高三理科数学上学期期中考试试卷及答案

合集下载

2021-2022年海淀区高三期中数学试卷及答案

2021-2022年海淀区高三期中数学试卷及答案

海淀区高三年级第一学期期中练习数 学(理科)本试卷共4页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

1. 已知集合{1,1,2}A =-,{|10}B x x =+≥,则AB =( A ) A. {1,1,2}- B. {1,2} C. {1,2}-D. {2} 2. 下列函数中,值域为(0,)+∞的函数是( C )A. ()f x =B. ()ln f x x =C. ()2x f x =D. ()tan f x x = 3. 在ABC ∆中,若tan 2A =-,则cos A =( B )B.D. 4. 在平面直角坐标系xOy 中,已知点(0,0),(0,1),(1,2),(,0)O A B C m -,若//OB AC ,则实数m 的值为( C )A. 2-B. 12-C. 12D. 2 5.若a ∈R ,则“2a a >”是“1a >”的( B ) A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件 6. 已知数列{}n a 的通项公式2(313)n n a n =-,则数列的前n 项和n S 的最小值是( B )A. 3SB. 4SC. 5SD. 6S7. 已知0a >,函数2πsin ,[1,0),()21,[0,),x x f x ax ax x ⎧∈-⎪=⎨⎪++∈+∞⎩若11()32f t ->-,则实数t 的取值范围为( D ) A. 2[,0)3- B. [1,0)- C. [2,3) D. (0,)+∞8. 已知函数sin cos ()sin cos x x f x x x+=,在下列给出结论中: ① π是()f x 的一个周期;。

陕西师范大学附属中学2022-2023学年高三上学期期中理科数学试题含解析

陕西师范大学附属中学2022-2023学年高三上学期期中理科数学试题含解析
9.双曲线 的左,右焦点分别是 ,过 作倾斜角为 的直线交双曲线的右支于点 ,若 垂直于 轴,则双曲线的离心率为()
A. B. C.2D.
【答案】B
【解析】
【分析】将 代入双曲线方程求出点 的坐标,通过解直角三角形列出三参数 , , 的关系,求出离心率的值.
【详解】由于 轴,且 在第一象限,设
所以将 代入双曲线的方程得 即 ,
7.侏罗纪蜘蛛网是一种非常有规律的蜘蛛网,如图是由无数个正方形环绕而成的,且每一个正方形的四个顶点都恰好在它的外边最近一个正方形四条边的三等分点上,设外围第1个正方形的边长是m,侏罗纪蜘蛛网的长度(蜘蛛网中正方形的周长之和)为Sn,则()
A.Sn无限大B.Sn<3(3+ )m
C.Sn=3(3+ )mD.Sn可以取100m
17.已知 中,角A,B,C的对边分别为a,b,c, .
(1)若 ,求 的值;
(2)若 的平分线交AB于点D,且 ,求 的最小值;
【答案】(1) ;(2)4
【解析】
【分析】(1)由 ,利用正弦定理将边转化为角得到 ,再根据 ,有 ,然后利用两角差的正弦公式展开求解.
(2)根据 的平分线交AB于点D,且 ,由 ,可得 ,化简得到 ,则 ,再利用基本不等式求解.
【详解】设 , ,
则 , ,
如图所示,
连接 交 于点 ,连接 、 ,
因为 平面 , 平面 ,
所以 ,而 ,所以四边形 是直角梯形,
则有 ,
, ,
所以有 ,
故 ,
因为 平面 , 平面 ,
所以 ,又因为 为正方形,所以 ,
而 平面 ,
所以 平面 ,即 平面 ,
,
所以 , ,
故答案为:③④.

山东省临沂市2014-2015学年高三上学期期中考试理科数学试题word版含答案

山东省临沂市2014-2015学年高三上学期期中考试理科数学试题word版含答案

高三教学质量检测考试理科数学2014.11本试卷分为选择题和非选择题两部分,共4页,满分150分,考试时间120分钟第Ⅰ卷(选择题 共50分)一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、已知全集2,{|1},{|20}U R A x x B x x x ==>=->,则()U C AB =( )A .{}|2x x ≤B .{}|1x x ≥C .{}|01x x ≤≤D .{}|02x x ≤≤ 2、下列函数中,在区间(0,)+∞上为增函数的是( )A .2(1)y x =- B .2xy -= C .ln y x = D .y3、已知命题:22;p q ≤ ) A .p q ∧ B .p q ∧⌝ C .p q ⌝∧ D .p q ⌝∧⌝4、设函数()()23,(2)f x x g x f x =++=,则()g x 的表达式是( ) A .21x + B .21x - C .23x - D .27x +5、如图,AB 是O 的直径,点,C D 是半圆弧AB 上的两个三等分点,,AB a AC b ==,则AD =( )A .12a b + B .12a b - C .12a b + D .12a b - 6、函数(01)xxa y a x=<<的图象的大致形状是( )7、已知角α的终边经过点(3,4)-,则tan2α=( )A .13-B .12- C .2 D .3 8、给出下列四个结论:①函数()2log f x x =是偶函数;②若393,log a x a ==,则x =③若,1x x R e x ∀∈≥+,则0:,1x p x R e x ⌝∀∈≤+;④“3x >”是“21x ->”的充分不必要条件,其中正确的结论的个数是( )A .0B .1C .3D .3 9、已知函数()sin()f x x ϕ=-,且()30f x dx π=⎰,则函数()f x 的图象的一条对称轴是( )A .23x π=B .56x π=C .3x π=D .6x π= 10、设()22x x f x -=-,若当,02πθ⎡⎫∈-⎪⎢⎣⎭时,21()(3)0cos 1f m f m θ-+->-恒成立,则实数m 的取值范围是( )A .(),2-∞-B .()2,1-C .()[),21,-∞-+∞D .(),2(1,)-∞-+∞第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卷的横线上。

高三上学期期中考试数学试题卷(理科)

高三上学期期中考试数学试题卷(理科)

绝密★启用前高三上学期期中考试数学试题卷(理科)数学试题共4页。

满分150分。

考试时间120分钟。

注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。

2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号。

3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。

4.所有题目必须在答题卡上作答,在试题卷上答题无效。

一.选择题:(本大题共10小题,每小题5分,共50分)。

1.已知523cos sin =+x x ,则sin 2x =( ) A .1825 B .725C .725-D .1625-2.设11a b >>>-,则下列不等式中恒成立的是 ( )A . 2a b >B .11a b> C .11a b < D .22a b >3.下列命题的说法错误..的是 ( ) A .若q p ∧为假命题,则,p q 均为假命题.B .“1=x ”是“2320x x -+=”的充分不必要条件.C .对于命题2:,10,p x R x x ∀∈++> 则2:,10p x R x x ⌝∃∈++≤.D .命题“若2320x x -+=,则1=x ”的逆否命题为:“若1≠x , 则2320x x -+≠” 4.已知集合{}{}22,01242>=<-+=x x B x x x A ,则=B A ( )A .{}6<x xB .{}12x x <<C .{}26<<-x xD .{}2<x x5.已知等差数列{}n a 的公差0,d <若462824,10,a a a a ⋅=+=则该数列的前n 项和n S 的最大值为 ( )A .50B .40C .45D .356.(原创)在△ABC 中,已知||4,||1AB AC ==,ABC S ∆=AB AC ⋅的值为( )A .2-B .2C .4±D .2±7.函数)(x f y =在[0,2]上单调递增,且函数)2(+x f 是偶函数,则下列结论成立的是( )A .f (1)<f ()<f ()B .f ()<f (1)<f ()C .f ()<f ()<f (1)D .f ()<f (1)<f ()8.(原创)若点P 是函数x x x f ln )(2-=上任意一点,则点P 到直线02=--y x 的最小距离为 ( ) A .2 B .22 C .21D .3 9、(原创)在约束条件⎪⎪⎩⎪⎪⎨⎧≤+≤+≥≥4200y x s y x y x 下,当53≤≤s 时,目标函数y x z 23+=的最大值的变化范围是 ( )A.[6,15]B.[7,15]C.[6,8]D.[7,8] 10. (原创)已知O 为坐标原点,(),OP x y =,(),0OA a =, ()0,OB a =,()3,4OC =,记PA 、PB 、PC 中的最大值为M ,当a 取遍一切实数时,M 的取值范围是 ( )A. )+∞B. )7⎡++∞⎣C. )7⎡-+∞⎣D. 7,7⎡+⎣ 二.填空题:(本大题共6小题,考生作答5小题,每小题5分,共25分). 11.在等比数列{}n a 中,若公比q=4,且前3项之和等于21,则该数列的通项 公式n a =_____.12已知),3(),1,2(x ==若⊥-)2(,则x =___________13.(原创)若正实数,x y 满足244x y xy ++=,且不等式2(2)22340x y a a xy +++-≥恒成立,则实数a 的取值范围是 (14)(15)(16)三题为选做题,请从中任选两题作答,若三题全做,则按 前两题给分14.如图,PA 是圆O 的切线,切点为A ,PO 交圆O 于B ,C 两点,1PA PB ==,则PAB ∠= 。

重庆市重庆一中2014届高三上学期期中考试理科数学试卷(解析版)

重庆市重庆一中2014届高三上学期期中考试理科数学试卷(解析版)

重庆市重庆一中2014届高三上学期期中考试理科数学试卷(解析版)一、选择题1)【答案】C【解析】选C.考点:向量的坐标运算及垂直关系.2.已知全集U=R)AC【答案】D【解析】考点:集合的基本运算及解不等式.3)A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件【答案】B【解析】00一定成立.故不是充分条件..选B.考点:1、等比数列;2、充分条件与必要条件.4()A.2 B.3 C.4 D.6【答案】A 【解析】试题分析: 考点:1、函数的导数;2、二次方程根与系数的关系.的三条边及相对三个角,则ABC ∆的形状是(A.等腰三角形 B.等边三角形 C.直角三角形 D.等腰直角三角形【答案】B【解析】试题分析:在三角形中,o s均不为0,故由题意可得:由正弦定理得:,即考点:1、共线向量;2、正弦定理.7)A.10 B.11 C.12 D.13【答案】B【解析】若,则61(a a+11.考点:12、等差数列的性质的应用.8tan-)【答案】C 【解析】 3cos 3==.考点:三角恒等变换.9.前n 项的积前n 项的和那么不确定 【答案】A 【解析】3121n x x x x x =⋅⋅⋅=. (x -1故选A.A..二、填空题10【答案】32 【解析】考点:等比数列.112,a b =37b =,则的夹角为 .【解析】 试题分析:由37b =得:考点:向量的模、夹角及数量积.12的解集为 .【解析】由题意得:所4不等考点:1、一元二次不等式、指数不等式及对数不等式的解法;2、韦达定理.13.若直线与函数的图象相切于点,则切点的坐标为 .【解析】试题分析:对函数求导得:.设切点,则点考点:导数的应用.14的最大值为 .【答案】16【解析】.取得最大值.所以考点:1、等差数列;2、最值问题.三、解答题15(1(2)上的对称中心.【答案】(1(2【解析】试题分析:(1)将降次化一,可化为.(2)在(1当时,可以得到.又,所以.这样试题解析:(1(2考点:不等式.16(1(220【答案】(1(2【解析】试题分析:(1)在本题中由由此便可得一个方程组,解这个方程组即可.(2)由(1试题解析:(1)(2)考点:1、等差数列与等比数列;2.17的图象.ABC 的三c o s C 的值【答案】(1(2【解析】试题分析:(1..(2)由(1①注意s 1,s i n co sC =,所以可令①②两式平方相加即可. 试题解析:(1)12ϕ+=πϕ=,f-∈(26………………………………①考点:1、三角函数的图象及其变换;2、正弦定理及三角恒等变换.18(1(2.【答案】【解析】试题分析:(1(2)联系(1试题解析:(1(2)由(1考点:1、利用导数求函数的最值;2、方程的解.19.已知数合(11的项,请写出所有这样数列的前三项;(2(3【答案】(1)9,3,1或2,3,1;(2)详见解析;(3)详见解析. 【解析】试题分析:(1.(2. (32、3时,可求出前三项,前三项就是1、2、3三个数,结论成立.时,数列中的项最终必将小于或等于 3.现在的问题是如何证明这一点.注意(2)小题的结,这样依次递减下去,数列中的项最终必将小于或等于3.一旦小于等于3,则必有1、2、3,从而问题得证.试题解析:(10.所以前三项分别为9,3,1或2,3,1..综上得,前三项分别为9,3,1或2,3,1.(2)①当被3除余1时,由已知可得3除余23的倍数,3的倍数,3除余033333(3.由(2.大于3由前面的计算知,只要数列中存在小于等于3的项,则必有1、2、3三个数,考点:1、递推数列;2、不等式的证明.20(1(2问:求出该切线方程;若不能,请说明理由.【答案】(1(2【解析】试题分析:(10.求导得:..(2)本题属探索性问题.对探索性问题,常用的方法是假设成立,然后利用题设试着去求相关的量.若能求出,则成立;若无解,则不成立.的极值点,故有.又函数存在两个零点4个方程(4个未知数).方程).试题解析:(1(2……………………………………⑤.考点:1、函数的单调性;2、函数的零点;3、函数的导数及其应用.。

2019-2020学年度第一学期期中考试(3)

2019-2020学年度第一学期期中考试(3)

2019-2020学年度第一学期期中考试高三数学(理科)本试卷分为第I 卷和第II 卷,试卷满分150分,考试时间120分钟。

考试范围:【集合、函数、导数、三角函数、解三角形、平面向量、数列、不等式】第I 卷一、选择题(本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A ={x |x <1},B ={x |3x <1},则( ){}.|x<0A A B x ⋂=.B A B R ⋃= {}.|1C A B x x ⋃=>.D A B ⋂=Φ2. 若函数f (x )=()()212xx x a +-为奇函数,则a 等于()A.2 B . 1 C .12 D . -123 .若x∈(0,1),a =lnx ,b =ln 12x⎛⎫ ⎪⎝⎭,c =ln x e ,则a ,b ,c 的大小关系为( ) A .b >c >a B .c >b >aC .a >b >cD .b >a >c24.()23--3]1(2)2f x x ax a A x a x a x =+-∞+≥>∈∈-记函数在区间(,上单调递减时的取值集合为,不等式恒成立时实数的取值集合为B ,则"x A"是"x B"的( )A. 必要不充分条件B. 充分不必要条件C. 充要条件D. 既不充分也不必要条件5. 正三角形ABC 中,D 是线段BC 上的点,AB=6, BD=2,则AB AD ⋅=( )A.12B. 18C. 24D. 30 6. 在下列给出的四个结论中,正确的结论是( )A. 已知函数()f x 在区间(,)a b 内有零点,则()()0f a f b <B.1,333a ba b +=若则是和的等比中项C. 121212,2,36,//e e m e e n e e m n =-=-若是不共线的向量,且则D. 已知角α终边经过点 (3,-4),则4cos 5α=-{}457621222107.(,),(,),4,log log ...log ()n a a a a b a a a b a a a ==⋅=+++=等比数列的各项均为正数,已知向量且A. 12B. 10C. 5 2.2log 5D +2228.,,,ABC A B C b c a B +-=在中,内角所对边分别是a 、b 、c,若csinC=acosB+bcosA,且 则角的大小( )A.6πB.3π C.2π D.23π219.()ln (2)2f x a x x =--∞已知函数在[1,+)上是减函数,则实数a 的取值范围是( ).[1,)A -+∞ .(1,)B -+∞ .(,1)C -∞- .(,1]D -∞-210.()2sin cos (0)0f x x x x ωωωωπω=->已知函数在区间(,)内有且只有一个极值点,则的取值范围为( )5.(0,]12A 11.(0,]12B 511.(,]1212C 511.[,]1212D23111.()log )f x x a b=+已知函数,若对任意的正数a 、b,满足f(a)+f(3b-1)=0则的最小值为( )A .6B .8C .12D .24'23312.()(1)1,2()1,[,](2cos )2sin 2222x R f x f f x x f x ππ=>∈-+>定义在上的可导函数满足且当时,不等式的解集为( )4.()33A ππ, 4.()33B ππ-, .(0)3C π, .()33D ππ-,第II 卷二、填空题(本题共4道小题,每题5分,共20分,其中第16题第一空2分,第二空3分,请将正确的答案填在横线上)13.sin()cos()___ ____.633ππαα+=-=已知则3214.()(2)2,()()1,3f x x a x x f x f x =+-+设函数若为奇函数,则曲线y=在点()处的切线方程为________.1,210,______.4a b a a b b π=-==15.已知,的夹角为,且则16. 将正整数12分解成两个正整数的乘积有112,26,34⨯⨯⨯三种,其中3×4是这三种分解中两数差的绝对值最小的,我们称3×4为12的最佳分解.当(,)p q p q p q N *⨯≤∈且是正整数n 的最佳分解时我们定义{}(),(12)43 1.(88)(5))2020n f n q p f f f n N *=-=-=∈函数例如则的值为_______,数列(的前项和为_______.三、解答题(第17题10分,第18题至22题每题12分,共计70分){}.1),(log 21222.17n 121T n b b N n a b a a n n n n n n n 项和的前求数列)若(的通项公式;)求数列(为公比的等比数列,为首项,是以已知数列⎭⎬⎫⎩⎨⎧∈=⎭⎬⎫⎩⎨⎧+*-.sin sin 333)2()1(1)cos(32cos ,,,,,.18的值,求,的面积为若的值;求已知的对边分别为中,在C B b ABC A C B A c b a C B A ABC =∆=+-∆.(2019)f ...(2)f (1)f 2)()()1(.4),21()(,20,0),22,22()),(2cos 2,2(.19的值计算的单调递减区间;求函数离为与其相邻的最高点的距点,的图像过点函数其中已知向量+++⋅=<<>-=+=x f B B ba x fb x aπϕωϕω20.如图,有一块边长为1(百米)的正方形区域ABCD .在点A 处有一个可转动的探照灯,其照射角∠PAQ 始终为45°(其中点P ,Q 分别在边BC ,CD 上),设BP =t (百米).(1)用t 表示出PQ 的长度,并探求△CPQ 的周长L 是否为定值;(2)设探照灯照射在正方形ABCD 内部区域的面积为S (平方百米),求S 的最大值.{}{}{}{}11121.2,2(1),b .(1)b 11c ,c , 2.n n n n n n nn n n n n n nna a a a na n a a a nb ++=⋅+=+=-=<+已知数列满足设求证:数列为等比数列,并求的通项公式.(2)设数列的前n 项和为S 求证:S22.()+(0,0,1,1)1(1)2,,2()2(2)()6201,1,()(),21.x x f x a b a b a b a b f x f x mf x m a b g x f x a x R b =>>≠≠==∀=≥-<<>-∈=①求方程②若对不等已知函数当时的根;恒成立,求实数的最大值;()若函数有且只有个零点,求的值式2019-2020学年度第一学期期中考试高三数学(理科)答案一、选择题1.A【解析】:∵集合A={x|x<1},B={x|3x<1}={x|x<0},∴A∩B={x|x<0},所以A正确,D错误,A∪B={x|x<1},所以B和C都错误。

2022-2023学年江西省临川一中上学期期中考试理科数学试卷及答案

2022-2023学年江西省临川一中上学期期中考试理科数学试卷及答案

临川一中2022-2023学年度上学期期中考试高三年级数学理科试卷1.已知全集{}{}{}1,2,3,4,5,6,7,8,3,4,5,4,7,8U A B ===,则=⋃B A C U )((卷面满分:150分一、单选题(每题5分,共60)A .{}7,8B .{}1,2,6C .{}1,2,4,6,7,8D .{}1,2,6,7,82.已知i 是虚数单位,若2(1)i z i +=-,则z 对应的点在复平面的()A .第一象限B .第二象限C .第三象限D .第四象限3.已知命题p :“0a ∃>,有12a a+<成立”,则命题p 的否定为()A .0a ∀≤,有12a a+≥成立B .0a ∀>,有12a a+≥成立C .0a ∃≤,有12a a +≥成立D .0a ∃>,有12a a+≥成立4.“幂函数()()21m f x m m x =+-在()0,∞+上为增函数”是“函数()222x xg x m -=-⋅为奇函数”的()条件A .充分不必要B .必要不充分C .充分必要D .既不充分也不必要5.对于任意实数a 、b 、c 、d ,下列命题中,真命题为()①若a >b ,c >d ,则a -c >b -d ;②若a >b >0,c >d >0,则ac >bd ;③若a >b >0④若a >b >0,则2211>a b .A .①②B .②③C .①④D .①③6.已知曲线y =()1,4处的切线的倾斜角为2α,则1sin cos π14ααα++=⎛⎫+ ⎪⎝⎭()A .2B .12C .D .17.我国天文学和数学著作《周髀算经》中记载:一年有二十四个节气,每个节气的晷长损益相同(晷是按照日影测定时刻的仪器,晷长即为所测量影子的长度).二十四节气及晷长变化如图所示,相邻两个节气晷长减少或增加的量相同,周而复始.已知每年冬至的晷长为一丈三尺五寸,夏至的晷长为一尺五寸(一丈等于十尺,一尺等于十寸),则说法不正确的是()A .相邻两个节气晷长减少或增加的量为十寸B .秋分的晷长为75寸C .立秋的晷长比立春的晷长长D .立冬的晷长为一丈五寸8.在ABC 中,A,B,C 分别为ABC 三边a 、b 、c所对的角.若cos 2B B =且满足关系式cos cos 2sin 3B C a Bb c c+=,则ABC 外接圆直径为()AB .2C .4D.9.定义在R 上的偶函数()f x 满足()22)(f x f x -+=,当[0,2]x ∈时,()x f x =,若在区间[0,10]x ∈内,函数)0(,1)()(>--=m mx x f x g 有5个零点,则实数m 的取值范围是()A .⎪⎪⎭⎫⎢⎣⎡--61e ,101e B .)101e (0,5-C .61e ,111e (--D .⎥⎦⎤ ⎝⎛-101e 0,10.数学美的表现形式多种多样,我们称离心率ω=e(其中12ω=)的椭圆为黄金椭圆,现有一个黄金椭圆方程为12222=+by a x ,()0>>b a ,若以原点O 为圆心,短轴长为直径作O ,P 为黄金椭圆上除顶点外任意一点,过P 作O 的两条切线,切点分别为A ,B ,直线AB 与x ,y 轴分别交于M ,N 两点,则=+2222ONa OMb ()A.ω1B.ωC.ω- D.ω1-11.已知定义在(-2,2)上的函数)(x f 导函数为)('x f ,若0)()(4=-+x f e x f x ,2)1(e f =且当0>x 时,)(2)('x f x f >,则不等式42)2(e x f e x <-的解集为()A.)4,1( B.)1,-2( C.)4,0( D.)1,0(12.若函数b x a e x f x+-+=)1()(在区间[21,1]上有零点,则22b a +的最小值为()A.54e B.2eC.21 D.e二、填空题(每题5分,共20分)13.已知向量a ,b 满足a =(3,4),a ·b=6,7a b -= ,则b =________.14.已知()f x 为偶函数且()2d 4f x x =⎰,则()()|22| 2e d x f x x x -+⎰等于_____.15.如右图,将函数()cos()(0,0,0)f x A x A ωϕωπϕ=+>>-<<的图象上所有点向右平移π6个单位长度,得到如图所示的函数()y g x =的图象,若π(0)3f f ⎛⎫+= ⎪⎝⎭)0,(,>+b a b a ,则ba 11+最小值为_____.16.已知菱形ABCD 的各边长为2,60D ∠= .如图所示,将ACD ∆沿AC 折起,使得点D 到达点S 的位置,连接SB ,得到三棱锥S ABC -,此时3SB =.若E 是线段SA 的中点,点F 在三棱锥S ABC -的外接球上运动,且始终保持EF AC ⊥则点F 的轨迹的面积为__________.三、解答题17.(12分)已知数列{}n a 的前n 项和1*44(N )33n n S n +=-∈.(1)求数列{}n a 的通项公式;(2)若2log n n n b a a =+,求数列{}n b 的前n 项和n T .18.(12分)如图,在边长为2的等边ABC 中,D ,E 分别为边AC ,AB 的中点.将ADE 沿DE 折起,使得AB AD ⊥,得到四棱锥A BCDE -,连接BD ,CE ,且BD 与CE 交于点H .(1)证明:AH BD ⊥;(2)设点B 到平面AED 的距离为1h ,点E 到平面ABD 的距离为2h ,求12h h 的值.19.(12分)甲,乙两位同学组队去参加答题拿纪念币的游戏,规则如下:甲同学先答2道题,至少答对一题后,乙同学才有机会答题,乙同样也是答两道题.每答对一道题得10枚纪念币.已知甲每题答对的概率均为p ,乙第一题答对的概率为23,第二题答对的概率为12.已知乙有机会答题的概率为1516.(1)求p ;(2)求甲,乙共同拿到纪念币数量X 的分布列及期望.20.(12分)已知双曲线C 与双曲线221123y x -=有相同的渐近线,且过点1)A -.(1)求双曲线C 的标准方程;(2)已知点(2,0),,D E F 是双曲线C 上异于D=,证明:直线EF 过定点,并求出定点坐标.21.(12分)已知函数ax e x f x -=)(,x x f x 2sin )()(+=ϕ,(R a ∈),其中 2.71828≈e 为自然对数的底数.(1)讨论函数)(x f 的单调性,(2)若*a N ∈,当0x ≥时,0)(≥x ϕ恒成立时,求a 的最大值.(参考数据:≈3e 20.1)四.选做题(共10分,请考生在22,23题任选一题作答,如果多选,则按所做第一题记分)22.(10分)以等边三角形的每个顶点为圆心,以其边长为半径,在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形被称为勒洛三角形,如图,在极坐标系Ox 中,曲边三角形OPQ 为勒洛三角形,且π2,6P ⎛⎫- ⎪⎝⎭,π2,6Q ⎛⎫ ⎪⎝⎭,以极点O 为直角坐标原点,极轴Ox 为x 轴正半轴建立平面直角坐标系xOy ,曲线1C 的参数方程为112x y t⎧=⎪⎪⎨⎪=-+⎪⎩(t 为参数).(1)求O Q 所在圆C 2的直角坐标方程;(2)已知点M 的直角坐标为(0,-1),曲线C 1和圆C 2相交于A ,B 两点,求11||||MA MB -.23.(10分)已知函数()+1f x x x =+.(1)设()f x 的最小值为m ,求m ;(2)若正数,,a b c 满足abcm =,证明:cb a abc ac b bc a 111++≥++.临川一中2022-2023学年度高三上学期期中考试数学试卷答案(理)一、单选题1.【答案】C 【详解】{}1,2,6,7,8U A =ð,则(){}1,2,4,6,7,8U A B = ð.故选:C 2.【答案】A3.【答案】B4.【答案】A【详解】要使函数()()21mf x m m x =+-是幂函数,且在()0,+∞上为增函数,则2110m m m ⎧+-=⎨>⎩,解得:1m =,当1m =时,()22x x g x -=-,x ∈R ,则()()()2222xx x x g x g x ---=-=--=-,所以函数()g x 为奇函数,即充分性成立;“函数()222x xg x m -=-⋅为奇函数”,则()()g x g x =--,即()222222222----⋅=--⋅=⋅-x x x x x xm m m ,解得:1m =±,故必要性不成立,故选:A .5.【答案】B6.【答案】B44b a ∴>,故错C 误.8.【答案】B9.【答案】D 【详解】由题,令2x +替换x ,则()()()()22224f x f x f x f x -+=-=++=+⎡⎤⎡⎤⎣⎦⎣⎦,又()f x 是偶函数,所以()()f x f x -=,则()()4f x f x +=,所以()f x 是周期函数,4T =,10.【答案】A【详解】依题意有OAPB 四点共圆,将两圆方程:222b y x =+与00202=-+-y y y x x x 相减,得200:b yy xx l AB =+,解得)b (0, ,0)b (0202y N x M ,因为=+2222ONaOMb2242242022024*******422042b a b b a b y a x b b y a b x y b a x b b ==+=+=+,所以=ω1-52=ω1.11.【答案】A 解:令xex f x g 2)()(=则由0)()(4=-+x f e x f x得0)()(=-+x g x g ,∴)(x g 为奇函数又xex f x f x g 2'')()()(-=,∴当0>x 时,)(,0)('x g x g >单调递增,∴)(x g 在(-2,2)上单调递增又1)1()1(2==e f g ,∴⇒<-⇒<-⇒<--)1()2(1)2()2()2(242g x g e x f e x f e x x 4112222<<⇒⎩⎨⎧<-<-<-x x x 选A12.【答案】A)(t g 在[21,1]单调递增.)(t g 最小值为54e .二、填空题13.【答案】614.【答案】1615.【答案】116.【答案】π1225设三棱锥S ABC -外接球的球心为,,O SAC BAC 的中心分别为易知1OO ⊥平面2,SAC OO ⊥平面BAC ,且12,,,O O O 由题可得1121602OMO O MO ∠∠==,113O M SM =解Rt 1OO M △,得1131OO O M ==,又123O S SM =易知O 到平面α的距离12d MH ==,三、解答题18.【答案】(1)见解析;【详解】(1)证明:在图1中,ABC 为等边三角形,且D 为边AC 的中点,BD AC ∴⊥,........1分(2)B AED E ABD V V --= ,∴121133AED ABD S h S h = ,则12ABDAEDh S h S = ............................................8AED 是边长为1的等边三角形,∴34AED S =在Rt ABD 中,3BD =,1AD =,则2AB =.19.【答案】(1)34p =;(2)分布列见解析,415()16E X =119133415E X=⨯+⨯+⨯+⨯+⨯= (12)()01020304016163232161621【答案】(1)由ax e x f x -=)(可得a e x f x -=)(' (1)当0a ≤时,()f x 在()0,+∞单调递增; (2)22.【答案】(1)222:((1)4++=C x y ;(2)3m=;;(2)证明见解析. 23.【答案】(1)1。

(整理版)辽南协作体高三上学期期中考试高三数学(理科)试卷

(整理版)辽南协作体高三上学期期中考试高三数学(理科)试卷

辽南协作体高三上学期期中考试高三数学〔理科〕试卷本试卷分第I 卷〔选择题〕和第二卷〔非选择题〕两局部,考生作答时,将答案答在答题纸上,在本试卷上答题无效。

第一卷〔选择题,共60分〕一、选择题〔本大题共12小题,每题5分,共60分。

在每题的四个选项中,只有一项为哪项符合题目要求的,请将正确选项填涂在答题卡上〕 1、设全集U 是实数集R ,{|||2},{|13}M x x N x x =≥=<<,那么图中阴影局部所表示的集合是A .{|21}x x -<<B .{|12}x x <<C .{|22}x x -<<D .{|2}x x < 2.向量(1,2),(cos ,sin ),//,tan()4a b a b πααα==+=且则A .13 B .13- C .3 D .-3 3.假设平面向量,a b 满足(2,1)a b +=-,(1,2)b =,那么向量a 与b 的夹角等于 A .45︒ B .60︒ C .120︒ D .135︒ 4.2:11xp x <-:()(3)0q x a x +->,假设p 是q 的充分不必要条件,那么实数a 的取值范围是A .(]3,1--B .[]3,1--C .(],1-∞-D .(],3-∞-5.设O 为坐标原点,点A 〔1,1〕,假设点(,)B x y 满足222210,12,12,x y x y x y ⎧+--+≥⎪≤≤⎨⎪≤≤⎩那么OA OB⋅取得最小值时,点B 的个数是A .1B .2C .3D .无数6.正项等比数列{}n a 满足7652a a a =+,假设存在两项,m n a a1144,a m n=+则的 最小值为A .32 B .53 C .94D .不存在 7.假设.1)8(),()4(,)cos(2)(-=-=+++=ππφωf t f t f t m x x f 且都有对任意实数那么实数m 的值等于A .1±B .-3或1C .3±D .-1或38.A 、B 是直线l 上任意两点,O 是l 外一点,假设l 上一点C 满足2cos cos OC OA OB θθ=+,那么246sin sin sin sin θθθθ+++的最大值是A 9.设函数)(x f 是定义在R 上的奇函数,且当0≥x 时,)(x f 单调递减,假设数列}{n a 是等差数列,且03<a ,那么)()()()()(54321a f a f a f a f a f ++++的值A .恒为正数 B.恒为负数 C.恒为0 D.可正可负10.①函数()ln 2f x x x =+-的图像与x 轴有2个交点;②向量b a ,不共线, 那么关于x 方程02=+x b x a 有唯一实根;③函数y =A .①③ B .② C .③ D .②③ 11、函数x y x -+=)14(log 2的值域是 A.),0[+∞ B.),(+∞-∞ C.),1[+∞D.),1[]1,(+∞--∞12.设⎩⎨⎧-=-)1(3)(x f x f x (0)(0)x x ≤> , 假设a x x f +=)(有且仅有三个解,那么实数a 的取值范围是A. )1,(-∞B. ]1,(-∞C. ]2,(-∞D. )2,(-∞第二卷〔非选择题,共90分〕二、填空题〔本大题共4小题,每题4分,共16分,把正确答案填在答题卡中的横线上〕。

河南省南阳市2022-2023学年高三上学期期中考试数学(理科)试题(含答案)

河南省南阳市2022-2023学年高三上学期期中考试数学(理科)试题(含答案)

南阳市2022年秋期高中三年级期中质量评估数学试题(理)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.考生做题时将答案答在答题卡的指定位置上,在本试卷上答题无效.2.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上.3.选择题答案使用2B 铅笔填涂,非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整,笔迹清楚.4.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效.5.保持卷面清洁,不折叠、不破损.第Ⅰ卷 选择题(共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 已知集合40,{54}1x A x B x x x -⎧⎫=≤=-<<⎨⎬+⎩⎭∣∣, 则()R A B ⋂=ðA. (,1](4,)-∞-⋃+∞B. (,1)(4,)-∞-⋃+∞C. (-5,-1)D. (-5,-1]2. 若||||2z i z i +=-=, 则||z = A. 1D. 23. 若,x y 满足3020x x y x y ≤⎧⎪+≥⎨⎪-+≥⎩ 则2y -的最小值是A. -1B. -3C. -5D. -74. 已知数列{}n a 的前n 项和211n S n n =-. 若710k a <<, 则k = A. 9B. 10C. 11D. 125.已知sin 12x π⎛⎫-= ⎪⎝⎭, 则cos 26x π⎛⎫-= ⎪⎝⎭A. 58-B. 58C. 4-D.46. 在ABC 中,30,C b c x ︒===. 若满足条件的ABC 有且只有一个, 则x 的可能取值是 A.12B.2C. 17. 若函数()(sin )x f x e x a =+在点(0,(0))A f 处的切线方程为3y x a =+, 则实数a 的值为 A. 1B. 2C. 3D. 48. 在ABC 中, 角,,A B C所对的边分别为,,cos ),a b c c b A a b -==则ABC 的外接圆面积为A. 4πB. 6πC. 8πD. 9π9. 函数()sin()0,02f x x πωϕωϕ⎛⎫=+><< ⎪⎝⎭在区间5,66ππ⎡⎤-⎢⎥⎣⎦上的图像如图所示, 将该函数图像上各点的横坐标缩短到原来的一半 (纵坐标不变), 再向右平移(0)θθ>个单位长度后, 所得到的图像关于点7,024π⎛⎫⎪⎝⎭对称, 则θ的最小值为A.76π B. 6πC. 8πD. 724π10. 已知定义在R 上的函数()f x 满足:(3)(3),(6)(6)f x f x f x f x +=-+=--, 且当[0,3]x ∈时,()21()x f x a a =⋅-∈R , 则(1)(2)(3)(2023)f f f f ++++=A. 14B. 16C. 18D. 2011. 已知:2221tan log 38,21tan 8a b c ππ-===+, 则 A. a b c << B. a c b << C. c a b << D. c b a <<12. 已知正数,a b 满足221ln(2)ln 1a a b b +≤-+, 则22a b +=A.52C.32第Ⅱ卷 非选择题(共 90 分)二、填空题 (本大题共 4 小题,每小题 5 分,共 20 分) 13. 已知2()lg5lg(10)(lg )f x x x =⋅+, 则(2)f =_____.14. 在ABC 中,3,4,8AB BC CA CB ==⋅=, 则AB 边上中线CD 的长为_____.15. 已知函数sin ,sin cos ,()cos ,sin cos ,x x x f x x x x ≤⎧=⎨>⎩则1()2f x <的解集是_____.16. 若方程2ln 1x x e ax x -=--存在唯一实根,则实数a 的取值范围是_____.三、解答题(本大题共 6 小题,共 70 分. 解答应写出文字说明、证明过程或演算步骤)17. (本题满分 10 分)已知函数22()2cos sin 3f x x x π⎛⎫=-+- ⎪⎝⎭.(1)求函数()y f x =的单调递增区间;(2) 若函数()()02g x f x πϕϕ⎛⎫=+<< ⎪⎝⎭的图像关于点,12π⎛⎫ ⎪⎝⎭中心对称,求()y g x =在,63ππ⎡⎤⎢⎥⎣⎦上的值域.18. (本题满分 12 分)已知数列{}n a 和{}n b 满足:)*121,2,0,n n a a a b n ==>=∈N ,且{}n b 是以 2 为公比的等比数列. (1) 证明: 24n n a a +=;(2) 若2122n n n c a a -=+, 求数列{}n c 的通项公式及其前n 项和n S . 19. (本题满分 12 分)已知函数()ln ,()(1)f x x x g x k x ==-. (1) 求()f x 的极值;(2) 若()()f x g x ≥在[2,)+∞上恒成立, 求实数k 的取值范围. 20. (本题满分 12 分)数列{}n a 中,n S 为{}n a 的前n 项和,()()*24,21n n a S n a n ==+∈N . (1)求证: 数列{}n a 是等差数列,并求出其通项公式;(2) 求数列12n S n ⎧⎫⎨⎬+⎩⎭的前n 项和n T .21. (本题满分 12 分)已知,,a b c 分别是ABC 的内角,,A B C 所对的边, 向量(sin ,sin ),(cos ,cos )A B B A ==m n(1)若234,cos 3a b C ==, 证明: ABC 为锐角三角形; (2)若ABC 为锐角三角形, 且sin 2C ⋅=m n , 求ba的取值范围.22. (本题满分 12 分)已知函数21()12x f x e x ax =---, 若()()()2g x h x f x +=, 其中()g x 为偶函数,()h x 为奇函数.(1)当1a =时,求出函数()g x 的表达式并讨论函数()g x 的单调性;(2) 设()f x '是()f x 的导数. 当[1,1],[1,1]a x ∈-∈-时,记函数|()|f x 的最大值为M , 函数()f x '的最大值为N . 求证:M N <.高三(理)数学参考答案第1页(共6页)2022年秋期高中三年级期中质量评估数学试题(理)参考答案一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)题号123456789101112答案DCDBBDBDCABA二、填空题(本大题共4小题,每小题5分,共20分)13.114.215.13(2,2)()36k k k Z ππππ++∈16.(]1,01e ⎧⎫-∞⋃+⎨⎬⎩⎭三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.【解析】(1)211cos 21cos 221cos 21cos 2322()2222x x x x x f x π⎛⎫-++ ⎪++⎝⎭=+=+31sin 2cos 21sin 24423x x x π⎛⎫=++=++ ⎪⎝⎭.………………………………3分令5222,,2321212k x k k k x k πππππππππ-+≤+≤+∈-+≤≤+Z,∴()y f x=的单调递增区间为5,,1212k k k ππππ⎡⎤-++∈⎢⎥⎣⎦Z ……………………5分(2)()12()12233g x x x ππϕϕ⎡⎤⎛⎫=+++=+++ ⎪⎢⎥⎣⎦⎝⎭.………………6分∵()y g x =关于点,12π⎛⎫⎪⎝⎭中心对称,高三(理)数学参考答案第2页(共6页)∴222,,2332k k k ππππϕπϕ⋅++=∈=-+Z ,……………………………………7分∵02πϕ<<,∴3πϕ=.∴()1)1sin 222g x x x π=++=-………………………………………8分当2,,2,6333x x ππππ⎡⎤⎡⎤∈∈⎢⎢⎥⎣⎦⎣⎦∴sin 2x ⎤∈⎥⎣⎦…………………………………9分所以1()1,24g x ⎡⎤∈-⎢⎥⎣⎦.………………………………………………………10分18.【解析】(1)由n b =得,2211==a a b ,故211222--=⋅=n n n b …………………………………………………………2分则12212)(-+==n n n n b a a ①所以,12212+++=n n n a a ②………………………………………………………4分由①②得,n n a a 42=+.…………………………………………………………6分(2)由(1)知数列}{2n a 和数列}{12-n a 均为公比为4的等比数列,…………8分所以,1212224--=⋅=n n n a a ,22111-224--=⋅=n n n a a 2122n n n c a a -=+=1122245222---⨯=⋅+n n n .…………………………………10分所以,)14(3541455-=-⨯-=nn n S ………………………………………………12分高三(理)数学参考答案第3页(共6页)19.【解析】(1)()f x 的定义域是(0,)+∞,()ln 1f x x '=+,令()0,f x '=则1x e=,……………………………………………………………2分当1(0,)x e∈,()0,f x '<()f x 单调递减,当1(,)x e∈+∞,()0,f x '>()f x 单调递增,所以()f x 在1x e=处取得极小值,………………………………………………4分故()f x 有极小值1e-,无极大值.…………………………………………………5分(2)(法一)由()()f x g x ≥在[)2,+∞上恒成立,即ln 1x x k x ≤-在[)2,+∞上恒成立,只需min ln ()1x xk x ≤-…………………………7分令ln ()1x xh x x =-,则2ln 1()(1)x x h x x --'=-,………………………………………9分令()ln 1x x x ϕ=--,则1()x x xϕ-'=,………………………………………10分易知当(1,)x ∈+∞时,()0x ϕ'>,()x ϕ单调递增,所以()(0)0x ϕϕ≥=,所以ln 10x x -->,即()0h x '>,即()h x 单调递增,故min ()(2)2ln 2h x h ==.…………………………………………………………11分所以k 的取值范围是(],2ln 2-∞.…………………………………………………12分(法二)由题(ln 1)k x x x -≥,即(n 1)l k x x x -≥,令(1)()ln h x x k x x=--………6分则22(11())kx k x x kh x xx x '=--=--,…………………………………………………7分高三(理)数学参考答案第4页(共6页)当2k ≤时,0x k ->,()0f x '>,()f x 递增,所以min ()(2)ln 202kh x h ==-≥,所以2ln 2k ≤;…………………………………9分当2k >时,有x k >时,()0f x '>,()f x 递增,x k <时,()0f x '<,()f x 递减,即min ()()ln (1)h x h k k k ==--,可证ln (1)0k k --<,显然不合题意,舍去.…11分综上,所以k 的取值范围是(],2ln 2-∞.…………………………………………………12分20.【解析】(1)当1n =时,则1121a a =+,所以11a =,因为)1(2+=n n a n S ①所以,当2n ≥时,)1(1-21-1-+=n n a n S )(②…………………………2分①-②得:()()()1211,2n n n a n a n --=--≥,③故,()()()12321,3n n n a n a n ---=--≥,④③-④得:()1223n n n a a a n --=+≥,所以{}n a 为等差数列,…………………………5分又213d a a =-=,所以,()13132n a n n =+-=-;…………………………6分(2)由()()21n n S n a n N *=+∈得2)13(-=n n S n ,故1221211(2(33)3(1)31n S n n n n n n n ==⋅=-++++,.………………………9分故1231111211111...)()...()]246232231n n T S S S S n n n =++++=-+-+++++++212(1313(1)nn n =-=++…………………………………………………………12分21.【解析】高三(理)数学参考答案第5页(共6页)(1)令3412(0)a b k k ==>,由2222222(4)(3)cos ,32243a b c k k c C ab k k +-+-===⨯⋅3c k ∴=.………………………………………………………………………………2分即4,3,3a k b k c k ===,从而a 边最大,…………………………………………3分又222222(3)(3)(4)21cos 02233189b c a k k k A bc k k +-+-====>⋅⋅,即A 为锐角,………5分∴ABC ∆为锐角三角形.……………………………………………………………6分(2)因为sin cos sin cos sin()A B B A A B ⋅=⋅+⋅=+m n ,而在ABC △中,π,0πA B C C +=-<<,所以sin()sin A B C +=,又sin 2C ⋅=m n ,所以sin 2sin ,C C =得1cos 2C =,所以π3C =.……………………………………7分又ABC ∆为锐角三角形,1022π1032A A ππ⎧<<⎪⎪∴⎨⎪<-<⎪⎩,解得,tan 623A A ππ<<>, (8)分1sin sin sin 1322sin sin sin 2A A Ab B a A A A π⎛⎫+ ⎪⎝⎭==== ,………………………10分结合3tan 3A >12+∈1,22⎛⎫⎪⎝⎭.…………………………………………11分所以1,22b a ⎛⎫∈ ⎪⎝⎭.………………………………………………………………………12分22.【解析】(1)当1=a 时,21()12xf x e x x =---,由题()()()2g x h x f x +=,其中)(x g 为偶函数,)(x h 为奇函数,易知()()()g x f x f x =+-,从而得2()2x x g x e e x -=+--.………2分所以'()2x x g x e e x -=--.令()'()x g x ϕ=,则'()2x x x e e ϕ-=+-.因为'()220x x x e e ϕ-=+-≥=,当且仅当0x =时等号成立,高三(理)数学参考答案第6页(共6页)所以'()g x 在R 上单调递增.………………………………………………………………4分注意到()'00g =,当(,0)x ∈-∞时,'()0g x <,(0,)x ∈+∞时,'()0g x >.所以()g x 在(,0)-∞上单调递减,在(0,)+∞上单调递增.………………………………5分(2)由()f x 的定义域是R .'()x f x e x a =--,设函数()x h x e x a =--,则'()1x h x e =-.令'()0h x =,得0x =.……………………6分因为)'(h x 在R 上单调递增,所以当(,0)x ∈-∞时'()0h x <,当(0,)x ∈+∞时'()0h x >.因此()h x 在(,0)-∞上单调递减,在(0,)+∞上单调递增.于是()()010h x h a ≥=-≥,即'()0f x ≥,所以()f x 在R 上单调递增..………………………………………………………………7分注意到()00f =,所以在(),0-∞上()0f x <,在()0,∞+上()0f x >.所以函数(),0()(),0f x x y f x f x x -<⎧==⎨≥⎩,()y f x =在(),0-∞上单调递减,在()0,∞+上单调递增.故()(){}()-1,1max f x maxf f =,…………………………………………………8分又]1,1[-∈a ()()3313311,12222f e a e a f a a e e=--=---=-+=--|(1)||(1)|f f --=013<--e e ,因此max 3|()||(1)|2f x f e a ==--.……………9分又()max max 3|'()|111|()|2f x f e a e a e a f x '≥=--=-->--=,……………11分所以|()||'()|max max f x f x <,即M N <…………………………………………………12分。

2019华师一附中高三期中理科数学试题及答案

2019华师一附中高三期中理科数学试题及答案

华中师中2019—2020学年度上学期测 高三年级数学(理题 :12满分:150分命题人庆审题丹 一题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一 项是符合题目要求的.)1.已知集合A {2,1,0,1,2},B {x (1x )(x 2)0AIB 的子集个数为() A.2B .4C .6D .8 2.设命题p :n N ,n 22p 为() A . 2n nN,n2B .2 nN,n ≤2 nC . 2n nN,n=2D . 2 nN,n ≤2 n 3.若复数z 满足(34i )z 112i ,其中i 为虚z 的虚部为()A.2B.2C.2iD.2i 4.我国古代数学典籍《九章第七章“盈不足”章中有一道“两鼠穿墙”问题:有厚墙5尺,两只老鼠从墙的两边相对洞穿墙,大老鼠第一天进一尺,以后每天加倍;小老鼠第一 天也进一尺,以后每天减半。

问两鼠在第几?() A.第2天B.第3天C.第4天D.第5天 x1 z y 的为() 5.已x ,满足件xy3 x2y30 A.1B.2C.3D.6 6.已知等 S S 且{S n }的最大项为 120,130, S ,a m 12,则 m S() 13 A.20B.22C.24D.26 7.右图为一正方体的平面展开图,在这个正方体中,有以下结论 ①ANGC ②CF 与EN 所成的角为60 ③BD//MN ④二面角EBCN 的大小为45 其中正确的个数是() A.1B.2C.3D.4uu u r uu u r uu u r8.已知ABC 中,AD2DC ,E 为BD 中点,若BCAEAB,则2的值为()A.2B.6C.8D.10高三年级理科数学试题第1页共8页4alog , 9.若19 163 blog , 3 20.2 c0.6,则a,b,c 的大小关系为() A.cbaB.cabC.bacD.abc10.已知函数f(x)2sin(x)(0,||)的部分图像如右图所示,且A(,1),B(,1),则的值为()2A.5 6 B. 6C.5 6D.611.已知函数f xx 2x x,则使不等式f(x1)f(2x)成立的x 的取值范围是 ()ln(1)22fxx 2x x,则使不等式f(x1)f(2x)成立的x 的取值范围是()A.(,1)(1,)B.(1,+)C. 1 (,)(1,+) 3D .(,2)(1,) 12.已知函数f(x)xsinx2sin(x),若对于任意的x 1,x 2[0,),(x 1x 2),均有42xx|f(x)f(x)|a|ee|成立,则实数a 的最小值为()1212A. 2 3B.1C.3 2D.3二、填空题(本大题共4小题,每小题5分,共20分.)13.曲线 x yxe 在点1 (1,)e处的切线方程为____________. 14.已知 3 sin()2cos()sin2 ,则 2sinsincos____________. 15.已知ABC 的内角A,B,C 的对边分别为a,b,c.若c1,ABC 的面积为221ab ,则ABC4面积的最大值为____________.uuruuu u r uuru16.已知ABC 的外接圆圆心为O ,|AB|6,|AC|8,AOABAC(,R),若21sinA(t)(t 为实数)有最小值,则参数t 的取值范围是____________.2三、解答题:(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)高三年级理科数学试题第2页共8页17.(本小题满分12分)已知ABC的内角A,B,C的对边分别为a,b,c,若2A1b222ccos(1)求角C;(2)BM平分角B交AC于点M,且BM1,c6,求cosABM.18.(本小题满分12分)已知数列{a}的前n项和为n1S,1a,n2S1n*a1,nN2nnn(1)证明:数列n1{Sn}n为等差数列;(2)若数列{bn}满足nbnnSS12nn,求数列{b n}的前n项和Tn.xxxxxx19.(本小题满分12分)已知函数f(x)(cossin)(cossin)23sincos20.222222(1)求函数f(x)的最大值并指出f(x)取最大值时x的取值集合;(2)若,为锐角,126cos(),f(),求f()的值.135621.(本小题满分12分)已知四棱锥PABCD的底面ABCD是直角梯形,AD//BC,ABBC,AB3,BC2AD2,E为CD的中点,PBAE(1)证明:平面PBD平面ABCD;,试问“在侧面PCD内是否存在一点N,(2)若PBPD,PC与平面ABCD所成的角为4使得BN平面PCD?”若存在,求出点N到平面ABCD的距离;若不存在,请说明理由.22.(本小题满分12分)高三年级理科数学试题第3页共8页1 (1)已知f(x)lnx2x ,证明:当x2时,212xlnx1(ln2)x;411(2)证明:当a(24,12) ee 时,13a133g(x)xlnxxx(x2)有最小值,记39g(x)最小值为(a),求(a)的值域.23.(本小题满分10分)已知函数f(x)|x2||2x4|(1)解不等式f(x)3x4;(2)若函数f(x)最小值为a,且2mna(m0,n0),求21m+1n的最小值.高三年级理科数学试题第4页共8页华中师中2019—2020学年度上学期期中考试高三年级数学(理科)答案:12满分:150分命题人庆审题丹 二题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项 项是符合题目要求的.) 1234567891011 BDBBADCCACD 二、填空题(本大题共4小题,每小题5分,共20分.) 24. y 1 e 25. 6 5 26. 21 4 27. 3315 (,) 1616 三、解答题:(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 28.解:(1)由题1cosA1bb cosA 222cc ⋯⋯⋯⋯⋯⋯⋯⋯分..2 cosAsinCsinBsin(AC)sinAcosCcosAsinCsinAcosC0又(0,)sin0cos0 AACC ⋯⋯⋯⋯⋯⋯⋯分4 2 (2)记A BM ,则M BC ,在RtMCB 中,CBcos , 在RtACB 中,cos ABC B C AB ,即 cos2c os 6 ⋯⋯⋯⋯⋯⋯分..10 即 2cos 2cos1 6 cos 3 4 或 2 3 (舍) cos3 ABM ⋯⋯⋯.⋯⋯⋯分.124 29.解:(1)n2时, 2222 Snannn(SS)nn ⋯⋯⋯⋯⋯⋯⋯分2 nnnn1即 22 (n1)S n nS n n(n1)(n 2)1同除以n (n 1)得n 1n SS1(n2) nn1 nn1n1 {S n } n为等差数列,首项为1,公差为1⋯⋯⋯⋯⋯⋯⋯分6 (2)由(1)知2 n1n SnS nn nn1 ⋯⋯⋯⋯⋯⋯⋯分..8n211 bnnn1nn(n1)2n2(n1)2⋯⋯⋯⋯⋯⋯⋯分.10111111T(1)()()1n112n1nn222232n2(n1)2(n1)2⋯⋯⋯.. 12分30.解:(1)xxxx 22f(x)cossin23sincoscosx3sinx2sin(x)⋯⋯⋯.分.322226令x2k得x2k,k Z623所以最大值为2,此时x的取值集合为{x|x2k,k Z}⋯⋯⋯⋯⋯⋯⋯分.63(2)由,为锐角,cos() 1213得sin()513Q022663又312sin()(,)65226644cos()65⋯⋯⋯⋯⋯⋯分..8cos()cos[()()]6663cos()cos()sin()sin()6665⋯⋯⋯⋯⋯⋯分10126 f()2sin()2sin()2cos()⋯⋯⋯⋯⋯⋯163266652分31.解(1)证明:由四边形ABCD是直角梯形,AB=,BC=2AD=2,AB⊥BC,可得DC=2,∠BCD=,从而△BCD是等边三角形,BD=2,BD平分∠ADC.3∵E为CD的中点,∴DE=AD=1,∴BD⊥AE,又∵PB⊥AE,PB∩BD=B,∴AE⊥平面PBD.又∵AE?平面ABCD∴平面PBD⊥平面ABCD.⋯⋯⋯⋯⋯⋯.4分(2)在平面PBD内作PO⊥BD于O,连接O C,又∵平面PBD⊥平面ABCD,平面PBD∩平面ABCD=BD,高三年级理科8页∴PO ⊥平面ABCD∴∠PCO 为P C 与平面ABCD 所成的角,则∠PCO= ⋯⋯⋯⋯⋯⋯⋯⋯分.64∴易得OP=OC=∵PB=PD,PO ⊥BD,∴O 为B D 的中点,∴OC ⊥BD.以O B ,O C ,OP 所在为x ,y 建直系,则B(1,0,0),C(0,,0),D(-1,0,0),P(0,0,), 假设在侧面PCD 内存在点N ,使得BN 平面PCD 成立,uuruuu u r uu u r 设PNPDPC(,0,1) ,易得N(,3,3(1))⋯⋯⋯⋯⋯⋯⋯⋯分8 由u uruuu u r BNPC0 uuruuu u r 得 BNPD012 , 55 ,满足题意⋯⋯⋯⋯⋯⋯⋯分10 所以N 点到平面ABCD 的距离为3(1) 23 5 ⋯⋯⋯⋯⋯⋯⋯分.12(说明:若没有说明,0,1或者用其它方法解答但没有说明点N 在侧面PCD 上, 扣2分)32.解:(1)证明:212x2/ f(x )033 xxx f x 在[2,)上单增 ()x2时,f(x)f(2)即11lnxln22 x4x2时,212xlnx1(ln2)x ⋯⋯⋯⋯⋯⋯⋯⋯分44(2)13a11/2222g(x)xlnxxx1x(lnxa)233x11由f(x)在[2,)上单增且2f(e)1,f(e )2,24 eea11 (2,1)42 ee知存在唯一的实数2x 0(e,e),使得 / g(x)0,即1 lnxa002x 0//x(x,),g(x)0,g(x)单增x(2,x),g(x)0,g(x)单减;00⋯⋯⋯⋯⋯⋯⋯⋯分..81lnxa0g(x)g(x),x0满足02min0x7页共8页高三年级理科数学试题第1 alnx02x 013a1 33g (x )xlnxxx00000393 0 x 2932 x(exe)⋯⋯.10分 00 122/2x 32记h (x)xx(exe),则h xh(x)在 ()093332(e,e)上单减63e2e222eh(e)h(x)h(e)e939363 e2e2所以(a)的值域为2(e,e)⋯⋯⋯⋯⋯⋯⋯⋯分.12939333.解:(1)当x2时,3x23x4,无解当2x2时,x63x4,得12 x2当x2时,3x 23x4,得x21 [,)所以不等式解集为2⋯⋯⋯⋯⋯⋯分..5 (2)f(x)|x2||2x4||x2||x2||x2| |(x2)(x 2)||x2|当且仅当2x2时取等 4|x2|4当且仅当x2时取等 所以当x2时,f(x)最小值为4,即a4,⋯⋯⋯⋯⋯分7所以2mn4所以 21121[2(m1)n]()m1n6m1n 12(m1)2n (5) 6nm112(m1)2n3 (52) 6nm12所以21m+1n2(m1)2nnm1当且仅当3最小值为⋯⋯⋯⋯⋯分.102且2mn4即m1,n2时取“=”高三年级理科8页。

四川省成都市第七中学2023-2024学年高三上学期期中考试理科 数学试题

四川省成都市第七中学2023-2024学年高三上学期期中考试理科 数学试题

2023-2024学年度上期高2024届半期考试数学试卷(理科)考试时间:120分钟满分:150分注意事项:1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上.2.本试卷分选择题和非选择题两部分.3.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其它答案标号.4.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定位置上.5.所有题目必须在答题卡上作答,在试题卷上答题无效.6.考试结束后,只将答题卡交回.第Ⅰ卷(选择题,共60分)一、选择题:(本题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合{}{}220,21xA x x xB x =-<=>,则()A .B A ⊆B .A B⊆C .A B =RD .A B =∅2.复数34i2iz +=+,则z =()A B .5C .3D 3.执行如图所示程序框图,则输出结果是()A .热B .爱C .生D .活4.某公司一种型号的产品近期销售情况如表:月份x23456销售额y (万元)15.116.317.017.218.4根据上表可得到回归直线方程ˆˆ0.75yx a =+,据此估计,该公司7月份这种型号产品的销售额为()A .18.85万元B .19.3万元C .19.25万元D .19.05万元5.已知空间两不同直线m n 、,两不同平面αβ、,下列命题正确的是()A .若//m α且//n α,则//m nB .若m β⊥且m n ⊥,则//n βC .若m α⊥且//m β,则αβ⊥D .若m 不垂直于α,且n α⊂,则m 不垂直于n6.如图,在ABC △中,120,2,1,BAC AB AC D ∠=︒==是BC 边一点,2DC BD =,则AD BC ⋅等于()A .83-B .83C .23D .23-7.将函数()cos2f x x =的图象向左平移2π个单位得到函数()g x 的图象,则关于函数()y g x =以下说法正确的是()A .最大值为1,图象关于直线2x π=对称B .周期为π,图象关于点3,08π⎛⎫⎪⎝⎭对称C .在3,88ππ⎛⎫-⎪⎝⎭上单调递增,为偶函数D .在0,4π⎛⎫⎪⎝⎭上单调递减,为奇函数8.如图,平面四边形ABCD 中,1,2,AB AD CD BD BD CD ====⊥,将其沿对角线BD 折成四面体A BCD '-,使平面A BD '⊥平面BCD ,四面体A BCD '-的顶点在同一个球面上,则该球的体积为()A .43πB .32C .43πD .239.已知双曲线C 的两个顶点分别为12,A A ,若C 的渐近线上存在点P ,使122PA =,则C 的离心率范围是()A .(]1,3B .[)3,+∞C .(]1,2D .[)2,+∞10.已知函数()()2ln 2x f x kx x kx k R =--∈,在()20,e 有且只有一个极值点,则k 的取值范围是()A .[)0,e B .(){}2,0,2e e ⎡⎫-∞+∞⎪⎢⎣⎭C .()2,0,2e ⎡⎫-∞+∞⎪⎢⎣⎭D .(]0,e11.已知数列{}n a 满足()12121,1,54032n n n a a a a a n --=-=-+=≥,则1013a =()A .202321-B .202421-C .202621-D .101321-12.已知0,0a b >>,则在下列关系①222a b +≤②1a b e -≤③1cos 23a b≥-④a b e ea e eb -=-中,能作为“2a b +≤”的必要不充分条件的个数是()A .1个B .2个C .3个D .4个第Ⅱ卷(非选择题,共90分)二、填空题:(本大题共4小题,每小题5分,共20分.)13.曲线22ln 2y x x x =--+在点()1,1处的切线的倾斜角为______.14.已知40n xdx =⎰ ,则二项式()310nx x x ⎛⎫+> ⎪⎝⎭展开式中的常数项为______.15.数列{}n a 满足:2212212121,2,2n n n na a a a a a ++-==-==,数列{}n a 的前n 项和记为n S ,则23S =______.16.12F F 、分别是椭圆()222210x y a b a b +=>>的左、右焦点,点P 在椭圆上,12PF F △的内切圆的圆心为I ,设直线12,IF IF 的斜率分别为11,23-,则椭圆的离心率为______.三、解答题:(本题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.)17.(本小题满分12分)在ABC △中,内角A B C 、、所对的边分别为a b c 、、,其外接圆半径为1,4,sin sin 11cos bA C B=+=-.(1)求cos B ;(2)求ABC △的面积.18.(本小题满分12分)一个多面体的三视图和直观图如图所示,其中正视图和俯视图均为矩形,侧视图为直角三角形,M 是AB 的中点.(1)求证:CM ⊥平面FDM ;(2)若N 为线段FC 上一点,且FN FC λ= ,二面角F DM N --的余弦值为3,求λ的值.19.(本小题满分12分)体育强国是新时期我国体育工作改革和发展的目标和任务,我国要力争实现体育大国向体育强国的转变。

2022-2023学年四川省成都市青羊区石室中学高三(上)期中数学试卷(理科)+答案解析(附后)

2022-2023学年四川省成都市青羊区石室中学高三(上)期中数学试卷(理科)+答案解析(附后)

2022-2023学年四川省成都市青羊区石室中学高三(上)期中数学试卷(理科)1. 已知复数z满足,则在复平面内复数z对应的点在( )A. 第四象限B. 第三象限C. 第二象限D. 第一象限2.已知数列的前n项和是,则( )A. 20B. 18C. 16D. 143. 设全集,集合,,则( )A. B. C. D.4. 函数在区间的图象大致为( )A. B.C. D.5. 某几何体的三视图如图所示,则该几何体的体积为( )A. B. C. D.6.已知命题p:在中,若,则;命题q:向量与向量相等的充要条件是且在下列四个命题中,是真命题的是( )A. B. C. D.7. 已知函数的部分图象如图所示,则下列说法正确的是( )A. 直线是函数的图象的一条对称轴B. 函数的图象的对称中心为,C. 函数在上单调递增D. 将函数的图象向左平移个单位长度后,可得到一个偶函数的图象8. 数列中,,对任意m,,,若,则( )A. 2B. 3C. 4D. 59. 2020年,由新型冠状病毒感染引起的新型冠状病毒肺炎在国内和其他国家暴发流行,而实时荧光定量法以其高灵敏度与强特异性,被认为是的确诊方法,实时荧光定量PCR法,通过化学物质的荧光信号,对在PCR扩增进程中成指数级增加的靶标DNA实时监测,在PCR扩增的指数时期,荧光信号强度达到阈值时,DNA的数量与扩增次数n满足,其中p为扩增效率,为DNA的初始数量.已知某样本的扩增效率,则被测标本的DNA大约扩增次后,数量会变为原来的125倍.参考数据:( )A. 10B. 11C. 12D. 1310. 设,,其中e是自然对数的底数,则( )A. B. C. D.11. 已知正三棱柱的所有顶点都在球O的表面上,若球O的表面积为,则正三棱柱的体积的最大值为( )A. B. C. D.12. 已知的三个顶点都在抛物线上,点为的重心,直线AB 经过该抛物线的焦点,则线段AB的长为( )A. 8B. 6C. 5D.13.已知向量满足,则______.14. 在二项式的展开式中,各项的系数之和为512,则展开式中常数项的值为______.15. 已知双曲线C:的左、右焦点分别为,,点P是双曲线C的右支上一点,若,且的面积为3,则双曲线C的焦距为______. 16. 已知函数,若关于x的方程有8个不同的实数解,则整数m的值为______其中e是自然对数的底数17. 已知a,b,c为的内角A,B,C所对的边,向量,且求角C;若,,D为BC的中点,,求的面积.18. 全国中学生生物学竞赛隆重举行.为做好考试的评价工作,将本次成绩转化为百分制,现从中随机抽取了50名学生的成绩,经统计,这批学生的成绩全部介于40至100之间,将数据按照分成6组,制成了如图所示的频率分布直方图.求频率分布直方图中m的值,并估计这50名学生成绩的中位数;在这50名学生中用分层抽样的方法从成绩在的三组中抽取了11人,再从这11人中随机抽取3人,记为3人中成绩在的人数,求的分布列和数学期望;19. 如图,四棱柱中,底面ABCD是矩形,且,,,若O为AD的中点,且求证:平面ABCD;线段BC上是否存在一点P,使得二面角的大小为?若存在,求出BP的长;若不存在,说明理由.20. 已知曲线C上的任意一点到点的距离和它到直线l:的距离的比是常数,过点F作不与x轴重合的直线与曲线C相交于A,B两点,过点A作AP垂直于直线l,交直线l于点P,直线PB与x轴相交于点求曲线C的方程;求面积的最大值.21.已知函数在处的切线方程为求实数m和n的值;已知,是函数的图象上两点,且,求证:22. 在平面直角坐标系xOy中,已知直线l的参数方程为为参数,以坐标原点O为极点,x轴的非负半轴为极轴取相同的长度单位,建立极坐标系,曲线C的极坐标方程为求直线l的普通方程和曲线C的直角坐标方程;若点P的极坐标为,直线l与曲线C相交于A,B两点,求的值.23. 已知函数,M为不等式的解集.求集合M;设a,,求证:答案和解析1.【答案】B【解析】解:因为,所以,所以复数z对应的点为,故在复平面内复数z对应的点在第三象限.故选:结合复数的除法运算化简z,由复数与复平面的对应关系即可求解.本题主要考查复数的几何意义,属于基础题.2.【答案】C【解析】解:设数列的前n项和为,则,故故选:由直接代值运算即可.本题主要考查了等车数列的和与项的递推关系,属于基础题.3.【答案】A【解析】解:因为全集,集合,所以,又因为,所以,故选:解一元二次不等式进而确定全集中的元素,根据集合A,求得,根据集合的交集运算即可求得答案.本题考查集合的运算性质,属于基础题.4.【答案】A【解析】解:函数,,所以为奇函数,排除B,D;当时,,排除故选:由函数的奇偶性及函数值的大小进行排除即可求得结论.本题主要考查函数的图象的判断,考查函数的性质,属于基础题.5.【答案】C【解析】解:根据几何体的三视图,得;该几何体是一正方体,从上面去掉一个圆锥,且圆锥的底面直半径、高都与正方体边长相等;该几何体的体积为故选:根据几何体的三视图,得出该几何体是一正方体,中间去掉一个圆锥的组合体,由此求出它的体积.本题利用空间几何体的三视图求体积的应用问题,解题的关键是由三视图得出几何体的结构特征是什么.6.【答案】D【解析】解:命题q:向量与向量相等的充要条件是向量与向量大小相等,方向相同,故命题q是假命题,命题p:在中,若,由于余弦函数在上单调递减,则,故命题p为真命题;因此,为假命题,为假命题,为假命题,为真命题.故选:结合余弦三角函数单调性可判断p正确,由向量相等的条件可判断q错误.本题考查复合命题的真假,属于基础题.7.【答案】B【解析】解:由函数图象可知,,最小正周期为,所以,将点代入函数解析式中,得,又因为,所以,故,对于选项A,令,,即,,令,则,故选项A错误;对于选项B ,令,则,,所以,,即函数的图象的对称中心为,,故选项B 正确;对于选项C ,令,解得,因为,所以函数在上单调递减,在上单调递增,故选项C 错误;对于选项D ,将函数的图象向左平移个单位长度后,得到的图象,该函数不是偶函数,故选项D 错误.故选:先根据函数图象,求出函数的解析式,然后根据三角函数的周期,对称轴,单调区间,奇偶性逐项进行检验即可求解.本题主要考查三角函数的图象和性质,根据图象求出函数的解析式是解决本题的关键.要求熟练掌握函数图象之间的变化关系,属于中档题.8.【答案】C【解析】解:由,令,则,即,数列是首项为2,公比为2的等比数列,则,,,则,解得,故选:取,可得出数列是等比数列,可得数列的通项公式,利用等比数列求和公式可得出关于k 的等式,即可得出答案.本题考查构造法和等比数列的定义和通项公式、求和公式,考查转化思想,考查逻辑推理能力和运算能力,属于中档题.9.【答案】C【解析】解:因为,所以由题意知,得,故被测标本的DNA 大约扩增12次后,数量会变为原来的125倍.故选:根据题意,化简,得,可得,利用参考数据,可得答案.本题以实际问题为载体,考查函数模型的构建,考查运算求解能力,属于基础题.10.【答案】D【解析】解:设,得令,解得当时,,单调递减;当时,,单调递增,所以,即,则,,所以最小.又因为,且,所以,所以综上所述,故选:构造,利用导数证明的的单调性,赋值,可大致估计a,b 大小,,通过放缩可比较a,b大小,进而得出答案.本题考查导数的综合运用,考查运算求解能力,属于中档题.11.【答案】C【解析】解:如图,设正三棱柱上、下底面的中心分别为H,,连接,根据对称性可知,线段的中点O即为正三棱柱外接球的球心,线段OA即为该外接球的半径,又由已知得,,设正三棱柱的底面边长为x,则,在中,,,正三棱柱的体积,令,则,,,,当时,,单调递增;当时,,单调递减,所以故选:结合正三棱柱和外接球关系先求出外接球半径,令正三棱柱底面边长为x,由函数关系表示出体积V与x函数关系,利用导数可求最值.本题考查正三棱柱的最值的求解,函数思想的应用,利用导数研究函数的单调性,属中档题.12.【答案】B【解析】解:设抛物线的焦点为F,则,根据题意可知,点为的重心,若直线AB的斜率不存在,则不妨取,,则结合重心可得C为,不合题意;故直线AB的斜率存在,设直线AB的方程为,,,,,则有,,,联立方程得,,则,,因为点为的重心,所以,即,所以,,即,解得,则,故线段AB的长为6,故选:判断直线AB的斜率存在,设出直线方程,联立抛物线方程可得根与系数的关系式,利用三角形的重心即可求得参数k的值,根据抛物线的弦长公式即可求得答案.本题考查直线和圆锥曲线相交时的弦长问题,联立圆锥曲线方程,利用根与系数的关系去化简求值,三角形重心的坐标公式,抛物线的几何性质,属中档题.13.【答案】【解析】解:由两边平方得故答案为:通过平方的方法化简已知条件,从而求得本题主要考查平面向量数量积运算,考查运算求解能力,属于基础题.14.【答案】135【解析】解:因为二项式的展开式中,各项的系数之和为512,所以令,得,解得又因为的展开式的通项公式为,令,解得,所以展开式中常数项为故答案为:根据各项的系数之和为512得到,解得,然后利用通项公式求常数项即可.本题考查二项式定理,属于基础题.15.【答案】【解析】解:设双曲线C:的半虚轴为b,半焦距为c,,,又,两式相减可得,则,又的面积为3,,,解得,,,,即,又,,,,得,又,且,,双曲线C的焦距为故答案为:根据双曲线定义结合余弦定理可推得,结合三角形面积可推得,由可得,继而推得,,再利用勾股定理结合即可求得本题主要考查双曲线的性质,考查转化能力,属于中档题.16.【答案】5【解析】解:因为,所以当时,,当时,,即满足,则是偶函数.当时,则,,当时,,单调递增;当时,,单调递减;当时,,作出函数的图象,如图所示:设,因为有8个不同的实数解,所以由图象可得,关于t的方程有2个不同的实数解,且都大于e,所以有,解得,又因为,所以整数m的值为5,故答案为:判断函数的奇偶性,利用导数判断其单调性,继而作出其图象,数形结合,将关于x的方程有8个不同的实数解,转化为关于t的方程有2个不同的实数解,列出不等式组,即可求得答案.本题主要考查函数的零点与方程根的关系,解决此类比较复杂的方程的根的个数问题,一般方法是采用换元法,数形结合,将根的个数问题转化为函数图象的交点问题,考查数形结合思想与运算求解能力,属于中档题.17.【答案】解:因为,,所以,由正弦定理得,即,由余弦定理得,因为,所以在三角形ADC中,,即,解得或,即或,因为,故,因为,所以,故,所以,所以【解析】本题主要考查平面向量的数量积公式,考查转化能力,属于中档题.根据已知条件,结合向量垂直的性质,以及正弦定理、余弦定理,即可求解.根据已知条件,结合余弦定理,以及三角面积公式,即可求解.18.【答案】解:由频率分布直方图的性质可得,,解得,设中位数为a,则,解得,故估计这50名学生成绩的中位数为的三组频率之比为:::3:1,从中分别抽取7人,3人,1人,故所有可能取值为0,1,2,3,,,,,故的分布列为:0123P故【解析】根据已知条件,结合频率分布直方图的性质,结合中位数公式,即可求解.根据已知条件,结合分层抽样的定义,求得从中分别抽取7人,3人,1人,推得所有可能取值为0,1,2,3,分别求出对应的概率,再结合期望公式的公式,即可求解.本题主要考查随机变量分布列的求解,以及期望公式的应用,属于中档题.19.【答案】解:证明:,且,为等边三角形,为AD的中点,,又,且,平面ABCD;如图,过O作,以O为原点,建立空间直角坐标系,则,,设,,设平面的法向量为,又,,则,取,又平面的一个法向量为,,解得或舍去,,当BP的长为时,二面角的值为【解析】由已知得为等边三角形,,再由,能证明平面建系,利用向量法及方程思想即可求解.本题考查线面垂直的判定定理,向量法求解二面角问题,方程思想,属中档题.20.【答案】解:设曲线C上的任意一点的坐标为,由题意,得,即,所以曲线C的方程为;由题意,设直线AB的方程为,,,则联立方程得,则,所以,,所以又因为,所以直接PB的方程为令,则,所以,因为,所以令,,则又因为在上单调递减,所以当时,,故面积的最大值为【解析】由题意列出曲线方程化简即可求解;设直线AB的方程为,,,表示出P,联立直线与椭圆方程消去x,表示出关于y的韦达定理,结合B,P求出直接PB的方程,令,求出M坐标,进而得到,由求出面积,结合换元法和对勾函数性质可求面积的最大值.本题考查椭圆的标准方程及其性质,考查直线与椭圆的综合运用,考查函数思想和运算求解能力,属于中档题.21.【答案】解:由,得因为函数在处的切线方程为,所以,,则;证明:由可得,,,所以当时,,单调递增;当时,,单调递减.因为,是函数的图象上两点,且,不妨设,且,所以由,得,即设,设,则,所以,即,故要证,只需证,即证,即证,即证,即证,即证令,,则,证明不等式;设,则,所以当时,;当时,,所以在上为增函数,在上为减函数,故,所以成立.由上述不等式可得,当时,,故恒成立,故在上为减函数,则,所以成立,即成立.综上所述,【解析】先求导,由,可求对应的m和n的值;设,由可判断,由得,设,,,得,代换整理得,原不等式要证,只需证,全部代换为关于t 的不等式得,设,,由导数得,再证,放缩得,进而得证.本题考查导数的几何意义,考查利用导数研究函数的单调性,极值及最值,考查不等式的证明,考查逻辑推理能力及运算求解能力,属于中档题.22.【答案】解:因为直线l的参数方程为为参数,所以直线l的普通方程为,因为,即,所以,得,所以曲线C的直角坐标方程为;因为点P的极坐标为,所以点P的直角坐标为,所以点P在直线l上,将直线l的参数方程为参数,代入,化简得,设A,B两点所对应的参数分别为,,则,,故,,所以,,所以【解析】利用消元法将参数方程化为普通方程即可得到直线l的普通方程;利用极坐标方程与直角坐标方程的转化公式即可得到曲线C的直角坐标方程;将点P的极坐标化为直角坐标判断得P在直线l上,再利用直线参数方程中参数的几何意义,将直线l代入曲线C的直角坐标方程,结合韦达定理即可求解.本题主要考查简单曲线的极坐标方程,考查转化能力,属于中档题.23.【答案】解:①当时,不等式可化为,解得,则;②当,不等式可化为,解得,则;③当时,不等式可化为,解得,则综上所述,;证明:因为当且仅当时取等号,所以要证,只需证,即证,即证,即证,即证由可知,因为a,,所以,,所以成立.综上所述,【解析】采用零点讨论法去绝对值可直接求解;结合绝对值三角不等式得,要证,即证,即证,去平方结合因式分解即可求证.本题考查不等式的解法及其证明,考查分类讨论思想以及推理论证能力,运算求解能力,属于中档题.。

陕西省西安市第一中学2021届高三上学期期中考试数学(理)试题 Word版含答案

陕西省西安市第一中学2021届高三上学期期中考试数学(理)试题 Word版含答案

市一中高校区2022—2021学年度第一学期期中考试 高三数学(理科)试题命题人:付 功一、选择题:(本大题共12小题,每小题5分,共60分). 1. 已知集合{11}A x x =+<,1{|()20}2x B x =-≥,则=⋂B C A R ( )(A))1,2(-- (B))0,1(- (C))0,1[- (D)]1,2(--2.下列命题正确的个数是 ( )①命题“2000,13x R x x ∃∈+>”的否定是“2,13x R x x ∀∈+≤”;②函数22()cos sin f x ax ax =-的最小正周期为π”是“1a =”的必要不充分条件; ③22x x ax +≥在[]1,2x ∈上恒成立⇔max min 2)()2(ax x x ≥+在[]1,2x ∈上恒成立; ④“平面对量a 与b 的夹角是钝角”的充分必要条件是“0a b ⋅<”. (A)1 (B)2 (C)3 (D)43.复数z 满足i z i 34)23(+=⋅-,则复平面内表示复数z 的点在( )(A )第一象限 (B )其次象限 (C )第三象限(D )第四象限4.将函数()3cos sin y x x x R =+∈的图像向左平移()0m m >个长度单位后,所得到的图像关于y 轴对称,则m 的最小值是( ) (A ) 12π (B )6π (C ) 3π(D )56π5. 已知数列{}n a 为等差数列,满足OC a OB a OA 20133+=,其中C B A ,,在一条直线上,O 为直线AB 外一点,记数列{}n a 的前n 项和为n S ,则2015S 的值为( ) (A )22015(B ) 2015 (C )2016 (D )2013 6. 已知函数)91(log 2)(3≤≤+=x x x f ,则[])()(22x f x f y +=的最大值为( )(A )33 (B )22 (C ) 13 (D )67.在∆ABC 中.222sin sin sin sin sin A B C B C ≤+-.则A 的取值范围是 ( )A .(0,6π] B .[ 6π,π) C .(0,3π] D .[ 3π,π)8. 在ABC∆中,060=A ,2=AB ,且ABC ∆的面积为23,则BC 的长为( ) (A )2 (B )23 (C )32 (D )39.已知向量(,),(,),与的夹角为060,则直线021sin cos =+-ααy x 与圆()()21sin cos 22=++-ββy x 的位置 关系是( )(A )相交 (B )相离 (C )相切 (D )随的值而定10.设动直线m x =与函数x x g x x f ln )(,)(2==的图象分别交于点N M ,,则MN 的最小值为( )(A )2ln 2121+ (B )2ln 2121- (C ) 2ln 1+ (D )12ln - 11.等比数列{}n a 中,12a =,8a =4,函数()128()()()f x x x a x a x a =---,则()'0f =( ) (A )62 (B )92 (C ) 122 (D )15212.已知a 为常数,函数f (x )=x (ln x -ax )有两个极值点x 1,x 2(x 1<x 2),则( ).(A )f (x 1)>0,f (x 2)>-12 (B )f (x 1)<0,f (x 2)<-12 (C )f (x 1)>0,f (x 2)<-12 (D )f (x 1)<0,f (x 2)>-12二、填空题 :(本大题共4小题,每小题5分,共20分.把答案填在答题卡上). 13. 设向量)2,1(),1,(=+=b x x a ,且b a ⊥,则=x .14.已知函数)(x f =x+sinx.项数为19的等差数列{}n a 满足⎪⎭⎫⎝⎛-∈22ππ,n a ,且公差0≠d .若0)()()()(191821=++⋯++a f a f a f a f ,则当k =______时,0)(=k a f15在△ABC 中,角A ,B ,C 所对的边分别为a,b,c,设S 为△ABC 的面积,满足2223()4S a b c =+- 则角C 的大小为。

高三理科月考试题和答案(函数,圆锥曲线,三角函数)

高三理科月考试题和答案(函数,圆锥曲线,三角函数)

2019—2019学年第一学期期中考试高三理科数学试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分共150分,考试时间120分钟。

第Ⅰ卷(选择题)一、选择题(本大题共12个小题,每题5分,共60分。

在每个小题的四个选项中,只有一项是符合题目要求的。

) 1.设全集为R ,集合2{|21},{|}M x y x N y y x ==+==-,则 ( )A .M N ⊆B .N M ⊆C .N M =D .{}(1,1)M N =--2.设)()21()(||R x x f x ∈=,那么)(x f 是( )A .奇函数且在(0,+∞)上是增函数B .偶函数且在(0,+∞)上是减函数C .奇函数且在(-∞,0)上是增函数D .偶函数且在(-∞,0)上是减函数3.设函数)(x f 和)(x g 的定义域都为R ,且)(x f 为奇函数,)(x g 为偶函数;当x <0时,0)()()()(>'+'x g x f x g x f ,且0)3(=-g ,则不等式0)()(<x g x f 的解集为的( ) A .),3()0,3(+∞⋃- B .)3,0()0,3(⋃-C .),3()3,(+∞⋃--∞D .)3,0()3,(⋃--∞4.对于R 上可导的任意函数f(x),若满足()()10x f x '-≥则必有( )A .()()()02<21f f f +B .()()()0221f f f +≤C .()()()0221f f f +≥D .()()()02>21f f f +5.已知二次函数f(x) =(x-a )(x-b )-2,m 、n 是方程f(x) =0的两根,则a 、b 、m 、n 的大小关系可能是 ( ) A .m<a<b<n B .a<m<n<b C .a<m<b<n D .m<a<n<b 6.已知圆的值为则实数所截得的弦长为被直线a y x y a x ,2224)(22=-=+-( )A .0或4B .1或3C .-2或6D .-1或3oyx7.已知函数f (x )的导数为,44)(3x x x f -='且图象过点(0,-5),当函数f (x )取得极大值-5时,x 的值应为( ) A .0 B .-1 C .1D .±18.与直线042=+-y x 平行的抛物线2x y =的切线方程为 ( )A .032=+-y xB .032=--y xC .012=+-y xD .012=--y x9.函数)(x f y =在定义域内可导,已知)(x f y =的图象 如右图所示,则)(x f y '=的图象为 ( )A B C D10.焦点为()6,0,且与双曲线1222=-y x 有相同的渐近线的双曲线方程是( )A .1241222=-y xB .1122422=-x yC . 1241222=-x yD .1122422=-y x11.函数)(x f y =的图象过点(0,0),其导函数)(x f y '=的 图象如图,则)(x f y =的图象顶点在 ( )A .第一象限B .第二象限C .第三象限D .第四象限 12.当x ≠0时,下列结论正确的是 ( )A .x e x+<1 B .x e x+>1C .x e x x e x xx+><+<>10,10时当时当D .x e x x e x xx+>>+<<10,10时当时当oyxoyxoyxoyxoyx第Ⅱ卷(非选择题)二、填空题:(本大题共4小题,每题5分,共20分。

甘肃省兰州市西北师范大学附属中学2022-2023学年高三上学期期中考试理科数学试卷

甘肃省兰州市西北师范大学附属中学2022-2023学年高三上学期期中考试理科数学试卷

西北师大附中2022—2023学年第一学期期中考试试题高三数学(理) 命题人:张丽娇 审题人:惠银东一、选择题(本题共12小题,每小题5分,共60项是符合题目要求的.)1.已知集合{}3,2,1,2A =---,{B x =2|56x x --≤}0,则A ⋂C R B =( )A .{}3-B .{}3,2,1---C .{}3,2--D .{}1,2- 2.集合{}{}201A x x ax a =++=⊆,则a 为( )A .12-B .()0,4a ∈C .()[),04,a ∈-∞⋃+∞D .()10,42a ⎧⎫∈-⋃⎨⎬⎩⎭ 3.已知m ∈R ,“函数y =2x +m -1有零点”是“函数y =log m x 在(0,+∞)上为减函数”的( )A.充分不必要条件 B .必要不充分条件C.充要条件 D .既不充分也不必要条件4.已知命题000:,3sin 4cos p x x x ∃∈+=R ;命题 1:,1xq x e ⎛⎫∀∈≤ ⎪⎝⎭R ,则下列命题中为真命题的是( )A .p q ∧B .p q ⌝∧C .p q ∨⌝D .()p q ⌝∨5.中国的5G 技术领先世界,5G 技术的数学原理之一便是著名的香农公式:C =W log 2⎝⎛⎭⎫1+S N .它表示:在受噪声干扰的信道中,最大信息传递速度C 取决于信道带宽W ,信道内信号的平均功率S ,信道内部的高斯噪声功率N 的大小,其中S N叫作信噪比.当信噪比比较大时,公式中真数中的1可以忽略不计.按照香农公式,若不改变带宽W ,而将信噪比S N从1000提升到8000,则C 大约增加了(lg 2≈0.301)( )A .10%B .20%C .30%D .50%6.已知,,m n l 是不同的直线,,αβ是不同的平面,以下命题正确的是( )①若m ∥n ,,m n αβ⊂⊂,则α∥β;②若,m n αβ⊂⊂,α∥l m β⊥,,则l n ⊥; ③若,,m n αβα⊥⊥∥β,则m ∥n ;④若αβ⊥,m ∥α,n ∥β,则m n ⊥;A .②③B .③④C .②④D .③7.已知非常数函数f(x)满足f (−x )f (x )=1(x ∈R),则下列函数中,不是奇函数的是( )A .f (x )−1f (x )+1B .f (x )+1f (x )−1C .f (x )−1f (x )D . f (x )+1f (x )8.已知3log 2a =,4log 3b =,23c =,则( ) A .a c b << B .c a b << C .b a c << D .b c a <<9.函数f (x )=3|x |·cos 2x x的部分图象大致是( )10.若()f x 的定义域为R ,对,x y R ∀∈,()()()()(),11f x y f x y f x f y f ++-== 则()221k f k ==∑( )A .-3B .-2C .0D .111.已知正四棱锥的侧棱长为l ,其各顶点都在同一个球面上,若该球的体积为36π, 且3≤l ≤3√3,则该正四棱锥体积的取值范围是( )A.[18,814]B.[274,643]C.[274,814]D.[18,27]12.定义在R 上的函数f(x)的导函数为f′(x),若f′(x)<f(x),则不等式e x f(x +1)<e 4f(2x -3)的解集是( )A .(-∞,2)B .(2,+∞)C .(4,+∞)D .(-∞,4)二、填空题(本题共4小题,每小题5分,共20分)13.若()3,01,0x x f x x x⎧≤⎪=⎨>⎪⎩,则()()2f f -=__________. 14.函数y =lg(c +2x -x 2)的定义域是(m ,m +4),则实数c 的值为__________. 15.∫(3−3sinx +√9−x 2)dx =__________.16.已知定义在R 上的偶函数f (x ),满足f (x +4)=f (x )+f (2),且在区间[0,2]上单调递增,则 ①函数f (x )的一个周期为4;②直线x =-4是函数f (x )图象的一条对称轴;③函数f (x )在[-6,-5)上单调递增,在[-5,-4)上单调递减;④函数f (x )在[0,100]上有25个零点.其中正确命题的序号是________.(注:把你认为正确的命题序号都填上)三、解答题(共70分,解答应写出必要的文字说明,证明过程或演算步骤)17.(14分)在以下三个条件中任选一个,补充在下面问题中,并进行解答.“①函数y =√x 2+2x −k 的定义域为R ,②∃x ∈R ,使得|x −1|+|x −2|+k ⩽0, ③方程x 2+k =0有一根在区间[1,+∞)内”问题:已知条件p :______,条件q :函数f(x)=2x 2−kx 在区间(−3,a)上不单调,若p 是q 的必要条件,求实数a 的最大值.18.(14分)已知函数f (x )=ln (m x x+1−1)(其中m ∈R 且m ≠0)是奇函数.(1)求m 的值;(2)若对任意的x ∈[ln2,ln4],都有不等式f (e x )−x +lnk ≥0恒成立, 求实数k 的取值范围.19.(14分)已知函数f (x )=x 2-2x +aln x(a ∈R).(1)若函数在x =1处的切线与直线x -4y -2=0垂直,求实数a 的值;(2)当a >0时,讨论函数f(x)的单调性.20.(14分)已知函数f (x )=2a+1a −1a 2x ,a >0 (1)证明:函数f (x )在(0,+∞)上单调递增;(2)设0<m <n ,若f (x )的定义域和值域都是[m,n ],求n −m 的最大值.21.(14分)已知函数()212x f x e x ax =--有两个极值点12x x ,, (1)求实数a 的取值范围;(2)求证:()()122f x f x +>.。

江西省南昌市三校(一中、十中、铁一中)2022-2023学年高三上学期11月期中联考《理数》含答案

江西省南昌市三校(一中、十中、铁一中)2022-2023学年高三上学期11月期中联考《理数》含答案

南昌市三校(一中、十中、铁一中)高三上学期第一次联考数 学 试 卷(理 科)学校:南昌十中 考试时长:120分钟 试卷总分:150分一、选择题:(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合403x M x x +⎧⎫=≤⎨⎬-⎩⎭∣,133xN x ⎧⎫⎪⎪⎛⎫=⎨⎬ ⎪⎝⎭⎪≤⎪⎩⎭∣,则M N = ( )A. []4,1-- B.[)1,3- C.[)4,3- D. []1,3-2.设平面向量a ,b 均为单位向量,则“|a −2b |=|2a +b |”是“a ⊥b ”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件3.已知函数则A. B . C . D .(第4题图)4.如图,在△ABC 中,BN =14BC ,设AB =a ,AC =b ,则AN =( )A. 14a−34bB. 34a−14bC. 14a +34bD. 34a +14b5.如图所示,在平面直角坐标系中,角α和角β均以Ox 为始边,终边分别为射线OA 和OB ,射线OA ,OC 与单位圆的交点分别为34,55A ⎛⎫⎪⎝⎭,(1,0)C -.若6BOC π∠=,则cos()βα-的值是( )A B C.D 6.通过研究正五边形和正十边形的作图,古希腊数学家毕达哥拉斯发现了黄金分割率,黄金分割率的值也可以用2sin18︒2sin18=︒.记2sin18m =︒=( )A. 2-B.1-7.已知过点(),0A a 作曲线()1e xy x =-切线有且仅有1条,则=a ( )0()(1)0x e x f x f x x ⎧=⎨->⎩,,,,…(ln 2)f =2e 4e 2e 4e 的A.3-B.3C.3-或1D. 3或18.已知奇函数f(x)在R 上是增函数.若a =−f(log 215),b =f(log 24.1),c =f(20.8),则a ,b ,c 的大小关系为()A. a <b <cB. c <b <aC. b <a <cD. c <a <b9.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若2cos 2cos a C b c A +=,c =,则A ∠=( )A .π6B .π4C .π3D .2π310.已知函数f (x )=(3−a )x−4,x ≤8a x−7,x >8,若数列{a n }满足a n =f (n )(n ∈N ∗)且{a n }是递增数列,则实数a 的取值范围是( )A. (2,3)B.[2,3) ,311.已知函数π()2sin()cos sin (||)2f x x x ϕϕϕ=+-<,且对于任意x ∈R ,都有ππ(+)()33f x f x =--,下列序号中,① ()f x 在区间ππ[,]66-上单调递增;② (0)f ;③ 若0(2x f =0π1()123f x -=-;④若实数m 使得方程()0f x m -=在4π(0,)3上恰有1x ,2x ,3123()x x x x <<三个实数根,则123102=π3x x x ++.正确的序号有( )A. ①②③ B. ①③④ C. ①②④ D. ②③④12.黎曼函数R(x)是一个特殊函数,由德国数学家黎曼发现并提出,该函数定义在[0,1]上,当x =pq (p,q都是正整数,pq 为最简真分数)时,R (x)=1q ;当x =0或1或x 为(0,1)内的无理数时,R (x )=0.若g(x +1)为偶函数,g (x +2)为奇函数,当x ∈[0,1]时,g (x )=R (x ),则( )A.>15且g (cos 2αsin 2β)≥g (cos 2α)g (sin 2β)B.>15且g (cos 2αsin 2β)≤g (cos 2α)g (sin 2β)C.=15且g (cos 2αsin 2β)≥g (cos 2α)g (sin 2β)D.=15且g (cos 2αsin 2β)≤g (cos 2α)g (sin 2β)二、填空题(本题共4小题,每小题5分,共20分)13.已知aϵR,若复数z =a 2−a−2+(a 2+3a +2)i 为纯虚数,则a =14. 如图,扇环ABCD 中,弧⌢AD =4,弧⌢BC =2,|AB |=|CD |=1,则扇环ABCD 的面积S =.15.已知函数()f x 是定义域为R 的奇函数,当0x >时,()()2f x f x '->,且()30f =,则不等式()0f x >的解集为___________.16. 锐角△ABC 中,a ,b ,c 为角A ,B ,C 所对的边,点G 为△ABC 的重心,若AG ⊥BG ,则cos C 的取值范围为______.三、简答题(本题共5小题,每小题12分,共60分)17.(12分)已知函数f(x)=1−3sin2x +2cos 2x .(1)求f(x)的最大值及取得最大值时的x 集合;(2)设△ABC 的角A ,B ,C 的对边分别为a ,b ,c ,且a =1,f(A)=0.求b +c 的取值范围.18. (12分)如图,在三棱柱111ABC A B C -中,侧面11AA C C ⊥底面ABC ,侧面11AAC C是菱形,160A AC ∠= ,90ACB ∠= ,2AC BC ==.(1)若D 为1AC 的中点,求证:1AD A B ⊥;(2)求二面角11A A C B --的正弦值.19. (12分)某校组织围棋比赛,每场比赛采用五局三胜制(一方先胜三局即获胜,比赛结束),比赛采用积分制,积分规则如下:每场比赛中,如果四局及四局以内结束比赛,取胜的一方积3分,负者积0分;五局结束比赛,取胜的一方积2分,负者积1分.已知甲、乙两人比赛,甲每局获胜的概率为12.(1)在一场比赛中,甲的积分为X ,求X 的概率分布列;(2)求甲在参加三场比赛后,积分之和为5分的概率.20.(12分)已知圆C :22(1)1x y -+=,椭圆M :22184x y +=.(1)求证:圆C 在椭圆M 内;(2)若圆C 的切线m 与椭圆M 交于P ,Q 两点,F 为椭圆M 的右焦点,求△FPQ 面积的最大值.21.(12分)已知函数2211()ln 24f x x ax x x ax ⎛⎫=--+⎪⎝⎭.(1)若()f x 在(0,)+∞单调递增,求a 的值;(2)当1344a e <<时,设函数()()f x g x x=的最小值为()h a ,求函数()h a 的值域.四、选做题22.(10分)【选修4-4:坐标系与参数方程】在平面直角坐标xOy 中,直线l的参数方程为12x a y t ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数,a 为常数).以原点O 为极点,x轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为24cos sin θρθ=.(1)求直线l 的普通方程和曲线C 的直角坐标方程;(2)设直线l 与曲线C 相交于AB 、两点,若16AB =,求a 的值.23.(10分)【选修4-5:不等式选讲】已知函数()||2|1|f x x a x =++-.(1)当2a =时,求不等式()4f x ≤的解集;(2)若[1,2]x ∃∈,使得不等式2()f x x >成立,求实数a 的取值范围.高三上学期第一次三校联考数学(理科)试卷参考答案及评分标准一、选择题:(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)序号123456789101112答案BCADCBCBAADC二、填空题(本题共4小题,每小题5分,共20分)13.2 14.3 15. ()()3,03-+∞ , 16.三、简答题(本题共5小题,每小题12分,共60分)17. 已知函数f(x)=1−3sin2x +2cos 2x .(1)求f(x)的最大值及取得最大值时的x 集合;(2)设△ABC 的角A ,B ,C 的对边分别为a ,b ,c ,且a =1,f(A)=0.求b +c 的取值围.【答案】解:(1)f(x)=1−3sin2x +2cos 2x =cos2x−3sin2x +2 =2cos(2x +π3)+2,····…..2分∵−1≤cos (2x +π3)≤1,∴0≤2cos(2x +π3)+2≤4,∴f(x)的最大值为4, …… 4分当2x +π3=2kπ(k ∈Z),即x =kπ−π6(k ∈Z)时,函数f(x)取最大值,则此时x 的集合为{x|x =kπ−π6,k ∈Z};· ………. 6分 (2)由f(A)=0得:2cos(2A +π3)+2=0,即cos (2A +π3)=−1,∴2A +π3=2kπ+π(k ∈Z),即A =kπ+π3(k ∈Z),又0<A <π,∴A =π3,∵a =1,sinA =32, ………….8分由正弦定理a sinA =b sinB =csinC 得:b =asinBsinA=23sinB ,c =23sinC ,又A =π3,∴B +C =2π3,即C =2π3−B ,∴b +c =23(sinB +sinC )=+−B=23(sinB +32cosB +12sinB)=2(32sinB +12cosB)=2sin(B +π6),……….10分∵A =π3,∴B ∈(0,2π3),∴B +π6∈(π6,5π6),∴sin (B +π6)∈(12,1],则b +c 的取值范围为(1,2].………………..12分18. 如图,在三棱柱111ABC A B C -中,侧面11AAC C ⊥底面ABC ,侧面11AAC C 是菱形,160A AC ∠= ,90ACB ∠= ,2AC BC ==.(1)若D 为1AC 的中点,求证:1AD A B ⊥;(2)求二面角11A AC B --的正弦值.【答案】(1)见解析 (2【详解】(1)∵侧面11AAC C 是菱形,∴1AA AC =,∵D 为1AC 的中点,∴1AD A C ⊥,∵侧面11AA C C ⊥底面ABC ,侧面11AA C C 底面ABC AC =,90ACB ∠= ,BC ⊂底面ABC ,∴BC ⊥侧面11AAC C,∵AD ⊂侧面11AAC C ,∴BC AD ⊥,∵1A C BC C = ,∴AD ⊥平面1A BC ,∵1A B ⊂平面1A BC ,∴1AD A B ⊥………………………5分.【2】取11A C 中点E ,连接CE ,从而11CE A C ⊥,又由11A C AC ,则CE AC ⊥,∵侧面11AA C C ⊥底面ABC ,侧面11AA C C 底面ABC AC =,∴CE ⊥底面ABC ,以C 为坐标原点,以CA ,CB ,CE 为x 轴,y 轴,z 轴建立空间直角坐标系,如下图:由已知条件和上图可知,(0,0,0)C ,(2,0,0)A ,1A ,1(1,B -,由题意可知,平面1AA C 的一个法向量为(0,2,0)CB →= ………………………7分不妨设111(,,)n x y z →=平面11A CB 的一个法向量,因为1CA →=,1(1,CB →=-,从而111111100020x CA n CB n x y ⎧⎧+=⋅=⎪⎪⇒⎨⎨⋅=⎪-++=⎪⎩⎩,令1z =,则13x =-,13y =-,即(3,n →=--, ………………………9分设二面角11A AC B --为θ,由图可知θ为钝角,从而||cos |cos ,|||||CB n CB n CB n θ→→→→→→⋅=-<>=-=,即sin θ=故二面角11A ACB --. ………………………12分19. 某校组织围棋比赛,每场比赛采用五局三胜制(一方先胜三局即获胜,比赛结束),比赛采用积分制,积分规则如下:每场比赛中,如果四局及四局以内结束比赛,取胜的一方积3分,负者积0分;五局结束比赛,取胜的一方积2分,负者积1分.已知甲、乙两人比赛,甲每局获胜的概率为12.(1)在一场比赛中,甲的积分为X ,求X 的概率分布列;(2)求甲在参加三场比赛后,积分之和为5分的概率.【答案】(1)见解析 (2)3332048【详解】(1)由题意可知,X 可能取值为0,1,2,3 ,当X 0=时,则前三场比赛都输或前三场比赛赢一场且第四场比赛输,则312311115(0)(1C (1)(1222216P X ==-+⋅⋅--=, 当1X=时,前四场比赛赢两场且第五场比赛输,则22241113(1)C ((1(1)22216P X ==⋅⋅-⋅-=;当2X =时,前四场比赛赢两场且第五场比赛赢,则22241113(2)C ()(122216P X ==⋅⋅-⋅=, 当3X =时,前三场比赛都赢或前三场比赛赢两场且第四场比赛赢,则322311115(3)(C ()(1)222216P X ==+⋅⋅-⋅=,故X 的概率分布列如下:X0123P516316316516………………………6分【小问2详解】设甲在参加三场比赛后,积分之和为5分为事件A ,则甲的三场比赛积分分别为1、1、3或者0、2、3或者1、2、2,故33335535333333()3A 31616161616161616162048P A =⋅⋅⋅+⋅⋅⋅+⋅⋅⋅=,故甲在参加三场比赛后,积分之和为5分为3332048. ………………………12分20.(12分)已知圆C :22(1)1x y -+=,椭圆M :22184x y +=.(1)求证:圆C 在椭圆M 内;(2)若圆C 的切线m 与椭圆M 交于P ,Q 两点,F 为椭圆M 的右焦点,求△FPQ 面积的最大值.21.(12分)已知函数2211()ln 24f x x ax x x ax ⎛⎫=--+⎪⎝⎭.(1)若()f x 在(0,)+∞单调递增,求a 的值;(2)当1344a e <<时,设函数()()f x g x x=的最小值为()h a ,求函数()h a 的值域.解:(1)()()ln f x x a x -'=.因为()f x 在(0,)+∞单调递增,所以()0f x '≥,即()ln 0x a x -≥(ⅰ)当1x >时,ln 0x >,则需0x a -≥,故min a x ≤,即1a ≤;(ⅱ)当1x =时,ln 0x =,则a R ∈;(ⅲ)当01x <<时,ln 0x <,则需0x a -≤,故max a x ≥,即1a ≥.综上述,1a =. ………………4分(2)()11()ln 24f x g x x a x x a x ⎛⎫==--+ ⎪⎝⎭,11()ln 24a g x x x =-+',21()2a g x x x '=+'.因为1344a e <<,所以()0g x ''>,所以()g x '在(0,)+∞单调递增又因为13(1)0,()04e 4a g a g e ''=-+<=-+>.所以存在0(1,)x e ∈,使()00g x '=,且当()00,x x ∈时,()0g x '<,函数()g x 单调递减;当()0,x x ∈+∞时,()0g x '>,函数()g x 调递增.故()g x 最小值为()000011ln ()24g x x a x x a h a ⎛⎫=--+=⎪⎝⎭.由()00g x '=,得00011ln 24a x x x =+,因此000031()ln ln 42h a x x x x ⎛⎫=- ⎪⎝⎭.令11()ln ,(1,)24x x x x x e τ=+∈,则13()ln 024x x τ=+>',所以()x τ在区间(1,)e 上单调递增,又因为1344a e <<,且13(1),()44e e ττ==,所以01x e <<,即0x 取遍(1,)e 的每一个值,令2311131()ln ln (1),()ln ln (2ln 3)(ln 1)0422444x x x x x x e x x x x x ϕϕ⎛⎫=-<<='--+=-+->⎪⎝⎭函数()x ϕ在(1,)e 单调递增.又e (1)0,()4e ϕϕ==,所以e0()4x ϕ<<,故函数()h a 的值域为e 0,4⎛⎫ ⎪⎝⎭.. ………………………12分22.(10分)【选修4-4:坐标系与参数方程】在平面直角坐标xOy 中,直线l的参数方程为12x a y t ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数,a 为常数).以原点O 为极点,x轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为24cos sin θρθ=.(1)求直线l 的普通方程和曲线C 的直角坐标方程;(2)设直线l 与曲线C 相交于AB 、两点,若16AB =,求a 的值.(10y -=,24y x =;(2)1a =23.【选修4-5:不等式选讲】已知函数()||2|1|f x x a x =++-.(1)当2a =时,求不等式()4f x ≤的解集;(2)若[1,2]x ∃∈,使得不等式2()f x x >成立,求实数a 的取值范围.解:(1)当2a =时,()|2|2|1|f x x x =++-.当2x ≤-时,()2224f x x x =---+≤,解得43x ≥-,此时x ∈∅;当21x -<≤时,()2224f x x x =+-+≤,解得0x ≥,此时01x ≤≤;当1x >时,()2224f x x x =++-≤,解得43x ≤,此时413x <≤.因此,当2a =时,不等式()4f x ≤的解集为40,3⎡⎤⎢⎥⎣⎦…………….5分(2)当12x ≤≤时,2||2|1|x a x x ++->可化为2||22x a x x +>-+,所以,222x a x x +>-+或222x a x x +<-+-,即存在[1,2]x ∈,使得232a x x >-+或22a x x <-+-.22313224a x x x ⎛⎫>-+=-- ⎪⎝⎭,因为[1,2]x ∈,所以21324x x -+≥-,则14a >-,2217224a x x x ⎛⎫<-+-=--- ⎪⎝⎭,因为[1,2]x ∈,所以222x x -+-≤-,所以2a <-,因此,实数a 的取值范围为1(,2),4⎛⎫-∞--+∞ ⎪⎝⎭ .。

高三数学(理科)上学期期中考试试卷(含标准答案)

高三数学(理科)上学期期中考试试卷(含标准答案)

高三数学(理科)上学期期中考试试卷(含标准答案)满分:150 时间:120分钟一、选择题 (本大题共12小题。

每小题5分,共60分。

每小题给出的四个选项中,只有一项是符合题目要求的。

) 1.设i 为虚数单位,则复数34ii+的共轭复数为( ) A .43i --B .43i -+C .43i +D . 43i -2、设集合错误!未找到引用源。

,错误!未找到引用源。

则错误!未找到引用源。

( )A 、错误!未找到引用源。

B 、错误!未找到引用源。

C 、错误!未找到引用源。

D 、错误!未找到引用源。

3.已知向量21cos ,sin ,a b αα=-=(),(),且//,a b 4tan πα-()等于( ) A .-3 B .3 C .31 D .31-4、设函数)0(ln 31)(>-=x x x x f ,则)(x f y =( )A .在区间),1(),1,1(e e 内均有零点B .在区间),1(),1,1(e e 内均无零点C .在区间)1,1(e 内有零点,在区间),1(e 内无零点D .在区间)1,1(e内无零点,在区间),1(e 内有零点5.下列有关命题的说法正确的是A .命题“若0xy =错误!未找到引用源。

,则0x =错误!未找到引用源。

”的否命题为:“若0xy =错误!未找到引用源。

,则0x ≠错误!未找到引用源。

”B .“若0=+y x ,则x ,y 互为相反数错误!未找到引用源。

”的逆命题为真命题C .命题“R ∈∃x 错误!未找到引用源。

,使得2210x -<错误!未找到引用源。

”的否定是:“R ∈∀x 错误!未找到引用源。

,均有2210x -<错误!未找到引用源。

”D .命题“若cos cos x y =错误!未找到引用源。

,则x y =错误!未找到引用源。

”的逆否命题为真命题6、已知a 是实数,则函数ax a x f sin 1)(+=的图象不可能是( )7.已知函数1x y a-=(0a >,且1a ≠)的图象恒过定点,若点在一次函数y mx n=+的图象上,其中,0m n >,则11m n+的最小值为( ) A .4 B .2 C .2 D .18..如果若干个函数的图象经过平移后能够重合,则称这些函数为“互为生成函数”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河南省实验中学高三年级—上期期中考试 数学(理)(时间:120分钟,满分:150分) 第Ⅰ卷(选择题 共60分)一、选择题:本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将所选答案填在答题卷上.1.若复数()1a ia R i +∈+是纯虚数,则实数a 的值为A .1-B . 1C .2-D .22.设集合S = {0 , 1 , 2 , 3 } , T = { x | | x –3 | ≤2},则S ∩T = A .{0 , 1, 2 , 3 } B .{1 , 2 , 3 } C .{0 ,1 }D .{1}3.在等比数列{an}中,若321a a a = 2 ,432a a a = 16,则公比q =A .21B .2C .22D .84.定义集合M 与N 的新运算:M+N=M x x ∈|{或N x ∈且}N M x ⋂∉,则(M+N)+N 等于 A .MB .NC .N M ⋂D .N M ⋃5.若()x f 是R上的增函数,且()(),22,41=-=-f f 设P=(){}31|<++t x f x ,Q=(){}4|-<x f x .若“P x ∈”是“Q x ∈”的充分不必要条件,则实数t的取 值范围是A.t≤-1 B.t>-1 C.t≥3 D.t>36.设函数()20)f x x =≥,则其反函数1()f x -的图象是7.已知函数)(x f 满足)()(x f x f -=π,且当)2,2(ππ-∈x 时,x x x f +=sin )(,设)3(),2(),1(f c f b f a ===,则A.c b a <<B.a c b <<C. a b c <<D.b a c << 8.随机变量ξ服从标准正态分布)1,0(N ,025.0)96.1(=-Φ,则=<)96.1|(|ξPC.A.B.D.A .025.0B .050.0C .950.0D .975.09.若一系列函数的解析式相同,值域相同但定义域不同,则称这些函数为“孪生函数”,那么函数解析式为221y x =+,值域为{3,19}的“孪生函数”共有 A .15个 B .12个 C .9个 D .8个10.函数=y sin -x cos x 与函数=y sin +x cos x 的图象关于A.x 轴对称 B.y 轴对称 C.直线2π=x 对称 D.直线4π=x 对称11.方程θθcos 2sin =在[0,)2π上的根的个数为A .0B .1C .2D .412.已知)()(x 、g x f 都是定义在R 上的函数, g(x)≠0,)()()()(''x g x f x g x f <, )()(x g a x f x=,25)1()1()1()1(=--+g f g f ,在有穷数列()()f n g n ⎧⎫⎨⎬⎩⎭( n=1,2,…,10)中,任意取前k 项相加,则前k 项和大于1615的概率是A .51B .52C .54D .53第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.13.设⎪⎩⎪⎨⎧≥+<--=)0()0(11)(2x •••••x a x ••xxx f ,要使函数)(x f 在),(+∞-∞内连续,则a 的值为14.已知l 是曲线x x y +=331的切线中倾斜角最小的切线,则l 的方程为 .15.已知命题P :关于x 的不等式ax x >-+-20082006恒成立;命题Q :关于x 的函数()ax y a -=2log 在[0,1]上是减函数.若P或Q为真命题,P且Q为假命题,则实数a 取值范围是 .16.给出定义:若1122m x m -<≤+(其中m 为整数),则m 叫做离实数x 最近的整数,记作{}x ,即 {}x m =.在此基础上给出下列关于函数|}{|)(x x x f -=的四个命题:①函数)(x f y =的定义域是R ,值域是[0,21];②函数)(x f y =的图像关于直线2k x =(k ∈Z )对称; ③函数)(x f y =是周期函数,最小正周期是1;④ 函数()y f x =在⎥⎦⎤⎢⎣⎡-21,21上是增函数;则其中真命题是__ .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)函数)0(21cos )cos sin 3()(>-+=ωωωωx x x x f 的最小正周期为π4.(Ⅰ)求)(x f 的单调递增区间;(Ⅱ)在ABC ∆中,角A,B,C 的对边分别是c b a ,,,且满足C b B c a cos cos )2(=-,求角B 的值,并求函数)(A f 的取值范围.18.(本小题满分12分) 设数列}{n a 的前n 项和为nS ,已知11,2(1)(1,2,3,).n n a S na n n n ==--=(Ⅰ)求证:数列}{n a 为等差数列,并分别写出na 和nS 关于n 的表达式;(Ⅱ)求12231111lim n n n a a a a a a →∞-⎛⎫+++⎪⎝⎭.19.(本小题满分12分)已知袋中装有若干个均匀的红球和白球,从中摸出一个红球的概率是31.现从中有放回地摸球,每次摸出一个,有3次摸到红球即停止. (Ⅰ)求恰好摸5次停止的概率;(Ⅱ)记5次之内摸到红球的次数为ξ,求ξ的分布列及数学期望. 20.(本小题满分12分)设R a ∈,函数ea ax e x f x)(1(2)(2++=-为自然对数的底数).(Ⅰ)判断)(x f 的单调性;(Ⅱ)若]2,1[1)(2∈>x e x f 在上恒成立,求a 的取值范围.21.(本小题满分12分)已知各项均为正数的数列}{n a ,)2(1>=a a a ,)1(221-=+n nn a a a 其中*n ∈N .(I )证明 :2>n a ;(Ⅱ)设2-=n n n a a b ,①证明 :21nn b b =+;②若数列}{n c 满足nn b c lg =,求数列}{n c 的前n 项和nS .22 .(本小题满分12分)设函数x ax xx f ln 1)(+-=在),1[+∞上是增函数.(Ⅰ)求正实数a 的取值范围;(Ⅱ)设1,0a b >>,求证:.ln 1b ba b b a b a +<+<+参考答案 一.选择题ABBAD CDCCC CD 二.填空题13. 2114.y=x 15. 1≤a 16. ①②③三.解答题17. 解:(Ⅰ))62sin()0(21cos )cos sin 3()(πωωωωω+=>-+=x x x x x f π4=T ,41=∴ω )621sin()(π+=∴x x f)](324,344[Z k k k ∈+-∴ππππ单调增区间为 5分(Ⅱ)C b B c a cos cos )2(=- , C B B C B A cos sin cos sin cos sin 2=-A CB B A sin )sin(cos sin 2=+=321cos π=∴=∴B B)621sin()(π+=A A f2626πππ<+<∴A )1,21()(∈∴A f 10分18. 解:(Ⅰ)当n ≥2时,)1(4)1(11----=-=--n a n na S S a n n n n n ,得14(2,3,4,)n n a a n --==.∴数列}{n a 是以11a =为首项,4为公差的等差数列.∴.34-=n a n211()22n n S a a n n n=+=-. 6分(Ⅱ)lim n →∞12231111n n a a a a a a -⎛⎫+++⎪⎝⎭=()()1111lim 155********n n n →∞⎛⎫++++ ⎪ ⎪⨯⨯⨯--⎝⎭=111111111lim ()()()()415599134743n n n →∞⎛⎫-+-+-++- ⎪--⎝⎭=11lim 1443n n →∞⎛⎫- ⎪-⎝⎭=41. 12分 19. 解:(Ⅰ)由题意知前4次中有两次摸到了红球,第5次摸到的也是红球,所以概率为:8183132312224=⨯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛⨯C4分(Ⅱ)随机变量ξ的聚会为0 , 1 , 2 , 3 .其中,当ξ= 3时,又分三种情况,则()24332311055=⎪⎭⎫⎝⎛-⨯==C P ξ()24380311311415=⎪⎭⎫ ⎝⎛-⨯⨯==C P ξ320π<<A()243803113123225=⎪⎭⎫⎝⎛-⨯⎪⎭⎫ ⎝⎛*==C P ξ ()8117313113131311313113132242230333=⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛⨯+⨯⎪⎭⎫⎝⎛-⨯⎪⎭⎫ ⎝⎛⨯+⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛⨯==C C C P ξ随机变量ξ的分布列是10分ξ的数学期望为:E ξ=24332× 0 + 24380× 1 +24380× 2 + 8117× 3 =8113112分20.解:(1)由已知)2(21)1(21)(2ax e a ax e x f x x ⋅+++-='-- ),12(212--+-=-a ax ax e x2分令.12)(2--+-=a ax ax x g ①当)(,0)(,01)(,0x f x f x g a ∴<'∴<-==时在R 上为减函数.②当,04)(440)(,022<-=+-=∆=>a a a a x g a 的判别地 )(0)(,0)(x f x f x g ∴<'<∴即在R 上为减函数. 4分③当0<a 时,由,0122>--+-a ax ax 得,1111a x ax -+>--<或由,0122<--+-a ax ax 得,1111a x a-+<<--),(),,()(+∞---+-∞∴a aa a a a x f 在上为增函数;),()(a aa a a a x f ---+在上为减函数 6分(2)①当]2,1[)(,0在时x f a ≥上为减函数..511215.215)2()(222min >>++==∴a e e a e a f x f 得由 10分 ②当2221215)2(,0e e a f a <+=<时21)(e x f >∴在[1,2]上不恒成立,∴a 的取值范围是).,51(+∞ 12分21.解:(I )运用数学归纳法证明如下:①当1=n 时,由条件知21>=a a ,故命题成立;②假设当*()n k k =∈N 时,有 2>k a 成立 那么当1+=k n 时,0)1(2)2(2)1(22221>--=--=-+k k k k k a a a a a 故命题成立综上所述,命题2>n a 对于任意的正整数n 都成立. 4分(II )①22222111442)1(2)1(22nn n n n n n nn n n b a a a a a a a a a b =+-=---=-=+++ 8分②n nn n c b b c 2lg lg 211===++ 且02lg1≠-=a ac∴数列}{n c 是以2lg1-=a ac 为首项,以2为公比的等比数列.2lg)12(--=∴a aS n n . 12分22. 解:(Ⅰ)01)(2'≥-=ax ax x f 对),1[+∞∈x 恒成立,x a 1≥∴对),1[+∞∈x 恒成立.又11≤x , 1≥∴a 为所求. 4分(Ⅱ)取b b a x +=,1,0,1>+∴>>b ba b a ,一方面,由(Ⅰ)知x ax xx f ln 1)(+-=在),1[+∞上是增函数,0)1()(=>+∴f b b a f , 0ln 1>+++⋅+-∴b b a b b a a b ba .即b a b b a +>+1ln. 8分另一方面,设函数)1(ln )(>-=x x x x G ,)1(0111)('>>-=-=x x x x x G ,∴)(x G 在),1(+∞上是增函数,又01)1(>=G .∴当1>x 时,0)1()(>>G x G ,∴x x ln >, 即b b a bb a +>+ln. 综上所述,1ln a b a ba b b b ++<<+. 12分。

相关文档
最新文档