基于电机电流特征分析(MCSA)的断条异步电机诊断研究

基于电机电流特征分析(MCSA)的断条异步电机诊断研究
基于电机电流特征分析(MCSA)的断条异步电机诊断研究

基于电机电流特征分析(MCSA)的断条异步电机诊断研究

SpectraQuest Inc.

8205 Hermitage Road

Richmond, V A 23228

(804)261-3300

https://www.360docs.net/doc/1f11801462.html,

2006.1

摘要:使用机械故障仿真器(MFS),采用电机电流特征分析(MCSA)和振动分析方法,研究异步电动机常见类型故障的诊断。故障包括电故障和机械故障,如转子断条、定子绕组短路和电机轴损坏。本文是电机诊断系列文章的第一篇。

1.实验装置

本实验使用SpectraQuest公司的机械故障仿真器进行实验。

MFS如图1所示。

图 1.机械故障仿真器(MFS)

安装在MFS上的鼠笼式异步电动机有如下主要特性:3相,60赫兹,电机功率0.5马力,转速3450转/分。根据给出的数据,可推算出极对数为1。

本实验使用两个具有不同数量断条的转子。一个转子有3根断条,另一个转子有6根断条。

研究中使用的电流检测器如图2所示。

图 2 电流探针

对三个电机进行实验:一个完好的电机,一个有三根断条的电机,一个有六根断条的电机。本实验采用电机控制器将电源行频率固定在35Hz。用转速计检测转子的转速,每次实验记录下转速。电机控制器和转速计如图3所示。从电源行频率和转子转速数据中可得到每单位的转差率。

图 3 电机控制器和转速计

实验时,改变电机的负载,研究负载对电流特征的影响。如图4所示,转矩输入连接着齿轮箱输出轴,通过调节转矩输入装置,改变电机的负载。

图4 转矩输入调节

2.结果与讨论

使用VibraQuest 的软件/硬件系统对数据进行分析。

2.1基线数据

在频率范围的基线数据如图5所示。注意振幅以dB 为单位。通过图6(a)-(d),可以观察出转子转速随负载减少。

(a)转子转速2045转/分 (b) 转子转速2041转/分

(c)转子转速2036转/分 (d) 转子转速2032转/分

图 5 电流频谱基线

图5的峰值为行频率35Hz 。断条转子的诊断需要检测两倍的转差率边带及行频率分量,等式l 给出如下。

112sb f f sf =± (1)

其中

1f :行频率

s: 每单位转差率

不同负载状态下,由转子速度和行频率可得到一个单位转差率。然后两倍的转差率边带能通过等式(1)计算出来。如果电机转子有断条,预测峰值为图6箭头所指的频率。观察图形可知,尽管是完好的电机,仍然会在箭头所指的位置出现两倍的转差率边带。但是这些两倍转差率边带没有明显的谐波。

2.2 三断条数据

图6 显示三断条电机的电流频谱数据。

(a)转子转速2033转/分(b) 转子转速2029转/分

(c)转子转速2021转/分(d) 转子转速2021转/分

图6 三断条电机电流频谱

在图6中,箭头指出的是两倍转差率及它们的谐波,不难发现峰值出现在箭头所指的位置。

2.3 六断条数据

图7 显示六断条电机的电流频谱数据。

(a)转子转速2031转/分(b) 转子转速2028转/分

(c)转子转速2012转/分(d) 转子转速2007转/分

图6 六断条电机电流频谱

六断条电机可以从图7中得到的三断条电机相似的结论。

2.4负载在估计断条电机缺损程度的影响

两倍转差率边带分量和行频率分量幅度差可以说明断条电机缺损程度。两倍转差率边带分量的振幅随断条数量的增加而增加。但是在某种程度上,振幅仍然受到负载的影响。下面

平均左边带和右边带与行频率分量的幅度差,然后计算两倍转差率振幅的减少,如图8所示。

图8 两倍转差频率边带与行分量幅度差的计算

图9显示了负载对幅度差的影响。圆圈标记线指的是三断条转子。十字标记线指的是六

断条转子。从图9中可以看出,在负载范围内研究测试,负载对幅度差的影响趋势并不明显。

对于两种缺损程度(三断条和六断条)研究测试,两条曲线没有交点。对于每个负载,六断

条的转子总是比三断条的转子振幅低。总之,所有六断条的转子数据都低于三断条转子数据。

如果对四断条和五断条进行实验,观察他们的曲线是否处在这两条之间,是否有交点。

图9 负载对两倍转差率边带和行分量间振幅的减少的影响

3. 附记

本研究有以下重要观察:

1. 完好的电机数据中仍然会出现两倍的转差率边带。

2. 在断条电机数据中出现了两倍的转差率边带和它们的谐波。

3. 很难看出负载对两倍的转差率边带和行频率分量之间的幅度差的影响趋势。

4. 两倍转差率边带和行频率分量的幅度差随断条数增加而增加。

电机常用计算公式和说明

电机电流计算: 对于交流电三相四线供电而言,线电压是380,相电压是220,线电压是根号3相电压 对于电动机而言一个绕组的电压就是相电压,导线的电压是线电压(指A相 B相 C相之间的电压,一个绕组的电流就是相电流,导线的电流是线电流 当电机星接时:线电流=相电流;线电压=根号3相电压。三个绕组的尾线相连接,电势为零,所以绕组的电压是220伏 当电机角接时:线电流=根号3相电流;线电压=相电压。绕组是直接接380的,导线的电流是两个绕组电流的矢量之和 功率计算公式 p=根号三UI乘功率因数是对的 用一个钳式电流表卡在A B C任意一个线上测到都是线电流 极对数与扭矩的关系 n=60f/p n: 电机转速 60: 60秒 f: 我国电流采用50Hz p: 电机极对数 1对极对数电机转速:3000转/分;2对极对数电机转速:60×50/2=1500转/分在输出功率不变的情况下,电机的极对数越多,电机的转速就越低,但它的扭矩就越大。所以在选用电机时,考虑负载需要多大的起动扭距。 异步电机的转速n=(60f/p)×(1-s),主要与频率和极数有关。 直流电机的转速与极数无关,他的转速主要与电枢的电压、磁通量、及电机的结构有关。n=(电机电压-电枢电流*电枢电阻)/(电机结构常数*磁通)。 扭矩公式 T=9550*P输出功率/N转速 导线电阻计算公式: 铜线的电阻率ρ=0.0172, R=ρ×L/S (L=导线长度,单位:米,S=导线截面,单位:m㎡) 磁通量的计算公式: B为磁感应强度,S为面积。已知高斯磁场定律为:Φ=BS 磁场强度的计算公式:H = N × I / Le 式中:H为磁场强度,单位为A/m;N为励磁线圈的匝数;I为励磁电流(测量值),单位位A;Le为测试样品的有效磁路长度,单位为m。 磁感应强度计算公式:B = Φ/ (N × Ae)B=F/IL u磁导率 pi=3.14 B=uI/2R 式中:B为磁感应强度,单位为Wb/m^2;Φ为感应磁通(测量值),单位为Wb;N为感应线圈的匝数;Ae为测试样品的有效截面积,单位为m^2。 感应电动势 1)E=nΔΦ/Δt(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,ΔΦ/Δt:磁通量的变化率} 磁通量变化率=磁通量变化量/时间磁通量变化量=变化后的磁通量-变化前的磁通量 2)E=BLV垂(切割磁感线运动){L:有效长度(m)} 3)Em=nBSω(交流发电机最大的感应电动势){Em:感应电动势峰值} 4)E=BL2ω/2(导体一端固定以ω旋转切割){ω:角速度(rad/s),V:速度(m/s)}

基于电机电流特征分析(MCSA)的断条异步电机诊断研究

基于电机电流特征分析(MCSA)的断条异步电机诊断研究 SpectraQuest Inc. 8205 Hermitage Road Richmond, V A 23228 (804)261-3300 https://www.360docs.net/doc/1f11801462.html, 2006.1 摘要:使用机械故障仿真器(MFS),采用电机电流特征分析(MCSA)和振动分析方法,研究异步电动机常见类型故障的诊断。故障包括电故障和机械故障,如转子断条、定子绕组短路和电机轴损坏。本文是电机诊断系列文章的第一篇。 1.实验装置 本实验使用SpectraQuest公司的机械故障仿真器进行实验。 MFS如图1所示。 图 1.机械故障仿真器(MFS) 安装在MFS上的鼠笼式异步电动机有如下主要特性:3相,60赫兹,电机功率0.5马力,转速3450转/分。根据给出的数据,可推算出极对数为1。 本实验使用两个具有不同数量断条的转子。一个转子有3根断条,另一个转子有6根断条。 研究中使用的电流检测器如图2所示。

图 2 电流探针 对三个电机进行实验:一个完好的电机,一个有三根断条的电机,一个有六根断条的电机。本实验采用电机控制器将电源行频率固定在35Hz。用转速计检测转子的转速,每次实验记录下转速。电机控制器和转速计如图3所示。从电源行频率和转子转速数据中可得到每单位的转差率。 图 3 电机控制器和转速计 实验时,改变电机的负载,研究负载对电流特征的影响。如图4所示,转矩输入连接着齿轮箱输出轴,通过调节转矩输入装置,改变电机的负载。 图4 转矩输入调节 2.结果与讨论

使用VibraQuest 的软件/硬件系统对数据进行分析。 2.1基线数据 在频率范围的基线数据如图5所示。注意振幅以dB 为单位。通过图6(a)-(d),可以观察出转子转速随负载减少。 (a)转子转速2045转/分 (b) 转子转速2041转/分 (c)转子转速2036转/分 (d) 转子转速2032转/分 图 5 电流频谱基线 图5的峰值为行频率35Hz 。断条转子的诊断需要检测两倍的转差率边带及行频率分量,等式l 给出如下。 112sb f f sf =± (1) 其中 1f :行频率 s: 每单位转差率 不同负载状态下,由转子速度和行频率可得到一个单位转差率。然后两倍的转差率边带能通过等式(1)计算出来。如果电机转子有断条,预测峰值为图6箭头所指的频率。观察图形可知,尽管是完好的电机,仍然会在箭头所指的位置出现两倍的转差率边带。但是这些两倍转差率边带没有明显的谐波。 2.2 三断条数据 图6 显示三断条电机的电流频谱数据。

异步电动机转子磁链观测方法的比较与研究

异步电动机转子磁链观测方法的比较与研究 转子磁链、观测方法、比较、矢量控制、直接转矩控制 1 引言 在异步电动机变频调速控制系统中,矢量控制技术和直接转矩控制技术得以有效实现的一个重要基础是在于异步电动机磁链信息的准确获取,这就需要知道磁链的幅值和相位。根据三相异步电动机在两相任意转速旋转坐标系下的数学模型可知,定子、转子和气隙磁链的方程式为: 定子磁链:(1) 转子磁链:(2) 气隙磁链:(3) 从以上方程式不难看出定子、转子和气隙磁链三者只要有一个获得,另外两个就可推导而出。因此异步电动机就有三种与之相对应的磁场定向方法,分别是按定子磁场定向、按转子磁场定向和按气隙磁场定向。不过按定子、气隙磁场定向方法未能实现iM和iT的完全解耦,因此按转子磁场定向是目前主要采用的方法,它可以实现磁通电流分量、转矩电流分量的完全解耦。下面就对转子磁链观测的方法进行一些比较研究,从而为实际应用时选择合适的观测器提供依据。 转子磁链的观测最初是采用直接检测气隙磁链的方法,就是在电机定子内表面装贴霍尔元件或其他磁敏元件,或者在电机槽内埋设探测线圈。利用被测量的气隙磁通,由式(2)、(3)就可得到转子磁通。从理论上讲,该方法应该比较准确,但实际上埋设探测线圈和装贴磁敏元件都会遇到不少工艺和技术上的问题,在一定程度上破坏了电机的机械鲁棒性。同时由于齿槽影响,使检测信号中含有较大的脉动分量,越到低速时越严重。因此在实用的系统中,多采用间接计算的办法,即利用容易测量的电压、电流或转速等信号,借助转子磁链观测模型,实时计算磁链的模值和空间位置。 2 转子磁链的间接获取方法 根据实测信号的不同组合,可以有多种转子磁链观测模型,总的说来可以分为两大类:开环观测模型和闭环观测模型。 2.1 开环观测模型 (1)电流模型法 根据描述磁链与电流关系的磁链方程来计算转子磁链,所得出的模型叫做电流模型,它可以在不同的坐标系下获得。 ● 在两相静止坐标系α-β下转子磁链的电流模型 由实测的三相定子电流经过Clarke变换很容易得到两相静止坐标系上的电流isα和isβ。在两相静止坐标系α-β下的磁链方程: 为:(4) 这里面转子电流是难以测量得到的,需要进一步替换。由式(4)可得

电动机常见故障分析及处理(案列)

项目:排除电动机常见故障 学习目的 掌握排除电动机常见故障方法 工作准备 电动机一台,万用表、电桥、常用电动工具 操作步骤 电源接通后,电动机不转,熔丝烧断 运作中的电动机要严格按照国家相关质量标准进行检查以确保电动机的正常使用,运作的电动机与被拖动的设备位置要恰当,保证运行的稳定性,不能有晃动,保证通风性能良好。有些电动机因为各种原因需要经常的挪动,搬运等,对于这种电动机要加强日常的维护和检查,保证电动机运转的稳定性。 1、事故现象: 原因分析: 1)缺一相电源,或定子绕组一接反。 2)定子绕组相间短路。 3)定子绕组接地。 4)定子绕组接线错误。 5)熔丝截面过小。 6)电源线短路或接地。 故障判断: 1)首先可用万用表电阻档检查电源开关三相触头是否可靠闭合。 2)如开关正常则用双臂电桥来测量电机定子绕组相间直阻,以判定定子绕组是否完好。 3)如电机直阻正常可用摇表测量电机定子绕组和电源线对地绝缘电阻,判断电源线或电机是否发生接地故障。 4)如电机定子和电源线绝缘均正常则检查电机电源熔丝(如有)所标熔断电流同电机功率是否相匹配。 5)如以上检查均正常则应考虑电机定子绕组是否接反,如怀疑绕组接反可使用直流法重新判定绕

组首尾端。 处理方法: 1)检修故障开关触头,消除缺相。 2)查出短路点,并修复。 3)消除接地。 4)查出误接,改正之。 5)换较粗的熔丝。 6)重换电源线。 2、事故现象:通电后电动机不转动,有嗡嗡声 原因分析: 1)定子、转子绕组断路或电源一相无电。 2)绕组引出线首末接错,或绕组内部接反。 3)电源回路接点松动,接触电阻大。 4)负载过大,或转子被卡住。 5)电源电压过低。 6)小型电动机装配太紧或轴承内油脂过硬。 7)轴承卡住。 故障判断: 1)首先可用万用表电压档检查三相电源是否电压过低或有缺相。 2)如电源电压正常则用双臂电桥来测量电机定子绕组相间直阻,以判定定子绕组是否完好。 3)如电机直阻正常可用手转动电机转子以判断电机是否有卡涩现象,如有卡涩可将电机与负载解开再转动转子看卡涩是否消失,如消失则应检查负载是否过大或卡涩;如卡涩现象仍存在则需将电机解体做进一步检查。 4)如电机没有卡涩现象就仔细检查电机电源线螺丝是否松动,电源线本身是否损坏。 5)如以上检查均正常则应考虑电机定子绕组是否接反,如怀疑绕组接反可使用直流法重新判定绕组首尾端。 处理方法:

三相异步电动机电气故障诊断

摘要 随着电能应用的方便,电机设备已被广泛应用于工业生产的各个领域。电机在整个机械系统中起着举足轻重的作用,一旦电机发生故障就会影响整个系统的正常运行,甚至危及人身安全。所以对电机进行故障诊断非常重要。系统分析三相异步电动机的定。转子铁芯故障,转子轴承过热,损坏故障,电动机运行电压不正常,绕组接地,绕组短路,缺相,接地装置等故障的产生原因,并提出相应的具体解决办法。异步电动机的报复是个复杂的问题,在实际使用中,应按照电动机的容量、型式、控制方式和配电设备等不同来选择相适应的保护装置及启动设备,本文对于异步电动机保护盒故障诊断的方法的研究成果进行了归纳总结,分析说明,这些对异步电机的保护和诊断是有效的。 第1章三相异步电动机的工作原理与结构 1.1 三相异步电动机的基本工作原理 三相异步电动机的定子装有三相对称绕组,当接至三相交流电源时,流入定子绕组的三相对称电流在电机的气隙内产生一个以同步转速n1旋转的磁场。转子导体嵌放在转子铁心槽内,两端被导电环短接。当旋转磁场以逆时针方向旋转时,转子导条切割磁力线产生感应电动势,其方向可用右手定则来判别。转子上半部导体中的电动势方向都是进入纸面,用⊕表示,下半部导体中的电动势方向都是穿出纸面,用⊙表示。在转子回路闭合的情况下,转子导体中就有电流流通。如不考虑转子绕组电感,那么电流的方向与电动势的方向相同。 转子载流导体在旋转磁场中将受到电磁力fem的作呕那个,导体所受电磁力的方向可用左手定则来判定。 在正常情况下,异步电动机的转子转速不能达到旋转磁场的转速,即不能达到同步转速n1,而总是略低于n1。例如两极异步电动机的同步转速 n1=3000r/min,在额定负载时,它的转速约为2880r/min。因为如果n=n1,则旋转磁场和转子到底之间将不存在相对运动,因而转子到底电动势、电流和电磁转矩都将变为零、因此转子转速n总是略小于同步转速n1,即运行于异步转速,异步电动机的名称也就由此而来。 旋转磁场的同步转速n1与转子转速n之差称为转差,转差与同步转速n1之比称为转差率s,即 S=﹙n1-n﹚/n1×100% 转差率s是异步电动机的一个非常重要的变量。当负载变化时,转子的

电机轴电流的分析

电机轴电流的分析 电 机 轴 电 流 的 分 析轴电流的存在对电动机轴承的使用寿命具有极大的破坏性, 根据现场实际运 行情况,分析其产生的原因,采取装设转轴接地碳刷、加强非轴伸端轴承座与支 架的绝缘等有效措施,从而从根本上解决轴电流危害的问题。 1 轴电流的危害 在电动机运行过程中,如果在两轴承端或电机转轴与轴承间有轴电流的存 在,那么对于电机轴承的使用寿命将会大大缩短。轻微的可运行上千小时,严重 的甚至只能运行几小时,给现场安全生产带来极大的影响。同时由于轴承损坏及 更换带来的直接和间接经济损失也不可小计。 2 轴电压和轴电流的产生 (1) 磁不平衡产生轴电压 电动机由于扇形冲片、 硅钢片等叠装因素, 再加上铁芯槽、 通风孔等的存在, 造成在磁路中存在不平衡的磁阻,并且在转轴的周围有交变磁通切割转轴,在轴 的两端感应出轴电压。 (2) 逆变供电产生轴电压 电动机采用逆变供电运行时,由于电源电压含有较高次的谐波分量,在电压 脉冲分量的作用下,定子绕组线圈端部、接线部分、转轴之间产生电磁感应,使转轴的电位发生变化,从而产生轴电压。 (3) 静电感应产生轴电压 在电动机运行的现场周围有较多的高压设备,在强电场的作用下,在转轴的 两端感应出轴电压。 (4) 外部电源的介入产生轴电压由于运行现场接线比较繁杂,尤其大电机保护、 测量元件接线较多,哪一根带电线头搭接在转轴上,便会产生轴电压。 (5) 其他原因 如静电荷的积累、测温元件绝缘破损等因素都有可能导致轴电压的产生。 轴电压建立起来后,一旦在转轴及机座、壳体间形成通路,就产生轴电流。 3 轴电流对轴承的破坏 正常情况下,转轴与轴承间有润滑油膜的存在,起到绝缘的作用。对于较低 的轴电压,这层润滑油膜仍能保护其绝缘性能,不会产生轴电流。但是当轴电压 增加到一定数值时,尤其在电动机启动时,轴承内的润滑油膜还未稳定形成,轴 电压将击穿油膜而放电,构成回路,轴电流将从轴承和转轴的金属接触点通过, 由于该金属接触点很小,所以这些点的电流密度大,在瞬间产生高温,使轴承局 部烧熔,被烧熔的轴承合金在碾压力的作用下飞溅,于是在轴承内表面上烧出小 凹坑。一般由于转轴硬度及机械强度比轴承烧熔合金的高,通常表现出来的症状 是轴承内表面被压出条状电弧伤痕。 4 轴电流的防范 针对轴电流形成的根本原因,一般在现场采用如下防范措施: (1) 在轴端安装接地碳刷,以降低轴电位,使接地碳刷可靠接地,并且与 转轴可靠接触,保证转轴电位为零电位,以此消除轴电

异步电机矢量控制中转子磁链的直接观测方法_王铁军

文章编号:1009-3486(2002)05-0019-03 异步电机矢量控制中转子磁链的直接观测方法 Ξ 王铁军,单潮龙,赵镜红,张俊洪 (海军工程大学电气工程系,湖北武汉430033) 摘 要:以异步电机的等效电路为模型提出了在电机的外部构造转子磁链物理观测器的方法.理论上证明了在选取合适参数之后,用该物理观测器可以直接得到感应电机转子磁链的大小与相位,该方法用于异步电机的矢量控制系统,具有很好的实时性,且避免复杂的数字运算.关键词:感应电动机;矢量控制;转子磁链观测中图分类号: TM346.2 文献标识码: A 图1 U V W 、αβ、dq 坐标系与电流矢量 在异步电动机的调速技术中,转子磁链的定向矢量控制代表着该领域中新的技术理论.转子磁链定向的基本思想是:将U V W 坐标系变换到α β坐标系,再由αβ坐标系变换到d q 坐标系[1] ,当选择的d 轴与转子的全磁链Ψ? 2重合时,称该坐标系为 M T 坐标系.此时,代表定子磁动势的空间矢量电流i 1被分解为M 轴方向的励磁分量i m 1和T 轴方向的转矩分量i t 1,图1表示3种坐标系与矢量电流.可以证明[2],异步电动机的电磁转矩为: T =n p L m L r Ψ2i t 1 (1) 而转子磁链为: Ψ2= L m 1+T 2p i m 1 (2) 式中:n p 为电机磁极对数;L m 为定转子间互感;L r 为转子电感;T 2=L r /R 2为转子时间常数;p 为微分 算子.从(1)、 (2)式中不难看出,通过合适的坐标变换可以实现与直流电动机类似的速度控制过程.为了进行磁场定向和坐标变换,以及对控制系统中的指令电量和检测电量作运算处理,需要确定转子磁链的图2 磁链观测器原理框图 瞬时空间位置和大小.Ψ? 2的观测有多种方法[1~4].随着微处理器技术的发展,目前多采用间接观测的方法,即检测定子的电压、电流或转速等物理量,再利用转子磁链的数学模型,实时计算转子磁链的幅值和相位.图2为根据定子电流和定子电压的检测值估算转子磁链的原理框图,图中:u u ,v ,w 、i u ,v ,w 分别为来自电压检测器、电流检测器 的异步电动机定子三相电路的电压、电流信号.(3)、 (4)两式为磁链观测器的内部运算关系. Ψα2=L r L m [∫(u α1-R 1i α1)d t -L s σi α1](3)Ψβ2= L r L m [∫ (u β1 -R 1i β1)d t -L s σi β1] (4)  第14卷 第5期 2002年10月 海军工程大学学报 JOURNAL OF NAVAL UN IV ERSIT Y OF EN GIN EERIN G Vol.14 No.5 Oct.2002 Ξ收稿日期:2002203222;修订日期:2002204218 作者简介:王铁军(19652),男,讲师,硕士.

电机的启动电流怎么算

电机的启动电流怎么算 [ 标签:电机, 启动电流]ㄨ只④我不配2011-06-01 08:43 满意答案好评率:100% 电动机启动冲击电流,与负载性质(恒转矩、恒功率、通风机类)和启动方式(直接启动、自藕降压启动、星三角、延边三角、频敏变阻、变频启动)有关。 通常,以星三角启动380/3交流异步电动机为例,可以这样估算: 110KW电动机,额定工作电流约200A(也可以按功率的2倍估算), 直接启动时,电流按6倍额定电流估算,约1200A; 星三角启动时,启动电流为直接启动方式时的1/3,则为400A。 200KW电动机的断路器开关额定电流选多大 三相异步电机额定电流的估算: 额电电压~660V I≈ ~380V I≈2P ~220V I≈ P-电动机额定功率KW 主开关电流选择:主开关额定电流=设备额定电流(分支额定电流总和)*~ 既(200*2)*=520A选型时选600A

11千瓦电动机启动热过载电流是多少 11千瓦电动机启动热过载电流是多少 匿名提问 2009-08-24 09:54:43 发布 工程学术 2个回答 oncsqufpi| 2009-08-24 09:54:53 有0人认为这个回答不错 | 有0人认为这个回答没有帮助 根据用电设备的功率,算出总功率以后,I=P/U按公式后在乘的系数~!

如果比较麻烦的话就是一个千瓦2个安培的电流~!是最通用的,里面包括了抛出的电流容量。1KW=2A 选择电缆也有方法 按电流计算,下面给出的比较简单的选择算法以铝芯线为计算项目 十下五:百上二:二五三五四三界,七零九五两倍半~!这个是口诀 十平方毫米以下的BLV线电流可以承载线径的五倍~! 一百平方毫米以上的BLV线电流承载线径的二倍。 25mm2和35mm2的BLV电流承载在4倍和3倍的分割线。 70mm2和95mm2的电流容量是线径的倍。 除此内容以外,有铜芯线的按照铝线的升级倍数来算,也就是说BV-10mm2按照BLV-16mm2的电流来算其他的也如此 导线在穿塑料管或是PVC管,算出的电流要乘上的系数 导线在穿钢管的情况下,计算的电流在乘上 导线在高温的场所通过,计算的电流结果在乘上 如果导线在以上三种情况都有的话先乘在乘或者直接打到也可以

实用电机故障诊断方法总结

交流异步电动机常见故障的分析、诊断及处理 一、异步电动机的故障分析、诊断与处理 电动机的故障大体归纳为电磁的原因和机械的原因两个方面。常见故障分析、诊断与处理如下: 1.异步电动机不能起动: 1.1电动机不能起动,有被拖动机械卡住、起动设备故障和电动机本体故障及其它方面原因: 处理方法:当电动机不能起动的故障时,可使用万用表测量三相电压,若电压太低,应设法提高电压,原因可能有:⑴电源线太细,起动压降太大,应更换粗导线。⑵三角形接线错接成星形接线,又是重载起动,应按三角形接法起动。⑶送电电压太低,应增高电压,达到要求的电压等级。若三相电压不平衡或缺相,说明故障发生在起动设备上。若三相电压平衡,但电动机转速较慢并有异常声响,这可能是负荷太重,拖动机械卡住。此时应断开电源,盘动电动机转轴,若转轴能灵活均衡地转动,说明是负荷过重;若转轴不能灵活均衡地转动,说明是机械卡阻。若三相电压正常而电机不转,则可能是电机本体故障或卡阻严重,此时应使电动机与拖动机械脱开,分别盘动电动机和拖动机械的转轴,并单独起动电动机,即可知道故障所在,作相应的处理。 1.1.1当确定为起动设备故障时,要检查开关,接触器各触头及接线柱的接触情况;检查热继电器过载保护触头的开闭情况和工作电流的调整值是否合理;检查熔断器熔体的通断情况,对熔断的熔体在分析原因后应根据电动机起动状态的要求重新选择;若起动设备内部接线有错,则应按照正确接线改正。 1.1.2 当确定为电动机本体故障时,则应检查定,转子绕组是否接地或轴承是否损坏。绕组接地或局部匝间短路时,电动机虽能起动但会引起熔体熔断而停转,短路严重时电动机绕组很快就会冒烟。 检查绕组接地常采用的方法:用兆殴表检查绕组的对地绝缘电阻,若存在接地故障,兆殴表指示值为零。绕组短路:通常用双臂电桥测直阻的平衡情况,对于绕组接地、匝间短路的处理通常都是重新绕制绕组。 1.1.3其它原因 由于轴承损坏而造成电动机转轴窜位、下沉、转子与定子磨擦乃至卡死时,应更换轴承。 若在严冬无保温,环境较差场所的电动机,应检查润滑脂。 2、鼠笼式电动机起动后转速低于额定值 2.1电动机运行时的转速降低: 2.1.1电源电压;如端电压降低,则电机起动转矩减小,转速降低。若检查是电压太低,则应提高电源电压。电动机接线错误,绕组应是三角形接线而错接成星形的也会使相电压降低。 2.1.2转子电阻;若鼠笼转子导条断裂或开焊,表现为转速和起动转矩下降。导条断裂和开焊,首先可进行直观检查,也可借助于仪表检查。直观检查:就是查看鼠笼导条有没有电弧灼痕,有无断裂和细小裂纹,端环连接是否良好。借助于仪表检查:一种方法是在电动机运行时,看指示电动机定子电流的电流表。在鼠笼转子导条断裂或开焊故障时,电流表指针将来回摆动。对于未装设电流表的电动机,可将电动机的定子绕组串联电流表后接到15-20%Ue(Ue为额定电压)的三相交流电源上,(用三相自耦调压器调压),盘动电动机转轴,随着转子位置不同,定子电流会发生变化,指针突然下降处即导条断裂或开焊处。 2.2若检查是被拖动机械轻微卡住,使转轴转不灵活,也会使电动机勉强拖动负载

异步电动机机械特性的MATLAB仿真

辽宁工业大学 实验室开放课题设计(论文) 题目:异步电动机机械特性的MATLAB仿真》 院(系):电气工程学院 专业班级:自动化 131 学号: 0 ` 学生姓名:徐峰 指导教师:赵丽丽

起止时间:

摘要 异步电动机以其结构简单、运行可靠、效率较高、成本较低等特点,在日常生活中得到广泛的使用。目前,电动机控制系统在追求更高的控制精度的基础上变得越来越复杂,而仿真是对其进行研究的一个重要手段。MATLAB是一个高级的数学分析和运算软件,可用动作系统的建模和仿真。在分析三相异步电动机物理和数学模型的基础上,应用MATLAB软件简历了相对应的仿真模型;在加入相同的三相电压和转矩的条件下,使用实际电机参数,与MALAB给定的电机模型进行了对比仿真。 第一章对异步电机的实验要求做出了相关的描述,第二章对MATLAB仿真软件做了一定的介绍,第三章是对异步电动机的机械特性、启动、制动和正反转进行理论分析和仿真模拟以及仿真结果的分析。 经分析后,表明模型的搭建是合理的。因此,本设计将结合MATLAB的特点,对三相异步电机进行建模和仿真,并通过实际的电动机参数,对建立的模型进行了验证。 关键词:异步电机、数学模型、MATLAB仿真、三相异步电动机

目录 第1章实验任务及要求 (1) 第2章 MATLAB及SIMULINK的介绍 (2) MATLAB介绍 (2) S IMULINK模块的介绍 (3) 第3章仿真实验 (4) 三相异步电动机的机械特性 (4) 三相异步电动机起动的仿真 (6) 三相异步电动机制动仿真 (8) 三相异步电动机正反转仿真 (10) 第4章总结 (12) 参考文献 (13) 附录 (14)

三相异步电动机的绕组常见故障分析与处理方法(精)

班级:07自动化 学号:0709111016 姓名:高顺 三相异步电动机的绕组常见故障分析与处理方法 关键词:断路电流不平衡短路绝缘损坏磁场不均绕组接地绕组接错 一、绕组开路 由于焊接不良或使用腐蚀性焊剂,焊接后又未清除干净,就可能造成壶焊或松脱;受机械应力或碰撞时线圈短路、短路与接地故障也可使导线烧毁,在并烧的几根导线中有一根或几根导线短路时,另几根导线由于电流的增加而温度上升,引起绕组发热而断路。一般分为一相绕组端部断线、匝间短路、并联支路处断路、多根导线并烧中一根断路、转子断笼。 1. 故障现象 电动机不能启动,三相电流不平衡,有异常噪声或振动大,温升超过允许值或冒烟。 2. 产生原因 (1)在检修和维护保养时碰断或制造质量问题。 (2)绕组各元件、极(相)组和绕组与引接线等接线头焊接不良,长期运行过热脱焊。 (3)受机械力和电磁场力使绕组损伤或拉断。 (4)匝间或相间短路及接地造成绕组严重烧焦或熔断等。 3. 检查方法 (1)观察法。断点大多数发生在绕组端部,看有无碰折、接头出有无脱焊。(2)万用表法。利用电阻档,对“Y”型接法的将一根表棒接在“Y”形的中心点上,另一根依次接在三相绕组的首端,无穷大的一相为断点;“△”型接法的短开连接后,分别测每组绕组,无穷大的则为断路点。 (3)试灯法。方法同前,等不亮的一相为断路。 (4)兆欧表法。阻值趋向无穷大(即不为零值)的一相为断路点。 (5)电流表法。电机在运行时,用电流表测三相电流,若三相电流不平衡、又无短路现象,则电流较小的一相绕组有部分短断路故障。 (6)电桥法。当电机某一相电阻比其他两相电阻大时,说明该相绕组有部分断路故障; (7)电流平衡法。对于“Y”型接法的,可将三相绕组并联后,通入低电压大电流的交流电,如果三相绕组中的电流相差大于10%时,电流小的一端为断路;对于“△”型接法的,先将定子绕组的一个接点拆开,再逐相通入低压大电流,其中电流小的一相为断路。

三相异步电动机的故障判断及处理

万方数据

万方数据

三相异步电动机的故障判断及处理 作者:徐坤 作者单位:辽宁职业学院 刊名: 农机使用与维修 英文刊名:FARM MACHINERY USING & MAINTENANCE 年,卷(期):2011(2) 参考文献(2条) 1.赵承获;姚和芳电机与电气控制技术 2001 2.王庆伯三相电动机修理指导 1997 本文读者也读过(10条) 1.潘宗英浅析三相异步电动机定子绕组故障的查找及处理[期刊论文]-中国科技信息2006(24) 2.刘焕君三相异步电动机故障检查与维修[期刊论文]-黑龙江造纸2011,39(1) 3.莫司丞浅谈三相异步电动机的故障及对策[期刊论文]-科技信息2010(36) 4.王文娟关于三相异步电动机的保护分析[期刊论文]-西部大开发(中旬刊)2010(9) 5.姚飞.许安平.王磊三相异步电动机的缺相运行及其保护措施[期刊论文]-内江科技2008,29(12) 6.张友昌.Zhang Youchang变压器冷却装置控制方式的改进措施[期刊论文]-电工技术2005(11) 7.侯兰香.生国锋.HOU Lan-xiang.SHENG Guo-feng三相异步电动机过热故障简析及修复[期刊论文]-枣庄学院学报2006,23(5) 8.朱英明.ZHU Ying-ming三相异步电动机故障的综合分析与排除方法[期刊论文]-机床电器2007,34(2) 9.韩丽芳.Han Lifang三相异步电动机定子绕组故障的检测及应急处理[期刊论文]-机械管理开发2007(2) 10.王敏.WANG Min三相异步电动机单相运行故障分析[期刊论文]-电机与控制应用2008,35(2) 本文链接:https://www.360docs.net/doc/1f11801462.html,/Periodical_njwx201102040.aspx

对电动机轴电流的分析及防范

对电动机轴电流的分析及防范 〔摘要〕轴电流的存在对电动机轴承的使用寿命具有极大的破坏性,根据现场实际运行情况,分析其产生的原因,采取装设转轴接地碳刷、加强非轴伸端轴承座与支架的绝缘等有效措施,从而从根本上解决轴电流危害的问题. 〔关键词〕电动机轴电流轴电压 1轴电流的危害 在电动机运行过程中,如果在两轴承端或电机转轴与轴承间有轴电流的存在,那么对于电机轴承的使用寿命将会大大缩短。轻微的可运行上千小时,严重的甚至只能运行几小时,给现场安全生产带来极大的影响。同时由于轴承损坏及更换带来的直接和间接经济损失也不可小计。 2轴电压和轴电流的产生 轴电压是电动机两轴承端或电机转轴与轴承间所产生的电压,其产生原因一般有以下几种: (1) 磁不平衡产生轴电压 电动机由于扇形冲片、硅钢片等叠装因素,再加上铁芯槽、通风孔等的存在,造成在磁路中存在不平衡的磁阻,并且在转轴的周围有交变磁通切割转轴,在轴的两端感应出轴电压。 (2) 逆变供电产生轴电压 电动机采用逆变供电运行时,由于电源电压含有较高次的谐波分量,在电压脉冲分量的作用下,定子绕组线圈端部、接线部分、转轴之间产生电磁感应,使转轴的电位发生变化,从而产生轴电压。 (3) 静电感应产生轴电压 在电动机运行的现场周围有较多的高压设备,在强电场的作用下,在转轴的两端感应出轴电压。 (4) 外部电源的介入产生轴电压由于运行现场接线比较繁杂,尤其大电机保

护、测量元件接线较多,哪一根带电线头搭接在转轴上,便会产生轴电压。 (5) 其他原因如静电荷的积累、测温元件绝缘破损等因素都有可能导致轴电压的产生。轴电压建立起来后,一旦在转轴及机座、壳体间形成通路,就产生轴电流。 3轴电流对轴承的破坏 正常情况下,转轴与轴承间有润滑油膜的存在,起到绝缘的作用。对于较低的轴电压,这层润滑油膜仍能保护其绝缘性能,不会产生轴电流。但是当轴电压增加到一定数值时,尤其在电动机启动时,轴承内的润滑油膜还未稳定形成,轴电压将击穿油膜而放电,构成回路,轴电流将从轴承和转轴的金属接触点通过,由于该金属接触点很小,所以这些点的电流密度大,在瞬间产生高温,使轴承局部烧熔,被烧熔的轴承合金在碾压力的作用下飞溅,于是在轴承内表面上烧出小凹坑。一般由于转轴硬度及机械强度比轴承烧熔合金的高,通常表现出来的症状是轴承内表面被压出条状电弧伤痕。 4轴电流的防范 针对轴电流形成的根本原因,一般在现场采用如下防范措施: (1) 在轴端安装接地碳刷,以降低轴电位,使接地碳刷可靠接地,并且与转轴可靠接触,保证转轴电位为零电位,以此消除轴电流。 (2) 为防止磁不平衡等原因产生轴电流,往往在非轴伸端的轴承座和轴承支架处加绝缘隔板,以切断轴电流的回路。 (3) 为了避免其他电动机附件导线绝缘破损造成的轴电流,往往要求检修运行人员细致检查并加强导线或垫片绝缘,以消除不必要的轴电流隐患。 一般通过以上处理,大多电动机的轴电流微乎其微,已对电动机构不成实质上危害。现场实践证明,经上述方式处理后实际使用寿命可由原几十个小时提高到上万小时,效果比较明显,尤其对高压电动机轴电流的防范效果好,对安全生产具有积极作用。

电动机的主要保护及计算

电动机的主要保护及计算 一、速断保护 1.速断高值: 动作电流高定值Isdg 计算。 按躲过电动机最大起动电流计算,即: Isdg=Krel ×Kst ×In In=Ie/nTA 式中 Krel ——可靠系数1.5; Kst ——电动机起动电流倍数(在6-8之间); In ——电动机二次额定电流; Ie ——电动机一次额定电流; n TA —— 电流互感器变比。 2. 速断低值:按躲过区外出口短路时电动机最大反馈电流计算。厂用母线出口三相短路时,根据 以 往 实测,电动 机 反馈电流 的 暂 态 值为 5.8 Isdd=Krel ×Kfb ×In=7.8In 式中 Krel ——可靠系数1.3; Kfb ——区外出口短路时最大反馈电流倍数,取Kfb=6。 3.动作时间整定值计算。保护固有动作时间,动作时间整定值取: 速断动作时间: tsd=0s. 二、单相接地零序过电流保护(低压电动机) 1. 一次动作电流计算。有零序电流互感器TA0的电动机单相接地保护,一次三相电流平衡时,由 于三相电流产生的漏磁通不一致,于是在零序电流 2 互感器内产生磁不 平衡电流。根据在不同条件下的多次实测结果,磁不平衡电流值均小于0.005Ip(Ip 为平衡的三相相电流),于是按躲过电动机起动时最大不平衡电流计算,低电压电动机单相接地保护动作电流可取: I0dz=(0.05-0.15)Ie 式中 I0dz ——单相接地零序过电流保护一次动作电流整定值; Ie ——电动机一次额定电流。 当电动机容量较大时可取: I0d z =(0.05-0.075)Ie 当电动机容量较小时可取: I0d z =(0.1-0.15)Ie

电动机常见故障分析与维修..

直流电动机常见故障分析与维修 1.引言 电动机在人们的工农业生产中发挥着巨大的作用,给人们的生活带来了极大的便利。直流电动机虽然结构较复杂,使用与维护较麻烦,价格较贵,但是由于其具有调速性能好,起动转矩大等优点, 本文分析了电动机的结构、工作原理以及在工作中的常见故障,并给出了一些日常维护的方法。 2.直流电动机的原理、结构与拆装 2.1直流电动机的工作原理 当把直流电动机的电刷A、B接到直流电源上时,从图2.1可以看出,电刷A是正电位,B是负电位,在N极范围内的导体ab中的电流是从a流向b,在S极范围内的导体cd中的电流是从c流向d。前面已经说过,载流导体在磁场中要受到电磁力的作用,因此,ab和cd两导体都要受到电磁力Fde的作用。根据磁场方向和导体中的电流方向,利用电动机左手定则判断,ab边受力的方向是向左,而cd边则是向右。由于磁场是均匀的,导体中流过的又是相同的电流,所以,ab边和cd边所受电磁力的大小相等。这样,线圈上就受到了电磁力的作用而按逆时针方向转动了。当线圈转到磁极的中性面上时,线圈中的电流等于零,电磁力等于零,但是由于惯性的作用,线圈继续转动。线圈转过半州之后,虽然ab与cd的位置调换了,ab边转到S极范围内,cd边转到N极范围内,但是,由于换向片和电刷的作用,转到N极下的cd边中电流方向也变了,是从d流向c,在S极下的ab边中的电流则是从b流向a。因此,电磁力Fdc的方向仍然不变,线圈仍然受力按逆时针方向转动。可见,分别处在N、S极范围内的导体中的电流方向总是不变的,因此,线圈两个边的受力方向也不变,这样,线圈就可以按照受力方向不停的旋转了,通过齿轮或皮带等机构的传动,便可以带动其它工 作机械。 图2.1 从以上的分析可以看到,要使线圈按照一定的方向旋转,关键问题是当导体从一个磁极范围内转到另一个异性磁极范围内时(也就是导体经过中性面后),导体中电流的方向也要同时改变。换向器和电刷就是完成这个任务的装置。在直流发电机中,换向器和电刷的任务是把线圈中的交流电变为直流电向外输出;而在直流电动机中,则用换向器和电刷把输入的直流电变为线圈中的交流电。可见,换向器和电刷是直流电机中不可缺少的关键性部件。 当然,在实际的直流电动机中,也不只有一个线圈,而是有许多个线圈牢固地嵌在转子铁芯槽中,当导

直流电机运行特性分析(薛升俊蔡旭阳王镒川)

H a r b i n I n s t i t u t e o f T e c h n o l o g y 课程设计说明书(论文) 课程名称:电机学实验与仿真 设计题目:直流电机运行特性地分析院系:电气工程及自动化学院班级: 0806108班 设计者:薛升俊.蔡旭阳.王镒川学号: 1080610829 1080610824 1080610820 设计时间: 2011年1月3日 哈尔滨工业大学

目录 1. 仿真目地 (3) 2. 仿真原理与内容 (4) 2.1. 并励电动机地运行特性 (4) 2.2. 串励电动机地运行特性 (6) 2.3. 积复励电动机地运行特性 (7) 2.4. 差复励电动机地运行特性 (9) 3. 仿真结论 (12) 4. 仿真感想 (13) 5. 源程序 (14)

1.仿真目地 1.通过对不同励磁方式直流电动机地运行特性地分析比较,掌握因 励磁方式地不同对直流电机特性地影响; 2.应用MATLAB语句进行软件编程,对直流电机地运行特性进行了仿 真分析,表明MATLAB语言可作为电机仿真分析中地一种方便.快捷.有力工具; 3.通过建模.仿真,加深对直流电机运行特性地直观认识和理解地同 时,熟悉了MATLAB进行工程分析地方法与运用.

2. 仿真原理与内容 直流电动机地运行特性包括工作特性和机械特性(即转速—转矩特性).直流电动机地工作特性是指N U U =,励磁不变,电动机地转矩. 转速.效率与电枢电流或者输出功率地关系曲线.直流电动机地机械特性是指N U U =,fN f I I =,电枢回路电阻为常数时,转速与转矩之间地 关系曲线)(e T f n =. 由于直流电机地运行性能因励磁方式地不同有很大差异,我们将其分为四类,分别加以研究其转速特性和机械特性. 并励电动机地运行特性 转速特性)(a I f n =,并励电动机地工作特性是在电动机地端电压N U U =.励磁电流fN f I I =地条件下得到地,我们仅分析电动机地转速 n 与输出功率地关系)(2P f n =.由于在实际运行中a I 较易测得,且a I 随着2P 地增大而增大,故可以把工作特性表示为)(a I f n =. 由电动势公式和电压方程可以得到转速地数学表达式为a e a e e a I C R C U C E n φφφ-== 根据上面建立地数学表达式模型,我们用matlab 进行仿真,可得其图像如下:

各种电机电流计算方法

各种电机额定电流的计算 1、电机电流计算: 对于交流电三相四线供电而言,线电压是380,相电压是220,线电压是根号3相电压 对于电动机而言一个绕组的电压就是相电压,导线的电压是线电压(指A相 B相 C相之间的电压,一个绕组的电流就是相电流,导线的电流是线电流 当电机星接时:线电流=相电流;线电压=根号3相电压。三个绕组的尾线相连接,电势为零,所以绕组的电压是220伏当电机角接时:线电流=根号3相电流;线电压=相电压。绕组是直接接380的,导线的电流是两个绕组电流的矢量之和 功率计算公式 p=根号3 UI乘功率因数是对的 用一个钳式电流表卡在A B C任意一个线上测到都是线电流 三相的计算公式: P=1.732×U×I×cosφ (功率因数:阻性负载=1,感性负载≈0.7~0.85之间,P=功率:W) 单相的计算公式: P=U×I×cosφ 空开选择应根据负载电流,空开容量比负载电流大20~30%附近。P=1.732×IU×功率因数×效率(三相的) 单相的不乘1.732(根号3) 空开的选择一般选总体额定电流的1.2-1.5倍即可。

经验公式为: 380V电压,每千瓦2A, 660V电压,每千瓦1.2A, 3000V电压,4千瓦1A, 6000V电压,8千瓦1A。 3KW以上,电流=2*功率;3KW及以下电流=2.5*功率 2功率因数(用有功电量除以无功电量,求反正切值后再求正弦值)功率因数cosΦ=cosarctg(无功电量/有功电量) 视在功率S 有功功率P 无功功率Q 功率因数cosΦ 视在功率S=(有功功率P的平方+无功功率Q 的平方)再开平方 而功率因数cosΦ=有功功率P/视在功率S 3、求有功功率、无功功率、功率因数的计算公式,请详细说明下。(变压器为单相变压器) 另外无功功率的降低会使有功功率也降低么?反之无功功率的升高也会使有功功率升高么? 答:有功功率=I*U*cosφ即额定电压乘额定电流再乘功率因数 单位为瓦或千瓦 无功功率=I*U*sinφ,单位为乏或千乏. I*U 为容量,单位为伏安或千伏安. 无功功率降低或升高时,有功功率不变.但无功功率降低时,电流要降低,线路损耗降低,反之,线路损耗要升高. 4、什么叫无功功率?为什么叫无功?无功是什么意思?

三相异步电动机常见故障分析与排除示范文本

三相异步电动机常见故障分析与排除示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

三相异步电动机常见故障分析与排除示 范文本 使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 三相异步电动机应用广泛,但通过长期运行后,会发 生各种故障,及时判断故障原因,进行相应处理,是防止 故障扩大,保证设备正常运行的一项重要的工作。 一、通电后电动机不能转动,但无异响,也无异味和 冒烟。 1.故障原因①电源未通(至少两相未通);②熔丝熔 断(至少两相熔断);③过流继电器调得过小;④控制设 备接线错误。 2.故障排除①检查电源回路开关,熔丝、接线盒处是 否有断点,修复;②检查熔丝型号、熔断原因,换新熔 丝;③调节继电器整定值与电动机配合;④改正接线。

二、通电后电动机不转,然后熔丝烧断 1.故障原因①缺一相电源,或定干线圈一相反接;②定子绕组相间短路;③定子绕组接地;④定子绕组接线错误;⑤熔丝截面过小;⑤电源线短路或接地。 2.故障排除①检查刀闸是否有一相未合好,可电源回路有一相断线;消除反接故障;②查出短路点,予以修复;③消除接地;④查出误接,予以更正;⑤更换熔丝; ③消除接地点。 三、通电后电动机不转有嗡嗡声 l.故障原因①定、转子绕组有断路(一相断线)或电源一相失电;②绕组引出线始末端接错或绕组内部接反; ③电源回路接点松动,接触电阻大;④电动机负载过大或转子卡住;⑤电源电压过低;⑥小型电动机装配太紧或轴承内油脂过硬;⑦轴承卡住。 2.故障排除①查明断点予以修复;②检查绕组极性;

相关文档
最新文档