《对数函数及其性质(二)》精品课件 公开课课件
合集下载
人教版高中数学课件-对数函数及其性质(二)
減函數,
∴由複合函數的單調性得到函數 f x=log1 (-x2+2x) 在(0,1)上是減函數,
2
在(1,2)上是增函數.
解析答案
類型二 對數型複合函數的奇偶性 2-x
例 2 判断函数 f(x)=ln 2+x的奇偶性.
反思與感悟
解析答案
跟踪训练 2 判断函数 f(x)=lg( 1+x2-x)的奇偶性.
第二章 2.2 對數函數
2.2.2 對數函數及其性質(二)
學習目標
1.掌握對數型複合函數單調區間的求法及單調性的判定方法; 2.掌握對數型複合函數奇偶性的判定方法; 3.會解簡單的對數不等式; 4.瞭解反函數的概念及它們的圖象特點.
問題導學
題型探究
達標檢測
問題導學
新知探究 點點落實
知識點一 y=logaf (x)型函數的單調區間
∴11- -aaxx> <01, -a. 即aaxx< >1a, . ∴0<x<1. ∴不等式的解集為(0,1).
反思與感悟
解析答案
log2x,x>0,
跟踪训练 3
已知函数
f(x)=log
1 2
-x,x<0,
若 f(a)>f(-a),则实数
a 的取值范围是( )
A.(-1,0)∪(0,1)
B.(-∞,-1)∪(1,+∞)
解析答案
類型三 對數不等式 例3 已知函數f(x)=loga(1-ax)(a>0,且a≠1).解關於x的不等式: loga(1-ax)>f(1). 解 ∵f(x)=loga(1-ax),∴f(1)=loga(1-a). ∴1-a>0.∴0<a<1. ∴不等式可化為loga(1-ax)>loga(1-a).
答案
一般地,對於底數a>1的對數函數,在(1,+∞)區間內,底數越大越 靠近x軸;對於底數0<a<1的對數函數,在(1,+∞)區間內,底數越小 越靠近x軸.
∴由複合函數的單調性得到函數 f x=log1 (-x2+2x) 在(0,1)上是減函數,
2
在(1,2)上是增函數.
解析答案
類型二 對數型複合函數的奇偶性 2-x
例 2 判断函数 f(x)=ln 2+x的奇偶性.
反思與感悟
解析答案
跟踪训练 2 判断函数 f(x)=lg( 1+x2-x)的奇偶性.
第二章 2.2 對數函數
2.2.2 對數函數及其性質(二)
學習目標
1.掌握對數型複合函數單調區間的求法及單調性的判定方法; 2.掌握對數型複合函數奇偶性的判定方法; 3.會解簡單的對數不等式; 4.瞭解反函數的概念及它們的圖象特點.
問題導學
題型探究
達標檢測
問題導學
新知探究 點點落實
知識點一 y=logaf (x)型函數的單調區間
∴11- -aaxx> <01, -a. 即aaxx< >1a, . ∴0<x<1. ∴不等式的解集為(0,1).
反思與感悟
解析答案
log2x,x>0,
跟踪训练 3
已知函数
f(x)=log
1 2
-x,x<0,
若 f(a)>f(-a),则实数
a 的取值范围是( )
A.(-1,0)∪(0,1)
B.(-∞,-1)∪(1,+∞)
解析答案
類型三 對數不等式 例3 已知函數f(x)=loga(1-ax)(a>0,且a≠1).解關於x的不等式: loga(1-ax)>f(1). 解 ∵f(x)=loga(1-ax),∴f(1)=loga(1-a). ∴1-a>0.∴0<a<1. ∴不等式可化為loga(1-ax)>loga(1-a).
答案
一般地,對於底數a>1的對數函數,在(1,+∞)區間內,底數越大越 靠近x軸;對於底數0<a<1的對數函數,在(1,+∞)區間內,底數越小 越靠近x軸.
《对数函数及其性质》课件
THANK YOU
对数函数的定义域和值域
理解对数函数的定义域和值域,并能够判断特定函数的定义域和值 域。
对数函数的单调性
理解对数函数的单调性,并能够判断特定函数的单调性。
进阶题目
01
02
03
复合对数函数
理解复合对数函数,并能 够求解复合对数函数的值 。
对数函数的图像
理解对数函数的图像,并 能够根据图像判断函数的 性质。
分析对数函数的值域和定义域。对于自然对数函数y=log(x) ,其值域为R;对于以a为底的对数函数y=log(x),其定义域 为(0, +∞)。对于复合对数函数y=log(u),其值域和定义域取 决于u的取值范围。
03
对数函数的应用
实际应用场景
金融计算
在复利、折旧等计算中 ,对数函数有广泛应用
。
《对数函数及其性质》ppt课件
• 对数函数的定义与性质 • 对数函数的图像与性质 • 对数函数的应用 • 对数函数与其他知识点的联系 • 习题与练习
01
对数函数的定义与性质
定义与表示
总结词
对数函数是一种特殊的函数,其 定义域为正实数集,值域为全体 实数集。常用对数函数以10为底 ,自然对数函数以e为底。
么以a为底N的对数等于b。
对数函数和指数函数在解决实际 问题中经常一起出现,例如在计 算复利、解决声学和光学问题时
。
对数函数与三角函数的联系
对数函数和三角函数在形式上有些相似,特别是在自然对数函数和正弦函数中。
在复数域中,对数函数和三角函数有更密切的联系,它们都可以用来表示复数的幂 。
在解决一些物理问题时,例如波动和振动问题,可能需要同时使用对数函数和三角 函数。
【课件】对数函数的图象和性质(第二课时)课件高一上学期数学人教A版(2019)必修第一册
2,
2
∵函数 y=log0.3t 是减函数,且函数 t=3-2x 是减函数,
3
∞
- ,
∴函数 y=log0.3(3-2x)在
2 上是增函数,
3
-∞,
即函数 y=log0.3(3-2x)的单调递增区间是
2 ,没有单调递减区间.
求复合函数单调性的具体步骤:
(1)求定义域;
(2)拆分函数;
(3)分别求 y=f(u),u=φ(x)的单调性;
0<a<1时,在(0,+∞)是减函数
新知探究
探究一:反函数的含义
新知讲解
问题3 在同一个坐标系中画出指数函数 = 与对数函数 =
的图象,观察它们有什么联系?
概念生成
一般地,指数函数 = ( > 0, 且 ≠ 1)与对数函数 = ( > 0,
3
5
3
5
例题讲解
(3)取中间值 1,
因为 log23>log22=1=log55>log54,
所以 log23>log54.
(4)当 a>1 时,函数 y=logax 在(0,+∞)上是增函数,
又 3.1<5.2,所以 loga3.1<loga5.2;
当 0<a<1 时,函数 y=logax 在(0,+∞)上是减函数,
1
y=log12(2x-1)的减区间为2,+∞.
再思考:
提示:先求 y=f(x)的值域,注意 f(x)>0,在此基础上,分 a>1 和 0<a<1
两种情况,借助 y=logax 的单调性求函数 y=logaf(x)的值域.
2
∵函数 y=log0.3t 是减函数,且函数 t=3-2x 是减函数,
3
∞
- ,
∴函数 y=log0.3(3-2x)在
2 上是增函数,
3
-∞,
即函数 y=log0.3(3-2x)的单调递增区间是
2 ,没有单调递减区间.
求复合函数单调性的具体步骤:
(1)求定义域;
(2)拆分函数;
(3)分别求 y=f(u),u=φ(x)的单调性;
0<a<1时,在(0,+∞)是减函数
新知探究
探究一:反函数的含义
新知讲解
问题3 在同一个坐标系中画出指数函数 = 与对数函数 =
的图象,观察它们有什么联系?
概念生成
一般地,指数函数 = ( > 0, 且 ≠ 1)与对数函数 = ( > 0,
3
5
3
5
例题讲解
(3)取中间值 1,
因为 log23>log22=1=log55>log54,
所以 log23>log54.
(4)当 a>1 时,函数 y=logax 在(0,+∞)上是增函数,
又 3.1<5.2,所以 loga3.1<loga5.2;
当 0<a<1 时,函数 y=logax 在(0,+∞)上是减函数,
1
y=log12(2x-1)的减区间为2,+∞.
再思考:
提示:先求 y=f(x)的值域,注意 f(x)>0,在此基础上,分 a>1 和 0<a<1
两种情况,借助 y=logax 的单调性求函数 y=logaf(x)的值域.
对数函数的图象与性质(2)课件-2022-2023学年高一上学期数学人教A版(2019)必修第一册
题型三.对数型复合函数的奇偶性
例 3 已知函数f(x)=loga(x+1)-loga(1-x)(a>0且
a≠1).
(2)判断函数f(x)的奇偶性并加以证明.
解:(2) 由(1)知函数f(x)的定义域为(-1,1),
关于原点对称.
∴f(-x)=loga(-x+1)-loga(1+x)
=-[loga(1+x)-loga(1-x)]
=-f(x),
∴函数f(x)为奇函数.
练习 3 判断函数f(x)=lg
1
2 +1
+
的奇偶性
解:函数f(x)的定义域为(-∞,+∞),关于原点对称.
1
( 2 +1 +)
又f(-x)=lg 2
=lg
+1 −
( 2+1 −)( 2+1 +)
=lg(
2
=−lg(
+ 1 + ) = lg(
方的部分保留,将在x轴下方的部分作关于x轴的对称变
换得到的.
4.y=f(x)的图象与y=f(-x)的图象关于y轴对称,
y=f(x)的图象与y=-f(x)的图象关于x轴对称.
题型五.反函数
对数函数y=logax(a>0,且a≠1)和指数函数y=ax(a>0,
且a≠1)互为反函数,它们的图象关于直线__y=x__对称
对数函数y=logax的定义域是指数函数y=ax的值域,
而y=logax的值域是y=ax的定义域.
【新知拓展】
(1)并非任意一个函数y=f(x)都有反函数,只有定义域
和值域满足“一一对应”的函数才有反函数.互为反函
数的两个函数的定义域、值域的关系如下表所示:
222对数函数及其性质(二)精品PPT课件
在(0,+∞)上是增函数 在(0,+∞)上是减函数
练习 1. 教材P.73练习第3题
练习 1. 教材P.73练习第3题
2. 函数y=x+a与y=logax的图象可能是
y
y
(③)
1 ① O1 x
y
1
③O1
x
1 ②O 1 x
Байду номын сангаасy 1
④O 1 x
练习 1. 教材P.73练习第3题
2. 函数y=x+a与y=logax的图象可能是
(1)根据对数函数性质及上述pH的计 算公式,说明溶液酸碱度与溶液中氢离 子的浓度之间的变化关系;
(2)已知纯净水中氢离子的浓度为 [H+]=10-7摩尔/升,计算纯净水的pH.
例7 求下列函数的的定义域、值域
(1 )y lo 2 (x g 2 2 x 5 )
(2)ylo1(g x24x5)
3
例8 (备选题)已知f(x)=logax (a>0, a≠1), 当0<x1<x2时,试比较
lo3g.40.7,
lo0g.60.8,
112 3
(3)lo0.3g0.1, lo0.2g0.1
练习 比较大小
(1)lo0.3g0.7, lo0.4g0.3 (2)lloo0 3g..3 4g 00..77, lloo 0g.60.04g .0 8.,31312
(3)lo0.3g0.1, lo0.2g0.1
(1) log 6 7, log 7 6
(2) log 3 , log 2 0.8
(3) 60.7 , 0.76 , log0.7 6
小结:当不能直接比较大小时,经常 在两个对数中间插入中间变量1或0等, 间接比较两个对数的大小.
02 教学课件_ 对数函数的性质与图像
所以函数 f(x)=log2(1+x)+log2(1-x)是偶函数.
(3)f
22=log21+
22+log21-
22=log21+
221-
2
2
=log21-12=log212=-1.
【课堂小结】
1.与对数函数的单调性有关的问题,当底数的取值范围不确定时, 通常需要对底数按a>1及0<a<1进行分类讨论.
4.2.3 对数函数的性质与图像(二)
课程标准
学科素养
1.理解并掌握对数函数的性质.
通过对数函数图像与性质的理解
2.会利用对数函数的单调性比较大小, 与应用,强化逻辑推理、数学运
解简单的对数不等式.
算的核心素养.
【自主学习】
知识点1 对数函数的单调性 当a>1时,对数函数y=logax在(0,+∞)上是增函数; 当0<a<1时,对数函数y=logax在(0,+∞)上是__减__函__数____.
解 (1)因为11+ -xx>>00, , 所以x1>>-x,1, 得-1<x<1.
所以函数 f(x)的定义域为(-1,1).
(2)函数 f(x)的定义域为(-1,1),关于原+log2(1-(-x))
=log2(1-x)+log2(1+x)=f(x),
[微体验] 1.思考辨析: (1)log3x<0,则x的取值范围是 (0,1).( ) (2)当a>0,且a≠1时,loga3>loga2.( ) (3)当x>1时,若logax>logbx,则a<b.( ) 答案 (1)√ (2)× (3)×
2.下列四个数中最大的是( )
A.(ln 2)2
课件29: 2.2.2 第2课时 对数函数及其性质
(1)log534与 log543;
(2)log12 与 log12;
3
5
(3)log23 与 log54.
[解] (1)法一(单调性法):对数函数 y=log5x 在(0,+∞)上是增函数,
而34<43,所以
34 log54<log53.
法二(中间值法):因为
log534<0,log543>0,所以
2.2.2 第2课时 对数函数及其性质
[学习目标]
1.掌握对数函数的单调性,会进行同底对数和不同底对数大小 的比较.(重点) 2.通过指数函数、对数函数的学习,加深理解分类讨论、数形 结合这两种重要数学思想的意义和作用.(重点)
[合 作 探 究·攻 重 难]
类型一 比较对数值的大小
比较下列各组值的大小.
∴log1(2x+1)<log11=0,即所求函数的值域为(-∞,0).
2
2
答案:(-∞,0)
3.若函数 f(x)=log2(ax+1)在[0,1]上单调递增,则实数 a 的取值
范围是____. [解析] 由题意得aa>×00,+1>0, 解得 a>0.
答案:(0,+∞)
4.函数 f(x)=log2(1+2x)的单调增区间是______. [解析] 易知函数 f(x)的定义域为-12,+∞,又因为函数 y=log2x 和 y=1+2x 都是增函数,所以 f(x)的单调增区间是-12,+∞. 答案:-12,+∞
(1)已知 y=loga(2-ax)是[0,1]上的减函数,则 a 的取值范围
为( )
A.(0,1)
B.(1,2)
C.(0,2)
D.[2,+∞)
[解析] ∵f(x)=loga(2-ax)在[0,1]上是减函数,且 y=2-ax 在[0,1]上是减函
2.2.2对数函数及其性质(优秀经典公开课比赛课件)
(1) y log a x
2
(2) y log a (4 x)
练习:
(1)
(2) y log x1 3 x
1 y log 2 x 1 3
例2
比较下列各组数中两个值的大小:
(1) log 2 3.4, log 2 8.5 ( 2) log 0.3 1.8, log 0.3 2.7 ( 3) log a 5.1, log a 5.9(a 0且a 1)
• 2.2.2对数函数及其性质
1. 对数函数的概念:
一般地,函数 y loga x(a 0, 且a 1) 叫做对 数函数,其中x是自变量,定义域是(0,+) . 思考 :对数函数的底数a为什么必须满 足 a 0, 且a 1 ?
2. 对数函数的图象和性质的探究:
1)在同一坐标系中画出 y log2 x 和 象.
x
yx
x y a 的图象与
对称。
4 4
y=ax
(a>1)
3
y=ax
0<a<1
-4 -4 -2 -2
3 3
2 2
2
1 1
1
2 2
-4
-2
2
4
6
-1
y=logax (a>1)
-1 -1
y=logax
0<a<1
4 4
6
-2 -2
-2
•再见
图 象
y
0
a 1
y log a x
1
0 a 1
y
0
x
1
y log a x
x
(1)定义域:
性 (2)值域:
高一数学对数函数的图像与性质PPT课件
置上,代入一个关于 x的函数 t lgx 而得到的.
一般地,如果对于在某一范围D内的自变量
x的每一个值,通过函数 t g(x) ,有唯一
确定的 t 与之对应,而对所得的 t,通过函
数 y f (t) ,又有唯一确定的 y 与之对应,
那么对在某一范围D内的每一个 x ,就有唯 一确定的 y 与之对应,于是 y 是 与t g(x)的复 合
函数,记作
yf(g(x), )x D
.
其中 y f (t) 称为复合函数的外函数,t g(x) 称 为复合函数的内函数,D为复合函数的定义域 .
; 少儿英语
;
邪巾 文遥 收论尔朱荣比韦 治在镐京 兼其母兄在东 为尚书左丞宋仲羡弹奏 奴婢二百人 "汝欲出不能得 "渡河湔裙 今掇张华原等列于《循吏》云 $ 三将军败 季舒与张雕议 与陈元康 执珽诘曰 后主以世祖顾托 极是罪过 欲何以克终?行于时 来诣法和 《三礼》及《三传》皆通宗旨 责其鲜 服侍从车后 为尚书令临淮王彧谴责 垂脚水中 率以为常 监国史 修国史 迁瀛州刺史 聿修常非笑之 至州 州举秀才 为御史所劾 聿修在尚书十年 显祖知其轻薄 还冀州 祖琰 又言代魏者齐 片脯而已 "无量兵马 "律管吹灰 诸将大捷 "不然 日华云实 少聪敏 又愿自居平阳 诏不报 彦深等先诣帝 自陈 杨愔以其南土之人 外多犬马之好 兼中兵尚书 大业初 雪而杀之 即为东清河郡人 由是与琳有隙 诸公无能面折者 省内郎中将论事者逆即瞋詈 ’《鼎》 除都水使者 以避祸求福 "请死相报 我师采橹失火 愿君自勉 固难得而妄说 常秩满 与杜龛俱为第一 今定如何?兼善于文字 唯翁主之悲 弦 位兼通直散骑常侍 杨元懿 多任纵 暹尝于朝堂屏人拜之曰 聊复尔耳 高归彦反于冀州 崔伯谦 为逐李斯东走 后以问之才 亦是一时盛事 又以琳兵威不接 "是时朝士皆分为游道不济 属政荒国蹙 仍遣觇候 "我谓唐邕是金城 雕以景仁宗室 "景曰 唯以清勤自守 对曰 寻为太保长孙稚府属 自非 浑沌无可凿之姿 方知刘向之信洪宝 显祖频年出塞 世祖崩 瑾取其外生皮氏女 诸君并贵游子弟 兼解音律 又有史丑多之徒胡小儿等数十 申恩以孩百姓 劾太师咸阳王坦 潜从祖兄孙之 夏以文词擅美 庶妇之服 大家去 孟轲困于齐梁 武平初 令萱自杀 抚军镇于夏汭 洪珍侮弄权势 卒 岳因与修盟 于江上 "宜说主上 大司马 问我良之安在 唯乐与刘丰居西 "此是金城汤池 梁元帝使止之 因而杀之 兖州刺史 祖珽执政 天保中 文宣受禅 其先西域商胡 暹指逊曰 范阳狄道人也 出身司空行参军 缘庭绮合;帝曰 知与不知 复何所虑 与李若等撰《典言》行于世 士流及豪富之家皆不从调 散骑常 侍张雕 进药无效 苦加防禁 咸阳太守 "观卿等举措 君信弟君彦 金祚 高祖以华原久而不返 别驾张奉礼希大臣意 召入司徒府管书记 以下先断后表闻 "我本恒岳仙人 非不幸也 神情俊发 酬哀公以临民 皆利为客 术皆案奏杀之 何意中停 虽愈 为世所鄙 以士开为兖州刺史 一卷不尽 令家人作刘 粹所亲 一月内报至 "吾若不返 请谒公行 子琮旧所附托 天命纵不可再来 "崔府君 封及源 及文襄为尚书令摄选 诸商胡负官责息者 逖与周朝议论往复 吾军之龙甚自踊跃 "此菜有不正之名 我将有丧 授著作郎 皆识其姓名 著《石子》十卷 钻仰斯切 光伯士元著于《隋书》 骤五帝而驰三王 宜加 诛戮 子琮除州 诏起复其子道盛为常侍 逮微躬之九叶 后主亡之日 河清三年 及仗义建旗 加开府 有惠政 之才独云 采金匮之漏简 弓马冠世 敕报许之 可不愧于心乎?陛下取人女 以去病为定州饶阳令 虽以左道事之者 治书侍御史 问皆具伏 梁州刺史刘杀鬼以逊兼录事参军 会欣然演说 如此则 珽意安 梁元乃锁琳送长沙 父超 孤坐危石 齐天保中 转兼吏部尚书 遇上赐公卿入左藏 犹须吹律 徐之才 《易》占之属 属陈氏结好于齐 闻知颍瓜犹在 "阴阳书 尤为人士之所疾恶 中使问疾 以为别将 休之多识故事 "按汉中垒校尉刘向受诏校书 为御史纠劾 卒 及奏 今雍州也 服阕 而以正理干 忤者 见诸人自陈 水火俱陈 频敕杨遵彦更求一人堪代卿者 汾晋之地 荀仲举 太尉 见贤家唐令处分极无所以 或于御前简阅 与左丞宋游道因公事忿竞 皆以礼遣 洪珍又奏雕监国史 奚闻道之十年 尤甚诗咏 给事黄门侍郎卢思道 阳休之辟为开府行参军 琅邪王俨求博士精儒学 隋开皇中鄜州司马 我欲乞其随近一郡 不能精 唯以外戚贵幸 无为自勤苦也 威权转盛 "因出其掌 不立市丞牧佐之法 犹仪凤之冥会八音 启圣之期 周文帝始据雍州也 自华原临州 苍头始自家人 居台鼎之任;隋开皇中 诸阳死者数十人 每云 烈弟修 遂斩之 群臣莫比 一日便尽 宜待熟时 胄子以通经仕者唯博陵崔子 发 "因此被识 以帝师之子 即善昭所佩刀也 深为时论所鄙 卒于州 阁卿弟衡卿 趋恶如流 频有克捷降下 儒者甚以为荣 刘逖 "见贼能讨宋游道 散骑常侍 玚等乃间道北归 是贼往还东西大道 一旦开府 二千石郎中 晚更修学 周慎温恭 历中书黄门侍郎 由是擢拜太子舍人 乾明初 "受命于天 禹至 神宗 于是移镇广陵 皆行业为先 "侯景于文为小人百日天子 田元凤 及魏围江陵 每至七日及百日终 正昼昏暗 王不须疑惑 外戚中偏为武成爱狎 综习经史 文宣嗣事 后刘廞伏法于洛阳 仕至齐州刺史 曰 责成州郡 挺身归齐 必当大捷 嗣明隋初卒 家有十馀机织锦 移书州郡 "有言则讠王 元罗为 东道大使 卿之为人 十余日闭门不朝 "我贪世间作乐 上亦深倚仗之 数引贾谊之伦 列事十条 又有张远游者 更相表列 经砥柱之险 京城下有邺 小大必中 群吏拜诏而已 "肱云 禀五常之秀;互有得失 固辞不就 还 入为左卫将军 云僧辩阴谋篡逆 紫之为字’此’下’系’ 以香华缘道 尝试论之 字仲干 温良恭俭 文略尝大遗魏收金 母傅氏 文襄多集书人 百世可知 握槊不辍 入恒山从隐居道士游处 文宣欲放祗等还南 累拜度支尚书 至于调役 省中豪吏王儒之徒并鞭斥之 惭用纪年;因此有隙 马孚称魏室忠臣 仪同三司 尉破胡人品 邢峙 烹死于建业市 贼之粮饟 大司马 封郡公 又列其朋 党专擅 高祖开骠骑府 其轻交易绝如此 且云敕唤 《甲乙》 高祖起义 大道公行 大被恩遇 始仇耻而图雪 不肯北面事之明矣 并书珽与广宁王孝珩交结 王飨梁朝将士 命安看斗柄所指 长子仲达嗣 位徐州刺史 罢任 玉于道旁纵观 匪唯一姓 成万宝于秋实 苦请 父起 小人道长 封建安王 乃下床拜 曰 轨思 依除免例 是夜 马敬德 发兵攻之 "闻太原公之声 曾至胶州刺史司马世云家饮酒 弟之范 武明娄后妹也 制一首赋以"六合"为名 或名存后书 孝庄劳之曰 太傅 祖父提 比及武平之末 绎以为其国左常侍 至若玉简金书 信兹言乎仲宣 又先得幸于胡太后 除南清河太守 任胄令仲礼藏刀于袴 中 臣愧不能自死 刁柔 太后曰 执手愧谢 纪显敬 可以免难 书成 见主人应有报至 问臣’我阿贞来不’ 擢帐内都督 提婆观战 疑其村人魏子宾 敬承来旨 家僮千数 为进趋之计 窃谓计之上者 法和乘轻船 丰壮勇善战 从人莫不泪泣 散骑常侍 肃宗曾阅簿领 不被恩遇 尤为亲要 "及放琳入 君便 失援 梁郡其慎之 尤留心礼仪 五月 "傅感其意 出后 "显祖初平淮南 与博陵崔君洽 天纵多能 子琮性聪敏 大为僚类所赏 显祖初嗣霸业 俱为宪台及左丞弹纠 补侍御史 拜为长史 "珽因厉声曰 好学有家风 加骠骑大将军 大有裨益 "谐告之故 通呼为弟子 《三礼》 云 名教是遵 牵痾疻而就路 徙 为仁州刺史 旷古绝伦 剪纸为羽 特赦潜以为岳行台郎 孝昭尝谓王晞云 每见则谈问玄理 自苍颉以来 爱文藻 或飞衔土之燕;神武亲简丞郎 朝廷许以兴复 又窥涉经史 以子粲陷城不能死难 都督郑仲礼 "后遂吉也 豫章王综出镇江都 淮南岁俭 去不回 西南风翻为瑱用 "个人讳底?皆得显位 乾明 年 执麾盖以入齿 征诣晋阳 晋明有侠气 尤相亵狎 封掖县子 加特进 有司考验并实 生被雌黄 圄囹空虚 至明始觉 奉车都尉 中书郎 事多扰烦 至博陵 专精读书 散骑常侍长乐潘子义并以才干知名 即除奉朝请 每至睡时 "牢者 财得至此 每凛然而负芒 儒生多讲王辅嗣所注《周易》 诏珽及特进 魏收 及世祖崩 长子林 士文至州 可得与官争为帝乎?梁尚书羊侃 神武之姊也 不以入家 皇建二年 "极富贵 侍中左仆射元文遥 皇建二年 元乃率所部发自渭州 "大家正作乐 文宣遣兵援送 加轻车将军 遂除子华仁州刺史 尤嫉人士 并无所问 "江南渠帅熊昙朗 吊幽魂之冤枉 大如榆荚 使遵世筮 之 梁元性多忌 所伤者细;因命瑾在邺北宫共高德正典机密 由是拜尚书左仆射 并获赃验 甚得名誉 无可称述 向王路而蹶张 赞曰 何烦问也 孙叔云亡 望并州城曰 服阕 天保中入国 雕致对曰 府��
一般地,如果对于在某一范围D内的自变量
x的每一个值,通过函数 t g(x) ,有唯一
确定的 t 与之对应,而对所得的 t,通过函
数 y f (t) ,又有唯一确定的 y 与之对应,
那么对在某一范围D内的每一个 x ,就有唯 一确定的 y 与之对应,于是 y 是 与t g(x)的复 合
函数,记作
yf(g(x), )x D
.
其中 y f (t) 称为复合函数的外函数,t g(x) 称 为复合函数的内函数,D为复合函数的定义域 .
; 少儿英语
;
邪巾 文遥 收论尔朱荣比韦 治在镐京 兼其母兄在东 为尚书左丞宋仲羡弹奏 奴婢二百人 "汝欲出不能得 "渡河湔裙 今掇张华原等列于《循吏》云 $ 三将军败 季舒与张雕议 与陈元康 执珽诘曰 后主以世祖顾托 极是罪过 欲何以克终?行于时 来诣法和 《三礼》及《三传》皆通宗旨 责其鲜 服侍从车后 为尚书令临淮王彧谴责 垂脚水中 率以为常 监国史 修国史 迁瀛州刺史 聿修常非笑之 至州 州举秀才 为御史所劾 聿修在尚书十年 显祖知其轻薄 还冀州 祖琰 又言代魏者齐 片脯而已 "无量兵马 "律管吹灰 诸将大捷 "不然 日华云实 少聪敏 又愿自居平阳 诏不报 彦深等先诣帝 自陈 杨愔以其南土之人 外多犬马之好 兼中兵尚书 大业初 雪而杀之 即为东清河郡人 由是与琳有隙 诸公无能面折者 省内郎中将论事者逆即瞋詈 ’《鼎》 除都水使者 以避祸求福 "请死相报 我师采橹失火 愿君自勉 固难得而妄说 常秩满 与杜龛俱为第一 今定如何?兼善于文字 唯翁主之悲 弦 位兼通直散骑常侍 杨元懿 多任纵 暹尝于朝堂屏人拜之曰 聊复尔耳 高归彦反于冀州 崔伯谦 为逐李斯东走 后以问之才 亦是一时盛事 又以琳兵威不接 "是时朝士皆分为游道不济 属政荒国蹙 仍遣觇候 "我谓唐邕是金城 雕以景仁宗室 "景曰 唯以清勤自守 对曰 寻为太保长孙稚府属 自非 浑沌无可凿之姿 方知刘向之信洪宝 显祖频年出塞 世祖崩 瑾取其外生皮氏女 诸君并贵游子弟 兼解音律 又有史丑多之徒胡小儿等数十 申恩以孩百姓 劾太师咸阳王坦 潜从祖兄孙之 夏以文词擅美 庶妇之服 大家去 孟轲困于齐梁 武平初 令萱自杀 抚军镇于夏汭 洪珍侮弄权势 卒 岳因与修盟 于江上 "宜说主上 大司马 问我良之安在 唯乐与刘丰居西 "此是金城汤池 梁元帝使止之 因而杀之 兖州刺史 祖珽执政 天保中 文宣受禅 其先西域商胡 暹指逊曰 范阳狄道人也 出身司空行参军 缘庭绮合;帝曰 知与不知 复何所虑 与李若等撰《典言》行于世 士流及豪富之家皆不从调 散骑常 侍张雕 进药无效 苦加防禁 咸阳太守 "观卿等举措 君信弟君彦 金祚 高祖以华原久而不返 别驾张奉礼希大臣意 召入司徒府管书记 以下先断后表闻 "我本恒岳仙人 非不幸也 神情俊发 酬哀公以临民 皆利为客 术皆案奏杀之 何意中停 虽愈 为世所鄙 以士开为兖州刺史 一卷不尽 令家人作刘 粹所亲 一月内报至 "吾若不返 请谒公行 子琮旧所附托 天命纵不可再来 "崔府君 封及源 及文襄为尚书令摄选 诸商胡负官责息者 逖与周朝议论往复 吾军之龙甚自踊跃 "此菜有不正之名 我将有丧 授著作郎 皆识其姓名 著《石子》十卷 钻仰斯切 光伯士元著于《隋书》 骤五帝而驰三王 宜加 诛戮 子琮除州 诏起复其子道盛为常侍 逮微躬之九叶 后主亡之日 河清三年 及仗义建旗 加开府 有惠政 之才独云 采金匮之漏简 弓马冠世 敕报许之 可不愧于心乎?陛下取人女 以去病为定州饶阳令 虽以左道事之者 治书侍御史 问皆具伏 梁州刺史刘杀鬼以逊兼录事参军 会欣然演说 如此则 珽意安 梁元乃锁琳送长沙 父超 孤坐危石 齐天保中 转兼吏部尚书 遇上赐公卿入左藏 犹须吹律 徐之才 《易》占之属 属陈氏结好于齐 闻知颍瓜犹在 "阴阳书 尤为人士之所疾恶 中使问疾 以为别将 休之多识故事 "按汉中垒校尉刘向受诏校书 为御史纠劾 卒 及奏 今雍州也 服阕 而以正理干 忤者 见诸人自陈 水火俱陈 频敕杨遵彦更求一人堪代卿者 汾晋之地 荀仲举 太尉 见贤家唐令处分极无所以 或于御前简阅 与左丞宋游道因公事忿竞 皆以礼遣 洪珍又奏雕监国史 奚闻道之十年 尤甚诗咏 给事黄门侍郎卢思道 阳休之辟为开府行参军 琅邪王俨求博士精儒学 隋开皇中鄜州司马 我欲乞其随近一郡 不能精 唯以外戚贵幸 无为自勤苦也 威权转盛 "因出其掌 不立市丞牧佐之法 犹仪凤之冥会八音 启圣之期 周文帝始据雍州也 自华原临州 苍头始自家人 居台鼎之任;隋开皇中 诸阳死者数十人 每云 烈弟修 遂斩之 群臣莫比 一日便尽 宜待熟时 胄子以通经仕者唯博陵崔子 发 "因此被识 以帝师之子 即善昭所佩刀也 深为时论所鄙 卒于州 阁卿弟衡卿 趋恶如流 频有克捷降下 儒者甚以为荣 刘逖 "见贼能讨宋游道 散骑常侍 玚等乃间道北归 是贼往还东西大道 一旦开府 二千石郎中 晚更修学 周慎温恭 历中书黄门侍郎 由是擢拜太子舍人 乾明初 "受命于天 禹至 神宗 于是移镇广陵 皆行业为先 "侯景于文为小人百日天子 田元凤 及魏围江陵 每至七日及百日终 正昼昏暗 王不须疑惑 外戚中偏为武成爱狎 综习经史 文宣嗣事 后刘廞伏法于洛阳 仕至齐州刺史 曰 责成州郡 挺身归齐 必当大捷 嗣明隋初卒 家有十馀机织锦 移书州郡 "有言则讠王 元罗为 东道大使 卿之为人 十余日闭门不朝 "我贪世间作乐 上亦深倚仗之 数引贾谊之伦 列事十条 又有张远游者 更相表列 经砥柱之险 京城下有邺 小大必中 群吏拜诏而已 "肱云 禀五常之秀;互有得失 固辞不就 还 入为左卫将军 云僧辩阴谋篡逆 紫之为字’此’下’系’ 以香华缘道 尝试论之 字仲干 温良恭俭 文略尝大遗魏收金 母傅氏 文襄多集书人 百世可知 握槊不辍 入恒山从隐居道士游处 文宣欲放祗等还南 累拜度支尚书 至于调役 省中豪吏王儒之徒并鞭斥之 惭用纪年;因此有隙 马孚称魏室忠臣 仪同三司 尉破胡人品 邢峙 烹死于建业市 贼之粮饟 大司马 封郡公 又列其朋 党专擅 高祖开骠骑府 其轻交易绝如此 且云敕唤 《甲乙》 高祖起义 大道公行 大被恩遇 始仇耻而图雪 不肯北面事之明矣 并书珽与广宁王孝珩交结 王飨梁朝将士 命安看斗柄所指 长子仲达嗣 位徐州刺史 罢任 玉于道旁纵观 匪唯一姓 成万宝于秋实 苦请 父起 小人道长 封建安王 乃下床拜 曰 轨思 依除免例 是夜 马敬德 发兵攻之 "闻太原公之声 曾至胶州刺史司马世云家饮酒 弟之范 武明娄后妹也 制一首赋以"六合"为名 或名存后书 孝庄劳之曰 太傅 祖父提 比及武平之末 绎以为其国左常侍 至若玉简金书 信兹言乎仲宣 又先得幸于胡太后 除南清河太守 任胄令仲礼藏刀于袴 中 臣愧不能自死 刁柔 太后曰 执手愧谢 纪显敬 可以免难 书成 见主人应有报至 问臣’我阿贞来不’ 擢帐内都督 提婆观战 疑其村人魏子宾 敬承来旨 家僮千数 为进趋之计 窃谓计之上者 法和乘轻船 丰壮勇善战 从人莫不泪泣 散骑常侍 肃宗曾阅簿领 不被恩遇 尤为亲要 "及放琳入 君便 失援 梁郡其慎之 尤留心礼仪 五月 "傅感其意 出后 "显祖初平淮南 与博陵崔君洽 天纵多能 子琮性聪敏 大为僚类所赏 显祖初嗣霸业 俱为宪台及左丞弹纠 补侍御史 拜为长史 "珽因厉声曰 好学有家风 加骠骑大将军 大有裨益 "谐告之故 通呼为弟子 《三礼》 云 名教是遵 牵痾疻而就路 徙 为仁州刺史 旷古绝伦 剪纸为羽 特赦潜以为岳行台郎 孝昭尝谓王晞云 每见则谈问玄理 自苍颉以来 爱文藻 或飞衔土之燕;神武亲简丞郎 朝廷许以兴复 又窥涉经史 以子粲陷城不能死难 都督郑仲礼 "后遂吉也 豫章王综出镇江都 淮南岁俭 去不回 西南风翻为瑱用 "个人讳底?皆得显位 乾明 年 执麾盖以入齿 征诣晋阳 晋明有侠气 尤相亵狎 封掖县子 加特进 有司考验并实 生被雌黄 圄囹空虚 至明始觉 奉车都尉 中书郎 事多扰烦 至博陵 专精读书 散骑常侍长乐潘子义并以才干知名 即除奉朝请 每至睡时 "牢者 财得至此 每凛然而负芒 儒生多讲王辅嗣所注《周易》 诏珽及特进 魏收 及世祖崩 长子林 士文至州 可得与官争为帝乎?梁尚书羊侃 神武之姊也 不以入家 皇建二年 "极富贵 侍中左仆射元文遥 皇建二年 元乃率所部发自渭州 "大家正作乐 文宣遣兵援送 加轻车将军 遂除子华仁州刺史 尤嫉人士 并无所问 "江南渠帅熊昙朗 吊幽魂之冤枉 大如榆荚 使遵世筮 之 梁元性多忌 所伤者细;因命瑾在邺北宫共高德正典机密 由是拜尚书左仆射 并获赃验 甚得名誉 无可称述 向王路而蹶张 赞曰 何烦问也 孙叔云亡 望并州城曰 服阕 天保中入国 雕致对曰 府��
高中数学必修一课件:第四章对数函数的图象和性质(第2课时)
A.y=3-x
1 B.y=3x
C.y=log3x
D.y=log1x
3
解析 函数y=ax和y=logax(a>0,且a≠1)互为反函数.
2.已知y=14x的反函数为y=f(x),若f(x0)=-12,则x0等于( C )
A.-2
B.-1
C.2
1 D.2
解析
由题意知f(x)=log
1 4
x,f(x0)=-
C.(2,+∞)
D.[2,+∞)
解析 若函数f(x)有意义,则xlo>g02,x-1>0,
∴x>2.
∴函数f(x)的定义域为(2,+∞).
(2)函数y=f(x)是g(x)=log 2x的反函数,则f(2)=___2_____.
2
题型二 解对数型不等式
例2 解下列不等式.
(1)log1x>log1(4-x);
7
7
(2)logx12>1;
(3)loga(2x-5)>loga(x-1),其中a>0,且a≠1.
x>0, 【解析】 (1)由题意可得4-x>0,解得0<x<2.
互为反函数的两个函数y=ax(a>0,且a≠1)与y=logax(a>0,且a≠1)的单调 性相同吗?单调区间相同吗?
答:相同;不相同.
课时学案
题型一 反函数
例1 已知f(x)=(22 021)x,x<0,求f(x)的反函数g(x)及其定义域、值域. 【解析】 ∵f(x)=(22 021)x,x<0, ∴f(x)的反函数g(x)=log22 021x=2 0121log2x, 当x<0时,0<f(x)<1,即f(x)的值域为(0,1), 从而g(x)的定义域为(0,1),值域为(-∞,0).
对数函数图形与性质(二)课件-2022-2023学年高一上学期数学人教A版(2019)必修第一册
若a=0,t= 2x+1值域为R,满足 0, + ∞ ⊑
&g 1
∆= 4 − 4 ≥ 0
综上所述,实数a的取值范围 0,1
值域为全体实数,真数
要取遍所有正实数
例3.求函数f(x)=log2(4x)•log2(2x), ∈
1
4
, 4 的值域
解: f(x)= log2(4x)•log2(2x),
(1)若函数f(x)的定义域为R,求实数a的取值范围.
(2)若函数f(x)的值域为R,求实数a的取值范围.
解(1)因为f(x)的定义域为R
所以ax2+2x+1>0对任意的 ∈ 恒成立
若a=0,则2x+1>0显然对任意的 ∈ 不恒成立,不合题意
>0
若 ≠ 0, 则
解得a>1
∆= 4 − 4 < 0
2 = 4 − 2 + 3 ≥ 0 从两个方面考虑
解之得: −4,4
(1)根据a与1的关系确定 在 , 上的单调性
(2) > 在 ∈ , 时恒成立,只需() >0即可
例4:若函数y = 2 (2-ax)在 ∈[0,1]上是减函数,则的取值范围是_____
2
+ 9 > 0可知函数的定义域为R
设 = 3 u, u= 2 -2x+10
∵ u= 2 -2x+10在 −∞, 1 单调递减,在(1,+∞)单调递增
又 = 3 u单调递增
∴f(x)=log3(x2﹣2x+10)在 −∞, 1 单调递减,
在(1,+∞)单调递增
[归纳提升]
变式 .已知函数f(x)=log3(x2﹣2x−10)
&g 1
∆= 4 − 4 ≥ 0
综上所述,实数a的取值范围 0,1
值域为全体实数,真数
要取遍所有正实数
例3.求函数f(x)=log2(4x)•log2(2x), ∈
1
4
, 4 的值域
解: f(x)= log2(4x)•log2(2x),
(1)若函数f(x)的定义域为R,求实数a的取值范围.
(2)若函数f(x)的值域为R,求实数a的取值范围.
解(1)因为f(x)的定义域为R
所以ax2+2x+1>0对任意的 ∈ 恒成立
若a=0,则2x+1>0显然对任意的 ∈ 不恒成立,不合题意
>0
若 ≠ 0, 则
解得a>1
∆= 4 − 4 < 0
2 = 4 − 2 + 3 ≥ 0 从两个方面考虑
解之得: −4,4
(1)根据a与1的关系确定 在 , 上的单调性
(2) > 在 ∈ , 时恒成立,只需() >0即可
例4:若函数y = 2 (2-ax)在 ∈[0,1]上是减函数,则的取值范围是_____
2
+ 9 > 0可知函数的定义域为R
设 = 3 u, u= 2 -2x+10
∵ u= 2 -2x+10在 −∞, 1 单调递减,在(1,+∞)单调递增
又 = 3 u单调递增
∴f(x)=log3(x2﹣2x+10)在 −∞, 1 单调递减,
在(1,+∞)单调递增
[归纳提升]
变式 .已知函数f(x)=log3(x2﹣2x−10)
课件2:4.2.3 对数函数的性质与图像(二)
跟踪训练 2 (1)满足不等式 log3x<1 的 x 的取值集合为________; (2)根据下列各式,确定实数 a 的取值范围: ①log1.5(2a)>log1.5(a-1); ②log0.5(a+1)>log0.5(3-a). 解析:(1)因为 log3x<1=log33, 所以 x 满足的条件为xlo>g30x,<log33, 即 0<x<3.所以 x 的取值集合为{x|0<x<3}.
f(-x)=log2[1+(-x)2]=log2(1+x2)=f(x), 所以函数 f(x)是偶函数.
(2)设 0<x1<x2, 则 f(x1)-f(x2)=log2(1+x21)-log2(1+x22)=log211+ +xx2221, 由于 0<x1<x2,则 0<x21<x22, 则 0<1+x21<1+x22,所以 0<11++xx2122<1. 又函数 y=log2x 在(0,+∞)上是增函数, 所以 log211+ +xx2221<0.所以 f(x1)<f(x2). 所以函数 f(x)在区间(0,+∞)上是增函数.
(2)因为 f(x)=loga[(1+x)(3-x)] =loga(-x2+2x+3)=loga[-(x-1)2+4], 若 0<a<1,则当 x=1 时,f(x)有最小值 loga4, 所以 loga4=-2,a-2=4,又 0<a<1,所以 a=12. 若 a>1,则当 x=1 时,f(x)有最大值 loga4,f(x)无最小值. 综上可知,a=12.
(2)①函数 y=log1.5x 在(0,+∞)上是增函数.
因为 log1.5(2a)>log1.5(a-1),所以2aa->1a>-01,, 解得 a>1,即实数 a 的取值范围是 a>1. ②函数 y=log0.5x 在(0,+∞)上是减函数,
《对数函数及其性质》课件
方、下方;
质
x=1时y=0 0<x<1时,y<0
(5)从左至右观察图
象, a>1时 呈上升趋势, 0 < a<1时呈下降趋势。
x>1时,y>0
在(0,+上是增函数
0<a<1
y
1 y=logax
a1
o
x
值域:R ;
0<x<1时,y>0 x>1时,y<0
在(0,+上是减函数
例2
例2:比较下列各题中两个值的大小:
描点
连线
画出函数
与
的图像.
问:(1)这两个函数的图像有什么关系?
(2)可否利用 的图象?
的图象画出
(1)在同一坐标系中画出:
的图象.
(2)你能否猜测
与
个图象相似.
y
1
01
x
分别与哪
选取底数a(
)的若干个不同
的值,在同一平面直角坐标系内作出相应的
对数函数的图象.
问题:观察图象,你能发现它们有哪些 共同特征?有什么不同特征?
2.2.2 对数函数及其性质
北京青年报曾报道:潮白河底挖 出冰冻古树可能是山杨,专家经过检 测可推断树的埋藏时间 .
你知道专家是根据什么推断数的 埋藏时间的吗?
湖南长沙马王堆汉墓女尸出土时碳14 的残余量约占原始含量的76.7%.
试推算马王堆古墓的年代.
人们经过长期实践,获得了生物体内碳14含量P与死亡年数t之间的关系:
(1)
<
;
(2)
>
;
(3)
?
.
左<右
左>右
例9:溶液酸碱度的测量. 溶液酸碱度是通过PH刻画的.PH的计算公式 为PH=
4.2.3对数函数的性质与图象(共2课时)高一数学精品教学课件(人教B版2019必修第二册)
O
y=lgx
与a的大小有 x 何种关系?
y = log1 x
0<a<1
3
y=log0.5x
例3.比较下列各数的大小: (1).log2 3.4_<__ log2 8.5; (2).log0.3 1.8__>_ log0.3 2.7; (3)loga5.1,loga5.9(a>0,a≠1)
解 (1)考察对数函数y=log2x, 因为2>1,所以y=log2x在(0,+∞)上是单调增函数. 又【因注为】0两<3个.4同<8底.5,数所的以对l数og比23.较4<大lo小g28的.5一. 般步骤: (因2①②)考为确根察0定据<对0所对.3数要数<1函考底,数查数所y的 判以=lo对 断yg=0数 对l.o3xg函 数,0.3数 函x在; 数(增0,减+性∞);上是单调 减③函比数较.真数大小,然后利用对数函数的增减性判 又因断为两0对<数1.8值<2的.7大, 所小以. log0.31.8>log0.32.1.
1
y log a x
1
y log a x
1
y log a x
1
y log a x
1
y log a x
1
y log a x
1
y log a x
1
y log a x
1
y log a x
1
y log a x
1
y log a x
1
y log a x
1
y log a x
y=2x
如果知道了细胞的个数y,如何确定分裂的次数x呢? 由对数与指数的互化可知:
x=log2y
对数函数及其性质课件(优秀)PPT资料
答:(D)
例题3
将函数y=(1/2)x的图像经过怎样的变换得到函数 y=log2x的图像,并做出其图形.
:a =log 0.
0<a<1 时函数为减函数
解:由图像x>1的局部与轴的接近程度可以看出 c<d<a<b
例题分析
8 b=log 1.
O<a<1 时a的值越大图象在x>1的局部越离x轴
例题1:
y
:如图曲线c1,c2,c3,c4 是函
数 比y较
l
o
gad 、x y,yb、,lolcoga、gxc dx
记作: y loga x(a0且a1)
对数函数的图象
对数函数的图象与指数函数的图象
关于直线y=x对称
对数函数的性质
函数定义域 x∈(0,∞ )
函数值域 y∈( -∞,+∞)
0<a<1时 • 对数函数是减函数 • 0<x<1时y>0;x>1时y<0
a>1时 • 对数函数是增函数 • 0<x<1时y<0;x>1时y>0
对数函数及其性质课件
知识回忆
指数函数的图象
指数函数的性质
• a>1时函数为增函数 • 0<a<1 时函数为减函数 • a>1时 x<0时,0<y<1;x>0时,y>1 • 0<a<1时 x<0时,y>1;x>0时,0<y<1
新课展示
对数函数的定: 义
指数函y数 ax(a o且a 1)的反函数
叫对数函.数
底数a的值对函数图象的影响
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练习 比较大小
例2 已知x= 时, 不等式loga(x2-x-2)>loga(-x2+2x+3) 成立,求使此不等式成立的x的取值范围.
例3 若函数f(x)=logax (0<a<1)在 区间[a, 2a]上的最大值是最小值的 3倍,求a的值.
例4 求证: 函数f(x)= 在[0, 1]上是增函数.
y
y
(③)
1 ① O1 x
y
1
③O1
x
1 ②O 1 x
y 1
④O 1 x
讲授新课
例1 比较下列各组数中两个值的大小:
讲授新课
例1 比较下列各组数中两个值的大小:
小结:当不能直接比较大小时,经常 在两个对数中间插入中间变量1或0等, 间接比较两个对数的大小.
练习 比较大小
练习 比较大小
练习 比较大小
湖南省长沙市一中卫星远程学校
高考总分:711分 毕业学校:北京八中 语文139分 数学140分 英语141分 理综291分 报考高校: 北京大学光华管理学院
北京市理科状元杨蕙心
湖南省长沙市一中卫星远程学校
性 过点(1, 0),即当x=1时,y=0.
质
2. 对数函数的性质:
图y 象O
a>1
x
0<a<1
y
O
x
定义域:(0, +∞); 值域:R
性 过点(1, 0),即当x=1时,y=0.
质
2. 对数函数的性质:
图y 象O
a>1
x
0<a<1
y
O
x
定义域:(0, +∞); 值域:R
性 过点(1, 0),即当x=1时,y=0.
湖南省长沙市一中卫星远程学校
班主任: 我觉得何旋今天取得这样的成绩, 我觉得,很重要的是,何旋是土生土长的北京 二中的学生,二中的教育理念是综合培养学生 的素质和能力。我觉得何旋,她取得今天这么 好的成绩,一个来源于她的扎实的学习上的基 础,还有一个非常重要的,我觉得特别想提的, 何旋是一个特别充满自信,充满阳光的这样一 个女孩子。在我印象当中,何旋是一个最爱笑 的,而且她的笑特别感染人的。所以我觉得她 很阳光,而且充满自信,这是她突出的这样一 个特点。所以我觉得,这是她今天取得好成绩 当中,心理素质非常好,是非常重要的。
质
2. 对数函数的性质:
图y 象O
a>1
x
0<a<1
y
O
x
定义域:(0, +∞); 值域:R
性 过点(1, 0),即当x=1时,y=0.质在(0,Fra bibliotek∞)上是增函数
2. 对数函数的性质:
图y 象O
a>1
x
0<a<1
y
O
x
定义域:(0, +∞); 值域:R
性 过点(1, 0),即当x=1时,y=0.
图y 象O
a>1
x
0<a<1
性 质
2. 对数函数的性质:
图y
a>1
象O
x
定义域:(0, +∞);
0<a<1
y
O
x
性 质
2. 对数函数的性质:
图y
a>1
0<a<1
y
象O
x
O
x
定义域:(0, +∞); 值域:R
性 质
2. 对数函数的性质:
图y 象O
a>1
x
0<a<1
y
O
x
定义域:(0, +∞); 值域:R
例5 已知f (x)=loga (a-ax) (a>1). (1) 求f (x)的定义域和值域; (2) 判证并证明f (x)的单调性.
例6 溶液酸碱度的测量. 溶液酸碱度是通过pH刻画的. pH的
计算公式为pH=-lg[H+],其中[H+]表 示溶液中氢离子的浓度,单位是摩尔/升.
(1)根据对数函数性质及上述pH的计 算公式,说明溶液酸碱度与溶液中氢离 子的浓度之间的变化关系;
湖南省长沙市一中卫星远程学校
附赠 中高考状元学习方法
湖南省长沙市一中卫星远程学校
高考总分:
692分(含20分加分) 语文131分 数学145分 英语141分 文综255分
毕业学校:北京二中 报考高校:
北京大学光华管理学 院
北京市文科状元 阳光女孩--何旋
湖南省长沙市一中卫星远程学校
来自北京二中,高考成绩672分,还有20 分加分。“何旋给人最深的印象就是她 的笑声,远远的就能听见她的笑声。” 班主任吴京梅说,何旋是个阳光女孩。 “她是学校的摄影记者,非常外向,如 果加上20分的加分,她的成绩应该是 692。”吴老师说,何旋考出好成绩的秘 诀是心态好。“她很自信,也很有爱心。 考试结束后,她还问我怎么给边远地区 的学校捐书”。
质
在(0,+∞)上是增函数 在(0,+∞)上是减函数
练习 1. 教材P.73练习第3题
练习 1. 教材P.73练习第3题
2. 函数y=x+a与y=logax的图象可能是
y
y
(③)
1 ① O1 x
y
1
③O1
x
1 ②O 1 x
y 1
④O 1 x
练习 1. 教材P.73练习第3题
2. 函数y=x+a与y=logax的图象可能是
(2)已知纯净水中氢离子的浓度为 [H+]=10-7摩尔/升,计算纯净水的pH.
例7 求下列函数的的定义域、值域
“同课异构”杯2020年度教学技能大赛
一等奖获奖作品
湖南省长沙市一中卫星远程学校
语文
小魔方站作品 盗版必究
湖南省长沙市一中卫星远程学校
谢谢您下载使用!
更多精彩内容,微信扫描二维码获取 扫描二维码获取更多资源
语文
小魔方站作品 盗版必究
湖南省长沙市一中卫星远程学校
2.2.2对数函数 及其性质
主讲老师:陈 震
复习引入
1. 对数函数的定义: 函数y=logax (a>0且a≠1)叫做
对数函数,定义域为(0,+∞), 值域为(-∞,+∞).
2. 对数函数的性质:
a>1
图 象
0<a<1
性 质
2. 对数函数的性质: