法。

算子法解微分方程

算子法解微分方程

常系数非齐次线性微分方程的解法有很多,例如笔者的教材(《高等数学第六版》)所述的待定系数法和接下来给出的称之为“算子法”以及另一种同样使用算子的方法。

1、首先介绍一种使用算子求解的方法:考察二阶常系数非齐次线性微分方程d2x/dt2+a1dx/dt+a0x=b(t)相应的齐次方程的通解是已知的,所以只须求出方程的一个特解(由微分方程解的结构给出)。

设该方程的特征多项式q(λ)=λ2+a1λ+a0分解为q(λ)=(λ-λ1) (λ-λ2)则算子多项式q(D)也分解为q(D)=(D-λ1) (D-λ2)则原微分方程可写成 (D-λ1) (D-λ2)=b(t)依次解以下两个方程(D-λ2) x1=b(t)(D-λ1) x=x1就可求得方程的特解。

(其中x1看成是中间变量,只要通过求解x1来求解x)对于λ1和λ2是共轭虚数的情形,按上述步骤求得的方程特解有可能是一个复值函数z(t)=x(t)+iy(t)。

这时应有恒等式d2z(t)/dt2+a1dz(t)/dt+a0z(t)=b(t)比较上式两边的实部,我们得到d2x(t)/dt2+a1dx(t)/dt+a0x(t)=b(t)这样,不论λ1和λ2是实数或者是共轭虚数,我们都可能够求出方程在实数范围内的特解,从而完全解决了这方程的求解问题。

给出教材上一个例子:求微分方程y``-5y`+6y=xe2x.(《高等数学》P343)解:该微分方程的算子多项式分解为 q(D)=(D-2) (D-3)设y1=(D-2)y,代入知(D-3)y1=xe2x(该式子是一阶常系数微分方程),易求得y1=﹣(x+1) e2x+Ce3x(其中C为任意常数).所以 (D-2)y=﹣(x+1) e2x+Ce3x.得y=C1e2x+C2e3x-(x2+2x) e2x/2.2、下面来说另一种更简便的方程,也就是“算子法”。

不过在使用算子法的时候,很多性质是必须了解的,在这里不作说明。

“算子法”是一个能直接求出常系数非齐次线性微分方程的特解的一个简单的方法,也就是得到我们需要求的y*。

微分方程求解公式

微分方程求解公式

学了两三学期的微积分以后就要利用导数来完整地练习解微分方程了。

导数是一种数据相对于另一种的变化速率。

例如,速度随着时间的变化率就是速度关于时间的导数(和斜率相比较一下)。

每天这种变化率都会出现很多次,例如,复利定律中,利息增加的速度和账户金额成比例,用dV(t)/dt=rV(t) 和 V(0)=P 可以表示出来(P就是初始金额),V(t)是时间的函数,表示目前的账户金额数(用以不断评估利息),r是目前利率(dt是极短的时间间隔,dV(t)是无穷小金额,是V(t)在这个时间的变化,他们的商是增加速率)。

虽然信用卡利息通常是每日累积计算,以APR(年度增加率)来表示,这个微分方程还是可以可以解出一个方程,得到连续解V(t)= Pe ^(rt)。

本文将教你如何解决最常见类型的微分方程,尤其是力学和物理方程。

方法1基本方法以Solve Differential Equations Step 1为标题的图片1定义导数。

当变量倾向于0的时候,函数(一般是y)增量和变量(一般是x)增量的比值会取得一个极限值,这就是导数(也称为微分系数,特别在英国)。

或者说在一瞬间,变量的微小变化造成的函数的微小变化。

以速度距离,速度就是距离对时间的瞬时变化。

下面比较一阶导数和二阶导数:一阶导数即原导数的函数。

例如:“速度是距离关于时间的一阶导数。

”二阶导数即函数导数的导数。

例:“加速度是距离对时间的二阶导数。

”以Solve Differential Equations Step 2为标题的图片2不要混淆阶数(最高导数阶数)和次数(导数的最高次数)。

最高导数次数是由最高阶导数的阶数决定的。

导数的最高次数则是导数中的项的最高次数。

比如图一的微分方程是二阶、三次导数。

3了解如何区别通解、完全解和特解。

完整解包含一些任意常数,任意常数的数目和导数的最高阶数相等(要解开n阶微分方程,需要进行n次积分,每次积分都需要加入一项任意常数)。

微分方程的算子算法

微分方程的算子算法

微分方程的算子算法算子算法的基本思想是将微分方程中的微分算子用一种离散化的方式表示出来,然后将微分方程转化为一个线性代数方程组,通过求解方程组得到微分方程的近似解。

下面将详细介绍算子算法的具体步骤和关键技术。

1.离散化:首先将微分方程中的连续变量离散化,将其表示为一组有限个离散点的集合。

通常采用等间距离散方法,即将求解区间分为若干个等距的小区间,然后在每个区间内选择一个离散点作为离散点。

2.近似:通过逼近方法将微分算子离散化。

主要有两种常用的逼近方法:有限差分方法和有限元方法。

有限差分方法是将微分算子用差分算子代替,即用离散点的函数值来逼近函数在该点处的导数。

有限元方法是将微分方程的解表示为一组基函数的线性组合,通过在每个小区间内选择一个基函数,然后通过调节基函数的系数,使得近似解在离散点处的值与微分方程的解尽可能接近。

3.矩阵表示:将离散化后的微分方程转化为一个线性代数方程组。

通过将微分方程中的导数替换为近似值,得到一个线性代数方程组,其中未知数为离散点的函数值,系数矩阵和常数向量由离散化和逼近所确定。

4. 求解:通过求解线性代数方程组得到微分方程的近似解。

通常采用数值线性代数方法求解,如Gauss消元法、LU分解法、迭代法等。

求解得到的是离散点的函数值,可以通过插值方法将离散点的函数值插值到整个求解区间,得到微分方程的近似解。

算子算法的优点是可以适用于各种类型的微分方程,可以求解高阶的微分方程,并且有较好的数值稳定性和收敛性。

但是算子算法也存在一些问题,如离散化带来的误差问题、边界条件的处理问题等,需要根据具体问题进行合理的选取和处理。

总之,算子算法是一种重要的求解微分方程的数值计算方法。

通过将微分方程离散化和逼近,转化为一个线性代数方程组,然后通过求解方程组得到微分方程的近似解。

算子算法在科学计算和工程应用中有着广泛的应用前景。

微分算子法求微分方程的特解2022

微分算子法求微分方程的特解2022

二阶常系数微分方程的微分算子法求特解二阶常系数非齐次微分方程求特解,在一般的本科教材中均采用设特解再用待定系数法求出待定的系数,计算量往往偏大,考生若掌握了微分算子法,则可以起到事半功倍的效果。

具体做法如下:引入微分算子222222d d d d d d ,,,,,,d d d d d d ====== nn n n n n y y y D Dy D D y D D y x x x x x x因此,n 阶常系数线性非齐次方程()(1)11()−−′++++= n n n n y a y a y a y f x()111()−−⇒++++= n n n n D a D a D a y f x令111()n n n n F D D a D a D a −−=++…++称为算子多项式,则 方程*1()()()()⇒=⇒=F D y f x y f x F D【评注】D 表示求导,1D 表示积分.如()21111,cos 2sin 222==x x x x D D ,不要常数.类型1 ()=e kx f x1.若()0F k ≠,则()()11e e ∗==kx kx y F D F k , 2.若()=0F k ,k 为()0F k =的m 重根,则 ()()()()11e e ∗==m kx m kx m m y x x F D F k ,【例1】求223e x y y y ′′′+−=的一个特解【解析】()2222221111e e e e 2322235x x x x y F D D D ∗====+−+×−【例2】求323e x y y y −′′′+−=的一个特解【解析】由与()3=0F −,3−为()0F k =的单根, ()()()3333311111e e e e e 222324∗−−−−−=====−′+×−+x x x x x y x x x x F D F D D ,【例3】求2+e xy y y ′′′−=的一个特解【解析】由于()1=0F ,1为()0F k =的二重根, ()()2221111e e =e e 22∗===′′x x x x y x x x F D F D .类型2 ()=cos f x ax 或()=sin f x ax1.若2()0F a −≠,则()()2211sin sin y ax ax F D F a ∗==− 或()()2211cos cos y ax ax F D F a ∗==−2.若2()=0F a −,则()()2211sin sin y ax x ax F D F D ∗==′ 或()()2211cos cos ∗==′y ax x ax F D F D【评注】()()212211111sin sin cos n n n ax ax ax D D a a a + ==− −− ()()212211111cos cos sin n n n ax ax ax D D a a a +==−− 由此()()11sin cos ax ax F D F D ,可求,例如 221111sin sin sin 2112121x x x D D D D ==+−−+−− ()()21111sin =1sin cos sin 2144D x D x x x D +=−+=−+−【例4】求+4+5sin 2y y y x ′′′=的一个特解【解析】()22111sin 2sin 2sin 245245y x x x F D D D D ∗===++−++ ()21411sin 2sin 28cos 2sin 24116165D x x x x D D −===−−+−【例5】求+4cos 2y y x ′′=的一个特解【解析】()220F −=()21111cos 2cos 2cos 2sin 24222x y x x x x x F D D D ∗====+类型三 ()()=m f x P x 即自由项为x 的m 次多项式 ()()()()1m m y P x Q D P x F D ∗==,其中()Q D 为1除以()F D 按升幂()1n n n aa D D −+++ (即从低次往高次排列)所得商式,其最高次为m 次,超过m 次的求导后全为零,故略去.【例6】求232231y y y x x ′′′−+=−+的一个特解【解析】()()21231y x x F D ∗=−+()22137231248D D x x =++−+ ()()2137231+434248x x x −+−+×23724x x =++ ()()()2221123123132∗=−+=−+−+y x x x x F D D D ()2211231312122−+ −− x x D D()222231311123122222 =+−+−+−+D D D D x x ()222319112312242=+−++−+ D D D x x ()223711231242=+++−+ D D x x ,下同【例7】求233y y x ′′′−=−的一个特解【解析】1)()()()()22113=33y x x F D D D ∗=−−− ()222111111225=3=39273927D D x x x D D −−−−−+−321125=+9927x x x −−2)()()()()()222111113=33333∗ =−−=−− −− y x x x F D D D D D ()()()22223111111133133939393313=−−−−=−++−−−−D D x x x x x D D 2332122111251253393933927981 =−−++−−=−+−+x x x x x x x【评注】数字1除以23D D −是没法直接除的,因为分母没有最低次常数项.类型四 ()()=e kx f x u x ,其中()u x 为x 的多项式或()sin cos ax ax 【移位定理】()()()()11e =e kx kx v x v x F D F D k +【例8】求+32e sin 2x y y y x −′′′−=的一个特解【解析】()()()211e sin 2=e sin 21312x x y x x F D D D ∗−−=−+−− 2211+8=e sin 2e sin 2e sin 24864x x x D x x x D D D D −−−==+−−−()()11e 2cos 28sin 2e cos 24sin 26834x x x x x x −− =−+=−+【例9】求+3+2ex y y y x −′′′=的一个特解【解析】()()()211e =e 1+312∗−−=−−+x x y x x F D D D ()21111=e e e 11−−−==−++xx x x x D x D D D D D ()211e 1e 2−− −=− xx x x x D类型五 ()()=sin m f x P x ax 或()cos m P x ax【评注】此种情况考试考到的概率几乎为零. (可以不看). 为不加重考生负担,仅讨论()=m P x x ,且()20F a −≠否则,要用到欧拉公式,且计算量不比待定系数法简单! 记()()sin cos u x ax ax =,则()()()()()()11F D x u x x u x F D F D F D ′⋅=−【例10】求+cos 2y y x x ′′=的一个特解【解析】()211cos 2cos 21y x x x x F D D ∗==+2222112cos 2cos 21131D D x x x xD D D=−=−− +++1214cos 2+cos 2cos 2sin 233339Dx x x x x x=−⋅=−+−。

微分方程求解方法总结

微分方程求解方法总结

微分方程求解方法总结在数学中,有许多重要的方法,但每种方法都有自己的特点。

下面我就从几个方面来讲一下微分方程求解的方法。

根据某一具体问题的需要,可以使用变量替换法、分离常数法、方程组求解法等。

如果方程有两个未知数,则将二者同时代入,消去一个未知数,求出另一个未知数;或者设出一个变量,使得原方程能够表示为:y=x+e(k),或者将它化成含参数为y=x(k)(t)dt的标准形式。

在初等微分方程中,一般先设解析函数(y=f(x)),然后用变量替换法或者分离常数法即可求得。

在建立方程时,如果没有足够的条件,可以假设某些因素来达到目的,常用的方法有整理变量法、降次法、分离参数法等。

假设有两个或两个以上的方程不能同时给出解析解,则可以降低方程的次数(系数)来得到解析解。

这时应该注意的是,所建立的方程必须有实数解,否则就不可能用于实际问题。

求解微分方程的基本思想就是把方程化为标准形式,并利用标准形式的解。

对于一个含有复杂变量的方程来说,利用微分方程理论可以分析解的性质和结构,找出一些重要关系式,进而推导出通解公式或者近似公式。

当把方程降次后,可以利用解的叠加性,将解的集合逐步地“叠加”起来,直至叠加出所需要的解。

对于简单的方程,有时还可以利用初等函数方法,使方程化为线性方程,再求解即可。

而对于含有非线性方程的方程组来说,可以考虑适当地选择一些辅助未知函数,建立辅助方程,求得未知函数的近似值,再利用微分方程的性质进行迭代求解,从而得到原方程组的解。

对于具有多个方程的方程组来说,除了可以使用上述方法外,还可以利用差分的思想进行处理。

求解方程的主要方法包括了最小二乘法、数值解法等。

最小二乘法是指在建立数学模型的基础上,尽量使用近似解。

它首先把各方程组解进行比较,选出误差最小的一个,然后用此方程组的解进行拟合,得到满足精度要求的预测值。

数值解法则主要是通过近似方法来求得方程的解,其解决思路是寻找误差最小的一个,然后采用微分方程的性质,通过计算,将方程化为简单方程,再利用标准形式进行计算。

(完整版)关于微分方程计算过程说明

(完整版)关于微分方程计算过程说明

(完整版)关于微分方程计算过程说明关于微分方程计算过程说明
本文档将详细说明微分方程的计算过程,包括求解和验证结果的方法。

微分方程是描述物理、工程以及其他领域中变化和变量关系的重要工具。

1. 微分方程的基本概念
微分方程是一种包含未知函数及其导数的方程。

常见的微分方程类型包括一阶和二阶线性微分方程、常微分方程和偏微分方程。

2. 微分方程的求解过程
求解微分方程的过程可以分为以下几步:
步骤1: 确定微分方程的类型和阶数
根据给定的方程形式,确定微分方程是一阶还是二阶,线性还是非线性。

步骤2: 分离变量或应用变换
根据微分方程的类型,可以尝试使用分离变量、线性变换、特殊变换等方法,将方程转化为更容易求解的形式。

步骤3: 求解微分方程
根据转化后的方程形式,使用数值方法或解析方法求解微分方程。

常见的求解方法包括分析解法、数值解法等。

步骤4: 验证解的正确性
将求解得到的解代入原方程,验证是否满足微分方程的要求。

如果方程对解成立,则解是正确的。

3. 微分方程的应用
微分方程在多个领域有着广泛的应用,例如:
- 物理学中,微分方程可以描述自然界中的运动、振动、热传导等现象。

- 工程学中,微分方程可以用于建模、控制系统设计等方面。

- 经济学中,微分方程可以用于分析经济变化、市场模型等。

结论
微分方程是一种重要的数学工具,其求解过程需要根据方程类型和阶数来确定适当的求解方法,并且需要验证解的正确性。

微分方程在多个领域中有广泛的应用,具有重要的理论和实际意义。

微分方程算子法

微分方程算子法

微分方程算子法微分方程算子法是微分方程求解的一种重要方法。

它通过引入算子的概念,将微分方程转化为代数方程,从而简化了求解过程。

微分方程是描述自然界中各种变化规律的重要数学工具。

它包含了未知函数及其导数之间的关系,一般形式为:F(x, y, y', y'', ...) = 0其中,x是自变量,y是未知函数,y'、y''等表示y的一阶、二阶导数等。

求解微分方程的目标就是找到满足这个方程的未知函数y。

常见的微分方程求解方法有分离变量法、变量替换法、常系数线性微分方程求解法等。

而微分方程算子法是其中的一种,它主要用于求解线性微分方程。

所谓线性微分方程,是指未知函数及其导数之间的关系式为线性关系。

对于形如:L(y) = f(x)的线性微分方程,其中L是一个微分方程算子,f(x)是已知函数。

我们的目标是求解出未知函数y。

微分方程算子法的基本思想是引入一个算子D,使得D(y) = y'。

这样,原微分方程L(y) = f(x)就可以转化为:L(D)(y) = f(x)其中L(D)是一个算子,它作用在y上得到一个新的函数。

通过将微分方程转化为代数方程,我们就可以利用代数方法求解。

具体来说,我们可以将微分方程L(D)(y) = f(x)展开为:a0*y + a1*D(y) + a2*D^2(y) + ... + an*D^n(y) = f(x)其中a0、a1、...、an是常数,D^k表示算子D作用k次。

然后,我们可以将未知函数y表示为算子D的多项式形式:y = c0 + c1*D(y) + c2*D^2(y) + ... + cn*D^n(y)将这个表达式代入原微分方程,我们可以得到关于c0、c1、...、cn的代数方程组。

通过求解这个方程组,我们就可以得到未知函数y的表达式。

微分方程算子法的优势在于,它将微分方程转化为代数方程,避免了直接求解导数的麻烦。

此外,它还可以简化一些复杂的非线性微分方程的求解过程。

谈谈微分算子

谈谈微分算子

谈谈算子SCIbird适当的引入一些算子可以简洁地展现出数学结构,比如差分算子Δ定义为:()(1)()f x f x f x Δ=+−,2:()f x Δ=ΔΔ,再定义移位算子()(1)Ef x f x =+,以及恒等算子()()If x f x =,则差分算子满足()()()f x E I f x Δ=−,即E I Δ=−容易发现()()mE f x f x m =+,所以00()()()(1)()(1)()n n k n n k n k n k k f x E I f x E f x f x k −−==⎛⎞⎟⎜Δ=−=−=−+⎟⎜⎜⎟⎝⎠∑∑ 类似地,()()()()f x If x E f x ==−Δ,()n n I I E ==−Δ 思考题:令()n f x x =,问()?n f x Δ=,1()?n f x −Δ=以微积分的观点看,利用拉格朗日中值定理,得1()(1)()()f x f x f x f ξ′Δ=+−=然后再利用一次,得12()()()f x f f ξξ′′′ΔΔ=Δ=,这样()()(),(,1)n n n n f x f x x ξξΔ=∈+可惜n ξ的位置不知道,不过对()n f x x =有()()!n f x n =是一个常数。

以拉格朗日中值定理为桥梁,将差分与微分联系起来了。

实际上还可以进一步挖掘联系。

算子的引入很多时候是形式算子,但发现特别好用,莫非是巧合。

深入研究后发现,数学中其实没有那么多巧合,“巧合”后面往往有深层含义。

这方面最具代表性的要数Laplace 变换了,抛开这个吓人的专有名词,先看一个例子。

考虑微分方程:(),(0)0y f x y ′==. 直接利用牛顿莱布尼茨积分公式,得()()x y x f t dt =∫ 英国工程师海维塞德思考上述方法后,提出了一个形式微分算子法,定义算子d D dx =, 则微分方程可写成()Dy f x =,于是移项得:1()y f x D= 对比上面的积分过程可知01x D =∫,于是002111x x D D D ==∫∫等等。

微分方程算子法总结

微分方程算子法总结

1 1 1 f ( x) = f ( x) f ( x) = F(D) F2 (D) • F1 ( D) F1 (D) • F2 ( D)
(6)性质六:
1 1 1 f1 ( x) + f 2 ( x) ( f1 ( x) + f 2 ( x)) = F(D) F(D) F(D)
三、例题练习 例 1.
n n-1 n-2 n-3 n n-1 n-2 n-3 n n-1 n-2 n-3
记 F(D)=D +a1D +a2D +a3D + ... +an-1D+an 规定特解:y 3、
*
= F(D)
1
f ( x)
1 的性质 F(D)
(1)性质一:
kx 1 F(D)
e = F(k) ekx
1
1
(F(k) 不等于 0)
取实部为特解 四)
1
1
y*= 4 (xcosx+x2sinx)
1
(性质二、三、
6
2
x d2y +4y = dx 2
e
则(D +4)y=e
(4)
x
,特解 y*=
1 D2
x x x 1 e = e = e (性质一) 5 1 +4 +4
2
4
1
例 2、 y +y=2cos(3x) ,则(D +1)y= 2cos(3x) 特解 y
*
=
1 D 4 +1
2cos(3x)= 2 cos(3x)=
e
-y=sinx
ix 1 3 D -1
,则(D -1)y=sinx ,特解 y*=

微分方程解法的十种求法(非常经典)

微分方程解法的十种求法(非常经典)

微分方程解法的十种求法(非常经典)本文将介绍微分方程的十种经典求解方法。

微分方程是数学中重要的概念,广泛应用于物理学、工程学等领域。

通过研究这十种求解方法,读者将更好地理解和应用微分方程。

1. 变量可分离法变量可分离法是最常见和简单的微分方程求解方法之一。

该方法适用于形如dy/dx=f(x)g(y)的微分方程,其中f(x)和g(y)是关于x和y的函数。

通过将方程两边分离变量,即把f(x)和g(y)分别移到不同的方程一边,然后进行积分,最后得到y的表达式。

2. 齐次方程法齐次方程法适用于形如dy/dx=F(y/x)的微分方程。

通过令v=y/x,将微分方程转化为dv/dx=g(v),其中g(v)=F(v)/v。

然后再使用变量可分离法求解。

3. 线性微分方程法线性微分方程法适用于形如dy/dx+a(x)y=b(x)的微分方程。

通过乘以一个积分因子,将该方程转化为可以进行积分的形式。

4. 恰当微分方程法恰当微分方程法适用于形如M(x,y)dx+N(x,y)dy=0的微分方程。

通过判断M(x,y)和N(x,y)的偏导数关系,如果满足一定条件,则可以找到一个函数u(x,y),使得u满足偏导数形式的方程,并且通过积分得到原方程的解。

5. 一阶线性常微分方程法一阶线性常微分方程法适用于形如dy/dx+p(x)y=q(x)的微分方程。

通过先求齐次线性方程的通解,然后再利用待定系数法找到特解,最后求得原方程的通解。

6. 二阶常系数齐次线性微分方程法二阶常系数齐次线性微分方程法适用于形如d²y/dx²+a1dy/dx+a0y=0的微分方程。

通过设y=e^(mx),将微分方程转化为特征方程,然后求解特征方程得到特征根,利用特征根找到原方程的通解。

7. 二阶非齐次线性微分方程法二阶非齐次线性微分方程法适用于形如d²y/dx²+a1dy/dx+a0y=F(x)的微分方程。

通过先求齐次线性方程的通解,再利用待定系数法找到非齐次线性方程的特解,最后求得原方程的通解。

微分方程算子法总结

微分方程算子法总结

微分方程算子法总结微分方程算子法是微分方程的一种解法方法,通过将微分方程中的微分算子用代数符号表示,转化为代数方程的形式来求解微分方程。

这种方法在微分方程的解法中起到了重要的作用。

下面是对微分方程算子法的总结,包括定义、基本原理、解题步骤和应用等方面的内容。

一、定义二、基本原理三、解题步骤1.将微分方程中的微分算子用代数符号表示,一般用p(D)来表示D^k 的形式,其中D表示微分算子,k为一个正整数。

2.对代数符号p(D)进行运算,根据微分算子的运算性质进行替换、展开、相乘等运算。

3.将运算后得到的代数方程转化为普通的代数方程,消去代数符号后求解。

4.最后,根据求得的代数方程解,通过对代数解进行逆运算,将代数解转化为函数解,即为微分方程的解。

四、应用1.线性常微分方程的解法,如齐次线性常微分方程、非齐次线性常微分方程等。

2.偏微分方程的解法,如一维波动方程、一维热传导方程等。

通过微分方程算子法,可以将偏微分方程转化为常微分方程的形式进行求解。

3.变系数微分方程的解法,如变系数线性常微分方程等。

通过微分方程算子法,可以将变系数微分方程转化为常系数微分方程的形式进行求解。

4.高阶微分方程的解法,如二阶、三阶及更高阶微分方程等。

通过微分方程算子法,可以将高阶微分方程转化为一阶微分方程的形式进行求解。

五、优缺点1.能够将微分方程转化为代数方程进行求解,简化了计算过程。

2.适用范围广泛,能够解决多种类型的微分方程问题。

3.理论基础扎实,运算性质清晰,易于理解和应用。

1.对于非线性微分方程或特殊形式的微分方程,微分方程算子法可能不太适用。

2.运算过程中需要进行大量的代数计算,可能存在繁琐的计算步骤。

3.求解过程中可能会出现复杂的代数式,需要一定的代数知识和计算技巧。

六、总结微分方程算子法是一种重要的微分方程解法方法,通过将微分方程转化为代数方程,简化了微分方程的求解过程。

它在数学和工程领域具有广泛的应用和重要的意义。

高等数学中的微分方程求解方法

高等数学中的微分方程求解方法

微分方程是数学中重要的一门课程,它是研究函数的变化规律的一种工具。

微分方程的求解方法在数学和应用领域有着广泛的应用。

在高等数学中,我们研究的微分方程主要分为常微分方程和偏微分方程两类。

本文将主要介绍常微分方程的求解方法。

常微分方程是关于未知函数及其导数的方程。

它的一般形式为:$$F(x, y, y', y'', ..., y^{(n)}) = 0$$. 其中,y是未知函数,x是自变量,y'表示y对x的导数,y'' 表示二阶导数,以此类推,$y^{(n)}$表示n阶导数。

对于常微分方程的求解,通常有几种常用的方法:1.分离变量法分离变量法是常微分方程求解中最常用的方法之一。

这个方法的关键是将微分方程化简为两个变量的方程,然后再对两边同时积分。

例如,对于一阶可分离变量的微分方程 $$\frac{dy}{dx} = f(x)g(y)$$,可以将其化简为$$\frac{dy}{g(y)} = f(x)dx$$,接下来对两边同时积分即可得到解。

分离变量法适用于一大类的常微分方程,但需要注意要对所得到的解进行验证,以确保解真实可行。

2.齐次方程法对于一阶线性微分方程 $$\frac{dy}{dx} + P(x)y = Q(x)$$,齐次方程法是一种很有效的求解方法。

首先,我们先考虑方程 $$\frac{dy}{dx} + P(x)y =0$$,这个方程称为齐次方程。

然后,我们再求出齐次方程的通解,即$y_h(x)$。

接下来,我们将方程 $$\frac{dy}{dx} + P(x)y = Q(x)$$ 分为两个部分,即 $$\frac{dy}{dx} + P(x)y_h(x) = 0$$ 和 $$\frac{dy}{dx} +P(x)(y - y_h(x)) = 0$$。

其中,$y_h(x)$是齐次方程的通解,$y -y_h(x)$是方程 $$\frac{dy}{dx} + P(x)(y - y_h(x)) = 0$$ 的解。

微分方程的经典求解方法

微分方程的经典求解方法

微分方程的经典求解方法微分方程是数学中重要的分支之一,在科学与工程领域中有广泛的应用。

它描述了自然现象、物理过程和工程问题中的变化和演变。

微分方程的求解方法多种多样,其中包括经典的解析解法和近似解法。

一、经典的解析解法:1.可分离变量法:这是求解一阶常微分方程的一种常用方法。

当可以将方程两边化为只包含自变量和因变量的函数,并且分别积分后得到解时,就可以使用这种方法。

2.线性微分方程的常数变易法:对于线性微分方程,可以通过引入一个待定函数来将其转化为可分离变量的形式。

然后通过求解两个可分离变量的方程得到待定函数,从而得到原方程的解。

3.齐次微分方程的恒等变换法:如果齐次微分方程可以通过变量代换转化为可分离变量的形式,则可以使用这种方法求解。

通过引入一个新的自变量代换,将方程转化为可分离变量的形式,然后求解可分离变量的方程,最后将代换变量还原回来得到原方程的解。

4.二阶齐次线性微分方程的特征方程法:对于二阶常系数齐次线性微分方程,可以通过求解特征方程根的方式得到通解。

特征方程是一个关于未知函数的二次方程,解出其根后就可以得到通解。

5.变参数法:对于一些特殊的非齐次线性微分方程,可以通过引入一个待定参数、待定函数或待定曲线的方法来求解。

通过将未知函数展开成参数或曲线的形式,然后代入方程中求解参数或曲线,最后得到原方程的解。

二、近似解法:1.欧拉法:欧拉法是一种数值解微分方程的简单方法。

它通过在定义域内选取一些离散点,然后使用差分近似求解微分方程。

这种方法的精度较低,但易于实现。

2.龙格-库塔法:龙格-库塔法是一类常用的数值解微分方程的方法。

它通过将微分方程转化为一组差分方程,并在每个步长上计算出方程的近似解。

其中,最常用的是四阶龙格-库塔法,它具有较高的精度和稳定性。

3.有限差分法:有限差分法是一种离散化微分方程的方法。

它将连续的微分方程转化为有限差分方程,并通过求解差分方程来近似求解原方程。

这种方法在数值模拟和计算领域中得到广泛应用。

常微分方程公式大全

常微分方程公式大全

常微分方程公式大全1、一阶微分方程:一阶微分方程是一类含自变量x与未知数y(x)及其一阶导函数y'(x)的方程,它可以表示为 F(x,y,y′)=0 。

如果可以解出y',可表示为: dydx=f(x,y)2、一阶微分方程的其中一种解法--分离变量法:形如 dydx=M(x)·N(y) :若N(y)≠0,我们可以化成(分离变量法): 1N(y)dy=M(x)dx 然后两边同时积分:∫1N(y)dy=∫M(x)dx ,则得结果: F(y)=G(x)+C3、齐次方程:如果一阶微分方程可以化为如下形式: dydx=φ(yx) ,则称此类方程为齐次方程。

4、齐次方程一般解法:引出新的位置变量函数 u=yx ,就可以把它化成可以分离变量的方程!(1)由u=yx得到 y=ux(2)两边取x的微分得到 dydx=xdudx+u ,并代入dydx=φ(yx)(3)得到 u+xdudx=φ(u) 再换一下位置 duφ(u)−u=dxx(4)两边积分,得到∫duφ(u)−u=∫dxx(5)设Φ(u) 是 1φ(u)−u 的一个原函数,则得通解:Φ(u)=ln|x|+C ,再把 u=yx 代回这个式子,就得到齐次方程的通解。

5、一些可以转化成一阶齐次微分方程的一阶微分方程:形如 dydx=ax+by+ca1x+b1y+c1 ,其中 aa1≠bb1 (原因是只有这样才可以解出h和k)当c=c1=0时,方程是齐次的,否则是不齐次的。

在非齐次型的情况下,可用以下步骤解:(1)作代换 x=X+h ; y=Y+k 。

(2)求常数h和k:因为dx=dX;dy=dY。

所以方程代换后变成:dYdX=aX+bY+(ah+bk+c)a1X+b1Y+(a1h+b1k+c1) ,因为要使得方程是齐次,所以令后面的常数项为0,即 ah+bk+c=0 以及 a1h+b1k+c1=0联立这两个方程就可以解出h和k。

(3)求 dYdX=aX+bYa1X+b1Y 的通解后,把x-h代X,y-k 代Y,就得到原方程的通解。

【VIP专享】微分方程的算子算法

【VIP专享】微分方程的算子算法

按D升幂排列后去除1在第k 1步所得的商。
13
常系数线性微分方程的算子解法
11.特解的算子解法及例题
类型1 f ( x) fk ( x)
解法
(a)
当P(0) 0时,
y*
1 P(D)
fk ( x) Qk (D) fk ( x),
(b) 当P(0) 0时, 设P(D) Dr P(D), 其中P(0) 0,则
1
➢类比法
➢ 常系数线性微分方程的算子解法
常系数线性微分方程的算子解法
1.n阶常系数线性微分方程
非齐次方程 齐次方程 微分算子
dny dx n
p1
d n1 y dx n1
L
pn y
f (x)
(1)
dny dx n
p1
d n1 y dx n1
L
pn y 0
(2)
D
d , D2 dx
d2 dx 2
n
n
k
(4) ( pnk Dk )[u( x)v( x)] pnk[ Ckm (Dmu(x))(Dkmv(x))]
k0
k0
m0
(5) P(Dx ) f (ax b) [P(aDu ) f (u)]uaxb
8
常系数线性微分方程的算子解法
7.n阶导数的求导公式
(1) Dne x e x
(2) Dn sin x sin(x n ), D2m sin x (1)m sin x
y*
1 P(D)
fk (x)
1 Dr
[1 P(D)
fk ( x)]
1 Dr
[Qk (D) fk ( x)]
14
常系数线性微分方程的算子解法

微分方程常用公式

微分方程常用公式

常用微分、导数公式(c=常数)1、极限(1)0sin lim 1x xx→= (2)()10lim 1x x x e →+= (3)lim ()1n n a a o →∞>=(4)lim 1n n n →∞= (5)limarctan 2x x π→∞=(6)lim tan 2x arc x π→-∞=-(7)lim arc cot 0x x →∞= (8)lim arc cot x x π→-∞= (9)lim 0x x e →-∞=(10)lim x x e →+∞=∞ (11)0lim 1x x x +→= (12)0101101lim 0n n n m m x m a n mb a x a x a n m b x b x b n m--→∞⎧=⎪⎪+++⎪=<⎨+++⎪∞>⎪⎪⎩(系数不为0的情况) (13)000()()limx x x xf x f x y x →+∆-∆=∆∆2、常用等价无穷小关系(0x →)sin ~x x tan ~x x arcsin ~x x arctan ~x x 211cos ~2x x - ()ln 1~x x + 1~x e x - 1~ln x a x a -()11~x x ∂+-∂ 21sec 1~2x x - 211sin 1~2x x x +- 22211~x x x +--33sin ~()x x3、导数的四则运算法则()u v u v '''±=± ()uv u v uv '''=+ 2u u v uv v v '''-⎛⎫= ⎪⎝⎭4、基本导数公式⑴()0c '= ⑵1x x μμμ-= ⑶()sin cos x x '= ⑷()cos sin x x '=- ⑸()2tan sec x x '= ⑹()2cot csc x x '=- ⑺()sec sec tan x x x '=⋅ ⑻()csc csc cot x x x '=-⋅⑼()x x e e '= ⑽()ln x x a a a '= ⑾()1ln x x'=⑿()1log ln x a x a '=⒀()21arcsin 1x x '=- ⒁()21arccos 1x x'=--⒂()21arctan 1x x '=+ ⒃()21arccot 1x x '=-+⒄()1x '=⒅()12x x'=5、高阶导数的运算法则 (1)()()()()()()()n n n u x v x u x v x ±=±⎡⎤⎣⎦ (2)()()()()n n cu x cu x =⎡⎤⎣⎦(3)()()()()n n nu ax b a uax b +=+⎡⎤⎣⎦(4)()()()()()()()0nn n k k k n k u x v x c u x v x -=⋅=⎡⎤⎣⎦∑6、基本初等函数的n 阶导数公式 (1)()()!n nxn = (2)()()n ax bn ax bea e++=⋅ (3)()()ln n xx n aa a =(4)()()sin sin 2n n ax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭(5) ()()cos cos 2n n ax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭(6)()()()11!1n n nn a n ax b ax b +⋅⎛⎫=- ⎪+⎝⎭+ (7)()()()()()11!ln 1n n n na n axb ax b -⋅-+=-⎡⎤⎣⎦+7、微分公式与微分运算法则⑴()0d c = ⑵()1d x x dx μμμ-= ⑶()sin cos d x xdx = ⑷()cos sin d x xdx =- ⑸()2tan sec d x xdx = ⑹()2cot csc d x xdx =- ⑺()sec sec tan d x x xdx =⋅ ⑻()csc csc cot d x x xdx =-⋅ ⑼()x x d e e dx = ⑽()ln x x d a a adx = ⑾()1ln d x dx x= ⑿()1log ln x a d dx x a =⒀()21arcsin 1d x dx x =- ⒁()21arccos 1d x dx x=-- ⒂()21arctan 1d x dx x =+ ⒃()21arccot 1d x dx x=-+ 8、微分运算法则⑴()d u v du dv ±=± ⑵()d cu cdu =⑶()d uv vdu udv =+ ⑷2u vdu udvd v v -⎛⎫= ⎪⎝⎭。

微分算子法实用整理总结

微分算子法实用整理总结

x
=
1
ex
பைடு நூலகம்
(D -1)(1+1)(12 +1)
=
1 D -1

1 2

1 2
ex
= 1 1 ex
D-1 4
= 1 ex
4
1 D +1-1
• 1=
1 4
xex
(性质一、二、
五)
例 8、
d2y dx 2
+y=x2-x+2
,
则(D2+1)y= x2-x+2
5
特解
y*=
D
1 2 +1
(x2-x+2)
=(1-D2)(x2-x+2)=x2-x (性质四)
1
F(D) (xp+b1xp-1+b2xp-2+...+bp-1x+bp)
= Q(D)(xp+b1xp-1+b2xp-2+...+bp-1x+bp)
注:Q(D)为商式,按 D 的升幂排列,且 D 的最高次幂为 p 。
(5)性质五(分解因式):
1 F(D)
f
(x) = 1
F1(D) •F2 (D)
f (x) =
e d 2 y
例 9、 dx2 +2
dy dx
+2y=x2
-x
,则(D2+2D+2)y=x2e-x
特解
y*=
(D
1 +1)2
+1
x2e-x=e-x
(D
1 -1+1)2
+1
x2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1) P(D)( f1( x) f2 ( x)) P(D) f1(x) P(D) f2 (x)
(2) [P1(D) p2 (D)] f ( x) P1(D) f ( x) p2 (D) f ( x)
(3) P(D) P1(D)P2 (D),则
P(D) f (x) P1(D)[P2 (D) f (x)] P2 (D)[P1(D) f (x)]
10
常系数线性微分方程的算子解法
1
9.算子 P ( D)的基本性质及运算法则
(1)
1 (
P(D)
f1( x)
f2 ( x))
1 P(D)
f1( x)
1 P(D)
f2 ( x)
(2) P(D) P1(D)P2 (D),则
1 f ( x) 1 [ 1 f ( x)] 1 [ 1 f ( x)]
, D2

d2 dx 2
,L
, Dn

DDn1

dn dx n
P(D) Dn p1Dn1
P(D) y 0
3
常系数线性微分方程的算子解法
2.解的结构
线性算子 P(D)( y1 y2 ) P(D) y1 P(D) y2 定理1 方程(1)的通解为:y y(x) y *(x) ,其中y(x)
cos x

cos x P(2 )
(P(2 )

0)
12
常系数线性微分方程的算子解法
1
10.算子 P ( D) 的运算公式
(4)
1 [exv( x)] ex 1 v( x)
P(D)
P( D)
(5) 设fk ( x) b0 b1x L bk xk , P(0) pn 0,则
P(D)
P1(D) P2 (D)
P2 (D) P1(D)
11
常系数线性微分方程的算子解法
1
10.算子 P ( D) 的运算公式
(1)
1 ex ex (P() 0)
P(D)
P()
(2)
1 sin x sin x (P(2 ) 0)
P(D2)
P(2 )
(3)
1 P(D2)
(2) Dn f ( x) Dnk[Dk f ( x)]
n
(3) Dn[u( x)v( x)] Cnm[Dmu( x)][Dnmv( x)] m0 uax b
(4) Dxn f (ax b) an[Dun f (u)]uaxb
7
常系数线性微分方程的算子解法
6.算子 P(D) 的基本性质及运算法则
条件是:y*j (x)是P(D) y f j (x)的特解,j 1, 2.
4
常系数线性微分方程的算子解法
3.类比对象的确定
特殊情况 y f (x),其通解y f (x)dx C, y* f (x)dx
类似于原函数的概念,定义算子: 1
P(D) 1 f ( x)表示这样函数:用P(D)作用它的结果是f ( x),即 P(D)
(2) Dn sin x sin(x n ), D2m sin x (1)m sin x
2
(3) Dn cos x cos( x n ), D2m cos x (1)m cos x
2
(4) Dn x ( 1)L ( n 1) x n
(5)
Dn
若函数F ( x)使得P(D)F ( x) f ( x),则 1 f ( x) F ( x)
1 D
f
(x)


f (x)dx,
1 Dn
P(D)
f (x) L f (x)(dx)n
将D与P(D)类比,将
f (x)dx与 1 f (x)类比 P(D)
5
常系数线性微分方程的算子解法
4.思维方法
导数

的性

质及

求导 法则

原函 数的 性质 及积 分法
积 分 公 式
计 算 原 函 数
P(D)

的性

质及

运算

法则
1
P(D)

的性

质及

运算

法则
计 算 特 解
6
常系数线性微分方程的算子解法
5.n阶导数的基本性质、运算法则及求导公式 (1) Dn[ f1( x) f2 ( x)] Dn f1( x) Dn f2 ( x)
是(2)的通解,y *(x)是(1)的特解。
定理2 设y*j (x)是P(D) y f j (x)的特解,j 1, 2,L , m,则
m
m
y *( x) y j *( x)是P(D) y f j ( x)的特解。
j
j
定理3 y1*( x) iy2*( x)是P(D) y f1( x) if2 ( x)的特解的充分必要
1 P(D)
fk ( x) Qk (D) fk ( x), 其中Qk (D)是P(D)
按D升幂排列后去除1在第k 1步所得的商。
13
常系数线性微分方程的算子解法
11.特解的算子解法及例题
类型1 f ( x) fk ( x)
n
n
k
(4) ( pnk Dk )[u( x)v( x)] pnk[ Ckm (Dmu(x))(Dkmv(x))]
k0
k0
m0
(5) P(Dx ) f (ax b) [P(aDu ) f (u)]uaxb
8
常系数线性微分方程的算子解法
7.n阶导数的求导公式
(1) Dne x e x
ln(1
x)

(1)n1(n 1)! (1 x)n
9
常系数线性微分方程的算子解法
8.算子 P(D) 的运算公式
(1) P(D)ex ex P() (2) P(D2 ) sin x sin xP(2 ) (3) P(D2 ) cos x cos xP(2 ) (4) P(D)[exv( x)] ex P( D)v( x)
1
类比法
常系数线性微分方程的算子解法
常系数线性微分方程的算子解法
1.n阶常系数线性微分方程
非齐次方程
dny dx n

p1
d n1 y dx n1
L

pn y
f (x)
(1)
齐次方程 微分算子
dny dx n

p1
d n1 y dx n1
L
pn y 0
(2)
D

d dx
相关文档
最新文档