《用二分法求方程的近似解》教案及说明
用二分法求方程的近似解教案 (2)
用二分法求方程的近似解一、教学内容分析本节选自《普通高中课程标准实验教科书·数学1》人教A版第三单元第一节第二课,主要是分析函数与方程的关系。
教材分三步来进行:第一步,从学生认为较简单的一元二次方程与相应的二次函数入手,由具体到一般,建立一元二次方程的根与相应函数的零点的联系。
然后推广为一般方程与相应函数的情形;第二步,在用二分法求方程近似解的过程中,通过函数图像和性质来研究方程的解,体现方程和函数的关系;第三步,在函数模型的应用过程中,通过函数模型以及模型的求解,更全面的体现函数与方程的关系,逐步建立起函数与方程的联系。
本节课是这一小节的第二节课,即用二分法求方程的近似解。
它以上节课的“连续函数的零点存在定理”为确定方程解所在区间为依据,从求方程近似解这个侧面来体现“方程与函数的关系”;而且在“用二分法求函数零点的步骤”中渗透了算法的思想,为学生后续学习算法的内容埋下伏笔;充分体现新课程“渗透算学方法,关注数学文化以及重视信息技术应用”的理念。
求方程近似解其中隐含“逼进”的数学思想,并且运用“二分法”来逼近目标是一种普通而有效的方法,其关键是逼近的依据。
二、学生学习情况分析同学们有了第一节课的基础,对函数的零点具备基本的认识;而二分法来自生活,是由生活中抽象而来的,只要我们选材得当,能够激发学生的学习兴趣,达到渗透数学思想关注数学文化的目的,学生也能够很容易理解这种方法。
其中运用“二分法”进行区间缩小的依据、总结出“运用二分法求方程的近似解”的步骤、将“二分法”运用到生活实际,是需要学生“跳跳”才能摘到的“桃子”。
三、设计理念本节课倡导积极主动、勇于探索的学习方式,应用从生活实际——理论——实际应用的过程,应用数形结合、图表、信息技术,采用教师引导——学生探索相结合的教学方法,注重提高学生数学的提出问题、分析问题和解决问题的能力,让学生经历直观感知、观察发现、抽象与概括、符号表示、运算求解、数据处理、反思与建构等思维过程。
3.1.2用二分法求方程的近似解教案【人教版】高中数学必修
用二分法求方程的近似解教学目标知识与技能通过具体实例理解二分法的概念及其适用条件,了解二分法是求方程近似解的常用方法,从中体会函数与方程之间的联系及其在实际问题中的应用.过程与方法能借助计算器用二分法求方程的近似解,并了解这一数学思想,为学习算法做准备.情感、态度、价值观体会数学逼近过程,感受精确与近似的相对统教学重点通过用二分法求方程的近似解,体会函数的零点与方程根之间的联系,初步形成用函数观点处理问题的意识.教学难点恰当地使用信息技术工具,利用二分法求给定精确度的方程的近似解.教学方法动手操作、分组讨论、合作交流、课后实践教学过程例:求函数()6xxf的零点(即的根)2ln-+=x对于为一次或二次函数,我们有熟知的公式解法(二次时,称为求根公式).一般的五次以上代数方程的根式解不存在求根公式,因此对于高次多项式函数及其它的一些函数,有必要寻求其零点的近似解的方法我们已经知道,函数()6xf在区间(2,3)内有零点,进一x=xln-+2步的问题是,如何找出这个零点?师:一个直观的想法是:如果能够将零点所在的范围尽量缩小,那么在一定精确度的要求下,我们可以得到零点的近似值.为了方便,下面我们通过“取中点”的方法逐步缩小零点所在的范围.师:引导学生分析理解求区间,的中点的方法.做一做第一步:取区间(2,3)的中点2.5,用计算器算得f(2.5)≈-0.084.因为f(2.5)·f(3)<0,所以零点在区间(2.5,3)内.第二步:取区间(2.5,3)的中点2.75,用计算器算得f(2.75)≈0.512. 因为f(2.5)·f(2.75)<0,所以零点在区间(2.5,2.75)内.结论:由于(2,3) (2.5,3) (2.5,2.75),所以零点所在的范围确实越来越小了.如果重复上述步骤,那么零点所在的范围会越来越小师:这样,在一定精确度下,我们可以在有限次重复相同步骤后,将所得的零点所在区间内的任意一点作为函数零点的近似值,特别地,可以将区间端点作为零点的近似值.例如,当精确度为0.01时,由于|2.5390625-2.53125|=0.0078125<0.01,所以,我们可以将=2.53125作为函数零点的近似值,也即方程根的近似值.探索发现议一议:你能说出二分法的意义及用二分法求函数零点近似值的步骤吗?1.二分法的意义对于在区间[a,b]上连续不断且满足f(a)·f(b)<0的函数y=f(x),通过不断地把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法(bisection).2.给定精确度ε,用二分法求函数零点近似值的步骤如下:(1)确定区间[]b a,,验证f(a)·f(b)<0,给定精确度ε;(2)求区间(a,b)的中点c;(3)计算:f(c)1若f(c)=0,则c就是函数的零点;2若f(a)·f(c)<0,则令b=c(此时零点()c ax,∈);3若f(c)·f(b)·<0,则令a=c(此时零点()b cx,∈);(4)判断是否达到精确度ε;即若<,则得到零点近似值a(或b);否则重复步骤2-4.结论: 由函数的零点与相应方程根的关系,我们可用二分法来求方程的近似解.例2:用二分法求方程732=+xx的近似解(精确度0.1)练习:1,求方程23x+3x-3=0的一个实数解,精确到0.012,探求2x-x2=0的近似解1.方程4223=-+-gxxx在区间[]4,2-上的根必定属于区间()A.)1,2(- B.)4,25(C.)4,1(πD.)25,47(A.函数)(xf在区间[]1,0内有零点 B.函数)(x f在区间[]2,1内有零点C.函数)(xf在区间[]2,0内有零点 D.函数)(x f在区间[]4,0内有零点3.函数xy=与1+=xy图象交点横坐标的大致区间为()A.)0,1(- B.)1,0( C.)2,1( D.)3,2(4.下图4个函数的图象的零点不能用二分法求近似值的是5.写出两个至少含有方程01223=--+x x x 一个根的单位长度为1的区间或。
《用二分法求方程的近似解》 教案及说明
b) ,可利用函数性质,也可借助计算机或计算器,但
尽量取端点为整数的区间, 通常可确定一个长度为 1 的 区间;
2
2 建议列表样式如下: ○
次数 1 2 3 4
ab 2
2.5 2.75 2.625 2.5625
f(
ab ) 2
取a 2.5 2.5 2.学生合作探 例:求方程 ln x 2 x 6 0 的近似解(误差不超过 0.1) 。 究: 分析:首先利用函数性质或借助计算机、计算器画 1、解决问题 1、2:师生共 出函数图象,确定函数零点大致所在的区间,然后利用 同选择初始区间, 教师 二分法逐步计算解答. 利用数轴演示二分法 探究交流问题: 的过程。 2、解决问题 3:学生讨论 问题 1、你是如何确定函数 f ( x) ln x 2 x 6 的零点 精确度与区间长度的 大致所在的区间的? 关系。 问题 2、你又如何进一步缩小零点所在的区间呢? 3、解决问题 4:学生归纳 问题 3、用该方法分到什么时才能满足精确度要求呢? 二分法解题的一般步 问题 4、你能总结出用二分法求方程近似解的一般步骤 骤, 教师做最后总结及 吗? 强调。
y
1、学生作练习 1 后,教 师提出问题 5,引导学 生从“数”和“形”两 个角度去体会函数零 点的意义, 明确二分法 的适用范围. 2、学生作练习 2:要求同 位配合, 一名同学负责 作记录, 另一名负责用 计算器求值,尽快求 解。 3、教师利用“几何画板” 引导学生讨论、 评析形 成结论. 4 、鼓励学生在学习前人 算法的基础上, 去寻求 解决各类问题的算法。
问题情境
由猜商品价格及实际问题引入现实生活中的二分法.
问题引导
提出本节课研讨的数学问题. 学生根据问题观察、 分析、 研讨用二分法求方程近似解的思想、 一般步骤和解题格式. 学生总结研讨成果,领悟新知识,提高认识. 应用二分法解决简单问题,体会函数零点的意义,明确二 分法的适用范围. 巩固所学内容,进一步提高能力.
《用二分法求方程的近似解》教学设计
《用二分法求方程的近似解》教学设计1. 引言1.1 背景介绍二分法是一种常用的数值计算方法,广泛应用于计算机科学、数学和工程领域。
它通常用于寻找数值解的逼近值,特别是在无法准确求解的情况下。
二分法的基本原理是将求解区间逐步缩小,直到满足精度要求为止。
在实际应用中,我们常常需要解决一些复杂的方程,例如非线性方程、传统解法求解困难的方程等。
这时候,二分法就成为了一种简单而有效的求解方法。
通过不断缩小求解区间,逐步逼近方程的解,我们可以快速得到一个近似解。
在本次教学设计中,我们将重点介绍二分法的原理、算法步骤和示例演示,帮助学生更好地理解和掌握这一数值计算方法。
通过本次教学,我们旨在引导学生掌握二分法的基本思想和应用技巧,提高他们的数值计算能力,为进一步学习和研究相关领域打下坚实的基础。
1.2 问题提出问题提出:在数学中,求解方程是一个常见的问题。
特别是对于非线性方程,往往无法用代数方法得到精确解析解。
我们需要借助数值计算方法来求得近似解。
二分法是一种简单且常用的数值计算方法,可以用来求解单调函数的根。
在实际应用中,我们经常遇到需要求解方程的情况,比如物理问题中的牛顿定律、化学问题中的化学反应速率等等。
掌握二分法求方程的近似解有着重要的意义。
本教学设计将重点介绍二分法的原理及应用,帮助学生掌握这一实用的数值计算方法。
1.3 目的本教学设计的目的是帮助学生了解和掌握二分法求解方程的基本原理和方法,通过实际的示例演示和练习,培养学生解决实际问题的能力和思维。
通过本教学设计,学生将能够掌握二分法的具体步骤,理解其优缺点,掌握其应用范围,并能将所学知识运用到实际生活和工作中。
通过本教学设计的学习,学生将不仅能够提高数学解题的能力,还能培养逻辑思维和分析问题的能力,为将来深入学习数学和相关领域打下扎实的基础。
本教学设计也旨在培养学生的团队合作和沟通能力,鼓励学生通过合作学习和讨论来促进自身的学习效果。
通过本教学设计,学生将不仅能够学会求解方程的方法,还能够培养自主学习和解决问题的能力,为未来的学习和工作打下坚实的基础。
高中数学《用二分法求方程的近似解》教学设计
高中数学《用二分法求方程的近似解》教学设计一、教学目标:1.知识与能力目标:(1)了解二分法的基本原理;(2)掌握使用二分法求方程的近似解的方法;(3)能够灵活运用二分法解决实际问题。
2.过程与方法目标:(1)通过展示实际问题,引发学生对二分法解决问题的兴趣;(2)通过理论讲解和示例讲解,帮助学生理解二分法的原理和求解方法;(3)通过练习与实践,巩固学生对二分法的理解和应用能力;(4)通过讨论和激发学生思维的方式,提高学生解决实际问题的能力。
二、教学重点:1.二分法的基本原理和求解方法;2.能够灵活运用二分法解决实际问题。
三、教学难点:能够灵活运用二分法解决实际问题。
四、教学过程:1.导入(10分钟)(1)通过展示一个实际问题,如求方程f(x)=x^3-2x^2-4x+3=0的一个近似解,引发学生对使用二分法解决问题的兴趣。
(2)学生讨论,思考如何利用二分法求该方程的近似解。
(3)引导学生明确本节课的学习目标。
2.概念讲解(15分钟)(1)通过示例讲解,引导学生理解二分法的基本原理。
如示例方程f(x)=x^2-2=0,同时画出函数图像。
(2)学生回答:如何找到函数图像上可能存在零点的区间?如何利用二分法逼近零点?(3)通过讲解示例方程f(x)=x^2-2=0的具体求解过程,帮助学生理解二分法的求解方法。
(4)总结二分法的基本原理和求解方法,并与学生进行互动讨论。
3.解题示例(15分钟)(1)通过示例讲解,巩固学生对二分法的理解和运用能力。
如求方程f(x)=x^3-2x^2-4x+3=0的一个近似解。
(2)学生独立解题,检查答案,并与学生进行讨论和讲解。
(3)通过多个示例,锻炼学生解决实际问题的能力。
4.练习与巩固(15分钟)(1)分发练习题,让学生独立完成。
(2)学生互相检查答案,并与学生进行讨论。
(3)讲解练习题的解答过程,并解答学生遇到的问题。
5.拓展与应用(25分钟)(1)提供一个实际问题,鼓励学生利用二分法进行求解。
用二分法求方程的近似解教案
用二分法求方程的近似解教案一、教学目标1.让学生掌握二分法求方程近似解的基本原理和方法。
2.培养学生的逻辑思维能力和数学应用能力。
3.提高学生的计算精度和计算效率。
二、教学内容1.二分法的基本原理:通过不断将函数值在区间中点处进行比较,从而缩小区间范围,逼近方程的解。
2.二分法的步骤:确定初始区间、计算中点函数值、判断解所在区间、重复执行以上步骤直至达到精度要求。
3.二分法的应用:求方程的近似解、求解不等式等。
三、教学步骤1.引入课题:介绍二分法的基本原理和应用背景,激发学生的学习兴趣。
2.讲解知识点:详细解释二分法的基本原理和步骤,并辅以例题进行说明。
3.练习与互动:让学生自行尝试使用二分法求解方程,教师给予指导和帮助。
同时,鼓励学生提出问题和意见,进行课堂互动。
4.归纳与总结:对本节课的知识点进行总结和归纳,强调二分法的重要性和应用广泛性。
5.布置作业:布置相关练习题,让学生在家中继续巩固所学知识。
四、教学难点与重点1.教学难点:如何确定初始区间、如何判断解所在区间、如何控制计算精度。
2.教学重点:二分法的基本原理和步骤、二分法的应用实例。
五、教学方法与手段1.教学方法:采用讲解、练习和互动相结合的方式进行教学。
通过具体实例和例题来帮助学生理解和掌握二分法的应用方法。
2.教学手段:使用黑板、多媒体课件和教学软件等辅助工具进行教学,提高教学效果和效率。
六、教学评价与反馈1.教学评价:通过课堂练习和作业来检验学生的学习效果,及时给予反馈和指导。
同时,鼓励学生进行自我评价和互相评价,提高学习积极性和自主性。
2.教学反馈:根据学生的反馈意见和建议,及时调整教学策略和方法,提高教学质量和效果。
同时,加强与家长的沟通和交流,共同关注学生的学习进步和发展。
高一数学《用二分法求方程的近似解》教案
高一数学《用二分法求方程的近似解》教案高一数学《用二分法求方程的近似解》教案教学目标知识与技能通过具体实例理解二分法的概念及其适用条件,了解二分法是求方程近似解的常用方法,从中体会函数与方程之间的联系及其在实际问题中的应用.过程与方法能借助计算器用二分法求方程的近似解,并了解这一数学思想,为学习算法做准备.情感、态度、价值观体会数学逼近过程,感受精确与近似的相对统一.教学重点通过用二分法求方程的近似解,体会函数的零点与方程根之间的联系,初步形成用函数观点处理问题的意识.教学难点恰当地使用信息技术工具,利用二分法求给定精确度的方程的近似解.教材分析本节课注重从学生已有的基础(一元二次方程及其根的求法,一元二次函数及其图象与性质)出发,从具体(一元二次方程的根与对应的一元二次函数的图象与轴的交点的横坐标之间的关系)到一般,揭示方程的根与对应函数零点之间的关系.在此基础上,再介绍求函数零点的近似值的“二分法”,并在总结“用二分法求函数零点的步骤”中渗透算法的思想,为学生后续学习算法内容埋下伏笔.教科书不仅希望学生在数学知识与运用信息技术的能力上有所收获,而且希望学生感受到数学文化方面的熏陶,所以在“阅读与思考”中,介绍古今中外数学家在方程求解中所取得的成就,特别是我国古代数学家对数学发展与人类文明的贡献.学情分析通过本节课的学习,使学生在知识上学会用“二分法”求方程的近似解,从中体会函数与方程之间的联系;在求解的过程中,由于数值计算较为复杂,因此对获得给定精确度的近似解增加了困难,所以希望学生具备恰当地使用信息技术工具解决这一问题的能力.这就要求学生除了能熟练地运用计算器演算以外,还要能借助几何画板4.06中文版中的“绘制新函数”功能画出基本初等函数的图象,掌握Microsoft Excel软件一些基本的操作.教学媒体分析多媒体微机室、Authorware7.02中文版、几何画板4.06中文版、Microsoft Excel、QBASIC语言应用程序教学方法动手操作、分组讨论、合作交流、课后实践教学环节设计流程图教学设计理念1.构建共同基础,提供发展平台;2.提供多样解法,适应个性选择;3.倡导积极主动、勇于探索的学习方式;4.注重提高学生的数学思维能力;5.发展学生的数学应用意识;6.与时俱进地认识“双基”;7.强调本质,注意适度形式化;8.体现数学的文化价值;9.注重信息技术与数学课程的整合;10.建立合理、科学的评价体系.教学过程与操作设计:环节教学内容设计师生双边互动信息技术应用中外历史上的方程求解在人类用智慧架设的无数座从未知通向已知的金桥中,方程的求解是其中璀璨的一座.虽然今天我们可以从教科书中了解各式各样方程的解法,但这一切却经历了相当漫长的岁月.由于实际问题的需要,我们经常需要寻求函数的零点(即的根),对于为一次或二次函数,我们有熟知的公式解法(二次时,称为求根公式).我国古代数学家已比较系统地解决了部分方程求解的问题,在《九章算术》,北宋数学家贾宪的《黄帝九章算法细草》,南宋数学家秦九韶的《数书九章》中均有记载.在十六世纪,已找到了三次和四次函数的求根公式,人们曾经希望得到一般的五次以上代数方程的根式解,但经过长期的努力仍无结果.1824年,挪威年轻数学家阿贝尔(N. H. Abel,1802-1829)成功地证明了五次以上一般方程没有根式解.1828年,法国天才数学家伽罗瓦(E.Galois,1811-1832)巧妙而简洁地证明了存在不能用开方运算求解的具体方程.人们认识到高于4次的代数方程不存在求根公式,因此对于高次多项式函数及其它的一些函数,有必要寻求其零点的近似解的方法,这是一个在计算数学中十分重要的课题.师:介绍中外历史上的方程求解问题,从高次代数方程解的探索历程引导学生认识引入二分法的意义,从而引入课题.生:感受到数学文化方面的熏陶,最大限度的调动学生的学习兴趣,提高学习的积极性和主动性.Authorware7.02课件展示这节课就让我们来共同学习一下§3.1.2《用二分法求方程的近似解》想一想我们已经知道,函数在区间(2,3)内有零点,且<0,>0.进一步的问题是,如何找出这个零点?做一做第一步:取区间(2,3)的中点2.5,用计算器算得(2.5)≈-0.084.因为(2.5)·<0,所以零点在区间(2.5,3)内.第二步:取区间(2.5,3)的中点 2.75,用计算器算得(2.75)≈0.512. 因为(2.5)·(2.75)<0,所以零点在区间(2.5,2.75)内.结论:由于(2,3) (2.5,3) (2.5,2.75),所以零点所在的范围确实越来越小了.如果重复上述步骤,那么零点所在的范围会越来越小(见下表和图)师:一个直观的想法是:如果能够将零点所在的范围尽量缩小,那么在一定精确度的要求下,我们可以得到零点的近似值.为了方便,下面我们通过“取中点”的方法逐步缩小零点所在的范围.师:引导学生分析理解求区间,的中点的方法.生:用计算器算得(2.5)≈-0.084(2.75)≈0.512几何画板4.06中文版演示计算结果师:这样,在一定精确度下,我们可以在有限次重复相同步骤后,将所得的零点所在区间内的任意一点作为函数零点的近似值,特别地,可以将区间端点作为零点的近似值.例如,当精确度为0.01时,由于|2.5390625-2.53125|=0.0078125<0.01,所以,我们可以将=2.53125作为函数零点的近似值,也即方程根的近似值.Authorware7.02课件展示议一议:你能说出二分法的意义及用二分法求函数零点近似值的步骤吗?1.二分法的意义对于在区间[,]上连续不断且满足·<0的函数,通过不断地把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法(bisection).2.给定精确度,用二分法求函数零点近似值的步骤如下:(1)确定区间,,验证·<0,给定精确度;(2)求区间,的中点;(3)计算:1若=,则就是函数的零点;2若·<0,则令=(此时零点);3若·<0,则令=(此时零点);(4)判断是否达到精确度;即若<,则得到零点近似值(或);否则重复步骤2-4.结论: 由函数的零点与相应方程根的关系,我们可用二分法来求方程的近似解.思考:为什么由<,便可判断零点的近似值为(或)?师:阐述二分法的逼近原理,引导学生理解二分法的算法思想,明确二分法求函数近似零点的具体步骤.师:分析条件“·<0”、“精确度”、“区间中点”及“<”的意义.生:结合求函数在区间(2,3)内的零点,理解二分法的算法思想与计算原理.Authorware7.02课件展示由于计算量较大,而且是重复相同的步骤,因此,我们可以借助几何画板4.06中文版软件和Microsoft Excel软件来完成计算.我们还是以求函数的零点为例学生在教师引导下操作师:第一步:打开几何画板4.06中文版软件.第二步:点击工具栏中的“图表”,选中“绘制新函数(Ctrl+G)”,或在工作区中点击右键,选中“绘制新函数”.第三步:在弹出的对话框中输入,点击“确定”.几何画板4.06中文版环节教学内容设计师生双边互动信息技术应用第四步:观察函数图象,确定零点所在的大致区间为(2,3).几何画板4.06中文版第五步:打开Microsoft Excel软件第六步: 分别在单元格A1、B1、C1输入、、精确度,在C2输入0.5,分别在A2、A3输入2、2.5,选中这两个单元格后,按住鼠标左键并向下方拖动“填充柄”到单元格内出现填充值4时为止,完成自动填充.Microsoft Excel软件环节教学内容设计师生双边互动信息技术应用第七步: 在B2单元格点击“粘贴函数”,输入函数值公式“=lnA2+2*A2-6”,得到与A2相应的函数值.第八步:然后双击(或拖动)B2的“填充柄”,得到与第一列相应的函数值.生:观察所得函数值,所以零点在区间(2.5,3)内.第九步:重复上述操作:将A1、B1、C1复制到A7、B7、C7,把精确度设为0.25,在A8、B9分别输入2.5、2.75,选中这两个单元格后,按住鼠标左键并向下方拖动“填充柄”到单元格内出现填充值3.25时为止,完成自动填充.复制B2到B8,得到与A8相应的函数值,然后双击(或拖动)B8的“填充柄”,得到与第一列相应的函数值.生:观察所得函数值,所以零点在区间(2.5,2.75)内.Microsoft Excel软件环节教学内容设计师生双边互动信息技术应用结论:借助信息技术求方程近似解(函数零点)的步骤如下:1.利用函数性质或借助计算机、计算器画出函数图象,确定函数零点所在的大致区间;2.利用然后用Microsoft Excel软件逐步计算解答.第十步:重复上述过程,将精确度设为上次操作的一半,直到小于0.01为止,特别地,这时可以将区间端点作为零点的近似值.生:观察所得函数值,并且精确度为0.0078125<0.01,所以零点在区间(2.53125 ,2.5390625)内,*=2.53125可以为函数的零点.生:认真思考,运用所学知识寻求确定方程近似解的方法,并进行讨论、交流、归纳、概括、评析形成结论.Microsoft Excel软件例题:借助计算器或计算机用二分法求方程的近似解(精确度0.1) 解:(略). 打开几何画板打开Excel尝试练习:1. 借助计算器或计算机,用二分法求函数的零点(精确度0.1)2. 借助计算器或计算机,用二分法求方程的近似值(精确度0.01)师:首先利用几何画板4.06中文版软件画出函数图象,确定函数零点所在的大致区间,然后用Microsoft Excel软件逐步计算解答.生:独立完成解答,并进行交流、讨论、评析.Authorware7.02课件展示几何画板4.06中文版Microsoft Excel软件我们也可以借助QBASIC语言编写一定的程序来求方程的近似解.(精确到0.01)程序框图:师:介绍学生感兴趣的计算机编程问题,渗透算法的思想,为学生后续学习算法内容埋下伏笔.Authorware7.02课件展示环节教学内容设计师生双边互动信息技术应用程序语句:INPUT “,,=”;,,DO*=(+)/2=LOG()+2*-6=LOG(*)+2**-6IF *>0 THEN=*ELSE=*END IFLOOP UNTIL ABS(-) < OR =0PRINTEND打开QBASIC文件师:输入零点的大致区间和精确度,执行程序,检验程序运行结果的正确性.QBASIC语言应用程序1.有兴趣的同学可以自学QBASIC语言或其他计算机语言,编写程序,来检验做题结果正确与否.2.查找有关资料或利用Internet查找有关高次代数方程的解的研究史料,追寻阿贝尔(Abel)和伽罗瓦(Galois),增强探索精神,培养创新意识.3.谈谈通过学习求函数的零点和求方程的近似解,对数学有了哪些新的认识? 将你这节课的收获与感受写成一篇小报告或小论文的形式,发表在学校的数学论坛上.师:继续激发学生学习数学的热情;感受数学文化方面的熏陶;充分地利用学校资源进行后续学习和交流.Authorware7.02课件展示。
《用二分法求方程的近似解》教案、导学案与同步练习
《第四章指数函数与对数函数》《4.5.2用二分法求方程的近似解》教案【教材分析】本节通过学习用二分法求方程近似解的的方法,使学生体会函数与方程之间的关系,通过一些函数模型的实例,让学生感受建立函数模型的过程和方法,体会函数在数学和其他学科中的广泛应用,进一步认识到函数是描述客观世界变化规律的基本数学模型,能初步运用函数思想解决一些生活中的简单问题。
【教学目标与核心素养】课程目标1.了解二分法的原理及其适用条件.2.掌握二分法的实施步骤.3.通过用二分法求方程的近似解,使学生体会函数零点与方程根之间的联系,初步形成用函数观点处理问题的意识.数学学科素养1.数学抽象:二分法的概念;2.逻辑推理:用二分法求函数零点近似值的步骤;3.数学运算:求函数零点近似值;4.数学建模:通过一些函数模型的实例,让学生感受建立函数模型的过程和方法,体会函数在数学和其他学科中的广泛应用.【教学重难点】重点:利用二分法求方程的近似解;难点:利用二分法求方程的近似解.【教学方法】:以学生为主体,采用诱思探究式教学,精讲多练。
【教学过程】一、情景导入通过前面一节课的学习,函数f(x)=㏑x+2x-6在区间内有零点;进一步的问题是,如何找到这个零点呢?要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察.研探.一个直观的想法是:如果能够将零点所在的范围尽量的缩小,那么在一定的精确度的要求下,我们可以得到零点的近似值;为了方便,我们通过“取中点”的方法逐步缩小零点所在的范围。
取区间(2,3)的中点2.5,用计算器算得f(2.5)≈-0.084,因为f(2.5)*f(3)<0,所以零点在区间(2.5,3)内;再取区间(2.5,3)的中点2.75,用计算器算得f(2.75)≈0.512,因为f(2.75)*f(2.5)<0,所以零点在(2.5,2.75)内;由于(2,3),(2.5,3),(2.5,2.75)越来越小,所以零点所在范围确实越来越小了;重复上述步骤,那么零点所在范围会越来越小,这样在有限次重复相同的步骤后,在一定的精确度下,将所得到的零点所在区间上任意的一点作为零点的近似值,特别地可以将区间的端点作为零点的近似值。
用二分法求方程的近似解教案
用二分法求方程的近似解教案教案:用二分法求方程的近似解一、教学目标:1.理解二分法的基本原理。
2.掌握二分法在求解方程中的应用方法。
3.能够运用二分法求解方程的近似解。
二、教学准备:1.教师准备:(1)多个方程,例如x^2 - 2 = 0,x^3 - 5x + 3 = 0等,以便学生进行求解练习。
(2)计算器或电脑,帮助学生验证最终的近似解是否正确。
2.学生准备:(1)理解二分法的基本概念。
(2)掌握求解一元方程的基本方法。
三、教学过程:步骤一:导入1.引入二分法的概念:二分法是一种在有序数列中寻找特定元素的搜索算法,它通过将问题分为两个子问题,并逐渐缩小搜索范围,最终找到目标元素或近似解。
2.提问:你对二分法有什么了解?步骤二:讲解二分法的基本原理1.展示二分法示意图,并解释其基本原理。
例如:对于一个有序数列,假设我们想找到该数列中值为x的元素,我们可以先求出数列的中间值mid,然后根据mid与x的比较结果,将搜索范围减半,再在剩余部分中执行同样的步骤,直到找到x或搜索范围足够小。
2.举例说明:假设要在数列1, 2, 3, 4, 5中查找值为3的元素,首先计算中间值mid = 3,因为mid与目标值相等,所以找到了3这个元素。
若要在数列1, 2, 3, 4, 5中查找值为6的元素,计算中间值mid = 3,因为mid小于6,所以在数列4, 5中继续查找,计算中间值mid = 4,最终找到值为6的元素。
步骤三:应用二分法求解方程1.提问:我们可以将二分法用于求解方程吗?2.解释:是的,我们可以将要求解的方程转化为一个函数的零点问题。
例如:对于方程f(x) = x^3 - 5x + 3 = 0,我们可以尝试寻找函数的零点,即找到f(x) = 0的解。
3.讲解求解步骤:(1)根据给定方程确定搜索区间[a, b],确保f(a)和f(b)异号,否则不能保证方程在[a, b]范围内有解。
(2)计算中间值mid = (a + b) / 2,并计算f(mid)。
3.1.2用二分法求方程的近似解-教案
3.1.2用二分法求方程的近似解一、学习目标1.能用二分法求出方程的近似解.2.知道二分法是求方程近似解的一种常用方法,体会“逐步逼近”的思想.二、知识梳理1.二分法的定义对于在区间[a,b]上连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.2.二分法的步骤给定精确度ε,用二分法求函数f(x)零点近似值的步骤如下:(1)确定区间[a,b],验证f(a)·f(b)<0,给定精确度ε;(2)求区间(a,b)的中点c;(3)计算f(c);①若f(c)=0,则c就是函数的零点;②若f(a)·f(c)<0,则令b=c(此时零点x0∈(a,c)).③若f(c)·f(b)<0,则令a=c(此时零点x0∈(c,b)).(4)判断是否达到精确度ε:即若|a-b|<ε,则得到零点近似值a(或b);否则重复(2)~(4).三、例题讲解知识点一二分法概念的理解例1下列图象与x轴均有交点,其中不能用二分法求函数零点的是()答案 A解析按定义,f(x)在[a,b]上是连续的,且f(a)·f(b)<0,才能不断地把函数零点所在的区间一分为二,进而利用二分法求出函数的零点.故结合各图象可得选项B、C、D满足条件,而选项A不满足,在A中,图象经过零点x0时,函数值不变号,因此不能用二分法求解.故选A.规律方法 1.准确理解“二分法”的含义.二分就是平均分成两部分.二分法就是通过不断地将所选区间一分为二,逐步逼近零点的方法,找到零点附近足够小的区间,根据所要求的精确度,用此区间的某个数值近似地表示真正的零点.2.“二分法”与判定函数零点的定义密切相关,只有满足函数图象在零点附近连续且在该零点左右函数值异号才能应用“二分法”求函数零点.跟踪演练1(1)下列函数中,能用二分法求零点的为()(2)用二分法求函数f(x)在区间[a,b]内的零点时,需要的条件是()①f(x)在区间[a,b]是连续不断;②f(a)·f(b)<0;③f(a)·f(b)>0;④f(a)·f(b)≥0.A.①②B.①③C.①④D.①②③答案(1)B(2)A解析(1)函数图象连续不断,函数零点附近的函数值异号,这样的函数零点才能使用二分法求解,观察四个函数图象,只有B选项符合.(2)由二分法的意义,知选A.知识点二用二分法求方程的近似解例2用二分法求方程2x3+3x-3=0的一个正实数近似解(精确度0.1).解令f(x)=2x3+3x-3,经计算,f(0)=-3<0,f(1)=2>0,f(0)·f(1)<0,所以函数f(x)在(0,1)内存在零点,即方程2x3+3x=3在(0,1)内有解.取(0,1)的中点0.5,经计算f(0.5)<0,又f(1)>0,所以方程2x3+3x-3=0在(0.5,1)内有解.如此继续下去,得到方程的正实数根所在的区间,如表:由于所以方程2x3+3x-3=0的一个精确度为0.1的正实数近似解可取为0.687 5.规律方法 1.二分法求方程的近似解的过程可用下面的流程图表示:2.求形如f (x )=g (x )的方程的近似解,可以通过移项转化成求F (x )=f (x )-g (x )的近似解问题. 跟踪演练2 用二分法求2x + x =4在[1,2]内的近似解(精确度为0.2).参考数据:解 令f (x )f (2)=22+2-4>0.∵|1.375-1.5|∴2x +x =4在(1,2)内的近似解可取为1.375. 四、课堂练习1.用二分法求函数f (x )=x 3+5的零点可以取的初始区间是( ) A .[-2,1] B .[-1,0] C .[0,1] D .[1,2] 答案 A解析 ∵f (-2)=-3<0,f (1)=6>0,f (-2)·f (1)<0,故可取[-2,1]作为初始区间,用二分法逐次计算.2.定义在R 上的函数f (x )的图象是连续不断的曲线,已知函数f (x )在区间(a ,b )上有一个零点x 0,且f (a )·f (b )<0,用二分法求x 0时,当f ⎝⎛⎭⎫a +b 2=0时,则函数f (x )的零点是( )A .(a ,b )外的点B .x =a +b2C .区间⎝⎛⎭⎫a ,a +b 2或⎝⎛⎭⎫a +b 2,b 内的任意一个实数 D .x =a 或x =b答案 B解析 由二分法的思想,采用二分法得到的零点可能是准确值,也可能是近似值.由f ⎝⎛⎭⎫a +b 2=0,知选B.3.函数f (x )的图象是连续不断的曲线,在用二分法求方程f (x )=0在(1,2)内近似解的过程中得f (1)<0,f (1.5)>0,f (1.25)<0,则方程的解所在区间为( ) A .(1.25,1.5) B .(1,1.25) C .(1.5,2) D .不能确定 答案 A解析 由于f (1.25)·f (1.5)<0,则方程的解所在区间为(1.25,1.5). 4.函数f (x )=log 2x +2x -1的零点必落在区间( ) A.⎝⎛⎭⎫18,14 B.⎝⎛⎭⎫14,12 C.⎝⎛⎭⎫12,1 D .(1,2) 答案 C解析 f ⎝⎛⎭⎫18=-154<0,f ⎝⎛⎭⎫14=-52<0,f ⎝⎛⎭⎫12=-1<0,f (1)=1>0,f (2)=4>0, ∴函数零点落在区间⎝⎛⎭⎫12,1上.5.用二分法求方程x 3-2x -5=0在区间(2,3)内的实根,取区间中点为x 0=2.5,那么下一个有根的区间是________. 答案 (2,2.5)解析 f (2)=23-2×2-5=-1<0,f (2.5)=2.53-2×2.5-5=5.625>0, ∴下一个有根的区间是(2,2.5).五、巩固训练1.已知函数f (x )的图象如图,其中零点的个数及可以用二分法求解的个数分别为( )A .4,4B .3,4C .5,4D .4,3 答案 D解析 由图象知函数f (x )与x 轴有4个交点,因此零点个数为4,从左往右数第4个交点两侧不满足f (a )·f (b )<0,因此不能用二分法求零点,而其余3个均可使用二分法求零点. 2.为了求函数f (x )=2x -x 2的一个零点,某同学利用计算器,得到自变量x 和函数值f (x )的部分对应值[f (x )的值精确到0.01]如下表如示:则函数A .(0.6,1.0) B .(1.4,1.8) C .(1.8,2.2) D .(2.6,3.0) 答案 C解析 ∵f (1.8)·f (2.2)=0.24×(-0.25)<0,∴零点在区间(1.8,2.2)上.故选C.3.用二分法研究函数f (x )=x 3+3x -1的零点时,第一次经计算f (0)<0,f (0.5)>0,可得其中一个零点x 0∈________,第二次应计算________,以上横线上应填的内容为( )A .(0,0.5),f (0.25)B .(0,1),f (0.25)C .(0.5,1),f (0.75)D .(0,0.5),f (0.125) 答案 A解析 二分法要不断地取区间的中点值进行计算.由f (0)<0,f (0.5)>0知x 0∈(0,0.5).再计算0与0.5的中点0.25的函数值,以判断x 0的更准确位置. 4.设方程2x +2x =10的根为β则β属于( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4) 答案 C解析 设f (x )=2x +2x -10,则f (x )在R 上为单调增函数,故只有一个零点.f (0)=-9,f (1)=-6,f (2)=-2,f (3)=4,∴f (2)·f (3)<0.∴β∈(2,3).5.函数y =⎝⎛⎭⎫12x 与函数y =lg x 的图象的交点的横坐标(精确度0.1)约是( ) A .1.5 B .1.6 C .1.7 D .1.8 答案 D解析 设f (x )=lg x -⎝⎛⎭⎫12x ,经计算f (1)=-12<0,f (2)=lg 2-14>0,所以方程lg x -⎝⎛⎭⎫12x =0在[1,2]内有解.应用二分法逐步缩小方程实数解所在的区间,可知选项D 符合要求. 6.用二分法求方程ln x -2+x =0在区间[1,2]上零点的近似值,先取区间中点c =32,则下一个含根的区间是__________. 答案 ⎝⎛⎭⎫32,2解析 令f (x )=ln x -2+x ,∵f (1)=-1<0,f (2)=ln 2>0,f ⎝⎛⎭⎫32=ln 32-12<0,∴下一个含根的区间是⎝⎛⎭⎫32,2.7.用二分法求函数f (x )=3x -x -4的一个零点,其参考数据如下:据此数据,求f (x )=3x -x -4的一个零点的近似值(精确度0.01). 解 由表中f (1.562 5)=0.003,f (1.556 2)=-0.029. ∴f (1.562 5)·f (1.556 2)<0.又|1.562 5-1.556 2|=0.006 3<0.01,∴一个零点近似值为1.562 5(不唯一). 能力提升8.在用“二分法”求函数f (x )零点近似值时,第一次所取的区间是[-2,4],则第三次所取的区间可能是( )A .[1,4]B .[-2,1] C.⎣⎡⎦⎤-2,52 D.⎣⎡⎦⎤-12,1 答案 D解析 由于第一次所取的区间为[-2,4], ∴第二次所取区间为[-2,1]或[1,4], 第三次所取区间为⎣⎡⎦⎤-2,-12,⎣⎡⎦⎤-12,1,⎣⎡⎦⎤1,52或⎣⎡⎦⎤52,4.9.用二分法求方程x 3-8=0在区间(2,3)内的近似解经过________次“二分”后精确度能达到0.01? 答案 7解析 设n 次“二分”后精确度达到0.01,∵区间(2,3)的长度为1,∴12n <0.01,即2n >100.注意到26=64<100,27=128>100.故要经过7次二分后精确度达到0.01.10.已知图象连续不断的函数y =f (x )在区间(0,0.1)上有唯一零点,如果用二分法求这个零点(精确度为0.01)的近似值,则应将区间(0,0.1)等分的次数至少为________.答案 4 解析 设等分的最少次数为n ,则由0.12n <0.01,得2n >10,∴n 的最小值为4.11.画出函数f (x )=x 2-x -1的图象,并利用二分法说明方程x 2-x -1=0在[0,2]内的根的情况.解 图象如图所示,因为f (0)=-1<0,f (2)=1>0,所以方程x 2-x -1=0在(0,2)内有根x 0;取(0,2)的中点1,因为f (1)=-1<0,所以f (1)·f (2)<0,根x 0在区间(1,2)内;再取(1,2)的中点1.5,f (1.5)=-0.25<0,所以f (1.5)·f (2)<0,根x 0在区间(1.5,2)内;取(1.5,2)的中点1.75,f (1.75)=0.312 5>0,所以f (1.5)·f (1.75)<0,根x 0在区间(1.5,1.75)内.这样继续下去,可以得到满足一定精确度的方程的近似根. 探究与创新12.求方程ln x +x -3=0在(2,3)内的近似解(精确度为0.1).解令f(x)=ln x+x-3,求函数f(x)=0在(2,3)内的零点.∵f(2)=ln 2-1<0,f(3)=ln 3>0,取(2,3)作为初始区间,用二分法列表如下:∵2.25-2.187 5=∴在区间(2.187 5,2.25)内任意实数都是函数的零点的近似值,即方程的近似解可取为2.25. 13.用二分法求5的近似值(精确度0.1).解设x=5,则x2=5,即x2-5=0,令f(x)=x2-5.因为f(2.2)=-0.16<0.f(2.4)=0.76>0,所以f(2.2)·f(2.4)<0,说明这个函数在区间(2.2,2.4)内有零点x0,取区间(2.2,2.4)的中点x1=2.3,则f(2.3)=0.29.因为f(2.2)·f(2.3)<0,∴x0∈(2.2,2.3),再取区间(2.2,2.3)的中点x2=2.25,f(2.25)=0.062 5.因为f(2.2)·f(2.25)<0,所以x0∈(2.2,2.25).由于|2.25-2.2|=0.05<0.1,所以5的近似值可取为2.25.。
高中数学《用二分法求方程的近似解》教学设计
用二分法求方程的近似解一、内容与内容解析1.内容利用二分法求方程的近似解.2.内容解析对于区间[a,b]上的连续不断且f(a)f(b)<0的函数y=f(x),通过不断地把它的零点所在区间一分为二,使得区间的两个端点逐步逼近零点,进而得到近似解的方法叫做二分法.二分法是求方程近似解的常用方法,这种方法由“区间”端点对应的数,研究“点”对应的具体的数:通过不断缩小“区间”,由“区间”左端点对应的单调递增数列,以及右端点对应的单调递减数列,不断逼近这一系列“区间”组成的区间套中的具体点对应的数.二分法的本质仍然是通过数的运算研究问题.二分法通过不断缩小函数零点所在区间求方程的近似解,体现出用函数观点处理数学问题的思想和逐渐逼近的极限思想.从高中数学角度,二分法体现出函数在数学内部的应用.从高等数学角度,二分法所采用的使实数区间向某一个点收敛的方法,是证明有关连续性结论的基本思路.从函数零点与方程的解的关系,到函数零点存在定理,再到利用二分法求方程的近似解,学生经历了一个完整的利用函数研究问题和解决问题的过程.从中不但能体会到函数的工具性,还获得了从个别问题的解决过程提炼出一类问题的解决方法的经验,这对提高学生分析问题和解决问题能力,培养学生理性精神有一定的帮助.通过求具体方程的近似解了解二分法并总结其实施步骤,体现了由具体到一般的认知过程;在求方程的近似解的过程中,需要重复计算区间中点,以及中点的函数值,涉及到的较复杂的数据.因此本节课主要发展学生的数学抽象和数据处理核心素养.教学重点:用二分法求函数f(x)的零点的近似值的一般步骤.二、目标与目标解析1.目标(1)通过求具体方程的近似解了解二分法,体会函数在解方程方面的应用,渗透极限思想.(2)通过总结二分法的实施步骤,使学生经历由具体到一般的认知过程,发展数学抽象核心素养,提高分析问题和解决问题的能力.(3)根据具体函数图象,能够借助信息技术用二分法求方程的近似解,发展数据处理核心素养.2.目标解析达成上述目标的标志:(1)能够根据函数零点存在定理想到通过一分为二的逐渐缩小零点所在区间的办法,来求方程lnx+2x-6=0的近似解,知道二分法是求方程近似解的常用方法.(2)能够根据求方程lnx+2x-6=0的近似解的过程,提炼出利用二分法求函数f(x)的零点的近似值的一般步骤.(3)能够借助信息技术,用二分法求具体方程的近似解.三、教学问题诊断分析(1)学生已经学习了零点存在定理,容易想到通过逐渐缩小函数零点所在区间的办法来求方程的近似解,对二分法的理解不存在困难.(2)学生还没有算法的基本思想,对于求近似值的问题也接触较少,因此在总结用二分法求函数零点近似值的一般步骤时,得出步骤3中的“令b=c”、“令a=c”和步骤4中的“若|a-b|<ε,则得到零点的近似值为a或b”可能会有些困难.因此本节课的教学难点为:根据求方程lnx+2x-6=0的近似解的过程,提炼出利用二分法求函数f(x)的零点x0的近似值的一般步骤.破解这个难点的关键是,让学生用自己的语言准确描述求方程lnx+2x-6=0近似解的每一步,理解精确度的含义,搞清楚其中循环的部分,明确循环结束的条件.(3)在利用二分法求方程近似解的过程中,数值计算较为复杂,这对获得给定精确度的近似值增加了困难.因此,本节课的另一个教学难点为:利用二分法求方程在给定精确度下的近似解.要破解这个难点,需要恰当的使用信息工具.四、教学支持条件分析本节课的教学,需要利用GGB软件绘制函数图象,并进行函数值的计算.五、教学过程设计(一)引入问题、探讨方法引言:通过前一节课的学习,我们根据函数零点存在定理和函数单调性可以确定方程实数解的个数,今天进一步研究利用函数求方程的近似解.问题1:我们已经知道函数f(x)=lnx+2x-6在区间(2,3)内存在一个零点,如何求出这个零点?追问1:你能求出函数f(x)=lnx+2x-6零点的精确值吗?为什么?师生活动:学生根据经验给出判断,教师补充.预设的答案:学生的回答是否定的,原因是方程lnx+2x-6=0没有求根公式.教师补充:大多数方程都不能像一元二次方程那样用公式求出精确解,在实际问题中,往往只需求出满足一定精确度的近似解.(“精确度为ε”的含义是:“近似值与精确值之差(即误差)不大于ε”)追问2:当精确度为0.5时,你能得到一个符合要求的零点的近似值吗?师生活动:学生思考和回答,教师启发学生说明理由,给出区间的中点的定义.预设的答案:零点在区间(2,3)内,数轴上2和3之间的距离为1,它们的中点与零点的距离一定小于0.5,因此精确度为0.5时,可以取2.5作为一个零点的近似值.教师指出:一般地,称为区间(a,b)的中点.追问3:当精确度为0.5时,3可以看做零点的一个近似值吗?为什么?师生活动:学生思考和回答,教师引导和补充.预设的答案:由计算工具算得f(2.5)=-0.084,由f(2.5)f(3)<0可知,零点在区间(2.5,3)内,由数轴上2.5和3之间的距离为0.5可知,零点和3之间的距离小于0.5,因此,3可以看做零点的一个近似值.追问4:根据追问2和3的回答,当精确度缩小到0.01时,为了得到函数零点的近似解,我们至少需要将零点所在区间缩小到什么程度?你将采取怎样的办法来逐步缩小零点所在区间?师生活动:学生思考和回答,教师引导和补充.预设的答案:当精确度为0.01时,长度小于0.01的零点所在区间内的任意实数都可以是零点的近似值,为此至少需要将存在零点的区间长度缩小到小于0.01.根据追问2和3的回答,可以通过重复计算区间中点和区间端点函数值乘积的符号,将零点所在区间逐次减半,达到缩小零点所在区间的目的.教师总结:通过以上问题的思考和回答可知,如果能将零点所在的范围尽量缩小,那么在一定精确度的要求下,就可以得到符合要求的零点的近似值.为了方便,可以通过取区间中点的方法,逐步缩小零点所在的范围.具体地,就是通过重复计算区间中点和区间端点函数值乘积的符号,将零点所在区间逐次减半地缩小到长度小于精确度的范围。
二分法求方程的近似解教案
3.1 函数与方程
【课题】:3.1.2 用二分法求方程的近似解
【教学目标】:
(1)知识与技能:通过具体实例理解二分法的概念及其适用条件,了解二分法是求方程近似解的常用方法,从中体会函数与方程之间的联系及其在实际问题中的应用。
(2)过程与方法:学生通过观察和实践,能借助计算器用二分法求方程的近似解,并了解这一数学思想,为学习算法做准备。
(3)情感态度与价值观:在学习中体会数形结合的思想、近似的思想、逼近的思想和算法的思想等数学思想,感受精确与近似的相对统一。
【教学重点】:恰当地使用信息技术工具,利用二分法求给定精确度的方程的近似解。
【教学难点】:对二分法求方程近似解的算法理解。
【课前准备】:Powerpoint或投影片。
《用二分法求方程的近似解》的教学设计与反思.doc
《用二分法求方程的近似解》的教学设计与反思环节一:明确本课学习目标1.理解二分法的概念2.掌握运用“二分法”求简单方程近似解的方法3.初步掌握函数与方程的转化思想,使学生体会函数零点与方程根之间的联系,初步形成用函数观点处理问题的意识环节二:自主学习问题1:一段10km长的电话线路发生故障,如何迅速查出故障所在位置?如果沿着线路一小段一小段检查,难度很大.想一想,如何查找维修最合理?环节三:合作探究1思路:通过先找中点,缩小范围,再找剩下来一半的中点.教师引导学生解决问题:A C E D B如图,首先从中点C发现AC段正常,断定故障在BC段,再到BC段中点D, 这次发现BD段正常,可见故障在CD段,再到CD中点E来查.每查一次,可以把待查的线路长度缩减一半,如此查下去,不用几次,就能把故障点锁定.教师:我们可以用一个动态过程来展示一下(展示多媒体课件).在一条线段上找某个特定点,可以通过取中点的方法逐步缩小特定点所在的范围(即二分法思想).环节四:合作探究2师生共同探究:假设电话线故障点大概在函数/(x) = lnx + 2x-6的零点位置,请同学们先猜想它的零点大概是什么?我们如何找出这个零点?1.利用函数性质或借助计算机、计算器画出函数图象,通过具体的函数图象帮助学生理解闭区间上的连续函数,如果两个端点的函数值是异号的,那么函数图象就一定与工轴相交,即方程/(x) = O在区间内至少有一•个解(即上节课的函数零点存在性定理,为下面的学习提供理论基础).引导学生从“数”和“形” 两个角度去体会函数零点的意义,掌握常见函数零点的求法,明确二分法的适用范围.2.我们己经知道,函数/(x) = lnx + 2x-6在区间(2, 3)内有零点,且/(2) <0, /(3)>0.进一步的问题是,如何找出这个零点?合作探究:学生先按四人小组探究・(倡导学生积极交流、勇于探索的学习方式,有助于发挥学生学习的主动性)生:如果能够将零点所在的范围尽量缩小,那么在一定精确度的要求下,我们可以得到零点的近似值.师:如何有效缩小根所在的区间?生L通过“取中点”的方法逐步缩小零点所在的范围.生2:是否也可以通过“取三等分点或四等分点”的方法逐步缩小零点所在的范围?师:很好,一个直观的想法是:如果能够将零点所在的范围尽量缩小,那么在一定精确度的要求下,可以得到零点的近似值.其实“取中点”和“取三等分点或四等分点”都能实现缩小零点所在的范围.但是在同样可以实现缩小零点所在范围的前提下,“取中点”的方法比取“三等分点或四等分点”的方法更简便. 因此,为了方便,下面通过“取中点”的方法逐步缩小零点所在的范围.弓I导学生分析理解求区间(。
用二分法求方程的近似解 教学设计
用二分法求方程的近似解教学设计用二分法求方程的近似解--教学设计《用二分法求方程的近似解》教学设计单位:天津市大港一中学科:数学姓名:贾宝山《用二分法谋方程的对数求解》本节课是人教版高中课程标准实验教科书必修(一)第三章3.1.2内容,求方程的解是常见的数学问题,这之前我们都是在等式状态下研究方程的变化关系,从而得到诸如求根公式等方程的解。
但有些方程求精确解较难,本课试图从另一个角度来求方程的近似解。
说求方程的近似解倒不如说是逼近解。
本课重点是学习一种思维。
1、教学目标1.1知识目标:认知二分法的概念,掌控运用二分法谋直观方程对数求解的方法。
1.2能力目标:体验并理解函数与方程的相互转化的数学思想方法;使学生能初步介绍对数迫近思想,培育学生能探究问题的能力、细致的科学态度和创新能力。
1.3情感、态度与价值观负面解决问题困难时,可以通过包抄的方法回去化解。
2、教学重点能够借用计算器,用二分法求相应方程的近似解。
3、教学难点对二分法的理论提振的认知。
4、教学方法实例导入?推出课题?实践探究?总结提炼?学生感悟(总结、反思)5、教具多媒体课件6、教学过程问题情景设计意图教师活动学生活动(1)备考:零点的定义。
方程总结复的根与函数零点关系。
函数零点存习方程的根在认定法则。
与函数的零点等有关科学知识。
(2)导入:师:大家先来看一段杂记从生活像是(播放cctv2幸运地52片段)主中启程,使抱持人李咏说:猜一猜这件商品的学生拒绝接受的价格。
观众甲:2000!李咏:低了!自然,唤起观众甲:1000!李咏:高了!观众学生兴趣。
甲:1700!李咏:低了!观众甲:体会逐步逼迫1400!李咏:高了!观众甲:1500!将近的方法。
李咏:高了!观众甲:1550!李咏:高了!观众甲:1580!李咏:低了!观众甲:1570!李咏:高了!观众甲:1578!李咏:高了!观众甲:1579!李咏:这件商品归属于你了。
下一件??师:(手拿一款手机)如果使你去猜猜这件商品的价格,你如何猜猜?生1:先初步估计一个价格,如果回答检查学生自学的共同提问教导情况。
《用二分法求方程的近似解》示范课教案【高中数学】
《用二分法求方程的近似解》教学设计1.探索用二分法求方程近似解的思路并会画程序框图,渗透极限思想.2.能借助计算工具用二分法求方程近似解.3.通过提炼二分法的一般步骤,使学生经历由特殊到一般的归纳过程,了解二分法求方程近似解具有一般性,让学生感受算法的思想,并提升数学抽象核心素养. 教学重点:用二分法求方程近似解的思路与步骤.教学难点:用二分法求方程近似解的算法.PPT 课件,计算器.(一)整体感知,明确任务引导语:因为大多数方程都没有求根公式,所以这些方程都不能像一元二次方程那样用公式求出精确解.而在实际问题中,往往只需求出满足一定精确度的近似解.通过前一节课的学习,我们已经知道,求方程()0f x =的实数解,就是确定函数()y f x =的零点.根据函数零点存在定理并结合函数的单调性等性质,可以确定在某一区间内方程实数解的个数.进一步的问题是,如何求出这些实数解?本节课我们将研究这个问题.设计意图:确定了方程有实数解和解的个数后,自然会思考怎么求出这些实数解.引起学生思考,明确本节课要研究的内容.(二)新知探究1.探索方法,解决问题问题1:我们已经知道,函数()ln 26f x x x =+-在区间(2,3)内存在一个零点,其准确值无法求出,那么如何求出这个零点的近似值呢?师生活动:学生讨论交流,教师引导学生:将零点所在的范围尽量缩小.图1设计意图:学生通过重复相同的步骤,初步体会二分法的具体过程,为提炼二分法的一般步骤作铺垫.另外,通过具体的计算,列表展示函数值的变化趋势,结合图象的变化趋势,数形结合地使学生感受逼近和算法的思想.追问4:根据填好的表格,请你给出函数()ln26f x x x=+-在精确度为0.01的零点的近似值.师生活动:学生回答,教师予以补充完善.预设的答案:因为2.539 062 5 2.531 25.007 812 50.01=-,所以区间(2.531 25,2.5390<062 5)内任意一点都可以作为零点的近似值.为了方便,我们可以把区间的一个端点作为零点的近似值,所以可以将x=2.531 25作为函数()ln26=+-零点的近似值,也即方程f x x x+-=的近似值.x xln260设计意图:通过求具体函数()ln26f x x x=+-的零点在精确度0.01下的近似值,再次明确精确度的含义.在精确度ε限制下的近似值为所在满足精确度要求的区间中的任意值,即近似值有无数个,所以可以任取一个作为近似值.2.提炼方法,规范步骤问题2:像上面这种求函数()ln26f x x x=+-的零点近似值的方法,它的总体思路是什么?这种方法适用于那些函数?师生活动:学生交流后回答,教师予以补充完善.这里要注意的是,虽然我们是通过+-=这个不能用公式求解的方程,探索出了二分法,但并不意味着二分法只适用x xln260于不能用公式求零点的函数.学生可能会在这里产生惯性思维,教师要注意引导.预设的答案:根据精确度的定义,精确度是指近似值x *与其准确值x 的接近程度.近似值x *的误差不超过某个数ε,即*x x ε-<,就说它的精确度是ε.所以当a b ε-<时,零点x 0所在的区间[a ,b ]中任意一个值与x 0的误差都不超过a b -,当然也就不超过ε.所以区间[a ,b ]中任意一个值都是零点x 0满足精确度ε的近似值.设计意图:使学生进一步理解精确度的含义.3.初步应用,深化理解例2 借助信息技术,用二分法求方程237x x +=的近似解(精确度为0.1).师生活动:先由学生说出解决问题的思路,然后师生共同利用信息技术解答.预设的答案:解:原方程即2370x x +-=,令()237x f x x =+-,用信息技术画出函数()y f x =的图象(图2),并列出它的对应值表(表3).表3x0 1 2 3 4 5 6 7 8 y -6 -2 3 10 21 40 75 142 273观察图2或表3,可知()()120f f <,说明该函数在区间(1,2)内存在零点x 0.取区间(1,2)的中点1 1.5x =,用信息技术算得()1.50.33f ≈.因为()()1 1.50f f <,所以x 0∈(1,1.5). 再取区间(1,1.5)的中点2 1.25x =,用信息技术算得()1.250.87f ≈-.因为()()1.25 1.50f f <,所以x 0∈(1.25,1.5).同理可得,x 0∈(1.375,1.5),x 0∈(1.375,1.437 5).由于11.437 51.02.3 750.650-=<,所以,原方程的近似解可取为1.375.设计意图:通过例题实践利用二分法求函数零点近似值的步骤,学会用二分法求方程的近似解.(三)归纳小结,布置作业图2问题4:回顾本节课中用二分法求函数零点的近似值的一般步骤,你能体会到怎样的数学思想和方法?师生活动:学生讨论交流后回答,教师予以补充.预设的答案:二分法通过不断缩小函数零点所在区间求函数零点的近似值,体现了逐渐逼近的极限思想.在逐渐逼近的过程中,重复相同的步骤,这些相同的步骤可以抽象出来,体现了算法思想.设计意图:回顾本节课所学二分法的一般步骤,让学生体会其中蕴含的数学思想.问题5:通过本节课的学习我们可以看到,用二分法求方程的近似解,计算量较大,而且是重复相同的步骤.因此,可以通过设计一定的计算程序,借助信息技术完成计算.图3就是表示二分法求方程近似解过程的程序框图.有兴趣的同学,可以在此基础上用有关算法语言编写程序,利用信息技术求方程的近似解.图3师生活动:学生课后自行完成.设计意图:拓展学生思路,鼓励学生利用算法语言编程解决求方程近似解的问题.问题6:阅读教科书“阅读与思考—中外历史上的方程求解”,了解方程求解的发展过程是怎样的?二分法对于方程求解的重要性是什么?师生活动:学生课后自行完成.设计意图:让学生进一步了解二分法对于方程求解的重要意义,激发学生学习兴趣,提升学生数学人文素养.作业布置:教科书习题.(四)目标检测设计1.借助信息技术,用二分法求函数()32=++-在区间(0,1)内零点的1.10.9 1.4f x x x x近似值(精确度为0.1).设计意图:考查用二分法求函数零近似值的能力.2.借助信息技术,用二分法求方程3lg=-在区间(2,3)内的近似解(精确度为0.1).x x设计意图:考查用用二分法求方程解的近似值的能力.参考答案:1.0.625.2.2.625.。
3.1.2《用二分法求方程的近似解》参考教案1
3.1.2 用二分法求方程的近似解一、教学目标:知识与技能:通过具体实例理解二分法的概念及其适用条件,了解二分法是求方程近似解的常用方法,从中体会函数与方程之间的联系及其在实际问题中的应用.过程与方法:能借助计算器用二分法求方程的近似解,并了解这一数学思想,为学习算法做准备.情感态度与价值观:体会数学逼近过程,感受精确与近似的相对统一.二、教学重难点重点:通过用二分法求方程的近似解,体会函数的零点与方程根之间的联系,初步形成用函数观点处理问题的意识.难点:恰当地使用信息技术工具,利用二分法求给定精确度的方程的近似解.三、教学过程:创设情景:材料一:二分查找(binary-search)(第六届全国青少年信息学(计算机)奥林匹克分区联赛提高组初赛试题第15题)某数列有1000个各不相同的单元,由低至高按序排列;现要对该数列进行二分法检索(binary-search),在最坏的情况下,需检索()个单元。
A.1000 B.10 C.100 D.500二分法检索(二分查找或折半查找)演示.材料二:高次多项式方程公式解的探索史料由于实际问题的需要,我们经常需要寻求函数)(=)f的x(xfy=的零点(即0根),对于)f为一次或二次函数,我们有熟知的公式解法(二次时,称为求根(x公式).在十六世纪,已找到了三次和四次函数的求根公式,但对于高于4次的函数,类似的努力却一直没有成功,到了十九世纪,根据阿贝尔(Abel)和伽罗瓦(Galois)的研究,人们认识到高于4次的代数方程不存在求根公式,亦即,不存在用四则运算及根号表示的一般的公式解.同时,即使对于3次和4次的代数方程,其公式解的表示也相当复杂,一般来讲并不适宜作具体计算.因此对于高次多项式函数及其它的一些函数,有必要寻求其零点的近似解的方法,这是一个在计算数学中十分重要的课题.师生双边互动:师:从学生感兴趣的计算机编程问题,引导学生分析二分法的算法思想与方法,引入课题.生:体会二分查找的思想与方法.师:从高次代数方程的解的探索历程,引导学生认识引入二分法的意义. 组织探究:二分法及步骤:对于在区间a [,]b 上连续不断,且满足)(a f ·)(b f 0<的函数)(x f y =,通过不断地把函数)(x f 的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.给定精度ε,用二分法求函数)(x f 的零点近似值的步骤如下:1.确定区间a [,]b ,验证)(a f ·)(b f 0<,给定精度ε;2.求区间a (,)b 的中点1x ;3.计算)(1x f :师:阐述二分法的逼近原理,引导学生理解二分法的算法思想,明确二分法求函数近似零点的具体步骤.分析条件“)(a f ·)(b f 0<”、“精度ε”、“区间中点”及“ε<-||b a ”的意义. 利用多媒体呈现教学材料:○1 若)(1x f =0,则1x 就是函数的零点; ○2 若)(a f ·)(1x f <0,则令b =1x (此时零点),(10x a x ∈);○3 若)(1x f ·)(b f <0,则令a =1x (此时零点),(10b x x ∈);4.判断是否达到精度ε;即若ε<-||b a ,则得到零点零点值a (或b );否则重复步骤2~4.。
《用二分法求方程的近似解》一课的教学设计
《用二分法求方程的近似解》一课的教学设计求方程的解是常见的数学问题,这之前我们都是在等式状态下研究方程的变化关系,从而得到诸如求根公式等方程的解。
但有些方程求精确解较难,本课试图从另一个角度来求方程的近似解。
说求方程的近似解倒不如说是逼近解。
本课重点是学习一种思维。
1、教学目标1.1 知识目标:理解二分法的概念,掌握运用二分法求简单方程近似解的方法。
1.2能力目标:体验并理解函数与方程的相互转化的数学思想方法;让学生能够初步了解近似逼近思想,培养学生能够探究问题的能力、严谨的科学态度和创新能力。
1.3情感、态度与价值观正面解决问题困难时,可以通过迂回的方法去解决。
2、教学重点能够借用计算器,用二分法求相应方程的近似解。
3、教学难点对二分法的理论支撑的理解。
4、教学方法实例导入推出课题实践探究总结提炼学生感悟(总结、反思)5、教具多媒体课件6、教学过程…………………………………………………………………………………………………一、创设情景,引入新课师:大家先来看一段录像(放映CCTV2幸运52片段)支持人李咏说道:猜一猜这件商品的价格。
观众甲:2000!李咏:高了!观众甲:1000!李咏:低了!观众甲:1700!李咏:高了!观众甲:1400!李咏:低了!观众甲:1500!李咏:低了!观众甲:1550!李咏:低了!观众甲:1580!李咏:高了!观众甲:1570!李咏:低了!观众甲:1578!李咏:低了!观众甲:1579!李咏:这件商品归你了。
下一件……师:(手拿一款手机)如果让你来猜这件商品的价格,你如何猜?生1:先初步估算一个价格,如果高了再每隔十元降低报价。
生2:这样太慢了,先初步估算一个价格,如果高了每隔100元降低报价。
如果低了,每50元上涨;如果再高了,每隔20元降低报价;如果低了,每隔10元上升报价……生3:先初步估算一个价格,如果高了,再报一个价格;如果低了,就报两个价格和的一半;如果高了,再把报的低价与一半价相加再求其半,报出价格;如果低了,就把刚刚报出的价格与前面的价格结合起来取其和的半价……师:在现实生活中我们也常常利用这种方法。
高中数学用二分法求方程的近似解(教学设计)
《用二分法求方程的近似解》一. 教材分析1.教学内容本节课内容是《普通高中课程标准实验教科书数学》人教A版必修1第三章《函数的应用》3.1《函数与方程》中第3.1.2节《用二分法求方程的近似解》,属于本小节的第三课时. 第一课时我们学习了“方程的根与函数零点的关系〞,第二课时学习了“函数零点的存在性〞,学生通过前面两节的学习,对方程的根的存在性以及函数零点和方程的根的关系有了一定的认识.掌握了根本初等函数的图象和性质并具有了一定的数形结合的思想,这为理解函数零点附近的函数值符号提供了直观认识,在此根底上介绍用二分法求函数零点近似值,也就水到渠成.2.地位作用二分法是求方程近似解的常用方法,在寻求方程近似解的过程中首先将方程解的问题转化为函数的零点问题处理,表达了函数的思想以及函数与方程的联系.然后借助函数的图象先初步确定函数零点所在的区间,再通过不断地把零点所在区间一分为二逐步缩小区间的范围,使区间的两端点逐步逼近函数的零点,进而得到零点的近似值.这一过程为高中数学中函数与方程思想、数形结合思想、二分法的算法思想打下了根底,为数学必修3中算法内容的学习做了铺垫.二分法表达了数学的逼近思想,对学生以后学习圆周的计算,球的面积体积公式的由来等微积分的知识起了奠基的作用.因此决定了它的重要地位.3.学情分析①.根底能力数学根底知识相对薄弱,但具备一定的分析判断能力和解决问题的能力。
②. 认知现状对函数的零点,方程的根和函数的关系,零点的存在性定理等知识有初步的接触和认识。
③. 情感特点学生的求知欲强,想象力丰富,他们对探究有较强的参与欲望,希望在课堂上能得到充分的展示和肯定。
4. 教学目标①.知识与能力:通过具体实例理解二分法的概念及其适用条件,能借助计算器等工具运用二分法求方程的近似解;②.过程与方法:通过学生的自主探究,初步了解逼近思想、强化函数与方程思想、数形结合的思想,培养学生探究问题的能力、严谨的科学态度和创新能力.通过对具体实例的探究,归纳概括所发现的结论或规律,体会从特殊到一般的认知过程.③.情感态度与价值观:通过创设情境调动学生参与课堂的热情,激发学生学习数学的情感.并在二分法步骤的探索、发现过程中,获得成功的体验,锻炼克服困难的意志,建立学习数学的自信心. 5.教学重点、难点重点: 掌握用二分法求给定方程的近似解.难点: 二分法的原理;零点所在区间的判断;精确度的理解.二.教法分析本节课采用的教学模式是金堂的“533生命教学课堂模式〞,即“自主学习、交流展示、归纳点拨、训练反应、拓展延伸〞五个环节融会贯穿的教学形态。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:用二分法求方程的近似解
一、教材背景分析
1.教材的地位和作用以及学情
本节内容位于数学必修1第三章第一节“函数与方程”,共分三个课时。
第一课时学习了“方程的根与函数零点的关系”,第二课时学习了“函数零点的存在性”,学生通过前面两节的学习,对方程的根的存在性以及函数零点和方程的根的关系有了一定的认识。
掌握了基本初等函数的图像和性质并具有了一定的数形结合的思想,这为理解函数零点附近的函数值符号提供了直观认识,在此基础上介绍用二分法求函数零点近似值,也就水到渠成。
本节是第三课时,二分法是求方程近似解的常用方法,它体现了函数的思想以及函数与方程的联系。
为高中数学中函数与方程思想、数形结合思想、二分法的算法思想打下了基础,为数学3中算法内容的学习做了铺垫。
二分法体现了数学的逼近思想,对学生以后学习圆周的计算,球的面积体积公式的由来等微积分的知识起了奠基的作用。
因此决定了它的重要地位。
2.教学重点与难点
重点:渗透二分法思想;理解二分法的原理;掌握用二分法求给定方程近似解。
难点:二分法的原理;零点所在区间的判断;精确度的理解。
[理论依据]学生所学的数学知识,在进入社会后几乎没有什么机会应用,然而不管他们从事什么工作,惟有深深铭刻于头脑中的数学思想和方法等随时随地发生作
用,使他们受益终身。
因此数学思想方法的渗透是重点之一。
二、教学目标
(1)知识与技能:
1.体会二分法的思想,掌握二分法求方程近似解的一般步骤。
2.会用二分法求方程的近似解,并能用计算机辅助求解。
3.会用二分法思想解决其他的实际问题。
(2)过程与方法:
1.通过对二分法原理的探索,引导学生用联系的观点理解函数与方程,形成用函数
的观点处理问题的意识。
2.通过求具体方程近似解介绍二分法并总结其步骤,体现了从具体到一般的认知过程。
3.利用逼近求解,渗透从有限到无限的数学思想。
(3)情感与态度:
1.通过创设情境调动学生参与课堂的热情,激发学生学习数学的情感。
2.在二分法步骤的探索、发现过程中,获得成功的体验,锻炼了克服困难的意志,
建立学习数学的自信心。
三、教法选择和学法指导
情境教学法,发现法教学
[理论依据]“问题是数学的心脏”,也是数学教学的心脏。
问题成功掌握教学是适应新课改要求的一种数学教学方法,是在课堂教学条件下,创设问题情景,由教师与学生一起发现问题、提出问题,在教师的主导下,分析问题、解决问题。
四、教学基本流程设计
x的求解
260
对比价格猜测与求方程近似解问题,
探索用二分法求方程近似解的步骤。
老师例题示范,用计算计辅助求解。
学生练习巩固,拓展知识。
用程序框图回顾二分法的步骤,小结
五、教学过程
教学内容
价格竞猜
微波炉价格竞猜。
微波炉的价格在200
20元),并思考按什么样的规律猜才能提高猜测的效率?
260x ,若不能求出,能否解出上述
方程的近似解?
何时终止计算,取得近似解?
近似解的选取,取最后一次a,b,(a+b)/2学生活动:回忆旧知 迁移到新知
对比实际问题,直观的想法:
如果能够将零点所在的范围尽量缩小,那么在一定的
的要求下,我们可以得到零点的 (画表格计算)
0.1ε=假设取)
六.板书设计
3 .1.3 用二分法求方程的近似解
一.复习
1.函数零点与方程的根关系三。
练习巩固
2.零点存在定理四。
归纳总结
二.二分法
1.原理
2.定义
3.步骤
七.教学评价分析
1、评价学生学习过程
本节课在情境创设,例题设置中注重与实际生活联系,让学生体会数学的应用价值,在教学中注意观察学生是否置身于数学学习活动中,是否精神饱满、兴趣浓厚、探究积极,并愿意与老师、同伴交流自己的想法。
2、评价学生的基础知识、基本技能和发现问题、解决问题的能力
教学中通过学生回答问题,归纳总结等方面反馈学生对数学知识的理解程度,对数学技能的掌握程度和发现问题和解决问题的能力。
教师根据反馈信息适时点拨,同时从新课标评价理念出发,鼓励学生发表自己的观点、充分质疑,并抓住学生在语言、思想等方面的亮点给予表扬,树立他们学习数学的自信心。
并观察学生对数学学习的态度变化,适时对教学做适当的调整,以便提高教学效果。
八.教学设计说明
(1)教学定位说明
1.注重数学思想方法的渗透
2.注重知识的探求和发现
3.注重加强数学应用意识
(2)课堂有效互动设计说明
1.有猜测——格猜测激发参与热情
2.有疑问——3个问题情境+3个难点疑问
3.有争议——区间、近似解的选取?
4.有沉思——解答留有“空白”
5.有联想——程序框图的显示
用二分法求方程的近似解(教案说明)
全日制普通高级中学教科书数学必修1第三章第一节第三课时
一、教材地位及其作用
本节内容位于数学必修1第三章第一节“函数与方程”,共分三个课时。
第一课时学习了“方程的根与函数零点的关系”,第二课时学习了“函数零点的存在性”,学生通过前面两节的学习,对方程的根的存在性以及函数零点和方程的根的关系有了一定的认识。
掌握了基本初等函数的图像和性质并具有了一定的数形结合的思想,这为理解函数零点附近的函数值符号提供了直观认识,在此基础上介绍用二分法求函数零点近似值,也就水到渠成。
本节是第三课时,二分法是求方程近似解的常用方法,它体现了函数的思想以及函数与方程的联系。
为高中数学中函数与方程思想、数形结合思想、二分法的算法思想打下了基础,为数学3中算法内容的学习做了铺垫。
二分法体现了数学的逼近思想,对学生以后学习圆周的计算,球的面积体积公式的由来等微积分的知识起了奠基的作用。
因此决定了它的重要地位。
二、教学目标与定位.
学生所学的数学知识,在进入社会后几乎没有什么机会应用,然而不管他们从事什么工作,惟有深深铭刻于头脑中的数学思想和方法等随时随地发生作用,使他们受益终身。
因此数学思想方法的渗透是重点之一。
教学定位:
1.注重数学思想方法的渗透
2.注重知识的探求和发现
3.注重加强数学应用意识
具体目标如下:
(1)知识与技能:
1.体会二分法的思想,掌握二分法求方程近似解的一般步骤。
2.会用二分法求方程的近似解,并能用计算机辅助求解。
3.会用二分法思想解决其他的实际问题。
(2)过程与方法:
1.通过对二分法原理的探索,引导学生用联系的观点理解函数与方程,形成用函数
的观点处理问题的意识。
2.通过求具体方程近似解介绍二分法并总结其步骤,体现了从具体到一般的认知过程。
3.利用逼近求解,渗透从有限到无限的数学思想。
(3)情感与态度:
1.通过创设情境调动学生参与课堂的热情,激发学生学习数学的情感。
2.在二分法步骤的探索、发现过程中,获得成功的体验,锻炼了克服困难的意志,
建立学习数学的自信心。
三、教学重点及难点
重点:渗透二分法思想;理解二分法的原理;掌握用二分法求给定方程近似解。
难点:二分法的原理;零点所在区间的判断;精确度的理解。
四、教法选择和学法指导
情境教学法,启发引导法教学
[理论依据]“问题是数学的心脏”,也是数学教学的心脏。
问题成功掌握教学是适应新课改要求的一种数学教学方法,是在课堂教学条件下,创设问题情景,由教师与学生一起发现问题、提出问题,在教师的主导下,分析问题、解决问题。
五、教学基本流程设计
x的求解
260
对比价格猜测与求方程近似解问题,
探索用二分法求方程近似解的步骤。
老师例题示范,用计算计辅助求解。
学生练习巩固,拓展知识。
用程序框图回顾二分法的步骤,小结。