平面盘型凸轮设计说明
机械设计基础-盘形凸轮轮廓的设计与加工
凸轮转角
0°~180°
180°~300°
300°~360°
从动件的运动规律
等速上升30 mm
等加速等减速下降回到原处
停止不动
试设计此凸轮轮廓曲线。
解:设计步骤如下:1.按一定比例尺 =0.002 m/mm绘制从动件的位移线图(见下图(a))。
对心直尖顶从动件盘形凸轮轮廓的设计
二、凸轮机构基本尺寸的确定
1.凸轮机构的压力角
2.基园半径的确定教学方法:利用动画演示作图法设计凸轮轮廓曲线的方法和步骤
课程作业或思考题:1、用反转法设计盘形凸轮的廓线时,应注意哪些问题?移动从动件盘形凸轮机构和摆动从动件盘形凸轮机构的设计方法各有什么特点?
参考资料或常用网址:韩玉成.机械设计基础.北京.电子工业出版社;庄宿涛.成都.西南交通大学出版社;徐刚涛.北京.高等教育出版社;http//
教具:多媒体
基本教材:陈立德《机械设计基础》(第四版)
课时安排:4
教学目的(分掌握、熟悉、了解三个层次):1.了解凸轮轮廓“反转法原理”的设计方法;2.熟悉作图法设计凸轮轮廓曲线的方法;3.掌握凸轮机构基本尺寸的确定。
教学重点、难点#
重点:作图法设计凸轮轮廓曲线
难点:作图法设计凸轮轮廓曲线
凸轮轮廓的设计原理按从动件的已知运动规律绘制凸轮轮廓的基本原理是反转法。根据相对运动原理,若将上图所示的整个凸轮机构(凸轮、从动件、机架)加上一个与凸轮角速度大小相等、方向相反的公共角速度( ),此时各构件之间的相对运动关系不变。这样,凸轮静止不动,而从动件一方面随机架和导路一起以等角速度“ ”绕凸轮转动,另一方面又按已知运动规律在导路中作往复移动(或摆动)。由于从动件的尖顶始终与凸轮轮廓保持接触,所以反转后从动件尖顶的运动轨迹就是凸轮轮廓。
第4.3节(盘形凸轮廓线的设计)
第三节 盘形凸轮廓线的设计当根据工作要求和结构条件选定了凸轮机构的类型、从动件的运动规律和凸轮的基圆半径(其确定将在下节中介绍)等结构参数后,就可以设计凸轮的轮廓曲线。
凸轮廓线的设计方法有图解法和解析法,其设计原理基本相同。
本节先简要介绍图解法,后重点介绍解析法设计凸轮廓线。
一、凸轮廓线设计的基本原理图4-13 反转法设计凸轮廓线基本原理图4-13所示为一尖顶对心盘形凸轮机构,设凸轮以等角速度ω逆时针转动,推动从动件2在导路中上、下往复移动。
当从动件处于最低位置时,凸轮轮廓曲线与从动件在A 点接触,当凸轮转过1ϕ角时,凸轮的向径A A 0将转到A A '0位置,而凸轮轮廓将转到图中虚线所示的位置。
从动件尖端从最低位置A 上升至B ',上升的位移为B A S '=1,这是从动件的运动位移。
若设凸轮不动,从动件及其运动的导路一起绕A 0点以等角速度-ω转过1ϕ角,从动件将随导路一起以角速度-ω转动,同时又在导路中作相对导路的移动,如图中的虚线位置,此时从动件向上移动的位移为B A 1。
而且,11S B A B A ='=,即在上述两种情况下,从动件移动的距离不变。
由于从动件尖端在运动过程中始终与凸轮轮廓曲线保持接触,所以从动件尖端的运动轨迹即为凸轮轮廓。
设计凸轮廓线时,可由从动件运动位移先定出一系列的B 点,将其连接成光滑曲线,即为凸轮廓线。
由于这种方法是假设凸轮固定不动而使从动件连同导路一起反转,故称为反转法。
对其它类型的凸轮机构,也可利用反转法进行分析和凸轮廓线设计。
二、图解法设计凸轮廓线1. 移动从动件盘形凸轮廓线的设计(1)尖端从动件 图4-14a 所示为一偏置移动尖端从动件盘形凸轮机构。
设已知凸轮的基圆半径为b r ,从动件导路偏于凸轮轴心A 0的左侧,偏距为e ,凸轮以等角速度ω顺时针方向转动。
从动件的位移曲线如图4-14b 所示,试设计凸轮的轮廓曲线。
图4-14 尖端从动件盘形凸轮廓线设计依据反转法原理,具体设计步骤如下。
凸轮机构
一、滚子半径的选择
滚子半径 rT 过大,导致实际轮 廓线变尖或交叉,如b、c所示。 ' rT , '实际轮廓曲率半径;
理论轮廓曲率半径; rT 滚子半径;
当 rT, ' 0,实际轮廓线为 光滑连续的曲线,没问 题; 当 rT, ' 0,实际轮廓线交叉, ,加工时被切除,导致 从动件运动
§第一节 凸轮机构的基本类型
二、凸轮机构的分类
移动凸轮
1.按凸轮的形状
当盘形构件的回 转中心趋于无穷 大时,绕轴转动 的盘形凸轮就变 成相对于机架作 往复直线移动的 凸轮。
§第一节 凸轮机构的基本类型
二、凸轮机构的分类
圆柱凸轮
1.按凸轮的形状
凸轮的轮廓曲线位于圆柱面上,它可以看作是把移动凸轮 卷成圆柱体而得。
(1)力封闭:利用从动件的重力、弹簧力或其他外力使从动件与 凸轮保持接触,如图6-1所示。 (2)形封闭:依靠凸轮与从动件的特殊结构来保持从动件与凸轮 接触,如图6-2所示。
§第一节 凸轮机构的基本类型
二、凸轮机构的分类 3.按凸轮与从动件保持接触的方式分
(2)形封闭:依靠凸轮与从动件的特殊结构来保持从 动件与凸轮接触,下图是常用的形封闭凸轮机构。
2.对心滚子直动从动件盘形凸轮
已知凸轮的基圆半径rb 、滚子半径rT 、角速度 ω和从动件的运动规律,设计该凸轮轮廓曲线。
8’
-ω
ω
7’ 5’ 3’ 1’
9’ 11’ 12’
13’ 14’ 9 11 13 15
理论轮廓η
1 3 5 78
设计步骤小结: 实际轮廓η’ ①选比例尺μ l作基圆rb。 ②反向等分各运动角。原则是:陡密缓疏。 ③确定反转后,从动件尖顶在各等份点的位置。 ④将各尖顶点连接成一条光滑曲线。 ⑤作各位置滚子圆的内(外)包络线。
凸轮机构基本参数的设计
凸轮机构基本参数的设计前节所先容的几何法和解析法设计凸轮轮廓曲线,其基圆半径r0、直动从动件的偏距e或摆动从动件与凸轮的中心距a、滚子半径rT等基本参数都是预先给定的。
本节将从凸轮机构的传动效率、运动是否失真、结构是否紧凑等方面讨论上述参数的确定方法。
1 凸轮机构的压力角和自锁图示为偏置尖底直动从动件盘形凸轮机构在推程的一个位置。
Q为从动件上作用的载荷(包括工作阻力、重力、弹簧力和惯性力)。
当不考虑摩擦时,凸轮作用于从动件的驱动力F是沿法线方向传递的。
此力可分解为沿从动件运动方向的有用分力F'和使从动件紧压导路的有害分力F''。
驱动力F与有用分力F'之间的夹角a(或接触点法线与从动件上力作用点速度方向所夹的锐角)称为凸轮机构在图示位置时的压力角。
显然,压力角是衡量有用分力F'与有害分力F''之比的重要参数。
压力角a愈大,有害分力F''愈大,由F''引起的导路中的摩擦阻力也愈大,故凸轮推动从动件所需的驱动力也就愈大。
当a增大到某一数值时,因F''而引起的摩擦阻力将会超过有用分力F',这时无论凸轮给从动件的驱动力多大,都不能推动从动件,这种现象称为机构出现自锁。
机构开始出现自锁的压力角alim称为极限压力角,它的数值与支承间的跨距l2、悬臂长度l1、接触面间的摩擦系数和润滑条件等有关。
实践说明,当a增大到接近alim时,即使尚未发生自锁,也会导致驱动力急剧增大,轮廓严重磨损、效率迅速降低。
因此,实际设计中规定了压力角的许用值[a]。
对摆动从动件,通常取[a]=40~50;对直动从动件通常取[a]=30~40。
滚子接触、润滑良好和支承有较好刚性时取数据的上限;否则取下限。
对于力锁合式凸轮机构,其从动件的回程是由弹簧等外力驱动的,而不是由凸轮驱动的,所以不会出现自锁。
因此,力锁合式凸轮机构的回程压力角可以很大,其许用值可取[a]=70~80。
第4.4节(凸轮机构基本尺寸的设计)
第四节 凸轮机构基本尺寸设计无论是作图法还是解析法,在设计凸轮廓线前,除了需要根据工作要求选定从动件的运动规律外,还需要确定凸轮机构的一些基本参数,如基圆半径b r 、偏距e 、滚子半径r r 等。
一般来讲,这些参数的选择除了应保证从动件能够准确地实现预期的运动规律外,还应当使机构具有良好的受力状况和紧凑的结构。
本节讨论凸轮机构基本尺寸设计的原则和方法。
一、移动滚子从动件盘形凸轮机构1. 压力角同连杆机构一样,压力角也是衡量凸轮机构传力特性好坏的一个重要参数。
所谓凸轮机构的压力角,是指在不计摩擦的情况下,凸轮对从动件作用力的方向线与从动件上力作用点的速度方向之间所夹的锐角。
对于图4-22所示的移动滚子从动件盘形凸轮机构来说,过滚子中心所作理论廓线的法线nn 与从动件运动方向之间的夹角α就是压力角。
(1)压力角与作用力的关系 由图4-22可以看出,凸轮对从动件的作用力F 可以分解成两个分力,即沿着从动件运动方向的分力F '和垂直于运动方向的分力F ''。
只有前者是推动从动件克服载荷的有效分力,而后者将增大从动件与导路间的摩擦,它是一种有害分力。
压力角α越大,有害分力越大。
当压力角α增大到某一数值时,有害分力所引起的摩擦阻力将大于有效分力F ',这时无论凸轮给从动件的作用力有多大,都不能推动从动件运动,即机构将发生自锁。
因此为减小侧向推力,避免自锁,压力角α应越小越好。
图4-22 凸轮机构的压力角(2)压力角与机构尺寸的关系 设计凸轮时,除了应使机构具有良好的受力状况外,还希望机构结构紧凑。
而凸轮尺寸的大小取决于凸轮基圆半径的大小。
在实现相同运动规律的情况下,基圆半径越大,凸轮的尺寸也越大。
因此,要获得轻便紧凑的凸轮机构,就应当使基圆半径尽可能地小。
但是基圆半径的大小又和凸轮机构的压力角有直接的关系。
下面以图4-22为例来说明这种关系。
图中,过滚子中心B 所作理论廓线的法线nn 与过凸轮轴心0A 所作从动件导路的垂线交于P 点,由瞬心定义可知,该点即为凸轮与从动件在此位置时的瞬心,且ϕωd ds v P A ==0。
凸轮设计方法
平面凸轮机构基本尺寸的确定
凸轮基圆半径的确定 一、基圆半径对压力角的影响
ds/d e PD OP e tan s0 s BD r02 e 2 s
增大基圆半径,可使凸轮机构的压力角减小; 增大基圆半径会使凸轮机构的整体尺寸增大 在压力角不超过许用值的原则下,应尽可能采用 较小的基圆半径。
从动件尖底的运 动轨迹就是凸轮 的廓线
偏置直动尖顶从动件
s
e
120° 90 ° 90 ° 60 °
偏置直动尖顶从动件
s
e 120 ° 90 ° 90 ° 60 °
偏置直动尖顶从动件
s
1
2 3
4 5
6
7
8 9
e
1 2 3 9 8
4
6
7
5
偏置直动尖顶从动件
s
120 ° 90 ° 90 ° ° 60
• 偏置直动尖顶从动件盘形凸轮 • 偏置直动滚子从动件盘形凸轮 • 对心直动平底从动件
摆动从动件盘形凸轮
凸轮廓线设计的基本原理——反转法 为了便于绘出凸轮轮廓 曲线, 应使工作中转动着的 凸轮与不动的图纸间保持相 对静止。 如果给整个凸轮机构加 上一个与凸轮转动角度ω数 值相等、 方向相反的“-ω” 角速度, 则凸轮处于相对静 止状态。
从动件的基本运动规律
从动件位移s对凸轮转角的函数
s
关系s( )称为从动件运动规律
ds s d
d 2s s d 2
s
s
s( ) — 类速度 s( ) — 类加速度
0
ds ds d v s dt d dt d 2 s d 2 s d 2 2 a 2 ( ) s 2 dt d dt
凸轮轮廓课程设计对心直动平底从动件盘形凸轮机构的设计
广东工业大学华立学院课程设计(论文)课程名称机械原理课程设计题目名称对心直动平底从动件盘形凸轮机构的设计学生学部(系)机电工程学部专业班级10机械2班学号 (40)学生姓名~开指导教师2012年06月30日广东工业大学华立学院课程设计(论文)任务书一、课程设计(论文)的内容通过利用AutoCAD软件、AutoCAD二次开发技术绘制对心直动平底从动件盘形凸轮轮廓,用图解法进行对心直动平底从动件盘形凸轮机构的设计,计算出平底推杆平底尺寸长度,最后查验压力角是不是知足许用压力角的要求。
1)二、课程设计(论文)的要求与数据1.用图解法设计盘形凸轮机构,并用CAD画出凸轮轮廓。
2.用图解法设计盘形凸轮机构,并求出平底推杆平底尺寸长度。
3.按照从动件的运动规律计算出位移并绘画该曲线在图纸上;4.查验压力角是不是知足许用压力角的要求;5.编写课程设计说明书三、课程设计(论文)应完成的工作1.绘制对心直动平底从动件盘形凸轮轮廓机构的设计简图。
2.绘制出从动件的位移曲线图。
3.查验压力角是不是知足许用压力角的要求而且计算出平底推杆平底尺寸长度。
4.完成课程设计说明书。
四、课程设计(论文)进程安排五、应搜集的资料及主要参考文献[1] ]孙恒.机械原理(第七版)[M] .北京:高等教育出版社,2006[2]孙恒.机械原理(第六版)[M] .北京:高等教育出版社,2001[3]曹金涛.凸轮机构设计[M].北京:机械工业出版社,1985.[4]管荣法.凸轮与凸轮机构基础.[M] 北京:国防工业出版社,1985发出任务书日期:2012 年6 月16日指导教师签名:计划完成日期:2012 年6 月30 日教学单位责任人签章:目录(一).设计题目:对心直动平底从动件盘形凸轮轮廓机构的设计 (6)(二)凸轮轮廓曲线的设计的大体原理: (6)(三)运动规律分析: (7)(四)用作图法设计对心直动平底从动件盘形凸轮机构: (7)(五)计算平底推杆平底尺寸长度 (11)(六)压力角分析 (12)参考文献 (13)摘 要在凸轮轮廓曲线设计的图解法中应用AutoCAD 软件进行辅助设计和计算,维持了图解法原理简单、方式直观、易于掌握的长处。
机械原理凸轮机构基本尺寸(1)
机械原理
第9章 凸轮机构及其设计
第9章 思考题
1。在设计直动推杆盘形凸轮机构的凸轮廓线时,若 机构的最大压力角超出了许用值,试问可采用哪 几种措施来减小最大压力角或增大许用压力角?
2。设计凸轮基圆半径时应考虑哪些因素?
3。若用滚子推杆的凸轮机构,当出现运动失真时, 应采取哪些措施?
(3)图示位置时推杆位移?
8。图示为摆动滚子推杆盘形 凸轮机构:凸轮是一个半 径为R的偏心圆盘,滚子半 径为r,
(1)基圆半径r0? (2)当滚子从C到D点接触过 程中,凸轮转过多大角度?
机械原理
第9章 凸轮机构及其设计
9。为什么要对凸轮机构的压力角加以限制(应对推程和 回程分别讨论)?
10。当直动尖顶推杆盘形凸轮机构发生自锁现象时,应 采取哪些措施?
平底从动件也会出现运动失
真的情况:一方面,要保证从 动件平底 与凸轮总是相切接触,
则平底的尺寸需要足够大,否 则就会出现运动失真;另一方 面,具有平底从动件的凸轮机 构,其凸轮轮廓的向径不能变 化太快,否则也会出现运动失 真,可加大基圆半径来消除这 种失真。
平底尺寸:
l 2lmax (5 ~ 7)mm
讨论压力角:
(1)压力角是推杆与凸轮接触点处 凸轮法线方向与推杆该点的速度 方向所夹的锐角;
(2)当凸轮廓线的不同点与推杆接 触时,压力角也不同;
(3)压力角是对应于凸轮的理论廓 线的。
不同机构压力角的标定:
机械原理
第9章 凸轮机构及其设计
机械原理
第9章 凸轮机构及其设计
二、凸轮基圆半径的确定
基圆半径与压力角的关系:
机械原理 凸轮机构及其设计
第六讲凸轮机构及其设计(一)凸轮机构的应用和分类一、凸轮机构1.组成:凸轮,推杆,机架。
2.优点:只要适当地设计出凸轮的轮廓曲线,就可以使推杆得到各种预期的运动规律,而且机构简单紧凑。
缺点:凸轮廓线与推杆之间为点、线接触,易磨损,所以凸轮机构多用在传力不大的场合。
二、凸轮机构的分类1.按凸轮的形状分:盘形凸轮圆柱凸轮2.按推杆的形状分尖顶推杆:结构简单,能与复杂的凸轮轮廓保持接触,实现任意预期运动。
易遭磨损,只适用于作用力不大和速度较低的场合滚子推杆:滚动摩擦力小,承载力大,可用于传递较大的动力。
不能与凹槽的凸轮轮廓时时处处保持接触。
平底推杆:不考虑摩擦时,凸轮对推杆的作用力与从动件平底垂直,受力平稳;易形成油膜,润滑好;效率高。
不能与凹槽的凸轮轮廓时时处处保持接触。
3.按从动件的运动形式分(1)往复直线运动:直动推杆,又有对心和偏心式两种。
(2)往复摆动运动:摆动推杆,也有对心和偏心式两种。
4.根据凸轮与推杆接触方法不同分:(1)力封闭的凸轮机构:通过其它外力(如重力,弹性力)使推杆始终与凸轮保持接触,(2)几何形状封闭的凸轮机构:利用凸轮或推杆的特殊几何结构使凸轮与推杆始终保持接触。
①等宽凸轮机构②等径凸轮机构③共轭凸轮(二)推杆的运动规律一、基本名词:以凸轮的回转轴心O为圆心,以凸轮的最小半径r为半径所作的圆称为凸轮的基圆,r称为基圆半径。
推程:当凸轮以角速度转动时,推杆被推到距凸轮转动中心最远的位置的过程称为推程。
推杆上升的最大距离称为推杆的行程,相应的凸轮转角称为推程运动角。
回程:推杆由最远位置回到起始位置的过程称为回程,对应的凸轮转角称为回程运动角。
休止:推杆处于静止不动的阶段。
推杆在最远处静止不动,对应的凸轮转角称为远休止角;推杆在最近处静止不动,对应的凸轮转角称为近休止角二、推杆常用的运动规律1.刚性冲击:推杆在运动开始和终止时,速度突变,加速度在理论上将出现瞬时的无穷大值,致使推杆产生非常大的惯性力,因而使凸轮受到极大冲击,这种冲击叫刚性冲击。
凸轮设计——精选推荐
第九章凸轮机构及其设计§9.1 凸轮机构的应用及分类一、凸轮机构的应用凸轮机构是由具有曲线轮廓或凹槽的构件,通过高副接触带动从动件实现预期运动规律的一种高副机构。
广泛地应用于各种机械,特别是自动机械、自动控制装置和装配生产线中。
(尤其是需要从动件准确地实现某种预期的运动规律时)常用于将“简单转动”→“复杂移动”、“复杂摆动”、“与其它机构组合得到复杂的运动”。
图示为内燃机配气凸轮机构。
具有曲线轮廓的构件1叫做凸轮,当它作等速转动时,其曲线轮廓通过与推杆2的平底接触,使气阀有规律地开启和闭合。
工作对气阀的动作程序及其速度和加速度都有严格的要求,这些要求都是通过凸轮的轮廓曲线来实现的。
组成:凸轮、从动件、机架(高副机构)。
二、凸轮机构的特点1)只需改变凸轮廓线,就可以得到复杂的运动规律;2)设计方法简便;3)构件少、结构紧凑;4)与其它机构组合可以得到很复杂的运动规律5)凸轮机构不宜传递很大的动力;6)从动件的行程不宜过大;7)特殊的凸轮廓线有时加工困难。
三、凸轮机构的类型凸轮机构的分类:1)盘形凸轮按凸轮形状分:2)移动凸轮3)柱体凸轮1)尖底从动件;按从动件型式分:2)滚子从动件;3)平底从动件1)力封闭→弹簧力、重力等按维持高副接触分(封闭)槽形凸轮2)几何封闭等宽凸轮等径凸轮共轭凸轮§9.2 从动件常用运动规律设计凸轮机构时,首先应根据工作要求确定从动件的运动规律,然后再按照这一运动规律设计凸轮廓线。
以尖底直动从动件盘形凸轮机构为例,说明从动件的运动规律与凸轮廓线之间的相互关系。
基本概念:基圆——凸轮理论轮廓曲线最小向径.r0所作的圆。
行程——从动件由最远点到最近点的位移量h(或摆角 )推程——从动件远离凸轮轴心的过程。
回程——从动件靠近凸轮轴心的过程。
推程运动角——从动件远离凸轮轴心过程,凸轮所转过的角度。
回程运动角——从动件靠近凸轮轴心过程,凸轮所转过的角度。
远休止角——从动件在最远位置停留过程中凸轮所转过的角度。
凸轮机构的设计
(3)、许用压力角 为了提高机构的效率、改善其受力情况,通常 规 定 一 许 用 压 力 角 [α] , 使 。 推 程 : 直 动 推 杆 取 [α] = 300 ; 摆 动 推 杆 [α] = 400 ~ 500 ; 回程:通常不会引起自锁问题,但为了使推杆不至产生过大的加速 度从而引起不良后果,通常取 [α]= 700~800。 (4)、压力角校核 αmax一般出现在 1)从动件的起点位置 2)从动件最大速度位置 3)凸轮轮廓向径变化最大部分 滚子从动件按理论轮廓校核 平底从动件一般α=0,不需校核 若αmax > [α]: 增大基圆半径 偏置从动件
4、偏置直动尖顶从动件盘形凸轮机构 已知条件:已知凸轮的基圆半径为r0,凸轮转动方向。凸轮转 动中心与从动件摆动中心的距离,摆动从动件的长度,已知 从动件的运动规律,试设计。(从动件的位移是角位移 )
A0
ψ0 B1 B’1 φ o ω
1
-ω
ψ1 B2 ψ2
A1
B0
B’2
2
A2
φ
三、凸轮机构基本尺寸的确定
图所示为工程上常用的诺模 图,图中上半圆的标尺代表 凸轮转角δ0,下半圆的标尺 为最大压力角α max,直径 的标尺代表从动件规律的 h/rb的值(h为从动件的行程, rb为基圆半径)。下面举例 说明该图的使用方法。
2、凸轮压力角的校核
(1)、凸轮机构的压力角定义 凸轮机构从动件作用力的方向线与从动 件上力作用点的速度方向之间所夹的锐角, 用α表示。 (2)、压力角与作用力以及机构尺寸的关系 将凸轮对从动件的作用力F分解为F1和F2 。F2为有效分力,F1为有害分力,当压力角 α越大,有害分力F1越大,如果压力角增大 ,有害分力所引起的摩擦阻力也将增大,摩 擦功耗增大,效率降低。
机械原理课程设计说明书-偏置直动滚子盘形凸轮设计
机械原理课程设计说明书-偏置直动滚子盘形凸轮设计一、设计目的本次课程设计旨在通过实际设计偏置直动滚子盘形凸轮的过程,巩固学生对机械原理知识的掌握和理解,同时培养学生的机械设计能力和实践能力。
二、设计原理偏置直动滚子盘形凸轮是一种用于传递旋转运动的机构,其中凸轮为驱动部件,用于带动连杆的运动。
本次设计采用的偏置直动滚子盘形凸轮结构如下图所示:图1 偏置直动滚子盘形凸轮结构示意图凸轮为圆盘形,上面的轮廓线曲线称为凸轮轮廓线。
偏置直动滚子盘形凸轮上轴心方向的轴向偏置距离称为偏置距离,用e表示。
偏置直动滚子盘形凸轮的压力角为20度,压力角是指接触点处的相对速度方向与接触面法线平面的夹角。
三、设计要求本次设计的偏置直动滚子盘形凸轮需满足如下要求:1.凸轮的转速不超过100r/min;2.凸轮的凸、凹半径分别为25mm和13mm;3.凸轮的周期为360度,接触点运动时间占周期的50%;4.滚子的径向力不超过80N;5.滚子的内侧应由导槽限制;6.选择合适的材料,确保凸轮的寿命不低于8000小时;7.设计合理的润滑方式,保证摩擦性能良好。
四、设计步骤1.确定凸轮的凸、凹半径,周期和压力角。
按照要求绘制凸轮轮廓线,同时确定凸轮的偏置距离和滚子直径;2.确定凸轮和连杆的相对位置,确定滚子位置,设计导槽保证滚子不脱离凸轮;3.选择合适的材料,计算凸轮的耐疲劳寿命;4.设计合理的润滑方式,计算滚子的径向力,保证润滑效果良好;5.进行CAD三维建模,绘制装配图。
五、设计计算1.凸轮的轮廓线曲线为时钟曲线,其方程为:x=cosθ+eθsinθy=sinθ-eθcosθ其中,e为偏置距离,θ为角度;2.滚子直径为8mm;3.滚子径向力计算:F=2.5(Pmax+Plub)sinΔ/2其中,Pmax为接触点最大压力,Plub为黏着力,Δ为凸轮周期的50%;4.凸轮的材料为40Cr,按照材料参数计算凸轮的寿命。
六、设计结果按照上述设计流程,在CAD中建立模型并绘制装配图。
第3章 凸轮机构
2 0
02
a
4h12
/
2 0
推程时等减速段
s
h 2h(0 4h1 (0
)2 /
)
/
2 0
2 0
a
4h12
/
2 0
速度连续,加速度不
连续,称为柔性冲击。
用于中、低速场合。
§3 – 2 从动件的常用运动规律
V0=0,
等加速等减速
s
1 2
at 2
当时间为→ 位移为 →
1 1
: :
2 4
: :
对心直动尖顶从动件盘形凸轮机构 摆动滚子从动件盘形凸轮机构
§3 – 2 从动件的常用运动规律
凸轮机构的运动循环及基本名词术语
凸轮机构的一个运动循环大 致包括:推程、远休程、回 程、近休程四个部分
§3 – 2 从动件的常用运动规律
基圆:以轮廓的最小向径所作的圆 r0-基圆半径 推程:从动件从离回转中心最近→最远的这一过程。 升程h:推程所移动的距离。
机械设计基础
机械设计基础
绪论
机械零件设计概论
平面机构的自由度和速度分析
连接
平面连杆机构
齿轮传动
凸轮机构
蜗杆传动
齿轮机构
带传动和链传动
轮系
轴间歇运动机构 机构运转速 Nhomakorabea波动的调节
滑动轴承
滚动轴承
联轴器、离合器和制动器
回转件的平衡
弹簧
第3章 凸轮机构
§3 – 1 凸轮机构的应用和类型 §3 – 2 从动件的常用运动规律 §3 – 3 凸轮机构的压力角 §3 – 4 图解法设计凸轮轮廓 §3 – 5 解析法设计凸轮轮廓*
什么是凸轮机构
第四章-凸轮机构解读
首先,作出理论廓线
B
o
理论廓线与实际廓 线是两条平行线
o
B T
滚子与实际廓线的接 触点T不一定在滚子中 心与导路的方向线上。
所以不能用理论廓 线的各点向径OB减
o 去滚子半径rT,求实
际廓线.
n
B
d
T
3、平底从动件
(1)取平底与导路的交点B0为参考点 (2)把B0看作尖底,运用上述方法找到B1、B2… (3)过B1、B2…点作出一系列平底,得到一直线族。 作出直线族的包络线,便得到凸轮实际轮廓曲线。
s) cos s)sin
式2
(2)摆动从动件盘形凸轮机构
摆动滚子从动件盘形凸轮机构。仍用反转法使凸轮固定不动,而
从动件沿-ω方向转过角度,滚子中心将位于B点。B点的坐标,
亦即理论廓线的方程为:
x y
a cos a sin
l l
cos( sin(
0 0
3、还有5次多项式等其他的多项式运动规律,但多项式的次数 一般不超过7次。
4、为了获得更好的运动特征,可以把上述几种运动规律组合 起来应用。组合时,两条曲线在拼接处必须保持连续。
§4-3 凸轮轮廓的设计
设计方法:作图法,解析法
已知 0 , e, S , 转向。作图法设计凸轮轮廓
一、直动从动件盘形凸轮机构反转法
缺点
(1) 高副接触,传力小,易磨损。 (2) 不易保持高副接触。 (3) 加工较困难。 (4) 从动件的行程不能过大。
返回节目录
凸轮机构的设计任务
为满足凸轮机构的输出件提出的运动要求、动力 要求等,凸轮机构的设计大致可分成以下四步:
上海理工大学 机械原理与机械零件 第三章 凸轮机构
s2= h(θ –cosθ ) /2
推 程 运 动 规 律 图
a2|t =0= 0 a2|t =T =0 无冲击,适用于 高速场合。
§3-3 盘形凸轮轮廓的设计
根据工作要求合理地选择从动件的运动规律, 然后 根据机构的空间要求和其它具体要求, 设计凸轮轮廓 (图解法/解析法)。 ( ) s( )
绕轴心O 顺时针转动, lOA=30 mm, 滚子半径rT=12mm, 试求:
1) 凸轮的基园半径r0;
2) 从动件的升程h ;
3) 推程运动角δt ,回程运动
角δh,远休止角δs 和近休 止角δs’ ; 4) 在图中标出B点的从动件 位移S 和压力角α 。
5/5
滚子直动从动件盘形凸轮 已知:从动件位移线图,凸
rmin 在理 论轮廓上
轮的基圆半径rmin , 凸轮角速 度ω1 , 滚子半径rT 设计说明: 1) 将滚子中心看作尖顶,然 后按尖顶推杆凸轮廓线的设 计方法确定滚子中心的轨迹, 称其为凸轮的理论廓线; 2) 以理论廓线上各点为圆心, 以滚子半径rr为半径,作一 系列圆;
摆动从动件的结构型式
习题讲解
P54~55:题3-7、3-9~11、 3-13~15
作 业
P54:题3-8、3-12
复习与练习
一、填空: 1、凸轮机构按凸轮形状可分为 、 和 。按从动件型式可分为 、 和 三种。 2、在图解法设计滚子从动件凸轮中,把滚子中心的轨 迹称为凸轮 ;为使凸轮型线在任何位 置既不变尖,更不相交,就要求滚子半径必须小于 的最小曲率半径。 3、凸轮机构中,从动件采用等加速等减速运动规律时, 将引起 冲击,采用等速运动规律时会引 起 冲击。
机械零件设计 凸轮机构(2)
s2
B’
D δ’s
h
A rmin
o δt δs
回程运动角h :与回程对应的 凸轮转角h称为回程运动角。
δt
δh
ω1
δs 设计:潘存云 B
t δh δs’ δ1
近休止角s’ :从动件在最近 位置停留不动时,凸轮的转角。
C
图3-5 盘形凸轮机构
12
10
顶等条曲在光分④线各滑③①②各、将等曲运基等确选各分线动圆分定比点尖。角r位反例b占顶和,移转尺据点偏确曲后的距连l定,线从位圆接作反及动置e成位。转反件。一移向后尖 11
9
对应于各等分点的从动件的
位置。
10 9
3、对心滚子直动从动件盘形凸轮
滚子直动从动件凸轮机构中,已知凸轮的基圆
半径rmin,角速度ω1和从动件的运动规律,设
根据工作要求选定推杆运动规律,正确绘制运动简图 是凸轮轮廓曲线设计的基础。
一、名词术语与基本概念
名词术语:如图3-5所示 。
基圆:以凸轮轮廓的最小向径rmin为半径所绘的圆。
rmin (r0)——基圆半径
推程:凸轮以角速度1推动 从动件以一定运动规律由最 低 位 置 A 到 达 最 高 位 置 B' 的 过程。
运动规律:推杆在推程或回程时,其位移S2、速度V2、和加速
度a2 随时间t 的变化规律。 S2=S2(t)
V2=V2(t)
a2=a2(t)
s2 位移曲线
B’
以直角坐标中的横轴代表 凸轮转角δ1(t),纵轴代表
h
A
t
D δ’s rmin
o δt δs δh δ’s δ1
机械设计凸轮机构设计
2)滚子从动件:从动件的端部装有滚子。 特点: 从动件与凸轮之间可形成滚动摩擦,所以磨损显著减 少,能承受较大载荷,应用较广。但端部重量较大, 又不易润滑,故仍不宜用于高速。
3)平底从动件:从动件端部为一平底。 特点: 若不计摩擦,凸轮对从动件的作用力始终垂直于 平底,传力性能良好,且凸轮与平底接触面间易 形成润滑油膜,摩擦磨损小、效率高,故可用于 高速,缺点是不能用于凸轮轮廓有内凹的情况。
一、凸轮机构的基本术语
以尖顶从动件为对象予以介绍
基圆—以凸轮理论轮廓最小向
径r0为半径所作的圆。
基圆半径—r0 推程—从动件从距离凸轮回 转中心最近位置到距离凸轮 回转中心最远位置的过程, 称为推程。 推程运动角δt —从动件推程 过程,对应凸轮转角称为推
r0 对心式尖顶从动 件盘形凸轮机构
ω
δt
送料机构
内燃机气门机构
应用实例:
盘形凸轮机构
等径凸轮机构
在印刷机中的应用
在机械加工中的应用
利用分度凸轮 机构实现转位
圆柱凸轮机构在机 械加工中的应用
三、凸轮机构的分类 1、按凸轮的形状分类
1)盘形凸轮:凸轮为一绕固定轴线转动且有变化向 径的盘形构件。
盘形凸轮机构简单, 应用广泛,但限于凸 轮径向尺寸不能变化 太大,故从动件的行 程较短。
对于高速凸轮机构,宜选择 amax值较小的运动规律。
若干种从动件运动规律特性比较
运动规律 等速
( hw / δ t )
1.00
vmax
a max
( hw 2 / δ t )
2
冲 击 刚性 柔性 柔性
应用场合 低速轻负荷
∞
等加速等减速 余弦加速度
正弦加速度 3-4-5多项式 改进型等速 改进型正弦加速度 改进型梯形加速度
实验二盘形凸轮轮廓曲线设计
湖南安全技术职业学院课程设计说明书设计题目:盘形凸轮轮廓曲线的设计专业班级:安全技术管理0704设计人:_______________指导人:_______________ 二○○八年十一月二十六日一、设计题目:盘形凸轮轮廓曲线设计二、设计内容:设计盘形凸轮轮廓曲线。
凸轮基圆半径r b=20mm,滚子半径r T=8mm,凸轮等角速度逆时针回转,从动件的运动规律为:1.绘制当从动件为尖顶直动从动件时,盘形凸轮轮廓曲线;2.绘制当从动件为滚子直动从动件时,盘形凸轮轮廓曲线。
三、设计原理用图解法设计盘形凸轮轮廓采用的方法是反转法。
即给整个凸轮机构加上一个公共角速度(-ω),这时凸轮与从动件之间的相对运动并未改变,但凸轮变为相对静止,而从动件与机架连同导路一方面以角速度(-ω)绕轴心O回转,另一方面从动件又相对于机架导路作往复移动。
由于从动件的尖顶始终与凸轮轮廓保持接触,所以,反转后尖顶的运动轨迹就是凸轮轮廓。
四、设计步骤:1.选取适当比例尺作位移曲线,选比例尺μl=0.5mm/mm,角度比例尺μδ=3°/mm。
2.作基圆取分点任取一点O为圆心;以点A0为从动件尖顶的最低点,由比例尺取r b=40mm 作基圆。
从B点始,按(- )方向取推程角、回程角和近停程角,并分成与位移线图对应的相同等分,得分点B1、B2、…、B11与B点重合。
3.画凸轮轮廓曲线(1)对心尖顶移动从动件盘形凸轮轮廓曲线(2)滚子移动从动件盘形凸轮轮廓曲线。
把滚子中心看做对心尖顶移动从动件的尖顶,按给定的运动规律绘制出曲线为凸轮的理论轮廓。
(3)从动件为滚子时,把尖顶看作是滚子中心,以理论轮廓曲线上的各点为圆心,以滚子半径8mm为半径,作一系列滚子圆,滚子的内包络线,为滚子凸轮的实际轮廓线`。
凸轮的基圆指的是理论轮廓线上的。
机械原理课程设计凸轮机构
Part Three
机械原理课程设计 凸轮机构方案
设计目的和要求
设计目的:掌握凸轮机构的基本原 理和设计方法
设计内容:包括凸轮机构的设计、 制造、装配和调试
添加标题
添加标题
添加标题
添加标题
设计要求:满足凸轮机构的运动要 求,如速度、加速度、行程等
设计步骤:明确设计任务、选择设 计方案、进行设计计算、绘制设计 图纸、制作模型、进行实验验证等
凸轮轮廓曲线的设计方法包括解析法、图 解法和计算机辅助设计等。
凸轮轮廓曲线的设计需要满足凸轮机构 的运动规律、负载、速度、加速度等要 求,同时需要考虑到凸轮的制造工艺和 成本等因素。
凸轮机构压力角计算
压力角定义:凸轮与从动件接触点 处法线与凸轮轮廓线之间的夹角
压力角影响因素:凸轮轮廓线形状、 从动件形状、凸轮半径、从动件半 径
凸轮机构工作原理
凸轮机构通过凸轮与从动件 的接触,实现从动件的位移 和运动
凸轮机构由凸轮、从动件和 机架组成
凸轮机构的工作原理是利用 凸轮的轮廓曲线,使从动件
产生预定的运动
凸轮机构的应用广泛,如汽 车、机床、机器人等领域
凸轮机构分类
按照凸轮运动规律分类:等 速运动凸轮、等加速运动凸 轮、等减速运动凸轮等
Part Six
凸轮机构运动仿真 与优化
运动仿真模型的建立
确定凸轮机构的类型和参数 建立凸轮机构的三维模型 设定运动仿真的初始条件和边界条件 设定运动仿真的时间步长和仿真时间 设定运动仿真的输出变量和观察点 运行运动仿真,观察仿真结果,并进行优化
运动仿真结果分析
凸轮机构运动仿 真结果:包括位 移、速度、加速 度等参数
凸轮从动件的类 型:滚子从动件、 滑块从动件、圆 柱从动件等
盘形凸轮轮廓设计说明书
《机械设计基础》实践设计计算说明书题目:盘形凸轮轮廓设计学院:材料科学与工程学院班号:学号:姓名:日期:2013年10月3日《机械设计基础》设计实践任务书题目:盘形凸轮轮廓设计设计原始数据及要求:用图解法设计偏置滚子直动从动件盘形凸轮轮廓。
原始数据及要求如下表。
注:推杆运动规律(推程、回程)○2——等加速等减速运动规律④——正弦加速度运动规律目录1、设计过程1.1取比例尺并做基圆 (4)φ、sφ、0'φ、s'φ,等分0φ、0'φ (4)1.2作反转运动,量取01.3计算推杆的预期位移 (4)1.4确定理论廓线上的点 (5)1.5绘制理论轮廓线 (5)1.6绘制实际轮廓线 (5)2、参考文献 (5)1、设计过程1.1取比例尺并做基圆取长度比例1:1,以A3纸上O 点为圆心、0r =45mm 为半径作凸轮基圆,并以凸轮基圆的圆心O 为圆心,以e=10mm 为半径作偏距圆。
1.2作反转运动,量取0φ、s φ、0'φ、s 'φ,等分0φ、0'φ凸轮做顺时针转动,根据反转法可知,在基圆上由推杆延长线与基圆交点A出发,沿逆时针方向依次取量00140=Φ`Фs=300、00120=Φ'`Фs’=700,并将推程角0Φ分成十等分,回程角0Φ'分成五等分。
连接基圆上得各等分点与凸轮基圆的圆心,形成放射线组(1)。
过这些放射线与基圆的交点作偏心圆的切线,得到另一组放射线(2)。
1.3计算推杆的预期位移(1)推程时,等加速段运动方程为:S=h ψ2/ψ02 (ψ=00 ~700)推程时,等减速段运动方程为:S=h-2h(ψ0-Ψ)2/ψ02 (ψ=700 ~1400 )代入数据,计算结果见表1(2回程时,正弦加速度时,有:)]2/()2sin(/[0ππψψ0Φ/-Φ=h s (ψ=00 ~ 1200 )代入数据,计算结果见表2。
1.4确定理论廓线上的点从放射性(2)与凸轮基圆的交点开始偏离圆心O方向量取相应位移s,得到一系列的点,即为理论轮廓线上的一系列点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
设计实践设计计算说明书题目:盘形凸轮轮廓设计
学院:机电工程学院
班号:08401
学号:1050840124
姓名:林飞跃
日期:2007年10月04号
设计实践任务书
题目:盘形凸轮轮廓设计
设计任务及要求:
用图解法设计滚子直动从动件盘形凸轮轮廓。
原始信息:
凸轮机构型式:平面盘形凸轮机构
从动件运动形式:偏置直动
从动件类型:滚子从动件
凸轮的封闭方式:力封闭
从动件行程h:40mm
从动件偏距e:12mm
滚子半径Rr:12mm
推程运动角β1:140度
远休止角β:40度
回程运动角β2:120度
基圆半径Rb:50mm
一.分析从动件运动规律
凸轮转向:逆时针方向
第1段运动规律为:
从动件运动规律:等速(直线)
该段从动件行程h=40mm
相应凸轮起始转角:0°
相应凸轮终止转角:140°
第2段运动规律为:
从动件运动规律:停止
该段从动件摆角φ=40°
相应凸轮起始转角:140°
相应凸轮终止转角:180°
第3段运动规律为:
从动件运动规律:等加速、等减速(抛物线)该段从动件摆角φ=60°
相应凸轮起始转角:180°
相应凸轮终止转角:240°
第4段运动规律为:
从动件运动规律:等加速、等减速(抛物线)该段从动件摆角φ=60°
相应凸轮起始转角:240°
相应凸轮终止转角:300°
第5段运动规律为:
从动件运动规律:停止
该段从动件摆角φ=60°
相应凸轮起始转角:300°
相应凸轮终止转角:360°
二.作图法设计(反转法)
(1)先选取合适的比例尺µl。
任选一点作为凸轮的转动中心O。
以O为圆心,e=12mm为半径作偏距圆。
以O为圆心r0 =12mm为半径作凸轮的基圆。
作偏距圆的一条切线,它代表了起始位置从动件的轨道,它与基圆的交点A就是从动件在起始位置时与凸轮轮廓线的交点。
(2)再从OA开始按-ω的方向依次量取与升程角、远休止角、回程角和近休止角相等的角度,在基圆上得到B、C、D点。
(3)计算推杆的预期位移 ①等速推程时,由式(4.1)有
0/40/140
s h ϕφϕ==⨯。
/(o )
②等加速回程时
220/4080(/120)ϕφϕ=-2s=h-2h
等减速回程时
'22202()80(120)/120s h φϕϕ=-=-
/(o )
(4)作复合运动。
在推杆反转运动过程中的各轴线上,从基圆开始量取推杆的相应位移,即取C0B0=0,C1B1-3/μL,…C5B5=C6B6=15/μL,C7B7=14.7/μL,C8B8=11.67/μL,…C12B12=0,得推杆顶尖在复合运动中的一系列位置B0、B1、B2
(5)将等点连成光滑曲线,即为所求的凸轮廓线
(此图为对心直动滚子推杆盘形凸轮,仅供参考)
参考文献:《机械设计基础》----宋宝玉
《机械设计基础网络课程》。