高考数学 数列单元测试卷及答案

合集下载

高三数学数列试题答案及解析

高三数学数列试题答案及解析

高三数学数列试题答案及解析1.对于正项数列,定义为的“光阴”值,现知某数列的“光阴”值为,则数列的通项公式为________【答案】【解析】由题意,,,所以,则时,,两式相减得,,也适合此式,故.【考点】新定义与数列的通项公式.2.已知数列的通项公式an= (n∈N*),求数列前30项中的最大项和最小项.【答案】最大项为a10,最小项为a9【解析】∵an =1+,∴当n≤9时,an随着n的增大越来越小且小于1,当10≤n≤30时,a n 随着n的增大越来越小且大于1,∴前30项中最大项为a10,最小项为a9.3.(本小题满分12分)已知数列的前项和是,且.(Ⅰ)求数列的通项公式;(Ⅱ)设,求适合方程的的值.(Ⅲ)记,是否存在实数M,使得对一切恒成立,若存在,请求出M 的最小值;若不存在,请说明理由。

【答案】,2/9【解析】19. 解:(Ⅰ)当时,,由,得.当时,,,∴,即.∴.∴是以为首项,为公比的等比数列.故.………………6分(Ⅱ),,………………8分………10分解方程,得………………12分(2)解法一:,由错误!不能通过编辑域代码创建对象。

,当,又故存在实数M,使得对一切M的最小值为2/9。

4.把数列的所有项按照从大到小的原则写成如题15图所示的数表,其中的第行有个数,第行的第个数(从左数起)记为则_____________.【答案】【解析】略5.设等差数列的前项和为,若,,则()A.63B.45C.36D.27【答案】B【解析】在等差数列中,成等差数列。

因为,,所以。

故选B。

【考点】等差数列的性质点评:在等差数列中,成等差数列。

6.(本小题满分14分)已知曲线.从点向曲线引斜率为的切线,切点为。

(1)求数列的通项公式;(2)证明:。

【答案】(1);(2)证明见解析。

【解析】(1)设直线:,联立得:,则,∴(舍去),即,∴(2)证明:∵∴由于,可令函数,则,令,得,给定区间,则有,则函数在上单调递减,∴,即在恒成立,又,则有,即。

高考数学数列多选题单元测试及答案

高考数学数列多选题单元测试及答案

高考数学数列多选题单元测试及答案一、数列多选题1.各项均为正数的等比数列{}n a 的前n 项积为n T ,若11a >,公比1q ≠,则下列命题正确的是( )A .若59T T =,则必有141T =B .若59T T =,则必有7T 是n T 中最大的项C .若67T T >,则必有78T T >D .若67T T >,则必有56T T >【答案】ABC 【分析】根据题意,结合等比数列的通项公式、等差数列的前n 项和公式,以及等比数列的性质,逐项分析,即可求解. 【详解】由等比数列{}n a 可知11n n a a q -=⋅,由等比数列{}n a 的前n 项积结合等差数列性质可知:()1211212111111123n n n n n n n n a a q a q a qa a T a a a q a q--+++-=⋅⋅⋅==⋅=对于A ,若59T T =,可得51093611a q a q =,即42611a q =,()71491426211141a q q T a ∴===,故A 正确;对于B ,若59T T =,可得42611a q =,即13211a q=,又11a >,故1q <,又59T T =,可知67891a a a a =,利用等比数列性质知78691a a a a ==,可知67891,1,1,1a a a a >><<,故7T 是n T 中最大的项,故B 正确;对于C ,若67T T >,则61572111a q a q >,即611a q <,又10a >,则1q <,可得76811871T T a a q a q <=<=,故78T T >,故C 正确; 对于D ,若67T T >,则611a q <,56651T a T a q ==,无法判断其与“1”的大小关系,故D 错误. 故选:ABC 【点睛】关键点点睛:本题主要考查了等比数列的通项公式及等差数列前n 项和公式,以及等比数列的性质的应用,其中解答中熟记等比数列的通项公式和性质及等差数列的求和公式,准确运算是解答的关键,着重考查了学生的推理与运算能力,属于较难题.2.已知数列{}n a 的前n 项和为n S ,前n 项积为n T ,0n a ≠,且202021111212a a ++≤+( )A .若数列{}n a 为等差数列,则20210S ≥B .若数列{}n a 为等差数列,则10110a ≤C .若数列{}a 为等比数列,则20200T >D .若数列{}a 为等比数列,则20200a <【分析】由不等关系式,构造11()212xf x =-+,易得()f x 在R 上单调递减且为奇函数,即有220200a a +≥,讨论{}n a 为等差数列、等比数列,结合等差、等比的性质判断项、前n 项和或积的符号即可. 【详解】 由202021111212a a ++≤+,得2020211110212212a a +-+-≤+, 令11()212x f x =-+,则()f x 在R 上单调递减,而1121()212212xx x f x --=-=-++, ∴12()()102121xx x f x f x -+=+-=++,即()f x 为奇函数,∴220200a a +≥,当{}n a 为等差数列,22020101120a a a +=≥,即10110a ≥,且2202020212021()02a a S +=≥,故A 正确,B 错误;当{}n a 为等比数列,201820202a a q=,显然22020,a a 同号,若20200a <,则220200a a +<与上述结论矛盾且0n a ≠,所以前2020项都为正项,则202012020...0T a a =⋅⋅>,故C 正确,D 错误. 故选:AC. 【点睛】关键点点睛:利用已知构造函数,并确定其单调性和奇偶性,进而得到220200a a +≥,基于该不等关系,讨论{}n a 为等差、等比数列时项、前n 项和、前n 项积的符号.3.在n n n A B C (1,2,3,n =)中,内角,,n n n A B C 的对边分别为,,n n n a b c ,n n n A B C 的面积为n S ,若5n a =,14b =,13c =,且222124n n n a c b ++=,222124n n n a b c ++=,则( ) A .n n n A B C 一定是直角三角形 B .{}n S 为递增数列 C .{}n S 有最大值 D .{}n S 有最小值【答案】ABD 【分析】先结合已知条件得到()222211125=252n n n n b c b c +++-+-,进而得到22225=n n n b c a +=,得A 正确,再利用面积公式得到递推关系1221875=644n n S S ++,通过作差法判定数列单调性和【详解】 由222124n n n a c b ++=,222124n n n a b c ++=得,222222112244n n n n n n a c a b bc+++++=+()2221122n n n a b c =++()2225122n n b c =++,故()222211125=252n n n n b c b c +++-+-, 又221125=0b c +-,22250n n b c ∴+-=,22225=n n n b c a ∴+=,故n n n A B C 一定是直角三角形,A 正确;n n n A B C 的面积为12n n n S b c =,而()4222222222221124224416n n n n n n n n n n n n a b c a b c a c a b b c +++++++=⨯=, 故()42222222222111241875161875==1616641n n n n n n n n n n n a b c a b bS S c c S +++++++==+,故22212218751875==6446434n n n n n S S SS S +-+--, 又22125=244n n n n n b c b c S +=≤(当且仅当==2n n b c 时等号成立) 22121875=06344n n n S SS +∴--≥,又由14b =,13c =知n n b c ≠不是恒成立,即212n n S S +>,故1n n S S +>,故{}n S 为递增数列,{}n S 有最小值16=S ,无最大值,故BD 正确,C 错误. 故选:ABD. 【点睛】本题解题关键是利用递推关系得到()222211125=252n n n n b c b c +++-+-,进而得到22225=n n n b c a +=,再逐步突破.数列单调性常用作差法判定,也可以借助于函数单调性判断.4.设等差数列{}n a 的前n 项和为n S ,公差为d .已知312a =,120S >,70a <则( ) A .60a >B .数列1n a ⎧⎫⎨⎬⎩⎭是递增数列 C .0n S <时,n 的最小值为13 D .数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项【答案】ACD由已知得()()612112712+12+220a a a a S ==>,又70a <,所以6>0a ,可判断A ;由已知得出2437d -<<-,且()12+3n a n d =-,得出[]1,6n ∈时,>0n a ,7n ≥时,0n a <,又()1112+3n a n d =-,可得出1n a 在1,6n n N上单调递增,1na 在7nnN ,上单调递增,可判断B ;由()313117713+12203213a a a S a ⨯==<=,可判断C ;判断 n a ,n S 的符号, n a 的单调性可判断D ; 【详解】由已知得311+212,122d a a a d ===-,()()612112712+12+220a a a a S ==>,又70a <,所以6>0a ,故A 正确;由7161671+612+40+512+3>0+2+1124+7>0a a d d a a d d a a a d d ==<⎧⎪==⎨⎪==⎩,解得2437d -<<-,又()()3+312+3n a n d n d a =-=-,当[]1,6n ∈时,>0n a ,7n ≥时,0n a <,又()1112+3n a n d=-,所以[]1,6n ∈时,1>0na ,7n ≥时,10n a <,所以1na 在1,6n n N上单调递增,1na 在7n n N,上单调递增,所以数列1n a ⎧⎫⎨⎬⎩⎭不是递增数列,故B 不正确; 由于()313117713+12203213a a a S a ⨯==<=,而120S >,所以0n S <时,n 的最小值为13,故C 选项正确 ;当[]1,6n ∈时,>0n a ,7n ≥时,0n a <,当[]1,12n ∈时,>0n S ,13n ≥时,0n S <,所以当[]7,12n ∈时,0n a <,>0n S ,0nnS a <,[]712n ∈,时,n a 为递增数列,n S 为正数且为递减数列,所以数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项,故D 正确;本题考查等差数列的公差,项的符号,数列的单调性,数列的最值项,属于较难题.5.已知数列{}n a 的前n 项和为n S ,且1a p =,122n n S S p --=(2n ≥,p 为常数),则下列结论正确的有( ) A .{}n a 一定是等比数列B .当1p =时,4158S =C .当12p =时,m n m n a a a +⋅= D .3856a a a a +=+【答案】BC 【分析】对于A 选项,若0p =,则数列{}n a 不是等比数列,当0p ≠时,通过题目条件可得112n n a a -=,即数列{}n a 为首项为p ,公比为12的等比数列,然后利用等比数列的通项公式、前n 项和公式便可得出B ,C ,D 是否正确. 【详解】由1a p =,122n n S S p --=得,()222a p p p +-=,故22pa =,则2112a a =,当3n ≥时,有1222n n S S p ---=,则120n n a a --=,即112n n a a -=, 故当0p ≠时,数列{}n a 为首项为p ,公比为12的等比数列;当0p =时不是等比数列,故A 错误;当1p =时,441111521812S ⎛⎫⨯- ⎪⎝⎭==-,故B 正确; 当12p =时,12nn a ⎛⎫= ⎪⎝⎭,则12m nm n m n a a a ++⎛⎫⋅== ⎪⎝⎭,故C 正确;当0p ≠时,38271133+22128a a p p ⎛⎫=+=⎪⎝⎭,而56451112+22128a a p p ⎛⎫=+= ⎪⎝⎭, 故3856a a a a +>+,则D 错误; 故选:BC.6.已知数列{}n a ,{}n b 满足1n n n a a +-=,21n n n b a nb ⋅+=,且11a =,n S 是数列{}n b 的前n 项和,则下列结论正确的有( )A .m +∃∈N ,55m m a a a +=+B .n +∀∈N ,33314n a n +≥ C .m +∃∈N ,16m b = D .n +∀∈N ,113n S ≤<【答案】BD 【分析】用累加法得到222n n n a -+=,代入21n n n b a nb ⋅+=,得11212n b n n ⎛⎫=- ⎪++⎝⎭,代入5m a +5m a a =+求出m 可判断A ;代入33n a n+求最值可判断B ; 令1121612m b m m ⎛⎫=-= ⎪++⎝⎭解出m 可判断C ;裂项相消后可求出n S 的范围可判断D. 【详解】因为1n n n a a +-=,所以211a a -= 322a a -=11(2)n n n a a n -=-≥-以上各式累加得1121(1)2n a a n n n =+++-=--,所以(1)12n n n a -=+,当1n =时,11a =成立, 所以2(1)2122n n n n a n --+=+=,由21n n n b a nb ⋅+=,得112112(1)1222(1)(2)12n n b a n n n n n n n n ⎛⎫====- ⎪+++++⎝-+⎭+,对于A ,()()5254922122m a m m m m ++++++==,25(1)5(51)2411222m a a m m m m -⨯--+=+++=+ , 当55m m a a a +=+时,222492222m m m m -+++=,得15m +=∉N ,A 错误; 对于B,(1)1(13333343411)22222n n n n a n n n n n ++==+=+-≥--+, 当且仅当268n =取等号,因为n +∀∈N ,所以8n =时,8333184a +=, 所以B 正确;对于C,令1121612mbm m⎛⎫=-=⎪++⎝⎭得,215308m m++=,解得m+=N,所以C错误;对于D,n+∀∈N,1231111112233412nS b b bn n⎛⎫=+++=-+-++-⎪++⎝⎭112211222n n⎛⎫=-=-<⎪++⎝⎭,可以看出n S是关于n递增的,所以1n=时有最小值13,所以113nS≤<,D正确.故选:BD.【点睛】本题考查了由递推数列求通项公式、裂项相消求数列和,关键点是用累加法求出n a,然后代入求出n b,考查了学生的推理能力、计算能力.7.关于等差数列和等比数列,下列四个选项中正确的有()A.若数列{}n a的前n项和22nS n=,则数列{}n a为等差数列B.若数列{}n a的前n项和122nnS+=-,则数列{}na为等比数列C.若等比数列{}n a是递增数列,则{}n a的公比1q>D.数列{}n a是等比数列,n S为前n项和,则n S,2n nS S-,32n nS S-,仍为等比数列【答案】AB【分析】对于A,求出42na n=-,所以数列{}na为等差数列,故选项A正确;对于B,求出2nna=,则数列{}na为等比数列,故选项B正确;对于选项C,有可能10,01a q<<<,不一定1q>,所以选项C错误;对于D,比如公比1q=-,n为偶数,n S,2n nS S-,32n nS S-,⋯,均为0,不为等比数列.故选项D不正确.【详解】对于A,若数列{}n a的前n项和22nS n=,所以212(1)(2)nS n n-=-≥,所以142(2)n n na S S n n-=-=-≥,适合12a=,所以数列{}na为等差数列,故选项A正确;对于B,若数列{}n a的前n项和122nnS+=-,所以122(2)nnS n-=-≥,所以12(2)nn n na S S n-=-=≥,又1422a=-=,2218224a S S=-=--=,212a a=则数列{}a为等比数列,故选项B正确;对于选项C ,若等比数列{}n a 是递增数列,则有可能10,01a q <<<,不一定 1q >,所以选项C 错误;对于D ,数列{}n a 是等比数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,⋯不一定为等比数列,比如公比1q =-,n 为偶数,n S ,2n n S S -,32n n S S -,⋯,均为0,不为等比数列.故选项D 不正确. 故选:AB 【点睛】方法点睛:求数列的通项常用的方法有:(1)公式法;(2)归纳法;(3)累加法;(4)累乘法;(5)构造法. 要根据已知条件灵活选择方法求解.8.(多选)在递增的等比数列{}n a 中,已知公比为q ,n S 是其前n 项和,若1432a a =,2312a a +=,则下列说法正确的是( )A .1q =B .数列{}2n S +是等比数列C .8510S =D .数列{}lg n a 是公差为2的等差数列【答案】BC 【分析】 计算可得2q,故选项A 错误;8510S =,122n n S ++=,所以数列{}2n S +是等比数列,故选项,B C 正确;lg lg 2n a n =⋅,所以数列{}lg n a 是公差为lg 2的等差数列,故选项D 错误.【详解】 ∵142332,12,a a a a =⎧⎨+=⎩∴23142332,12,a a a a a a ==⎧⎨+=⎩ 解得234,8a a =⎧⎨=⎩或238,4a a =⎧⎨=⎩,∵{}n a 为递增数列, ∴234,8a a =⎧⎨=⎩∴322a q a ==,212a a q ==,故选项A 错误; ∴2nn a =,()12122212nn nS +⨯-==--,∴9822510S =-=,122n n S ++=,∴数列{}2n S +是等比数列,故选项,B C 正确; 又lg 2lg 2lg nn n a ==⋅,∴数列{}lg a 是公差为lg 2的等差数列,故选项D 错误.故选:BC. 【点睛】方法点睛:证明数列的性质,常用的方法有:(1)定义法;(2)中项公式法.要根据已知灵活选择方法证明.9.数列{}n a 满足11a =,且对任意的*n ∈N 都有11n n a a a n +=++,则下列说法中正确的是( ) A .(1)2n n n a +=B .数列1n a ⎧⎫⎨⎬⎩⎭的前2020项的和为20202021 C .数列1n a ⎧⎫⎨⎬⎩⎭的前2020项的和为40402021D .数列{}n a 的第50项为2550 【答案】AC 【分析】用累加法求得通项公式,然后由裂项相消法求1n a ⎧⎫⎨⎬⎩⎭的和即可得. 【详解】因为11n n a a a n +=++,11a =, 所以11n n a a n +-=+, 所以2n ≥时,121321(1)()()()1232n n n n n a a a a a a a a n -+=+-+-++-=++++=, 11a =也适合此式,所以(1)2n n n a +=, 501275a =,A 正确,D 错误, 12112()(1)1n a n n n n ==-++, 数列1n a ⎧⎫⎨⎬⎩⎭的前2020项和为202011111404021223202020212021S ⎛⎫=-+-++-=⎪⎝⎭,B 错,C 正确. 故选:AC . 【点睛】本题考查用累加法数列的通项公式,裂项相消法求和.数列求和的常用方法: 设数列{}n a 是等差数列,{}n b 是等比数列,(1)公式法:等差数列或等比数列的求和直接应用公式求和; (2)错位相减法:数列{}n n a b 的前n 项和应用错位相减法; (3)裂项相消法;数列1{}n n ka a +(k 为常数,0n a ≠)的前n 项和用裂项相消法; (4)分组(并项)求和法:数列{}n n pa qb +用分组求和法,如果数列中的项出现正负相间等特征时可能用并项求和法;(5)倒序相加法:满足m n m a a A -+=(A 为常数)的数列,需用倒序相加法求和.10.已知等差数列{}n a 的前n 项和为n S ,若981S =,713a =,3S ,1716S S -,k S 成等比数列,则( ) A .2n S n = B .122310*********a a a a a a ++⋅⋅⋅+= C .11k = D .21n a n =-【答案】ACD 【分析】先根据题意求出等差数列的首项和公差,再根据等差数列的通项公式和求和公式求得,n n a S ,再由3S ,1716S S -,k S 成等比数列列出式子求解得出k 的值,再利用裂项相消法求和,得到122310111111021a a a a a a ++⋅⋅⋅+=,从而判断各项的正误. 【详解】依题意,95981S a ==,解得59a =; 而713a =,故75275a a d -==-,则1541a a d =-=, 则21n a n =-,2n S n =,故D 、A 正确:因为3S ,1716S S -,k S 成等比数列,故()223171617k S S S S a =-=,则22933k =,解得11k =,故C 正确;而122310111111021a a a a a a ++⋅⋅⋅+=,故B 错误. 故选:ACD . 【点睛】思路点睛:该题考查的是有关数列的问题,解题方法如下: (1)根据题意,求得通项公式,进而求得前n 项和; (2)根据三项成等比数列的条件,列出等式,求得k 的值; (3)利用裂项相消法,对111a a a a a a ++⋅⋅⋅+求和;(4)对选项逐个判断正误,得到结果.。

高中数学《数列》练习题(含答案解析)

高中数学《数列》练习题(含答案解析)

高中数学《数列》练习题(含答案解析)一、单选题1.已知等差数列{an }的前n 项和为Sn ,且48S S =13,则816S S =( )A .310 B .37C .13D .122.已知等比数列{an }的前n 项和为Sn ,则“Sn +1>Sn ”是“{an }单调递增”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件3.现有下列说法:①元素有三个以上的数集就是一个数列; ①数列1,1,1,1,…是无穷数列; ①每个数列都有通项公式;①根据一个数列的前若干项,只能写出唯一的通项公式; ①数列可以看着是一个定义在正整数集上的函数. 其中正确的有( ). A .0个B .1个C .2个D .3个4.数列{}n a 的前n 项和为n S ,且1(1)(21)n n a n +=-⋅+,则2021S =( )A .2020B .2021C .2022D .20235.已知等差数列{}n a 中,6819,27a a ==,则数列{}n a 的公差为( ) A .2B .3C .4D .56.标准对数视力表(如图)采用的“五分记录法”是我国独创的视力记录方式.标准对数视力表各行为正方形“E ”字视标,且从视力5.1的视标所在行开始往上,每一行“E ”的边长都是下方一行“E ”的边长的视力4.0的视标边长为a ,则视力4.9的视标边长为( )A .4510aB .91010aC .4510a -D .91010a -7.已知数列{}n a ,2141n n a n n ,则下列说法正确的是( )A .此数列没有最大项B .此数列的最大项是3aC .此数列没有最小项D .此数列的最小项是2a8.已知{}n a 是等差数列,公差0d >,其前n 项和为n S ,若2a 、52a+、172a +成等比数列,()12n n n a S +=,则不正确的是( ) A .1d= B .1020a = C .2n S n n =+ D .当2n ≥时,32n n S a ≥9.已知数列{}n a 的前n 项和为n S ,112a =,对任意的*n ∈N 都有1(2)n n na n a +=+,则2021S =( ) A .20192020B .20202021C .20212022D .1010101110.等差数列{}n a 前n 项和为n S , 281112a a a ++=,则13S =( ) A .32B .42C .52D .62二、填空题11.已知a 是1,2的等差中项,b 是1-,16-的等比中项,则ab 等于___________. 12.已知等差数列{}n a 的前n 项和为n S ,若65210,6Sa a =+=,则d =_________.13.设n S 是等差数列{}n a 的前n 项和,若891715a a =,则1517S S =______.14.已知等差数列{}n a 的前n 项和为nS,且1516a a +=-,936S =-,则n S 的最小值是______.三、解答题15.已知数列{}n a 为等差数列,{}n b 是公比为2的等比数列,且满足11221,5a b b a ==+=(1)求数列{}n a 和{}n b 的通项公式; (2)令n n n c a b =+求数列{}n c 的前n 项和n S ;16.已知等差数列{}n a 的前n 项和n S 满足30S =,55S =-. (1)求{}n a 的通项公式;(2)2n nb a =-+求数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n T . 17.某公司2021年年初花费25万元引进一种新的设备,设备投入后每年的收益均为21万元.若2021年为第1年,且该公司第()n n *∈N 年需要支付的设备维修和工人工资等费用总和n a (单位:万元)的情况如图所示.(1)求n a ;(2)引进这种设备后,第几年该公司开始获利? 18.设{}n a 是首项为1的等比数列,数列{}n b 满足3nn na b =.已知1a ,23a ,39a 成等差数列. (1)求{}n a 和{}nb 的通项公式;(2)记n S 和n T 分别为{}n a 和{}n b 的前n 项和.证明:2nn S T <.参考答案与解析:1.A【分析】运用等差数列前n 项和公式进行求解即可. 【详解】设等差数列{an }的公差为d , ①41181461582832a d a d a d S S +==⇒=+,显然0d ≠, ①8161182820283161204012010a d d d a d S d S d ++===++, 故选:A 2.D【分析】由110++>⇒>n n n S S a ,举反例102=>n na 和12nn a =-即可得出结果 【详解】110++>⇒>n n n S S a ,例如102=>n na ,但是数列{}n a 不单调递增,故不充分; 数列{}n a 单调递增,例如12n na =-,但是1n n S S +<,故不必要; 故选:D 3.B【分析】根据给定条件,利用数列的定义逐一分析各个命题,判断作答.【详解】对于①,数列是按一定次序排成的一列数,而数集的元素无顺序性,①不正确; 对于①,由无穷数列的意义知,数列1,1,1,1,…是无穷数列,①正确; 对于①0.1,0.01,0.001,0.0001,得到的不足近似值,依次排成一列得到的数列没有通项公式,①不正确;对于①,前4项为1,1,1,1的数列通项公式可以为1,N n a n =∈,cos 2π,N n b n n *=∈等,即根据一个数列的前若干项,写出的通项公式可以不唯一,①不正确;对于①,有些数列是有穷数列,不可以看着是一个定义在正整数集上的函数,①不正确, 所以说法正确的个数是1. 故选:B 4.D【分析】根据数列{}n a 的通项公式,可求得12342,2a aa a +=-+=-,依此类推,即可求解.【详解】①1(1)(21)n n a n +=-⋅+,故12343,5,7,9a a a a ==-==-故202112320202021S a a a a a =+++⋅⋅⋅++357940414043=-+-+⋅⋅⋅-+2101040432023=-⨯+=.故选:D. 5.C【分析】利用862d a a =-,直接计算公差即可. 【详解】等差数列{}n a 中,6819,27aa ==,设公差为d ,则86227198d a a =-=-=,即4d =.故选:C. 6.D【分析】由等比数列的通项公式计算.【详解】设第n 行视标边长为n a ,第n 1-行视标边长为()12n a n -≥,由题意可得()12n n a n -=≥,则()1101102nn a n a --=≥,则数列{}n a 为首项为a ,公比为11010-的等比数列, 所以101191010101010a a a ---⎛⎫== ⎪⎝⎭,则视力4.9的视标边长为91010a -,故选:D. 7.B【分析】令10t n =-≥,则1n t =+,22641411ttyt t t t ,然后利用函数的知识可得答案. 【详解】令10t n =-≥,则1n t =+,22,641411tty tt t t当0=t 时,0y = 当0t >时,146y t t=++,由双勾函数的知识可得y 在()02,上单调递增,在()2,+∞上单调递减 所以当2t =即3n =时,y 取得最大值, 所以此数列的最大项是3a ,最小项为10a = 故选:B . 8.A【分析】利用等差数列的求和公式可得出1n a na =,可得出10d a =>,根据已知条件求出1a 的值,可求得n a 、n S 的表达式,然后逐项判断可得出合适的选项.【详解】因为{}n a 是等差数列,则()()1122nn n n a n a a S ++==,所以,1n a na =, 所以,110n n d a a a +=-=>,因为()()2521722a a a +=+,可得()()2111522172a a a +=+,整理可得21191640a a --=,因为10a >,故12d a ==,A 错;12n a na n ==,则1020a =,B 对;()()112nn n a S n n +==+,C 对;当2n ≥时,()233202n n S a n n n n n -=+-=-≥,即32n n S a ≥,D 对.故选:A. 9.C【解析】由1(2)n n na n a +=+,可得1(1)(1)(2)n n n n a n n a ++=++,数列{}(1)n n n a +为常数列,令1n =,可得1(1)21n n n a a +==,进而可得1(1)n a n n =+,利用裂项求和即可求解.【详解】数列{}n a 满足112a =,对任意的*n ∈N 都有1(2)n n na n a +=+, 则有1(1)(1)(2)n n n n a n n a ++=++,可得数列{}(1)n n n a +为常数列, 有1(1)2n n n a a +=,得(1)1n n n a +=,得1(1)n a n n =+,又由111(1)1n a n n n n ==-++,所以20211111112021112232021202220222022S =-+-+⋅⋅⋅-=-=.故选:C【点睛】方法点睛:数列求和的方法(1)倒序相加法:如果一个数列{}n a 的前n 项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可以用倒序相加法(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可以用错位相减法来求;(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些项可相互抵消,从而求得其和; (4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(5)并项求和法:一个数列的前n 项和可以两两结合求解,则称之为并项求和,形如()()1nn a f n =-类型,可采用两项合并求解. 10.C【分析】将2811a a a ++化成1a 和d 的形式,得到二者关系,求得7a ,利用13713S a =求得结果. 【详解】()()28111111()71031812a a a a d a d a d a d ++=+++++=+=164a d ∴+=,即74a = ()1131371313134522a a S a +∴===⨯= 故选:C.【点睛】思路点睛:该题考查的是有关数列的问题,解题思路如下:(1)根据题中所给的条件,结合等差数列通项公式,将其转化为关于首项与公差的式子; (2)化简求得数列的某一项;(3)结合等差数列求和公式,得到和与项的关系,求得结果. 11.6±【分析】根据等差和等比中项的定义求出,a b 得值,即可求解. 【详解】因为a 是1,2的等差中项,所以12322a +==, 因为b 是1-,16-的等比中项,所以2(1)(16)16b =-⨯-=,4b =±,所以6ab =±.故答案为:6±. 12.1【分析】由等差中项性质可求4a ,又510S =依据等差数列的前n 项和公式及通项公式列方程即可求得公差 【详解】由266a a +=有43a =,而510S = ①结合等差数列的前n 项和公式及通项公式113322a d a d +=⎧⎨+=⎩即可得1d = 故答案为:1【点睛】本题考查了等差数列,利用等差中项求项,结合已知条件、前n 项和公式、通项公式求公差13.1【分析】利用等差数列性质及前n 项和公式计算作答.【详解】在等差数列{}n a 中,891715a a =,所以1151511588117171179915(15(152152117(17)(1717)2))2a a S a a a a a a S a a a a ++⨯====⋅=++⨯. 故答案为:1 14.42-【分析】根据给定条件求出等差数列{}n a 的首项、公差,探求数列{}n a 的单调性即可计算作答.【详解】设等差数列{}n a 的公差为d ,由1591636a a S +=-⎧⎨=-⎩得112416989362a d a d +=-⎧⎪⎨⨯+=-⎪⎩,解得1122a d =-⎧⎨=⎩, 因此,()1212214n a n n =-+-⨯=-,令0n a =,解得7n =,于是得数列{}n a 是递增等差数列,其前6项为负,第7项为0,从第8项开始为正, 所以6S 或7S 最小,最小值为()656122422⨯⨯-+⨯=-. 故答案为:42-15.(1)21n a n =-,12n n b -=(2)221nn S n =+-【分析】(1)根据等差数列和等比数列的通项公式得到2d =,根据通项公式的求法得到结果;(2)1221n n n n c a b n -+=+=-分组求和即可.【详解】(1)设{}n a 的公差为d , 由已知,有215d ++=解得2d =,所以{}n a 的通项公式为21,n a n n *=-∈N , {}n b 的通项公式为12,n n b n -*=∈N .(2)1221n n n n c a b n -+=+=-,分组求和,分别根据等比数列求和公式与等差数列求和公式得到:212(121)21122n n n n n S n -+-=+=+--.16.(1)2n a n =-;(2)1n nT n =+.【解析】(1)由30S =,55S =-,可得113230254552a d a d ⨯⎧+=⎪⎪⎨⨯⎪+=-⎪⎩求出1,a d ,从而可得{}n a 的通项公式;(2)由(1)可得n b n =,从而可得11111(1)1n n b b n n n n +==-++,然后利用裂项相消求和法可求得n T 【详解】解:(1)设等差数列{}n a 的公差为d , 因为30S =,55S =-.所以113230254552a d a d ⨯⎧+=⎪⎪⎨⨯⎪+=-⎪⎩,化简得11021a d a d +=⎧⎨+=-⎩,解得111a d =⎧⎨=-⎩,所以1(1)1(1)(1)2n a a n d n n =+-=+--=-, (2)由(1)可知2(2)2n n b a n n =-+=--+=, 所以11111(1)1n n b b n n n n +==-++, 所以111111(1)()()1223111n nT n n n n =-+-+⋅⋅⋅+-=-=+++ 【点睛】此题考查等差数列前n 项和的基本量计算,考查裂项相消求和法的应用,考查计算能力,属于基础题17.(1)2n a n =;(2)第2年该公司开始获利.【分析】(1)根据题意得出数列的首项和公差,进而求得通项公式 (2)根据题意算出总利润,进而令总利润大于0,解出不等式即可. 【详解】(1)由题意知,数列{}n a 是12a =,公差2d =的等差数列, 所以()()112122n a a n d n n =+-=+-⨯=.(2)设引进这种设备后,净利润与年数n 的关系为()F n ,则()()2121222520252n n F n n n n n -⎡⎤=-+⨯-=--⎢⎥⎣⎦. 令()0F n >得220250n n -+<,解得1010n -<+ 又因为n *∈N ,所以2n =,3,4,…,18, 即第2年该公司开始获利.18.(1)11()3n n a -=,3n nn b =;(2)证明见解析. 【分析】(1)利用等差数列的性质及1a 得到29610q q -+=,解方程即可; (2)利用公式法、错位相减法分别求出,n n S T ,再作差比较即可.【详解】(1)因为{}n a 是首项为1的等比数列且1a ,23a ,39a 成等差数列,所以21369a a a =+,所以211169a q a a q =+,即29610q q -+=,解得13q =,所以11()3n n a -=,所以33n n n na nb ==. (2)[方法一]:作差后利用错位相减法求和211213333n n n n nT --=++++,012111111223333-⎛⎫=++++ ⎪⎝⎭n n S , 230121123111112333323333n n n n S n T -⎛⎫⎛⎫-=++++-++++= ⎪ ⎪⎝⎭⎝⎭012111012222333---++++111233---+n nn n .设0121111101212222Γ3333------=++++n n n , ① 则1231111012112222Γ33333-----=++++n nn . ①由①-①得1121113312111113322Γ13233332313--⎛⎫--- ⎪⎛⎫⎝⎭=-++++-=-+- ⎪⎝⎭-n n n n n n n . 所以211312Γ432323----=--=-⨯⨯⨯n n n n n n . 因此10232323--=-=-<⨯⨯n n n n nS n n nT . 故2nn S T <. [方法二]【最优解】:公式法和错位相减求和法证明:由(1)可得11(1)313(1)12313n n n S ⨯-==--,211213333n n n n n T --=++++,① 231112133333n n n n n T +-=++++,① ①-①得23121111333333n n n n T +=++++- 1111(1)1133(1)1323313n n n n n n ++-=-=---, 所以31(1)4323n n n n T =--⋅, 所以2n n S T -=3131(1)(1)043234323n n n n n n ----=-<⋅⋅, 所以2n n S T <. [方法三]:构造裂项法由(①)知13⎛⎫= ⎪⎝⎭n n b n ,令1()3αβ⎛⎫=+ ⎪⎝⎭n n c n ,且1+=-n n n b c c ,即1111()[(1)]333αβαβ+⎛⎫⎛⎫⎛⎫=+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭n n n n n n ,通过等式左右两边系数比对易得33,24αβ==,所以331243n n c n ⎛⎫⎛⎫=+⋅ ⎪ ⎪⎝⎭⎝⎭. 则12113314423nn n n n T b b b c c +⎛⎫⎛⎫=+++=-=-+ ⎪⎪⎝⎭⎝⎭,下同方法二. [方法四]:导函数法设()231()1-=++++=-n n x x f x x x x x x ,由于()()()()()()1221'111'11(1)'1(1)1n n n n n x x x x x x x x nx n x x x x +⎡⎤⎡⎤⎡⎤----⨯--+-+⎣⎦⎣⎦⎢⎥==---⎢⎥⎣⎦, 则12121(1)()123(1)+-+-+=++++='-n nn nx n x f x x x nx x . 又1111333-⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭n n n b n n ,所以2112311111233333n n n T b b b b n -⎡⎤⎛⎫⎛⎫=++++=+⨯+⨯++⋅=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦12111(1)11133333113n nn n f +⎛⎫⎛⎫+-+ ⎪ ⎪⎛⎫⎝⎭⎝⎭⋅=⨯ ⎪⎝⎭⎛⎫- ⎪⎝⎭' 13113311(1)4334423n n n n n n +⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+-+=-+⎢⎥ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,下同方法二.【整体点评】本题主要考查数列的求和,涉及到等差数列的性质,错位相减法求数列的和,考查学生的数学运算能力,是一道中档题,其中证明不等式时采用作差法,或者作商法要根据式子得结构类型灵活选择,关键是要看如何消项化简的更为简洁.(2)的方法一直接作差后利用错位相减法求其部分和,进而证得结论;方法二根据数列的不同特点,分别利用公式法和错位相减法求得,n nS T,然后证得结论,为最优解;方法三采用构造数列裂项求和的方法,关键是构造1()3αβ⎛⎫=+ ⎪⎝⎭nnc n,使1+=-n n nb c c,求得nT的表达式,这是错位相减法的一种替代方法,方法四利用导数方法求和,也是代替错位相减求和法的一种方法.。

精选高中数学单元测试试题-数列专题完整题库(含答案)

精选高中数学单元测试试题-数列专题完整题库(含答案)

2019年高中数学单元测试试题 数列专题(含答案)学校:__________ 姓名:__________ 班级:__________ 考号:__________第I 卷(选择题)请点击修改第I 卷的文字说明 一、选择题1.等差数列{}n a 的前三项为1,1,23x x x -++,则这个数列的通项公式为_______ 2.已知等差数列{an}的前三项依次为a-1,a+1,2a+3,则此数列的第n 项an 等于 A.2n-5 B.2n-3 C.2n-1D.2n+13.某大楼有20层,有19人在第一层上了电梯,他们分别要去第2层到20层,每层一人,而电梯只允许停一次,可只使一人满意,其余18人都要上楼或下楼。

假设乘客每向下走一层不满意度为1,每向上走一层不满意度为2。

所有人不满意之和为S ,为使S 最小,电梯应停在第( )层。

A,15 B,14 C,13 D,12第II 卷(非选择题)请点击修改第II 卷的文字说明 二、填空题4. 已知数列{}n a ,{}n b 满足11a =,22a =,12b =,且对任意的正整数,,,i j k l ,当i j k l +=+时,都有i j k l a b a b +=+,则201011()2010i i i a b =+∑的值是 ▲ .5.1、各校(园):请各单位对照本单位实际,按马校长的要求做好校园安全工作。

马校长强调:近期安全要关注之处1、学生上下学安全,和家长定接送安全责任状,上学的时候有人值班校干带班。

2、校内各个区域的安全值班,重要的是有人带班和检查一下值班情况。

3、食堂食品和学生饮用水情况。

4、传达室的物品摆放情况和值班情况,不可以让人员随意进出学校。

5、进行特异体质学生调查,统计,跟踪分析一下。

6、对学生的安全教育情况,7、带领全体职工学习安全职责。

8、学校的线路情况如何。

9、楼梯口的安全值班情况。

10、保安的管理情况,不可以有超过七十岁的安保人员。

【高考调研】2020届高考数学总复习 第六章 数列配套单元测试(含解析)理 新人教A版

【高考调研】2020届高考数学总复习 第六章 数列配套单元测试(含解析)理 新人教A版

第六章 单元测试一、选择题(本大题共10小题,每小题5分,共50分.每小题中只有一项符合题目要求)1.若{a n }为等差数列,且a 7-2a 4=-1,a 3=0,则公差d = ( )A .-2B .-12C.12 D .2答案 B解析 由等差中项的定义结合已知条件可知2a 4=a 5+a 3,∴2d =a 7-a 5=-1,即d =-12.故选B. 2.在等比数列{a n }中,若a 3a 5a 7a 9a 11=243,则a 29a 11的值为( )A .9B .1C .2D .3答案 D解析 由等比数列性质可知a 3a 5a 7a 9a 11=a 57=243,所以得a 7=3,又a 29a 11=a 7a 11a 11=a 7,故选D.3.已知等差数列{a n }的前n 项和为S n ,a 1+a 5=12S 5,且a 9=20,则S 11=( )A .260B .220C .130D .110答案 D 解析 ∵S 5=a 1+a 52×5,又∵12S 5=a 1+a 5,∴a 1+a 5=0.∴a 3=0,∴S 11=a 1+a 112×11=a 3+a 92×11=0+202×11=110,故选D.4.各项均不为零的等差数列{a n }中,若a 2n -a n -1-a n +1=0(n ∈N *,n ≥2),则S 2 009等于 A .0 B .2 C .2 009 D .4 018答案 D解析 各项均不为零的等差数列{a n },由于a 2n -a n -1-a n +1=0(n ∈N *,n ≥2),则a 2n -2a n=0,a n =2,S 2 009=4 018,故选D.5.数列{a n }是等比数列且a n >0,a 2a 4+2a 3a 5+a 4a 6=25,那么a 3+a 5的值等于 A .5 B .10 C .15 D .20答案 A解析 由于a 2a 4=a 23,a 4a 6=a 25,所以a 2·a 4+2a 3·a 5+a 4·a 6=a 23+2a 3a 5+a 25=(a 3+a 5)2=25.所以a 3+a 5=±5.又a n >0,所以a 3+a 5=5.所以选A.6.首项为1,公差不为0的等差数列{a n }中,a 3,a 4,a 6是一个等比数列的前三项,则这个等比数列的第四项是( )A .8B .-8C .-6D .不确定答案 B解析 a 24=a 3·a 6⇒(1+3d )2=(1+2d )·(1+5d ) ⇒d (d +1)=0⇒d =-1,∴a 3=-1,a 4=-2,∴q =2. ∴a 6=a 4·q =-4,第四项为a 6·q =-8.7.设函数f (x )满足f (n +1)=2f n +n 2(n ∈N *),且f (1)=2,则f (20)=( )A .95B .97C .105D .192答案 B解析 f (n +1)=f (n )+n 2,∴⎩⎪⎨⎪⎧f 20=f 19+192,f 19=f 18+182,……f 2=f 1+12.累加,得f (20)=f (1)+(12+22+…+192)=f (1)+19×204=97.8.若a x -1,a y,a-x +1(a >0,且a ≠1)成等比数列,则点(x ,y )在平面直角坐标系内的轨迹位于( )A .第一象限B .第二象限C .第三象限D .第四象限答案 D解析 ∵成等比,∴(a y )2=ax -1·a-x +1.即2y =x -1-x +1,x -1>0,∴x >1.x -1<x +1,∴y <0,∴位于第四象限.9.已知等比数列{a n }的公比q <0,其前n 项的和为S n ,则a 9S 8与a 8S 9的大小关系是 A .a 9S 8>a 8S 9 B .a 9S 8<a 8S 9 C .a 9S 8≥a 8S 9 D .a 9S 8≤a 8S 9答案 A解析 a 9S 8-a 8S 9=a 9a 11-q 81-q -a 8a 11-q 91-q =a 8a 1q -q 9-1+q 91-q=-a 1a 8=-a 21q 7,因为a 21>0,q <0,所以-a 21q 7>0,即a 9S 8>a 8S 9,故选A.10.在等差数列{a n }中,前n 项和为S n ,且S 2 011=-2 011,a 1 007=3,则S 2 012的值为 A .1 006 B .-2 012 C .2 012 D .-1 006答案 C解析 方法一 设等差数列的首项为a 1,公差为d ,根据题意可得, ⎩⎪⎨⎪⎧S 2 011=2 011a 1+2 011× 2 011-12d =-2 011,a 1 007=a 1+1 006d =3,即⎩⎪⎨⎪⎧a 1+1 005d =-1,a 1+1 006d =3,解得⎩⎪⎨⎪⎧a 1=-4 021,d =4.所以,S 2 012=2 012a 1+2 012× 2 012-12d=2 012×(-4 021)+2 012×2 011×2 =2 012×(4 022-4 021)=2012. 方法二 由S 2 011=2 011a 1+a 2 0112=2 011a 1 006=-2 011, 解得a 1 006=-1,则S 2 012=2 012a 1+a 2 0122=2 012a 1 006+a 1 0072=2 012×-1+32=2 012.二、填空题(本大题共6小题,每小题5分,共30分,把答案填在题中横线上)11.若m ,n ,m +n 成等差数列,m ,n ,m ·n 成等比数列,则椭圆x 2m +y 2n=1的离心率为________.答案22解析 由题意知2n =m +m +n ,∴n =2m .又n 2=m ·m ·n ,∴n =m 2,∴m 2=2m . ∴m =2,∴n =4,∴a 2=4,b 2=2,c 2=2. ∴e =c a =22. 12.数列{a n },{b n }的前n 项和分别为S n 和T n ,若S n T n =2n 3n +1,则a 100b 100=________.答案199299解析a 100b 100=a 1+a 1992b 1+b 1992=S 199T 199=199299. 13.等差数列{a n }的前n 项和为S n ,且S 3=6,a 3=4,则公差d 等于________. 答案 2 解析 ∵S 3=a 1+a 3×32=6,而a 3=4,∴a 1=0.∴d =a 3-a 12=2.14.某人从2012年1月份开始,每月存入银行100元,月利率是3‰(不计复利),到2012年12月底取出的本利和应是________元.答案 1 223.4解析 应为1 200+0.3×12+0.3×11+…+0.3=1 200+0.3×12×132=1 223.4(元).15.已知各项都为正数的等比数列{a n }中,a 2·a 4=4,a 1+a 2+a 3=14,则满足a n ·a n +1·a n+2>19的最大正整数n 的值为________. 答案 4解析 设等比数列{a n }的公比为q ,其中q >0,依题意得a 23=a 2·a 4=4.又a 3>0,因此a 3=a 1q 2=2,a 1+a 2=a 1+a 1q =12,由此解得q =12,a 1=8,a n =8×(12)n -1=24-n ,a n ·a n +1·a n+2=29-3n.由于2-3=18>19,因此要使29-3n >19,只要9-3n ≥-3,即n ≤4,于是满足a n ·a n +1·a n+2>19的最大正整数n 的值为4. 16.等比数列{a n }的首项为a 1=1,前n 项和为S n ,若S 10S 5=3132,则公比q 等于________.答案 -12解析 因为S 10S 5=3132,所以S 10-S 5S 5=31-3232=-132,即q 5=(-12)5,所以q =-12. 三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)数列{a n }中,a 1=1,a n ,a n +1是方程x 2-(2n +1)x +1b n=0的两个根,求数列{b n }的前n 项和S n .答案 S n =nn +1解析 ∵a n ,a n +1是x 2-(2n +1)x +1b n=0的两根,∴a n +a n +1=2n +1,a n ·a n +1=1b n.∴a n +1+a n +2=2n +3. ∴a n +2-a n =2. ∴a 3-a 1=2,a 5-a 3=2,……a 2n -1-a 2n -3=2.∴a 2n -1-a 1=2(n -1).∴a 2n -1=2n -1,∴当n 为奇数时,a n =n . 同理可得当n 为偶数时a n =n . ∴a n =n . ∴b n =1a n ·a n +1=1nn +1=1n -1n +1. ∴S n =b 1+b 2+b 3+…+b n=1-12+12-13+13-14+…+1n -1n +1=1-1n +1=nn +1. 18.(本小题满分12分)成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n }中的b 3、b 4、b 5.(1)求数列{b n }的通项公式;(2)数列{b n }的前n 项和为S n ,求证:数列{S n +54}是等比数列.答案 (1)b n =54·2n -1=5·2n -3(2)略解析 (1)设成等差数列的三个正数分别为a -d ,a ,a +d . 依题意,得a -d +a +a +d =15,解得a =5. 所以{b n }中的b 3,b 4,b 5依次为7-d,10,18+d . 依题意,有(7-d )(18+d )=100, 解得d =2或d =-13(舍去). 故{b n }的第3项为5,公比为2.由b 3=b 1·22,即5=b 1·22,解得b 1=54.所以{b n }是以54为首项,2为公比的等比数列,其通项公式为b n =54·2n -1=5·2n -3.(2)数列{b n }的前n 项和S n =541-2n1-2=5·2n -2-54, 即S n +54=5·2n -2.所以S 1+54=52,S n +1+54S n +54=5·2n -15·2n -2=2.因此{S n +54}是以52为首项,公比为2的等比数列.19.(本小题满分12分)已知数列{x n }的首项x 1=3,通项x n =2n p +nq (n ∈N *,p ,q 为常数),且x 1,x 4,x 5成等差数列,求:(1)p ,q 的值;(2)数列{x n }的前n 项的和S n 的公式.解析 (1)由x 1=3,得2p +q =3,又x 4=24p +4q ,x 5=25p +5q ,且x 1+x 5=2x 4,得3+25p +5q =25p +8q ,解得p =1,q =1. (2)S n =(2+22+…+2n )+(1+2+…+n )=2n +1-2+n n +12.20.(本小题满分12分)已知{a n }是各项均为正数的等比数列,且a 1+a 2=2(1a 1+1a 2),a 3+a 4+a 5=64(1a 3+1a 4+1a 5).(1)求{a n }的通项公式;(2)设b n =(a n +1a n)2,求数列{b n }的前n 项和T n .解析 (1)设{a n }的公比为q ,则a n =a 1q n -1.由已知,有⎩⎪⎨⎪⎧a 1+a 1q =2⎝ ⎛⎭⎪⎫1a 1+1a 1q ,a 1q 2+a 1q 3+a 1q 4=64⎝ ⎛⎭⎪⎫1a 1q 2+1a 1q 3+1a 1q 4,化简,得⎩⎪⎨⎪⎧a 21q =2,a 21q 6=64.又a 1>0,故q =2,a 1=1. 所以a n =2n -1.(2)由(1)知,b n =⎝⎛⎭⎪⎫a n +1a n 2=a 2n +1a 2n +2=4n -1+14n -1+2.因此,T n =(1+4+…+4n -1)+(1+14+…+14n -1)+2n =1-4n1-4+1-14n 1-14+2n =13(4n -41-n)+2n +1.21.(本小题满分12分)某企业2010年的纯利润为500万元,因设备老化等原因,企业的生产能力将逐年下降.若不进行技术改造,预测从2011年起每年比上一年纯利润减少20万元,2011年初该企业一次性投入资金600万元进行技术改造,预测在未扣除技术改造资金的情况下,第n 年(2011年为第一年)的利润为500(1+12n )万元(n 为正整数).(1)设从2011年起的前n 年,若该企业不进行技术改造的累计纯利润为A n 万元,进行技术改造后的累计纯利润为B n 万元(须扣除技术改造资金),求A n ,B n 的表达式;(2)依上述预测,从2011年起该企业至少经过多少年,进行技术改造后的累计纯利润超过不进行技术改造的累计纯利润?思路 (1)A n 是一个等差数列的前n 项和,B n 是一个常数数列和一个等比数列的组合的前n 项和,根据数列的求和公式,就可以求出A n ,B n 的表达式.(2)建模B n >A n ,解这个关于n 的不等式.解析 (1)依题意知,A n 是一个以480为首项,-20为公差的等差数列的前n 项和,所以A n =480n +n n -12×(-20)=490n -10n 2,B n =500(1+12)+500(1+122)+…+500(1+12n )-600=500n +500(12+122+…+12n )-600=500n +500×12[1-12n]1-12-600=500n -5002n -100.(2)依题意得,B n >A n ,即500n -5002n -100>490n -10n 2,可化简得502n <n 2+n -10.∴可设f (n )=502n ,g (n )=n 2+n -10.又∵n ∈N *,∴可知f (n )是减函数,g (n )是增函数. 又f (3)=508>g (3)=2,f (4)=5016<g (4)=10.则当n =4时不等式成立,即4年.22.(本小题满分12分)已知数列{a n }的前n 项和为S n ,且满足S n +n =2a n (n ∈N *). (1)证明:数列{a n +1}为等比数列,并求数列{a n }的通项公式;(2)若b n =(2n +1)a n +2n +1,数列{b n }的前n 项和为T n .求满足不等式T n -22n -1>2 010的n的最小值.解析 (1)因为S n +n =2a n ,所以S n -1=2a n -1-(n -1)(n ≥2,n ∈N *).两式相减,得a n=2a n -1+1.所以a n +1=2(a n -1+1)(n ≥2,n ∈N *),所以数列{a n +1}为等比数列. 因为S n +n =2a n ,令n =1得a 1=1.a 1+1=2,所以a n +1=2n ,所以a n =2n -1.(2)因为b n =(2n +1)a n +2n +1,所以b n =(2n +1)·2n. 所以T n =3×2+5×22+7×23+…+(2n -1)·2n -1+(2n +1)·2n,① 2T n =3×22+5×23+…+(2n -1)·2n+(2n +1)·2n +1,②①-②,得-T n =3×2+2(22+23+ (2))-(2n +1)·2n +1=6+2×22-2n +11-2-(2n +1)·2n +1=-2+2n +2-(2n +1)·2n +1=-2-(2n -1)·2n +1.所以T n =2+(2n -1)·2n +1.若T n -22n -1>2 010, 则2+2n -1·2n +12n -1>2 010,即2n +1>2 010.由于210=1 024,211=2 048,所以n +1≥11,即n ≥10.所以满足不等式T n -22n -1>2 010的n 的最小值是10.1.已知数列{a n }是各项均为正数的等比数列,数列{b n }是等差数列,且a 6=b 7,则有 A .a 3+a 9≤b 4+b 10 B .a 3+a 9≥b 4+b 10 C .a 3+a 9≠b 4+b 10D .a 3+a 9与b 4+b 10的大小关系不确定 答案 B解析 记等比数列{a n }的公比为q ,由数列{b n }为等差数列可知b 4+b 10=2b 7.又数列{a n }是各项均为正数的等比数列,∴a 3+a 9=a 3(1+q 6)=a 6(1+q6q3)=b 7(1+q6q3),又1+q6q3=1q3+q 3≥2,当且仅当q =1时,等号成立,∴a 3+a 9≥b 4+b 10.故选B.2.已知a n =32n -11(n ∈N +),数列{a n }的前n 项和为S n ,则使S n >0的n 的最小值是A .5B .6C .10D .11答案 D解析 令f (x )=32x -11知f (x )关于(112,0)对称,∴a 1+a 10=a 2+a 9=a 3+a 8=a 5+a 6=0, 且a 6>a 7>a 8>a 9>a 10>…>0. ∴S 10=0,S 11>0,选D.3.数列{a n }中,S n 为其前n 项和,已知S 1=1,S 2=2,且S n +1-3S n +2S n -1=0(n ∈N *且n ≥2),则此数列为( )A .等差数列B .等比数列C .从第二项起为等差数列D .从第二项起为等比数列 答案 D解析 S n +1-3S n +2S n -1=0, ∴S n +1-S n =2S n -2S n -1,∴a n +1=2a n . 又a 1=1,a 2=1,∴从第二项起为等比数列.4.已知数列{a n }满足a 1=23,且对任意的正整数m ,n ,都有a m +n =a m +a n ,则a nn 等于A.12 B.23 C.32 D .2答案 B解析 令m =1,得a n +1=a 1+a n ,即a n +1-a n =a 1=23,可知数列{a n }是首项为a 1=23,公差为d =23的等差数列,于是a n =23+(n -1)·23=23n ,即a n n =23.故选B.5.设a 1,a 2,…,a 50是以-1,0,1这三个整数中取值的数列,若a 1+a 2+…+a 50=9且(a 1+1)2+(a 2+1)2+…+(a 50+1)2=107,则a 1,a 2,…,a 50当中取零的项共有A .11个B .12个C .15个D .25个答案 A解析 (a 1+1)2+(a 2+1)2+…+(a 50+1)2=a 21+a 22+…+a 250+2(a 1+a 2+…+a 50)+50=107,∴a 21+a 22+…+a 250=39,∴a 1,a 2,…,a 50中取零的项应为50-39=11个,故选A.6.已知等差数列{a n }满足a 1+a 2+a 3+…+a 101=0,则有 ( )A .a 1+a 101>0B .a 2+a 100<0C .a 3+a 99=0D .a 51=51答案 C解析 由题意,得a 1+a 2+…+a 101=a 1+a 1012×101=0.所以a 1+a 101=a 2+a 100=a 3+a 99=0.7.已知数列{a n },{b n }满足a 1=1,且a n ,a n +1是函数f (x )=x 2-b n x +2n的两个零点,则b 10=________.答案 64解析 a n +a n +1=b n ,a n ·a n +1=2n, ∴a n +1·a n +2=2n +1.∴a n +2=2a n .又∵a 1=1,a 1·a 2=2,∴a 2=2. ∴a 2n =2n,a 2n -1=2n -1(n ∈N *).∴b 10=a 10+a 11=64.8.已知S n 是等差数列{a n }的前n 项和,S 10>0并且S 11=0,若S n ≤S k 对n ∈N *恒成立,则正整数k 构成的集合为________.答案 {5,6}解析 等差数列中由S 10>0,S 11=0,得S 10=10a 1+a 102>0⇒a 1+a 10>0⇒a 5+a 6>0,S 11=11a 1+a 112=0⇒a 1+a 11=2a 6=0,故可知,等差数列{a n }是递减数列且a 6=0,所以S 5=S 6≥S n ,即k =5或6.∴集合为{5,6}.9.(2013·衡水调研)已知各项均为正数的数列{a n }的前n 项和为S n ,函数f (x )=12px2-(p +q )x +q ln x (其中p 、q 均为常数,且p >q >0),当x =a 1时,函数f (x )取得极小值,点(a n,2S n )(n ∈N *)均在函数y =2px 2-q x+f ′(x )+q 的图像上.(其中f ′(x )是函数f (x )的导函数)(1)求a 1的值;(2)求数列{a n }的通项公式; (3)记b n =4S n n +3·q n,求数列{b n }的前n 项和T n . 解析 (1)由题易得f (x )的定义域为(0,+∞).f ′(x )=px -(p +q )+q x =px 2-p +q x +q x =x -1px -qx.令f ′(x )=0,得x =1或x =qp. ∵p >q >0,∴0<q p<1.当x 变化时,f ′(x )、f (x )的变化情况如下表:(0,q p ) q p(q p,1) 1 (1,+∞)f ′(x ) +0 -0 +f (x )极大值极小值1(2)依题意,y =2px 2-q x+f ′(x )+q =2px 2+px -p , 2S n =2p ·a 2n +p ·a n -p (n ∈N *).∴2a 1=2p ·a 21+pa 1-p . 由a 1=1,得p =1. ∴2S n =2a 2n +a n -1.①∴当n ≥2时,2S n -1=2a 2n -1+a n -1-1. ②①-②得2a n =2(a 2n -a 2n -1)+a n -a n -1. ∴2(a 2n -a 2n -1)-(a n +a n -1)=0. ∴(a n +a n -1)(a n -a n -1-12)=0.由于a n +a n -1>0,∴a n -a n -1=12(n ≥2).∴{a n }是以a 1=1为首项,12为公差的等差数列.∴a n =1+(n -1)×12=n +12.(3)S n =n +n n -12·12=n 2+3n 4,∴b n =4S n n +3·q n =nq n .∴T n =q +2q 2+3q 3+…+(n -1)qn -1+nq n.③已知p >q >0,而由(2)知p =1,则q ≠1. ∴qT n =q 2+2q 3+3q 4+…+(n -1)q n +nqn +1.④由③-④,得(1-q )T n =q +q 2+q 3+…+q n -1+q n-nq n +1=q 1-q n 1-q-nq n +1.∴T n =q 1-q n 1-q 2-nq n +11-q. 10.将数列{a n }中的所有项按每一行比上一行多两项的规则排成如下数表:a 1a 2 a 3 a 4a 5 a 6 a 7 a 8 a 9…已知表中的第一列数a 1,a 2,a 5,…构成一个等差数列,记为{b n },且b 2=4,b 5=12.表中每一行正中间一个数a 1,a 3,a 7,…构成数列{c n },其前n 项和为S n .(1)求数列{b n }的通项公式;(2)若上表中,从第二行起,每一行中的数按从左到右的顺序均构成等比数列,公比为同一个正数,且a 13=1.①求S n ;②记M ={n |(n +1)c n ≥λ,n ∈N *},若集合M 的元素个数为3,求实数λ的取值范围. 解析 (1)设数列{b n }的公差为d ,则⎩⎪⎨⎪⎧b 1+d =4,b 1+4d =10,解得⎩⎪⎨⎪⎧b 1=2,d =2,所以b n =2n .(2)①设每一行组成的等比数列的公比为q .由于前n 行共有1+3+5+…+(2n -1)=n 2个数,且 32<13<42,所以a 10=b 4=8.所以a 13=a 10q 3=8q 3,又a 13=1,解得q =12.由已知可得c n =b n qn -1,因此c n =2n ·(12)n -1=n2n -2.所以S n =c 1+c 2+c 3+…+c n =12-1+220+321+…+n2n -2. 12S n =120+221+…+n -12n -2+n2n -1. 因此12S n =12-1+120+121+…+12n -2-n 2n -1=4-12n -2-n 2n -1=4-n +22n -1.解得S n =8-n +22n -2.②由①知,c n =n2n -2,不等式(n +1)c n ≥λ,可化为n n +12n -2≥λ.设f (n )=n n +12n -2,因为f (n +1)-f (n )=n +12-n2n -1,所以当n ≥3时,f (n +1)<f (n ).计算得f (1)=4,f (2)=f (3)=6,f (4)=5,f (5)=154.因为集合M 的元素个数为3,所以λ的取值范围是(4,5]. 11.已知数列{a n },a 1=1,a n =λa n -1+λ-2(n ≥2).(1)当λ为何值时,数列{a n }可以构成公差不为零的等差数列,并求其通项公式; (2)若λ=3,令b n =a n +12,求数列{b n }的前n 项和S n .解析 (1)a 2=λa 1+λ-2=2λ-2,a 3=λa 2+λ-2=2λ2-2λ+λ-2=2λ2-λ-2.∵a 1+a 3=2a 2,∴1+2λ2-λ-2=2(2λ-2), 得2λ2-5λ+3=0,解得λ=1或λ=32.当λ=32时,a 2=2×32-2=1,a 1=a 2,故λ=32不合题意舍去;当λ=1时,代入a n =λa n -1+λ-2可得a n -a n -1=-1. ∴数列{a n }构成首项为a 1=1,d =-1的等差数列. ∴a n =2-n .(2)当λ=3时,a n =3a n -1+1, 即a n +12=3(a n -1+12),即b n =3b n -1.∴数列{b n }构成首项为b 1=32,公比为3的等比数列.∴b n =32×3n -1=3n2.∴S n =321-3n1-3=34(3n-1). 12.已知等差数列{a n }的前n 项和为S n ,且S 4+a 2=2S 3,等比数列{b n }满足b 1=a 2,b 2=a 4.(1)求证:{b n }中的每一项均为{a n }中的项;(2)若a 1=12,数列{c n }满足:b n +1·c n =(-1)n(1+2log 2b n ),求数列{c n }的前n 项和T n .解析 (1)证明:设等差数列{a n }的公差为d ,由S 4+a 2=2S 3得4a 1+6d +a 1+d =6a 1+6d ,∴a 1=d .则a n =a 1+(n -1)d =na 1.∴b 1=2a 1,b 2=4a 1,等比数列{b n }的公比q =b 2b 1=2. 则b n =2a 1·2n -1=2na 1.∵2n∈N *,∴{b n }中的每一项均为{a n }中的项. (2)解析:∵a 1=12,∴b n =2n×12=2n -1.由b n +1·c n =(-1)n(1+2log 2b n ),得2n·c n =(-1)n[1+2(n -1)]=(-1)n(2n -1). ∴c n =-1n2n -12n=(2n -1)(-12)n.T n =(-12)+3(-12)2+5(-12)3+…+(2n -1)(-12)n ,-2T n =1+3(-12)+5(-12)2+…+(2n -1)(-12)n -1.两式相减,得-3T n =1+2(-12)+2(-12)2+…+2(-12)n -1-(2n -1)(-12)n=1-2+2·[1+(-12)+(-12)2+…+(-12)n -1]-(2n -1)(-12)n=-1+2·1--12n1--12-(2n -1)(-12)n=-1+43-43(-12)n -(2n -1)(-12)n=13-6n +13(-12)n ,∴T n =6n +19(-12)n -19. 13.已知数列{a n }中,a 1=2,a n +1-a n -2n -2=0,(n ∈N *). (1)求数列{a n }的通项公式; (2)设b n =1a n +1+1a n +2+1a n +3+…+1a 2n,若对任意的正整数n ,当m ∈[-1,1]时,不等式t 2-2mt +16>b n 恒成立,求实数t 的取值范围.解析 (1)由题意得a n -a n -1=2n (n ≥2), 累差叠加,得a n =n (n +1)(n ≥2). 又a 1=2,所以a n =n (n +1),(n ∈N *). (2)b n =1n +1n +2+1n +2n +3+…+12n2n +1=1n +1-12n +1=nn +12n +1=n2n 2+3n +1,b n =12n +1n+3,b n 的最大值为b 1=16, 所以t 2-2mt +16>16恒成立,m ∈[-1,1].构造g (m )=-2tm +t 2,即g (m )>0恒成立m ∈[-1,1]. 当t =0,不成立; 当t ≠0,g (m )是一次函数,⎩⎪⎨⎪⎧g -1>0,g1>0,解得t ∈(-∞,-2)∪(2,+∞).14.已知等差数列{a n }满足:a 3=7,a 5+a 7=26.{a n }的前n 项和为S n . (1)求a n 及S n ; (2)令b n =1a 2n -1(n ∈N *),求数列{b n }的前n 项和T n .答案 (1)a n =2n +1,S n =n (n +2) (2)T n =n4n +1解析 (1)设等差数列{a n }的首项为a 1,公差为d , 由于a 3=7,a 5+a 7=26, 所以a 1+2d =7,2a 1+10d =26, 解得a 1=3,d =2. 由于a n =a 1+(n -1)d ,S n =n a 1+a n2,所以a n =2n +1,S n =n (n +2).(2)因为a n =2n +1,所以a 2n -1=4n (n +1). 因此b n =14nn +1=14(1n -1n +1). 故T n =b 1+b 2+…+b n=14(1-12+12-13+…+1n -1n +1) =14(1-1n +1)=n4n +1. 所以数列{b n }的前n 项和T n =n4n +1. 15.设数列{a n }是等差数列,其前n 项和S n ,若S 4≥10,S 5≤15,求a 4的最大值. 解析 方法一 a 5=S 5-S 4≤5,S 5=a 1+a 2+…+a 5=5a 3≤15,a 3≤3,则a 4=a 3+a 52≤4,a 4的最大值为4.方法二 ∵⎩⎪⎨⎪⎧S 4=4a 1+6d ≥10,S 5=5a 1+10d ≤15⇒⎩⎪⎨⎪⎧-2a 1-3d ≤-5,a 1+2d ≤3⇒d ≤1.又∵S 5=a 1+a 2+a 3+a 4+a 5=5a 3≤15,∴a 3≤3. ∴a 4≤4.故a 4的最大值为4.方法三 本题也可利用线性规划知识求解.由题意得⎩⎪⎨⎪⎧4a 1+6d ≥10,5a 1+10d ≤15⇒⎩⎪⎨⎪⎧2a 1+3d ≥5,a 1+2d ≤3.a 4=a 1+3d .画出可行域⎩⎪⎨⎪⎧2a 1+3d ≥5,a 1+2d ≤3,求目标函数a 4=a 1+3d 的最大值,即当直线a 4=a 1+3d 过可行域内(1,1)点时截距最大,此时a 4=4.16.(2012·天津)已知{a n }是等差数列,其前n 项和为S n ,{b n }是等比数列,且a 1=b 1=2,a 4+b 4=27,S 4-b 4=10.(1)求数列{a n }与{b n }的通项公式;(2)记T n =a n b 1+a n -1b 2+…+a 1b n ,n ∈N *,证明:T n +12=-2a n +10b n (n ∈N *). 解析 (1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q .由a 1=b 1=2,得a 4=2+3d ,b 4=2q 3,S 4=8+6d .由条件,得方程组⎩⎪⎨⎪⎧2+3d +2q 3=27,8+6d -2q 3=10,解得⎩⎪⎨⎪⎧d =3,q =2.所以a n =3n -1,b n =2n,n ∈N *. (2)方法一 由(1)得T n =2a n +22a n -1+23a n -2+…+2n a 1,① 2T n =22a n +23a n -1+…+2n a 2+2n -1a 1.②由②-①,得T n =-2(3n -1)+3×22+3×23+…+3×2n +2n +2=121-2n -11-2+2n +2-6n +2=10×2n-6n -10.而-2a n +10b n -12=-2(3n -1)+10×2n -12=10×2n-6n -10,故T n +12=-2a n +10b n ,n ∈N *.方法二 (1)当n =1时,T 1+12=a 1b 1+12=16,-2a 1+10b 1=16,故等式成立; (2)假设当n =k 时等式成立,即T n +12=-2a k +10b k ,则当n =k +1时,有T k +1=a k +1b 1+a k b 2+a k -1b 3+…+a 1b k +1=a k +1b 1+q (a k b 1+a k -1b 2+…+a 1b k ) =a k +1b 1+qT k=a k +1b 1+q (-2a k +10b k -12) =2a k +1-4(a k +1-3)+10b k +1-24 =-2a k +1+10b k +1-12. 即T k +1+12=-2a k +1+10b k +1. 因此n =k +1时等式也成立.由(1)和(2),可知对任意n ∈N *,T n +12=-2a n +10b n 成立.17.(2012·陕西)设{a n }是公比不为1的等比数列,其前n 项和为S n ,且a 5,a 3,a 4成等差数列.(1)求数列{a n }的公比;(2)证明:对任意k ∈N +,S k +2,S k ,S k +1成等差数列. 解析 (1)设数列{a n }的公比为q (q ≠0,q ≠1), 由a 5,a 3,a 4成等差数列,得2a 3=a 5+a 4. 即2a 1q 2=a 1q 4+a 1q 3.由a 1≠0,q ≠0,得q 2+q -2=0,解得q 1=-2,q 2=1(舍去),所以q =-2.(2)方法一 对任意k ∈N +,S k +2+S k +1-2S k =(S k +2-S k )+(S k +1-S k )=a k +1+a k +2+a k +1 =2a k +1+a k +1·(-2) =0,所以,对任意k ∈N +,S k +2,S k ,S k +1成等差数列. 方法二 对任意k ∈N +,2S k =2a 11-q k1-q,S k +2+S k +1=a 11-q k +21-q +a 11-q k +11-q=a 12-q k +2-q k +11-q,2S k -(S k +2+S k +1)=2a 11-q k1-q-a 12-q k +2-q k +11-q=a 11-q[2(1-q k)-(2-qk +2-q k +1)]=a 1q k 1-q(q 2+q -2)=0, 因此,对任意k ∈N +,S k +2,S k ,S k +1成等差数列.18.(2012·广东)设数列{a n }的前n 项和为S n ,满足2S n =a n +1-2n +1+1,n ∈N *,且a 1,a 2+5,a 3成等差数列.(1)求a 1的值;(2)求数列{a n }的通项公式;(3)证明:对一切正整数n ,有1a 1+1a 2+…+1a n <32.解析 (1)∵a 1,a 2+5,a 3成等差数列, ∴2(a 2+5)=a 1+a 3.又∵2a 1=2S 1=a 2-22+1,2(a 1+a 2)=2S 2=a 3-23+1, ∴a 2=2a 1+3,a 3=6a 1+13.因此4a 1+16=7a 1+13,从而a 1=1.(2)由题设条件知,n ≥2时,2S n -1=a n -2n+1, 2S n =a n +1-2n +1+1.∴2a n =a n +1-a n -2n,于是a n +1=3a n +2n (n ≥2).而由(1)知,a 2=2a 1+3=5=3a 1+2, 因此对一切正整数n ,有a n +1=3a n +2n. 所以a n +1+2n +1=3(a n +2n).又∵a 1+21=3,∴{a n +2n}是以3为首项,3为公比的等比数列. 故a n +2n=3n,即a n =3n-2n. (3)∵a n =3n-2n=3·3n -1-2n =3n -1+2(3n -1-2n -1)≥3n -1,∴1a n ≤13n -1. ∴1a 1+1a 2+…+1a n ≤1+13+132+…+13n -1=1-13n1-13<32. 19.(2012·湖北)已知等差数列{a n }前三项的和为-3,前三项的积为8. (1)求等差数列{a n }的通项公式;(2)若a 2,a 3,a 1成等比数列,求数列{|a n |}的前n 项和. 解析 (1)设等差数列{a n }的公差为d ,则a 2=a 1+d ,a 3=a 1+2d .由题意得⎩⎪⎨⎪⎧3a 1+3d =-3,a 1a 1+d a 1+2d =8.解得⎩⎪⎨⎪⎧a 1=2,d =-3或⎩⎪⎨⎪⎧a 1=-4,d =3.所以由等差数列的通项公式可得a n =2-3(n -1)=-3n +5或a n =-4+3(n -1)=3n -7.故a n =-3n +5或a n =3n -7.(2)当a n =-3n +5时,a 2,a 3,a 1分别为-1,-4,2,不成等比数列; 当a n =3n -7时,a 2,a 3,a 1分别为-1,2,-4,成等比数列,满足条件.故|a n |=|3n -7|=⎩⎪⎨⎪⎧-3n +7,n =1,2,3n -7,n ≥3.记数列{|a n |}的前n 项和为S n .当n =1时,S 1=|a 1|=4;当n =2时,S 2=|a 1|+|a 2|=5;当n ≥3时,S n =S 2+|a 3|+|a 4|+…+|a n |=5+(3×3-7)+(3×4-7)+…+(3n -7)=5+n -2[2+3n -7]2=32n 2-112n +10.当n =2时,满足此式. 综上,S n =⎩⎪⎨⎪⎧4,n =1,32n 2-112n +10,n >1.20.(2012·江西)已知数列{a n }的前n 项和S n =kc n-k (其中c ,k 为常数),且a 2=4,a 6=8a 3.(1)求a n ;(2)求数列{na n }的前n 项和T n .解析 (1)由S n =kc n -k ,得a n =S n -S n -1=kc n -kcn -1(n ≥2).由a 2=4,a 6=8a 3,得kc (c -1)=4,kc 5(c -1)=8kc 2(c -1).解得⎩⎪⎨⎪⎧c =2,k =2,所以a 1=S 1=2,a n =kc n -kcn -1=2n (n ≥2),于是a n =2n.(2)T n =∑i =1nia i =∑i =1ni ·2i,即T n =2+2·22+3·23+4·24+…+n ·2n ,T n =2T n -T n =-2-22-23-24-…-2n +n ·2n +1=-2n +1+2+n ·2n +1=(n -1)2n +1+2.21.(2012·安徽)数列{x n }满足x 1=0,x n +1=-x 2n +x n +c (n ∈N *). (1)证明:{x n }是递减数列的充分必要条件是c <0; (2)求c 的取值范围,使{x n }是递增数列.解析 (1)先证充分性,若c <0,由于x n +1=-x 2n +x n +c ≤x n +c <x n ,故{x n }是递减数列; 再证必要性,若{x n }是递减数列,则由x 2<x 1,可得c <0. (2)(ⅰ)假设{x n }是递增数列. 由x 1=0,得x 2=c ,x 3=-c 2+2c . 由x 1<x 2<x 3,得0<c <1. 由x n <x n +1=-x 2n +x n +c 知, 对任意n ≥1都有x n <c ,①注意到c -x n +1=x 2n -x n -c +c =(1-c -x n )(c -x n ),②由①式和②式可得1-c -x n >0,即x n <1-c . 由②式和x n ≥0还可得,对任意n ≥1都有c -x n +1≤(1-c )(c -x n ).③21 反复运用③式,得c -x n ≤(1-c )n -1(c -x 1)<(1-c )n -1.x n <1-c 和c -x n <(1-c )n -1两式相加,知 2c -1<(1-c )n -1对任意n ≥1成立.根据指数函数y =(1-c )n 的性质,得2c -1≤0,c ≤14.故0<c ≤14. (ⅱ)若0<c ≤14,要证数列{x n }为递增数列,即 x n +1-x n =-x 2n +c >0,即证x n <c 对任意n ≥1成立.下面用数学归纳法证明:当0<c ≤14时,x n <c 对任意n ≥1成立. (1)当n =1时,x 1=0<c ≤12,结论成立. (2)假设当n =k (k ∈N *)时结论成立,即x k <c .因为函数f (x )=-x 2+x +c 在区间(-∞,12]内单调递增,所以x k +1=f (x k )<f (c )=c ,这就是说当n =k +1时,结论也成立. 故x n <c 对任意n ≥1成立.因此,x n +1=x n -x 2n +c >x n ,即{x n }是递增数列.由(ⅰ)(ⅱ)知,使得数列{x n }单调递增的c 的范围是(0,14].。

新教材老高考适用2023高考数学一轮总复习单元质检卷五数列北师大版(含答案)

新教材老高考适用2023高考数学一轮总复习单元质检卷五数列北师大版(含答案)

新教材老高考适用2023高考数学一轮总复习:单元质检卷五 数列(时间:120分钟 满分:150分)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2021湖南永州高三月考)“a ,b ,c 成等比数列”是“a 2,b 2,c 2成等比数列”的( ) A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件2.(2021福建宁德高三三模)在等差数列{a n }中,其前n 项和为S n ,若S 1=S 25,a 3+a 8=32,则S 16=( ) A.80B.160C.176D.1983.(2021湖北武汉高三月考)“十二平均律”是目前世界上通用的把一组音(八度)分成十二个半音音程的律制,各相邻两律之间的振动数之比完全相等,亦称“十二等程律”,即一个八度13个音,相邻两个音之间的频率之比相等,且最后一个音的频率是最初那个音的2倍.设第8个音的频率为f ,则频率为√842f 的音是( ) A.第3个音 B.第4个音C.第5个音D.第6个音4.(2021河北邯郸高三期末)在等差数列{a n }中,a 2+2a 5=15,S n 为数列{a n }的前n 项和,则S 7=( ) A.30B.35C.40D.455.(2021湖北武昌高三一模)已知S n 是等比数列{a n }的前n 项和,若存在m ∈N *,满足S 2m S m=9,a2m a m=5m+1m -1,则数列{a n }的公比为( )A.-2B.2C.-3D.36.(2021浙江金华高三月考)已知数列n a n是等差数列,则( )A.a 3+a 6=2a 4B.a 3+a 6=a 4+a 5C.1a 3+1a 6=2a 4D.1a 3+1a 6=1a 4+1a 57.(2021北京朝阳高三二模)记S n为等比数列{a n}的前n项和,已知a1=8,a4=-1,则数列{S n}()A.有最大项,有最小项B.有最大项,无最小项C.无最大项,有最小项D.无最大项,无最小项,其中f(n)为最接近√n的整数,若数列{a n}的8.(2021湖南长郡中学高三二模)在数列{a n}中,a n=1f(n)前m项和为20,则m=()A.15B.30C.60D.1109.在数列{a n}中,a1=1,a n a n-1-a n-1+1=0(n≥2,n∈N*),S n是其前n项和,则下列说法错误的是()2A.a6=2B.S12=6C.a112=a10a12D.2S11=S10+S1210.已知数列{a n}是等比数列,公比为q,前n项和为S n,下列说法正确的有()A.数列1为等比数列a nB.数列log2a n为等差数列C.数列{a n+a n+1}为等比数列D.若S n=3n-1+r,则r=1311.若直线3x+4y+n=0(n∈N*)与圆C:(x-2)2+y2=a n2(a n>0)相切,则下列说法错误的是()A.a1=65B.数列{a n}为等差数列C.圆C可能过坐标原点D.数列{a n}的前10项和为2312.分形几何学是一门以不规则几何形态为研究对象的几何学,分形的外表结构极为复杂,但其内部却是有规律可循的,一个数学意义上的分形的生成是基于一个不断迭代的方程式,即一种基于递归的反馈系统.下面我们用分形的方法得到一系列图形,如图1,在长度为1的线段AB上取两个点C,D,AB,以线段CD为边在线段AB的上方作一个正方形,然后擦掉线段CD,就得到图2;对图使得AC=DB=142中的最上方的线段EF作同样的操作,得到图3;依次类推,我们就得到以下的一系列图形.设图1,图2,图3,……,图n,各图中的线段长度和为a n,数列{a n}的前n项和为S n,则()A.数列{a n}是等比数列B.S10=1256C.a n<3恒成立D.存在正数m,使得S n<m恒成立二、填空题:本题共4小题,每小题5分,共20分.13.(2021江苏南通高三三模)已知等差数列{a n}的前n项和为S n,公差为d,若S2n=2S n+n2,则d=.14.(2021福建三明高三二模)已知各项均为正数的等比数列{a n}的前n项和为S n,a n a n+1=22n+1,则S n=.15.(2021江西南昌高三开学考试)在数列{a n}中,a n+a n+2=n(n∈N*),则数列{a n}的前20项和S20=.16.(2021北京昌平高三模拟)已知数列{a n}的通项公式为a n=ln n,若存在p∈R,使得a n≤pn对任意n∈N*都成立,则p的取值范围为.三、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)(2021广西南宁高三月考)已知等差数列{a n}满足a n+2a n+1=3n+5.(1)求数列{a n}的通项公式;的前n项和为S n.若∀n∈N*,S n<-λ2+4λ(λ为偶数),求实数λ的值.(2)记数列1a n a n+118.(12分)(2021山东泰安高三模拟)已知S n为等比数列{a n}的前n项和,若a3=2,且4a1,3S2,2S3是等差数列{b n}的前三项.(1)求数列{a n }的前n 项和S n ;(2)求数列{b n }的通项公式,并求使得a n >b n 的n 的取值范围.19.(12分)(2021重庆巴蜀中学高三月考)已知数列{a n }满足a n >0,数列{a n }的前n 项和为S n ,若 ,①a 1+3a 2+32a 3+…+3n-1a n =n ·3n (n ∈N *); ②数列{c n }满足:c n =1a n+1−1a n,a 1=3,且{c n }的前n 项和为12n+3−13;③S n =(a n +1)24-1(n ∈N *).(1)求数列{a n }的通项公式;(2)若数列{b n }是首项和公比均为2的等比数列,求数列{a b n }中有多少个小于2 021的项. 20.(12分)已知数列{a n }的前n 项和S n 满足:tS n+1-S n =t (a n+1+a n -1),t ∈R 且t (t-1)≠0,n ∈N *. (1)求数列{a n }的通项公式;(2)已知数列{b n }是等差数列,且b 1=3a 1,b 2=2a 2,b 3=a 3,求数列{a n b n }的前n 项和T n .21.(12分)(2021福建龙岩高三期中)已知各项均为正数的无穷数列{a n }的前n 项和为S n ,且a 1=1,nS n+1=(n+1)S n +n (n+1)(n ∈N *).(1)求数列{a n }的通项公式;(2)记[x ]表示不超过x 的最大整数,如[0.99]=0,[3.01]=3.令b n =[√a n ],求数列{b n }的前51项和T 51.22.(12分)(2021天津和平高三模拟)已知函数f (x )=x 2+m ,其中m ∈R ,定义数列{a n }如下:a 1=0,a n+1=f (a n ),n ∈N *. (1)当m=1时,求a 2,a 3,a 4的值;(2)是否存在实数m ,使a 2,a 3,a 4成公差不为0的等差数列?若存在,请求出实数m 的值;若不存在,请说明理由;(3)求证:当m>14时,总能找到k ∈N *,使得a k >2 021.单元质检卷五 数列1.A 解析:若a ,b ,c 成等比数列,则b 2=ac ,此时a 2c 2=(ac )2=b 4,则a 2,b 2,c 2成等比数列,即充分性成立.反之当a=1,b=1,c=-1时满足a 2,b 2,c 2成等比数列,但a ,b ,c 不成等比数列,即必要性不成立,即“a ,b ,c 成等比数列”是“a 2,b 2,c 2成等比数列”的充分不必要条件.故选A . 2.B 解析:设等差数列{a n }的首项为a 1,公差为d ,则根据题意可知,{a 1=25a 1+12×25×24×d,a 1+2d +a 1+7d =32,即{2a 1+25d =0,2a 1+9d =32,解得{a 1=25,d =−2,故S 16=16×25+12×16×15×(-2)=160.故选B .3.C 解析:由题意知,这13个音的频率成等比数列,设这13个音的频率分别是a 1,a 2,…,a 13,公比为q (q>0),则a13a 1=q 12=2,得q=√212,所以a n =a 8q n-8=(√212)n-8f=2n -812f.令2n -812f=√842f=2-14f ,解得n=5.故选C .4.B 解析:由a 2+2a 5=15得a 2+a 4+a 6=15,即3a 4=15,因此a 4=5,于是S 7=7a 4=7×5=35.故选B .5.B 解析:设数列{a n }的公比为q.若q=1,则S 2m S m=2,与题中条件矛盾,故q ≠1.∵S2m S m=a 1(1-q 2m )1−q a 1(1-q m )1−q=q m +1=9,∴q m =8.∵a2m a m=a 1q 2m -1a 1q m -1=q m =8=5m+1m -1,∴m=3,∴q 3=8,∴q=2.故选B .6.C 解析:设数列n a n 的公差为d ,则4a 4=3a 3+d ,5a 5=3a 3+2d ,6a 6=3a 3+3d ,因此1a 3+1a 6=1a 3+163a 3+3d =123a 3+d =12×4a 4=2a 4,故选项C 正确;a 6=2a 3da3+1,a 4=4a 3da3+3,不满足a 3+a 6=2a 4,故选项A 错误;a 5=5a32da 3+3,a 3+a 6≠a 4+a 5,故选项B 错误;1a 3+1a 6=32a 3+12d ,1a 4+1a 5=2720a 3+1320d ,则1a 3+1a 6≠1a 4+1a 5,故选项D 错误.故选C .7.A 解析:设数列{a n }的公比为q ,则q 3=a 4a 1=-18,所以q=-12,所以S n =a 1(1-q n )1−q=8[1−(−12) n ]1−(−12)=1631--12n.当n 为偶数时,S n =1631-12n ,即S 2<S 4<S 6<…<163;当n 为奇数时,S n =163(1+12n ),即S 1>S 3>S 5>…>163,所以数列{S n }有最大项S 1,最小项S 2,故选A .8.D 解析:由题意知,函数f (n )为最接近√n 的整数.f (1)=1,f (2)=1,f (3)=2,f (4)=2,f (5)=2,f (6)=2,f (7)=3,f (8)=3,f (9)=3,f (10)=3,f (11)=3,f (12)=3,…,由此可得在最接近√n 的整数f (n )中,有2个1,4个2,6个3,8个4,….又由a n =1f(n),可得a 1=a 2=1,a 3=a 4=a 5=a 6=12,a 7=a 8=…=a 12=13,…,则a 1+a 2=2,a 3+a 4+a 5+a 6=2,a 7+a 8+…+a 12=2,….因为数列{a n }的前m 项和为20,即S m =10×2=20,可得m 为首项为2,公差为2的等差数列的前10项和,所以m=10×2+10×92×2=110.故选D .9.D 解析:当n=2时,有a 2a 1-a 1+1=0,即12a 2-12+1=0,解得a 2=-1,同理可得a 3=2,a 4=12,因此数列{a n }的项以3为周期重复出现,且S 3=a 1+a 2+a 3=12-1+2=32,所以a 6=a 3=2,故选项A 正确;S 12=4S 3=4×32=6,故选项B 正确;因为a 11=a 2=-1,a 10=a 1=12,a 12=a 3=2,所以a 112=a 10a 12,故选项C 正确;因为2S 11=2(S 9+a 10+a 11)=23×32+12-1=8,S 10+S 12=S 9+a 10+S 12=3S 3+4S 3+a 10=7×32+12=11,所以2S 11≠S 10+S 12,故选项D 不正确,故选D.10.A 解析:对于A 选项,设b n =1a n ,则b n+1b n=a n a n+1=1q(n ≥1,n ∈N *),所以数列1a n为等比数列,故A正确;对于B 选项,若a n <0,则log 2a n 没意义,故B 错误;对于C 选项,当q=-1时,a n +a n+1=0,等比数列的任一项都不能为0,故C 错误;对于D 选项,由题意得q ≠1,S n =a 1(1-q n )1−q=a 1qq -1q n-1-a1q -1.由S n =3n-1+r 得,q=3,a 1q q -1=1,即a 1=23,所以r=-a 1q -1=-13,故D 错误.故选A . 11.A 解析:由圆C :(x-2)2+y 2=a n 2(a n >0),则圆心C (2,0),半径为a n .因为直线3x+4y+n=0与圆C :(x-2)2+y 2=a n 2(a n >0)相切,所以圆心C (2,0)到直线3x+4y+n=0的距离为a n ,即√9+16=n+65=a n ,则a 1=75,故选项A 错误;由a n =n+65,可得a n+1-a n =15,所以数列{a n }是以15为公差的等差数列,故选项B 正确;将(0,0)代入C :(x-2)2+y 2=a n 2,解得a n =2.由n+65=2,解得n=4,所以当n=4时,圆C 过坐标原点,故选项C 正确;设数列{a n }的前n 项和为S n ,则S n =n(75+n+65)2=n(n+13)10,所以S 10=10×(10+13)10=23,故选项D 正确.故选A.12.C 解析:由题意可得a 1=1,a 2=a 1+2×12,a 3=a 2+2×122,以此类推可得a n+1=a n +2×12n ,则a n+1-a n =22n ,所以a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1)=1+221+222+…+22n -1=1+1−12n -11−12=3-12n -2,所以数列{a n }不是等比数列,故A 错误;对于B 选项,S 10=3×10-2(1−1210)1−12=26+128=6657256,故B 错误;对于C 选项,a n =3-12n -2<3恒成立,故C 正确;对于D 选项,因为a n =3-12n -2>0恒成立,且a n+1-a n =3-12n -1-3+12n -2=12n -1>0,则数列{S n }为递增数列,所以数列{S n }无最大值,因此不存在正数m ,使得S n <m ,故D 错误.故选C .13.1 解析:因为数列{a n }为公差为d 的等差数列,所以S 2n =2n(a 1+a 2n )2=n (a 1+a 2n ),S n =n(a 1+a n )2.又S 2n =2S n +n 2,所以n (a 1+a 2n )=2×n(a 1+a n )2+n 2,即a 1+a 2n =a 1+a n +n ,所以a 2n -a n =nd=n ,解得d=1.14.2n+1-2 解析:设各项均为正数的等比数列{a n }的公比为q (q>0),首项为a 1(a 1>0). 因为a n a n+1=22n+1,所以a n+1a n+2=22n+3,因此a n+1a n+2a n a n+1=22n+322n+1=4,即q 2=4,所以q=2.而a 1a 2=8,即a 12q=8,所以a 1=2,所以S n =2(1−2n )1−2=2n+1-2.15.95 解析:因为a n +a n+2=n (n ∈N *),所以a n+1+a n+3=n+1(n ∈N *),所以a n +a n+1+a n+2+a n+3=2n+1(n ∈N *),所以S 20=a 1+a 2+…+a 20=(a 1+a 2+a 3+a 4)+…+(a 17+a 18+a 19+a 20)=2×1+1+2×5+1+2×9+1+2×13+1+2×17+1=2×(1+5+9+13+17)+5=2×(1+17)×52+5=95.16.ln33,+∞ 解析:若存在p ∈R ,使得a n ≤pn 对任意的n ∈N *都成立,则p ≥lnn nmax.设f (x )=lnx x(x ∈N *),则f'(x )=1x·x -lnx x 2.令f'(x )=1−lnx x 2=0,解得x=e,所以函数f (x )在(0,e)上单调递增,在(e,+∞)上单调递减,所以函数在x=e 时取最大值.因为n ∈N *,所以当n=3时函数最大值为ln33,所以p 的取值范围是ln33,+∞.17.解(1)设等差数列{a n }的公差为d.因为a n +2a n+1=3n+5,所以{a 1+2a 2=8,a 2+2a 3=11即{3a 1+2d =8,3a 1+5d =11,解得{a 1=2,d =1,所以a n =2+(n-1)=n+1.经检验,a n =n+1符合题设,所以数列{a n }的通项公式为a n =n+1. (2)由(1)得,1a n a n+1=1(n+1)(n+2)=1n+1−1n+2,所以S n =12−13+13−14+…+1n+1−1n+2=12−1n+2.因为n ∈N *,所以S n <12.又因为∀n ∈N *,S n <-λ2+4λ, 所以-λ2+4λ≥12,即(λ-2)2≤72.因为λ为偶数,所以实数λ的值为2. 18.解(1)设等比数列{a n }的公比为q.由4a 1,3S 2,2S 3是等差数列{b n }的前三项,得6S 2=4a 1+2S 3,即3S 2=2a 1+S 3, 所以3(a 1+a 1q )=2a 1+a 1+a 1q+a 1q 2,整理得q 2=2q ,解得q=2. 由a 3=2,得a 1×22=2,所以a 1=12, 所以S n =12(1-2n )1−2=2n -12.(2)由(1)得a n =2n-2,所以4a 1=2,3S 2=92,2S 3=7, 即等差数列{b n }的前三项为2,92,7,所以b n =2+(n-1)92-2=12(5n-1). 由a n >b n ,得12×2n-1>12×(5n-1),即2n-1>5n-1. 令c n =2n-1-5n+1,则有c n+1-c n =2n-1-5. 当1≤n ≤3时,c n+1-c n <0,即c 1>c 2>c 3>c 4; 当n ≥4时,c n+1-c n >0,即c 4<c 5<…<c n <…. 而c 1=-3,c 5=-8,c 6=3,所以使a n >b n 的n 的取值范围是{n|n ≥6,n ∈N *}. 19.解(1)若选①.因为a 1+3a 2+32a 3+…+3n-1a n =n ·3n (n ∈N *),所以当n ≥2时,a 1+3a 2+32a 3+…+3n-2a n-1=(n-1)·3n-1, 两式相减得3n-1a n =(2n+1)·3n-1,则a n =2n+1. 又a 1=2+1=3,符合上式,所以a n =2n+1(n ∈N *). 若选②. 由于c 1+c 2+…+c n =1a 2−1a1+1a 3−1a2+…+1a n+1−1an=1an+1−1a 1=12n+3−13,又a 1=3,所以a n+1=2n+3,因此当n ≥2时,a n =2n+1. 又a 1=2+1=3,符合上式,所以a n =2n+1(n ∈N *). 若选③.当n=1时,a 1=3. 因为S n =(a n +1)24-1(n ∈N *),所以当n ≥2时,S n-1=(a n -1+1)24-1(n ∈N *),两式相减得a n =S n -S n-1=(a n +1)24−(a n -1+1)24,即4a n =a n 2+2a n +1-a n -12-2a n-1-1,所以(a n +a n-1)(a n -a n-1-2)=0.又a n >0,所以a n -a n-1=2, 故数列{a n }为等差数列,而a 1=3,d=2, 所以a n =2n+1.(2)由已知得b n =2n ,所以a b n =2b n +1=2n+1+1,易知数列{a b n }为递增数列. 又210=1024<2021,211=2048>2021,所以n+1≤10,n ≤9,n ∈N *,所以数列{a b n }中有9个小于2021的项. 20.解(1)当n=1时,tS 2-S 1=t (a 2+a 1-1),解得a 1=t , 当n ≥2时,tS n+1-S n =t (a n+1+a n -1),tS n -S n-1=t (a n +a n-1-1), 两式相减得ta n+1-a n =t (a n+1-a n-1),即a n =ta n-1. 又因为a 1=t ≠0,所以a n-1≠0,即an a n -1=t ,所以数列{a n }是以t 为首项,t 为公比的等比数列, 故数列{a n }的通项公式为a n =t n ,n ∈N *. (2)由题意可知,2b 2=b 1+b 3,即4a 2=3a 1+a 3,所以4t 2=3t+t 3.因为t ≠0,所以t 2-4t+3=0,解得t=3,t=1. 又因为t ≠1,所以t=3,故a n =3n ,n ∈N *.设数列{b n }的公差为d.由b 1=9,b 2=18,b 3=27,可知d=9, 因此b n =b 1+(n-1)d=9+9(n-1)=9n , 所以a n b n =9n ·3n =n ·3n+2,所以T n =1×33+2×34+3×35+…+n ·3n+2, ① 3T n =1×34+2×35+…+(n-1)·3n+2+n ·3n+3, ②①-②得-2T n =33+34+35+…+3n+2-n ·3n+3=3n+3-272-n ·3n+3,所以T n =(2n -1)3n+3+274.21.解(1)因为nS n+1=(n+1)S n +n (n+1),所以Sn+1n+1=S n n+1.又因为S 1=a 1=1,所以数列S n n是以1为首项,1为公差的等差数列,因此Sn n=n ,即S n =n 2.当n ≥2时,a n =S n -S n-1=2n-1,又因为a 1=1符合上式,故a n =2n-1(n ∈N *).(2)由(1)知b n =[√a n ]=[√2n -1],当n ∈{1,2}时,b n =[√2n -1]=1; 当n ∈{3,4}时,b n =[√2n -1]=2;当n ∈{5,6,7,8}时,b n =[√2n -1]=3;当n ∈{9,10,11,12}时,b n =[√2n -1]=4;当n ∈{13,14,15,16,17,18}时,b n =[√2n -1]=5; 当n ∈{19,20,21,22,23,24}时,b n =[√2n -1]=6;当n ∈{25,26,…,31,32}时,b n =[√2n -1]=7; 当n ∈{33,34,…,37,40}时,b n =[√2n -1]=8;当n ∈{41,42,…,49,50}时,b n =[√2n -1]=9; 当n=51时,b n =[√2n -1]=10, 所以数列{b n }的前51项和T 51=2×1+2×2+4×3+4×4+6×5+6×6+8×7+8×8+10×9+1×10=320.22.(1)解因为m=1,所以f (x )=x 2+1.因为a 1=0,所以a 2=f (a 1)=f (0)=1,a 3=f (a 2)=f (1)=2,a 4=f (a 3)=f (2)=5. (2)解存在.(方法1)假设存在实数m ,使得a 2,a 3,a 4成公差不为0的等差数列, 则a 2=f (0)=m ,a 3=f (m )=m 2+m ,a 4=f (a 3)=(m 2+m)2+m.因为a 2,a 3,a 4成等差数列,所以2a 3=a 2+a 4,所以2(m 2+m )=m+(m 2+m)2+m ,化简得m 2(m 2+2m-1)=0,解得m=0(舍),m=-1±√2.经检验,此时a 2,a 3,a 4的公差不为0, 所以存在m=-1±√2,使得a 2,a 3,a 4成公差不为0的等差数列.(方法2)因为a 2,a 3,a 4成等差数列,所以a 3-a 2=a 4-a 3,即a 22+m-a 2=a 32+m-a 3, 所以(a 32−a 22)-(a 3-a 2)=0,即(a 3-a 2)(a 3+a 2-1)=0.因为公差d ≠0,故a 3-a 2≠0,所以a 3+a 2-1=0,解得m=-1±√2. 经检验,此时a 2,a 3,a 4的公差不为0,11 所以存在m=-1±√2,使得a 2,a 3,a 4成公差不为0的等差数列.(3)证明因为a n+1-a n =a n 2+m-a n =a n -122+m-14≥m-14,且m>14,所以令t=m-14>0, 得a n -a n-1≥t ,a n-1-a n-2≥t ,…,a 2-a 1≥t. 将上述不等式全部相加得a n -a 1≥(n-1)t ,即a n ≥(n-1)t , 因此要使a k >2021成立,只需(k-1)t>2021, 因此只要取正整数k>2021t +1,就有a k ≥(k-1)t>2021t ·t=2021.综上,当m>14时,总能找到k ∈N *,使得a k >2021.。

2025版新教材高考数学复习特训卷单元过关检测六数列

2025版新教材高考数学复习特训卷单元过关检测六数列

单元过关检测六 数列一、单项选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.记等差数列{a n }的前n 项和为S n ,若S 11=22,则a 1+a 3+a 9+a 11=( ) A .2 B .4 C .8 D .162.已知等比数列{a n }中,a 1=1,且a 5+a 8a 2+a 5=8,那么S 5的值是( ) A .15 B .31 C .63 D .643.已知数列{a n }满意a 1=2,a 2=3,a n +2=a n +1a n,则a 2 022=( ) A .12 B .13 C .32 D .234.记S n 为等比数列{a n }的前n 项和.若S 2=3,S 4=6,则S 6=( ) A .7 B .8 C .9 D .105.在等差数列{a n }中,a 1,a 2,,,成公比为3的等比数列,则k 3=( )A .14B .34C .41D .866.[2024·北京通州模拟]已知数列{a n }满意a 1=1,a n +1=a n +1,记b n =a 2n -1,则数列{b n }的前n 项和为( )A .n 2B .(n +1)2C .n (n +1)2D .n (n +1)7.[2024·山东德州模拟]意大利闻名数学家斐波那契在探讨兔子繁殖问题时,发觉有这样一列数:1,1,2,3,5,…,从第三项起,每个数等于它前面两个数的和,即a n +2=a n +1+a n (n ∈N *),后来人们把这样的一列数组成的数列{a n }称为“斐波那契数列”.记a 2 023=m ,则a 2+a 4+a 6+…+a 2 022=( )A .m -2B .m -1C .mD .m +18.[2024·山东聊城模拟]若函数f (x )使得数列a n =f (n ),n ∈N *为递增数列,则称函数f (x )为“数列保增函数”.已知函数f (x )=e x-ax 为“数列保增函数”,则a 的取值范围为( )A .(-∞,0]B .(-∞,e 2-e) C .(-∞,e) D .(-∞,e]二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.若{a n }为等差数列,a 2=11,a 5=5,则下列说法正确的是( ) A .a n =15-2nB .-20是数列{a n }中的项C .数列{a n }单调递减D .数列{a n }前7项和最大10.若{a n }为等比数列,则下列数列中是等比数列的是( ) A .{a 2n }B .{k ·a n }(其中k ∈R 且k ≠0)C .⎩⎨⎧⎭⎬⎫1a n D .{ln a n }11.已知S n 是等比数列{a n }的前n 项和,S 3,S 9,S 6成等差数列,则下列结论正确的是( ) A .a 2+a 5=2a 8 B .a 3+a 6=2a 9 C .a 28 =a 2·a 5 D .a 29 =a 3·a 6 12.已知数列{a n }满意a n >0,a n +1n =a n a 2n +n -1(n ∈N *),数列{a n }的前n 项和为S n ,则下列结论正确的是( )A .a 1a 2=1B .a 1=1C .S 2 020·a 2 021=2 020D .S 2 020·a 2 021>2 020 [答题区]13.在等差数列{a n }中,a 1+a 9=2,则a 4+4a 5+a 6=________.14.设S n 为数列{a n }的前n 项和,且a 1=4,a n +1=S n ,n ∈N *,则a n =________. 15.记数列{a n }的前n 项和为S n ,若a n =2n3n -49,则使得S n 取得最小值时n 的值为________.16.[2024·新高考Ⅰ卷]某校学生在探讨民间剪纸艺术时,发觉剪纸时常常会沿纸的某条对称轴把纸对折,规格为20 dm×12 dm 的长方形纸,对折1次共可以得到10 dm×12 dm,20 dm×6 dm 两种规格的图形,它们的面积之和S 1=240 dm 2,对折2次共可以得到5 dm×12 dm ,10 dm×6 dm,20 dm×3 dm 三种规格的图形,它们的面积之和S 2=180 dm 2.以此类推,则对折4次共可以得到不同规格图形的种数为________;假如对折n 次,那么∑k =1nS k =________ dm 2.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)[2024·新高考Ⅱ卷]记S n 是公差不为0的等差数列{a n }的前n 项和,若a 3=S 5,a 2a 4=S 4.(1)求数列{a n }的通项公式a n ; (2)求使S n >a n 成立的n 的最小值.18.(12分)[2024·新高考Ⅰ卷]已知数列{a n }满意a 1=1,a n +1=⎩⎪⎨⎪⎧a n +1,n 为奇数,a n +2,n 为偶数.(1)记b n =a 2n ,写出b 1,b 2,并求数列{}b n 的通项公式;(2)求{a n}的前20项和.19.(12分)[2024·新高考Ⅱ卷]已知{a n}为等差数列,{b n}是公比为2的等比数列,且a2-b2=a3-b3=b4-a4.(1)证明:a1=b1;(2)求集合{k|b k=a m+a1,1≤m≤500}中元素个数.20.(12分)[2024·河北唐山模拟]已知数列{a n}的各项均不为零,S n为其前n项和,且a n a n+1=2S n-1.(1)证明:a n+2-a n=2;(2)若a1=-1,数列{b n}为等比数列,b1=a1,b2=a3.求数列{a n b n}的前2 022项和T2 022.21.(12分)已知数列{a n}的前n项和为S n,且4S n=(2n-1)a n+1+1,a1=1.(1)求数列{a n}的通项公式;(2)设b n=1a n S n ,数列{b n}的前n项和为T n,证明:T n<32.22.(12分)[2024·辽宁大连模拟]已知数列{a n}是首项a1=1的正项等比数列,{b n}是公差d=2的等差数列,且满意b3=2a2,a3=b4+1.(1)求数列{a n},{b n}的通项公式;(2)若c n=________,求{c n}的前n项和S n.请在①c n=3a n+(b n-1);②c n=b n-13a n这两个条件中任选一个,补充在上面的横线中,并加以解答.单元过关检测六 数列1.答案:C解析:由题知S 11=22,即S 11=11(a 1+a 11)2=11a 6=22,∴a 6=2,∴a 1+a 3+a 9+a 11=4a 6=8. 故选C. 2.答案:B解析:设等比数列的公比为q ,由题得q 4+q 7q +q 4=8,∴q 4(1+q 3)q (1+q 3)=8,∴q 3=8,∴q =2. 所以S 5=1-251-2=31.故选B. 3.答案:D 解析:由a n +2=a n +1a n,a 1=2,a 2=3, 所以a 3=a 2a 1=32,a 4=a 3a 2=323=12,a 5=a 4a 3=1232=13,a 6=a 5a 4=1312=23,a 7=a 6a 5=2313=2,即{a n }是周期为6的数列.因为2 022=6×337,所以a 2 022=a 6=23.故选D. 4.答案:C解析:∵S n 为等比数列{a n }的前n 项和,∴S 2,S 4-S 2,S 6-S 4成等比数列, ∴S 2=3,S 4-S 2=6-3=3,∴S 6-S 4=3,∴S 6=3+S 4=3+6=9. 故选C. 5.答案:C解析:设等差数列{a n }的公差为d , 因为a 1,a 2,,,成公比为3的等比数列,所以a 2a 1=3,所以a 2=3a 1,即a 1+d =3a 1,所以d =2a 1, 所以a n =a 1+(n -1)d =(2n -1)a 1, 又因为a 1,a 2,,,成公比为3的等比数列,所以=a 1×34=81a 1,因为=(2k 3-1)a 1,所以2k 3-1=81,解得k 3=41. 故选C. 6.答案:A解析:由题知,∵a n +1=a n +1,∴a n +1-a n =1, ∴{a n }是以1为首项,1为公差的等差数列, ∴a n =n ,故b n =a 2n -1=2n -1, ∴b n -b n -1=2,b 1=1,所以{b n }是以1为首项,2为公差的等差数列, 记{b n }的前n 项和为S n , ∴S n =n (b 1+b n )2=n (1+2n -1)2=n 2.故选A. 7.答案:B解析:因为a n +2=a n +1+a n ,所以a 2 023=a 2 022+a 2 021=a 2 022+a 2 020+a 2 019=…=a 2 022+a 2 020+a 2 018+…+a 2+a 1, 又因为a 1=1,所以a 2+a 4+a 6+…+a 2 022=a 2 023-a 1=m -1.故选B. 8.答案:B解析:由题意,对∀n ∈N *,f (n +1)-f (n )>0, 即[en +1-a (n +1)]-(e n -an )=(e -1)e n-a >0,即a <(e -1)e n,对∀n ∈N *恒成立, 由于y =e x 在R 上单调递增,故e n ≥e 1=e ,故a <(e -1)e n ≤[(e -1)e n ]min =e (e -1)=e 2-e. 即a ∈(-∞,e 2-e ). 故选B. 9.答案:ACD解析:因为数列{a n }为等差数列,且a 2=11,a 5=5,则⎩⎪⎨⎪⎧a 1+d =11a 1+4d =5,解得⎩⎪⎨⎪⎧a 1=13,d =-2,a n=13+(n -1)×(-2)=-2n +15,故A 选项正确,由-20=-2n +15,得n =352∉N *,故B 错误, 因为d <0,所以数列{a n }单调递减,故C 正确,由数列通项公式a n =15-2n 可知,前7项均为正数,a 8=-1,所以前7项和最大,故D 正确.故选ACD.10.答案:ABC解析:因{a n }为等比数列,设其公比为q ,则有a n =a 1qn -1,对于A ,a 2n +1 a 2n=(a n +1a n )2=q 2是常数,数列{a 2n }是等比数列,A 是;对于B ,k ∈R 且k ≠0,k ·a n +1k ·a n =a n +1a n=q 是常数,数列{}k ·a n 是等比数列,B 是; 对于C ,1a n +11a n=a n a n +1=1q 是常数,⎩⎨⎧⎭⎬⎫1a n 是等比数列,C 是; 对于D ,明显a n =1,{a n }为等比数列,而ln a n =0,数列{ln a n }不是等比数列,D 不是. 故选ABC. 11.答案:AB解析:若公比q =1有S 3=3a 1,S 6=6a 1,S 9=9a 1, 此时2S 9≠S 3+S 6,故公比q ≠1,由题意2S 9=S 3+S 6⇒2a 1(1-q 9)1-q =a 1(1-q 3)1-q +a 1(1-q 6)1-q ,化简有q +q 4=2q 7,两边同时乘以a 1,可得:a 2+a 5=2a 8; 两边同时乘以a 1q ,可得a 3+a 6=2a 9, 故有a 2+a 5=2a 8或a 3+a 6=2a 9. 故选AB. 12.答案:AC 解析:由a n +1n =a n a 2n +n -1得n a n +1=a n +n -1a n ,∴a n =n a n +1-n -1a n; 当n =1时,可得a 1a 2=1,但a 1不肯定为1,∴A 正确,B 错误;S n =a 1+a 2+…+a n =(1a 2-0a 1)+(2a 3-1a 2)+…+(n a n +1-n -1a n )=na n +1,∴S n ·a n +1=n .∴n =2 020时,S 2 020·a 2 021=2 020,所以C 正确,D 错误.故选AC. 13.答案:6解析:依据等差数列的性质可得a 1+a 9=2a 5=2, 所以a 5=1, 又a 4+a 6=2a 5,所以a 4+4a 5+a 6=6a 5=6.14.答案:a n =⎩⎪⎨⎪⎧2n,n ≥2,4,n =1,n ∈N解析:∵a n +1=S n ,则当n ≥2时,a n =S n -S n -1=a n +1-a n , 得a n +1a n=2,故数列{a n }从其次项起是等比数列, 又a 2=S 1=4, 当n ≥2时,a n =a 2×2n -2=2n,又a 1=4,∴a n =⎩⎪⎨⎪⎧2n,n ≥2,4,n =1,n ∈N *.15.答案:16解析:由a n =2n 3n -49得a n =23+983×13n -49,当n ≤16时,⎩⎨⎧⎭⎬⎫13n -49单调递减,且13n -49<0,当n =1时,a 1<0,故当n ≤16时,a n <0,当n ≥17时,13n -49>0,且a n >0,所以当n =16时,S n 最小. 16.答案:5 720-15()n +32n -4解析:(1)由对折2次共可以得到5 dm×12 dm,10 dm×6 dm,20 dm×3 dm 三种规格的图形,所以对折三次的结果有:52×12,5×6,10×3,20×32,共4种不同规格(单位dm 2);故对折4次可得到如下规格:54×12,52×6,5×3,10×32,20×34,共5种不同规格.(2)由于每次对折后的图形的面积都减小为原来的一半,故各次对折后的图形,不论规格如何,其面积成公比为12的等比数列,首项为120()dm 2,第n 次对折后的图形面积为120×⎝ ⎛⎭⎪⎫12n -1,对于第n 次对折后的图形的规格形态种数,依据(1)的过程和结论,猜想为n +1种(证明从略),故得猜想S n =120(n +1)2n -1, 设S =∑k =1nS k =120×220+120×321+120×422+…+120()n +12n -1, 则12S =120×221+120×322+…+120n 2n -1+120(n +1)2n, 两式作差得12S =240+120⎝ ⎛⎭⎪⎫12+122+…+12n -1-120()n +12n=240+60⎝ ⎛⎭⎪⎫1-12n -11-12-120()n +12n=360-1202n -1-120()n +12n =360-120()n +32n, 因此,S =720-240()n +32n =720-15()n +32n -4. 17.解析:(1)由等差数列的性质可得S 5=5a 3,则a 3=5a 3,∴a 3=0, 设等差数列的公差为d ,从而有a 2a 4=(a 3-d )(a 3+d )=-d 2,S 4=a 1+a 2+a 3+a 4=(a 3-2d )+(a 3-d )+a 3+(a 3+d )=-2d ,从而-d 2=-2d ,由于公差不为零,故d =2, 数列的通项公式为a n =a 3+(n -3)d =2n -6.(2)由数列的通项公式可得a 1=2-6=-4,则S n =n ×(-4)+n (n -1)2×2=n2-5n ,则不等式S n >a n 即n 2-5n >2n -6,整理可得(n -1)(n -6)>0, 解得n <1或n >6,又n 为正整数,故n 的最小值为7.18.解析:(1)由题设可得b 1=a 2=a 1+1=2,b 2=a 4=a 3+1=a 2+2+1=5, 又a 2k +2=a 2k +1+1,a 2k +1=a 2k +2,故a 2k +2=a 2k +3即b n +1=b n +3即b n +1-b n =3, 所以{b n }为等差数列,故b n =2+(n -1)×3=3n -1. (2)设{a n }的前20项和为S 20,则S 20=a 1+a 2+a 3+…+a 20, 因为a 1=a 2-1,a 3=a 4-1,…,a 19=a 20-1, 所以S 20=2(a 2+a 4+…+a 18+a 20)-10=2(b 1+b 2+…+b 9+b 10)-10=2×(10×2+9×102×3)-10=300.19.解析:(1)证明:设数列{a n }的公差为d ,所以⎩⎪⎨⎪⎧a 1+d -2b 1=a 1+2d -4b 1a 1+d -2b 1=8b 1-(a 1+3d ),即可解得b 1=a 1=d 2,所以原命题得证.(2)由(1)知,b 1=a 1=d2,所以b k =a m +a 1⇔b 1×2k -1=a 1+(m -1)d +a 1,即2k -1=2m ,亦即m =2k -2∈[1,500],解得2≤k ≤10,所以满意等式的解k =2,3,4, (10)故集合{k |b k =a m +a 1,1≤m ≤500}中的元素个数为10-2+1=9.20.解析:(1)证明:因为a n a n +1=2S n -1①,则a n +1a n +2=2S n +1-1②, ②-①得a n +1(a n +2-a n )=2a n +1,又a n +1≠0,所以a n +2-a n =2.(2)由a 1=-1得a 3=1,于是b 2=a 3=1,由b 1=-1得{b n }的公比q =-1.所以b n =(-1)n ,a n b n =(-1)n a n .由a 1a 2=2a 1-1得a 2=3,由a n +2-a n =2得a 2 022-a 2 021=a 2 020-a 2 019=…=a 2-a 1=4,因此T 2 022=-a 1+a 2-a 3+a 4…-a 2 021+a 2 022=(a 2-a 1)+(a 4-a 3)+…+(a 2 022-a 2 021)=1 011×(a 2-a 1)=1 011×4=4 044.21.解析:(1)因为4S n =(2n -1)a n +1+1,所以4S n -1=(2n -3)a n +1(n ≥2). 两式相减,得4a n =(2n -1)a n +1-(2n -3)a n (n ≥2),即(2n +1)a n =(2n -1)a n +1,所以当n ≥2时,a n +1a n =2n +12n -1, 在4S n =(2n -1)a n +1+1中,令n =1,得a 2=3,所以a n =a n a n -1·a n -1a n -2·a n -2a n -3…a 3a 2·a 2a 1·a 1=2n -12n -3·2n -32n -5·2n -52n -7…53·31·1=2n -1(n ≥2),又a 1=1满意,所以a n =2n -1,所以a n -a n -1=(2n -1)-(2n -3)=2(n ≥2),故数列{a n }是首项为1,公差为2的等差数列,且a n =2n -1.(2)S n =n +n (n -1)2×2=n 2, 所以b n =1a n S n =1(2n -1)n =22n (2n -1)<22n (2n -2)=12n -2-12n, 当n =1时,T 1=1a 1S 1=1<32, 当n ≥2时,T n <(1+12-14+14-16+…+12n -2-12n )=32-12n <32, 所以T n <32. 22.解析:(1)设正项等比数列{a n }的公比为q ,则q >0,依据题意,由b 3=2a 2,a 3=b 4+1,可得⎩⎪⎨⎪⎧b 1+2d =2a 1q a 1q 2=b 1+3d +1, 即⎩⎪⎨⎪⎧b 1+4=2q q 2=b 1+7,解得⎩⎪⎨⎪⎧b 1=2q =3或⎩⎪⎨⎪⎧b 1=-6q =-1(舍), 所以a n =a 1q n -1=3n -1,b n =b 1+(n -1)d =2n .(2)选①由(1)可得c n =3n +2n -1,所以S n =c 1+c 2+c 3+...+c n =(3+32+33+ (3))+(1+3+5+…+2n -1), 所以S n =3(1-3n )1-3+n 2(1+2n -1)=n 2+3n +12-32. 选②由(1)可得c n =2n -13n ,所以S n =c 1+c 2+c 3+…+c n =13+332+533+…+2n -13n ,① 则13S n =132+333+534+…+2n -13n +1,②①-②得23S n =13+232+233+234+…+23n -2n -13n +1=13+232⎣⎢⎡⎦⎥⎤1-(13)n -11-13-2n -13n +1=13+13[1-⎝ ⎛⎭⎪⎫13n -1]-2n -13n +1=23-2(n +1)3n +1,所以S n =1-n +13n .。

高考数学一轮复习《数列》练习题(含答案)

高考数学一轮复习《数列》练习题(含答案)

高考数学一轮复习《数列》练习题(含答案)一、单选题1.已知数列{}n a 为等差数列,n S 为其n 前项和,若4511a a +=,则8S =( ) A .36B .40C .44D .472.8,2的等差中项是( ) A .±5B .±4C .5D .43.已知等比数列{}n a 中,3464,32a a a ==,则101268a a a a --的值为( )A .2B .4C .8D .164.若2(23n a n tn t =++为常数)*n N ∈,且数列{}n a 为单调递增数列,则实数t 的取值范围为( ) A .2t <-B .2t >-C .6t <-D .6t >-5.记n S 为数列{}n a 的前n 项和.若(8)(1,2,)n a n n n =-=,则( ) A .{}n a 有最大项,{}n S 有最大项 B .{}n a 有最大项,{}n S 有最小项 C .{}n a 有最小项,{}n S 有最大项D .{}n a 有最小项,{}n S 有最小项6.数列{}n a 满足:12a =,()111n n a a +-=,n S 是{}n a 的前n 项和,则2021S =( ) A .4042 B .2021 C .20232D .202127.在等差数列{}n a 中,若6a ,7a 是方程2320x x ++=的两根,则{}n a 的前12项的和为( ) A .6B .18C .-18D .-68.早在3000年前,中华民族的祖先就已经开始用数字来表达这个世界.在《乾坤谱》中,作者对易传“大衍之数五十”进行了一系列推论,用来解释中国传统文化中的太极衍生原理,如图.该数列从第一项起依次是0,2,4,8,12,18,24,32,40,50,60,72,…,若记该数列为{}n a ,则20212020a a -=( )A .2018B .2020C .2022D .20249.已知数列{}n a 的前n 项和27n S n n =-,若35<<k a ,则k =( ) A .8B .7C .6D .510.等比数列{}n b 的前n 项之积为n T ,若456b b b =,则5T =( ) A .1B .2C .3D .411.数列{}n a 满足1a m =,2212114,4(2)2,4n n n n n a n a n a a n ---⎧<=≥⎨≥⎩,若{}n a 为等比数列,则m 的取值范围是( ) A .(1,9]B .9,2⎡⎫+∞⎪⎢⎣⎭C .[2,9]D .[18,)+∞12.在等差数列{}n a 中,满足4737a a =,且10,n a S >,是{}n a 前n 项的和,若n S 取得最大值,则n =( ) A .7 B .8C .9D .10二、填空题13.已知数列{}n a 为等差数列,10a <且1231990a a a a ++++=,设()12n n n n b a a a n *++=∈N ,当{}n b 的前n 项和n S 最小时,n 的值组成的集合为______.14.已知数列{}n a 中各项是从1、0、-1这三个整数中取值的数列,n S 为其前n 项和,定义()21n n b a =+,且数列{}n b 的前n 项和为n T ,若30301,51S T =-=,则数列{}n a 的前30项中0的个数为_______个.15.已知等比数列{}n a 的各项均为正数,且1212222016,log log log n n n a a a a a +⋅=+++=______.16.n S 是等比数列{}n a 的前n 项和,若131n n S a -=⋅+(*n N ∈),则a =______.17.已知数列{}n a 满足11a =,21n nn a a a +=+,数列{}n b 的前n 项和n S ,1n n n a b a +=.若()100S k k Z <∈,则k 的最小值为_______________.三、解答题18.已知数列{a n }的前n 项和为S n ,数列{a n }为等差数列,a 1=12,d =-2. (1)求S n ,并画出{S n }(1≤n ≤13)的图象;(2)分别求{S n }单调递增、单调递减的n 的取值范围,并求{S n }的最大(或最小)的项; (3){S n }有多少项大于零?19.已知等差数列{}n a 满足37a =,616a =. (1)求{}n a 的通项公式;(2)若当2n ≥时,113n n b b a -=,且13b =,求使0n b >的最大正整数n 的值.20.设{}n a 是各项都为正数的单调递增数列,已知19a =,且n a 满足关系式:19n n a a ++=+*n ∈N .(1)求{}n a 的通项公式; (2)若99n n b a n=+,求数列{}n b 的前n 项和n S .21.已知n S 是公差不为零的等差数列{}n a 的前n 项和,已知1055S =,且2a ,4a ,8a 成等比数列.(1)求数列{}n a 的通项公式; (2)若nn S b n=,求371141n b b b b -+++⋅⋅⋅+的值.22.已知数列{}n a 满足12n n a a +=+,n *∈N ,且2a ,5a ,14a 构成等比数列.(1)求数列{}n a 的通项公式;(2)设12nn n b a +=,求数列{}n b 的前n 项和n S .23.设等差数列{}n a 公差为d ,等比数列{}n b 公比为q ,已知d q =,111a b +=,221a b +=,431a b +=.(1)求数列{}n a 和{}n b 的通项公式; (2)求数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和n S .(3)求数列211n n n n a a a b +++⎧⎫⎨⎬⎩⎭的前n 项和n T .24.已知数列{}n a 的前n 项和为n S ,0n a >,22=,n n n S a a n N *+∈. (1)求{}n a 的通项公式; (2)记22n n n b a a +=,求数列{}n b 的前n 项和n T .25.已知数列{}n a 的前n 项和为n S ,满足*21()n n S a n =-∈N ,数列{}n b 满足*1(1)(1)()n n nb n b n n n N +-+=+∈,且11b =.(1)证明数列n b n ⎧⎫⎨⎬⎩⎭为等差数列,并求数列{}n a 和{}n b 的通项公式;(2)若12214(1)(1)(32log )(32log )n n n n n c a a -++=-++,求数列{}n c 的前2n 项和2n T ;(3)若n n d a ={}n d的前n 项和为n D ,对任意的*n N ∈,都有n n D nS a ≤-,求实数a 的取值范围。

数列测试题及答案解析

数列测试题及答案解析

数列测试题及答案解析一、选择题1. 已知数列{an}满足a1=2,an+1 = 2an,判断数列{an}是否为等比数列。

A. 是B. 不是C. 无法判断答案:A2. 若数列{bn}是等差数列,且b3=5,b5=9,求b7。

A. 11B. 13C. 无法确定答案:B二、填空题1. 给定数列{cn},其中c1=1,cn+1 = cn + n,求c5的值。

答案:152. 已知等差数列{dn}的首项d1=3,公差d=2,求d20的值。

答案:43三、解答题1. 求等比数列{en}的前n项和Sn,若e1=1,公比q=3。

解:根据等比数列前n项和公式Sn = e1 * (1 - q^n) / (1 - q),代入e1=1和q=3,得到Sn = (1 - 3^n) / (1 - 3)。

2. 已知等差数列{fn}的前n项和为Tn,若f1=2,d=3,求T10。

解:根据等差数列前n项和公式Tn = n/2 * (2a1 + (n - 1)d),代入f1=2和d=3,得到T10 = 10/2 * (2*2 + (10 - 1)*3) = 5 * (4 + 27) = 5 * 31 = 155。

四、证明题1. 证明数列{gn},其中gn = n^2,是一个单调递增数列。

证明:设n≥2,我们需要证明对于任意的n,有gn ≥ gn-1。

即证明n^2 ≥ (n-1)^2。

展开得n^2 - (n-1)^2 = 2n - 1 > 0,所以数列{gn}是单调递增的。

2. 证明等差数列{hn}的任意两项hn和hm(m > n)之和等于它们中间项的两倍。

证明:设等差数列{hn}的首项为h1,公差为d。

根据等差数列的定义,hn = h1 + (n - 1)d,hm = h1 + (m - 1)d。

将两项相加得hn + hm = 2h1 + (m + n - 2)d。

由于m > n,所以m + n - 2 = m - 1 + n - 1,即hn + hm = h1 + (m - 1)d + h1 + (n - 1)d = 2h1 + (m + n - 2)d = 2h((m + n - 1)/2),这正是它们中间项的两倍。

高考数学 数列单元测试卷及答案 试题

高考数学 数列单元测试卷及答案 试题
(3)设Sn是数列{an}的前n项和,当n≥2时,Sn与(n+ )a是否有确定的大小关系?假设有,请加以证明,假设没有,请说明理由.
(文)P1(a1,b1),P2(a2,b2),…,Pn(an,bn)(n∈N*)都在函数y=log x的图象上.
(1)假设数列{bn}是等差数列,求证数列{an}是等比数列;
三、解答题(本大题一一共6小题,一共70分)
17.(本小题满分是10分)数列{an}是首项a1=4的等比数列,且S3,S2,S4成等差数列.
(1)求数列{an}的通项公式;
(2)设bn=log2|an|,Tn为数列{ }的前n项和,求Tn.
解:(1)当q=1时,S3=12,S2=8,S4=16,不成等差数列.
∴n0=2021或者(huòzhě)2021.
(文)(1)∵an+1-2an=0,
∴a3=2a2,a4=2a3,又a3+2是a2、a4的等差中项,
∴a1=2,a2=4,
∴数列(shùliè){an}是以2为首项,2为公比的等比数列(děnɡ bǐ shù liè),那么
an=2n.
(2)∵Sn=2n+1-2,又bn=log2(Sn+2),∴bn=n+1.
12.数列{an}满足an+1= + ,且a1= ,那么该数列的前2021项的和等于()
A. B.3015
C.1005D.2021
答案:A
解析:因为a1= ,又an+1= + ,所以a2=1,
从而(cóng ér)a3= ,a4=1,
即得an= ,故数列(shùliè)的前2021项的和等于S2021=1005(1+ )= .应选(yīnɡ xuǎn)A.
3.设Sn是公差不为0的等差数列{an}的前n项和,且S1,S2,S4成等比数列,那么 等于()

高中数学数列经典题型专题训练试题(含答案)

高中数学数列经典题型专题训练试题(含答案)

高中数学数列经典题型专题训练试题学校:___________姓名:___________班级:___________考号:___________说明:1、本试卷包括第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分100分。

考试时间120分钟。

2、考生请将第Ⅰ卷选择题的正确选项填在答题框内,第Ⅱ卷直接答在试卷上。

考试结束后,只收第Ⅱ卷第Ⅰ卷(选择题)一.单选题(共15小题,每题2分,共30分)1.数列{a n},已知对任意正整数n,a1+a2+a3+…+a n=2n-1,则a12+a22+a32+…+a n2等于()A.(2n-1)2B.C.D.4n-12.若{a n}为等比数列a5•a11=3,a3+a13=4,则=()A.3B.C.3或D.-3或-3.已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7C.6D.4.等差数列{a n}中,a1=1,a3=4,则公差d等于()A.1B.2C.D.5.数列的前n项和为S n,a n=,则S n≥0的最小正整数n的值为()6.若数列{a n}的前n项和S n=2n2-2n,则数列{a n}是()A.公差为4的等差数列B.公差为2的等差数列C.公比为4的等比数列D.公比为2的等比数列7.已知数列{a n}的前n项和S n=2n-1,则此数列奇数项的前n项和为()A.B.C.D.8.在等比数列{a n} 中,a1=4,公比为q,前n项和为S n,若数列{S n+2}也是等比数列,则q 等于()A.2B.-2C.3D.-39.在数列{a n}中,a1=2,a2=2,a n+2-a n=1+(-1)n,n∈N*,则S60的值为()A.990B.1000C.1100D.9910.若数列{a n}是公差为2的等差数列,则数列是()A.公比为4的等比数列B.公比为2的等比数列C.公比为的等比数列D.公比为的等比数列11.在数列{a n}中,a1=0,a n=4a n-1+3,则此数列的第5项是()A.252B.255C.215D.52212.数列{a n}、{b n}满足a n•b n=1,a n=n2+3n+2,则{b n}的前10项之和等于()A.B.C.D.13.等比数列{a n}中,a1+a2=8,a3-a1=16,则a3等于()14.已知在等比数列{a n}中,S n为其前n项和,且a4=2S3+3,a5=2S4+3,则此数列的公比q为()A.2B.C.3D.15.数列{a n}的通项,则数列{a n}中的最大项是()A.第9项B.第8项和第9项C.第10项D.第9项和第10项二.填空题(共10小题,每题2分,共20分)16.已知等差数列{a n},有a1+a2+a3=8,a4+a5+a6=-4,则a13+a14+a15=______.17.在等差数列{a n}中,a3+a5+a7+a9+a11=20,则a1+a13=______.18.数列{a n}的通项公式为a n=2n+2n-1,则数列a n的前n项和为______.19.数列{a n}中,a1=1,a n+1=2a n+1,则通项a n=______.20.数列{a n}是公差不为0的等差数列,且a2+a6=a8,则=______.21.已知数列{a n},a n+1=2a n+1,且a1=1,则a10=______.22.设正项等比数列{an}的公比为q,且,则公比q=______.23.已知数列{a n}满足a1=3,a n+1=2a n+1,则数列{a n}的通项公式a n=______.24.数列{a n}为等差数列,已知a3+2a8+a9=20,则a7______.25.设数列{a n}为正项等比数列,且a n+2=a n+1+a n,则其公比q=______.第Ⅱ卷(非选择题)三.简答题(共5小题,50分)26.(10分)已知等差数列{a n},前n项和为S n=n2+Bn,a7=14.(1)求B、a n;(2)设c n=n•,求T n=c1+c2+…+c n.27.(8分)已知等差数列{a n}满足:a5=11,a2+a6=18(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若b n=a n+3n,求数列{b n}的前n项和S n.28.(7分)已知数列{a n}是公差不为0的等差数列,a1=2,且a2,a3,a4+1成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=,求数列{b n}的前n项和S n.29.(12分)已知数列{a n}满足.(1)求a2,a3,a4的值;(2)求证:数列{a n-2}是等比数列;(3)求a n,并求{a n}前n项和S n.30.(12分)在数列{a n}中,a1=16,数列{b n}是公差为-1的等差数列,且b n=log2a n(Ⅰ)求数列{a n}和{b n}的通项公式;(Ⅱ)在数列{b n}中,若存在正整数p,q使b p=q,b q=p(p>q),求p,q得值;(Ⅲ)若记c n=a n•b n,求数列{c n}的前n项的和S n.参考答案一.单选题(共__小题)1.数列{a n},已知对任意正整数n,a1+a2+a3+…+a n=2n-1,则a12+a22+a32+…+a n2等于()A.(2n-1)2B.C.D.4n-1答案:C解析:解:∵a1+a2+a3+…+a n=2n-1…①∴a1+a2+a3+…+a n-1=2n-1-1…②,①-②得a n=2n-1,∴a n2=22n-2,∴数列{a n2}是以1为首项,4为公比的等比数列,∴a12+a22+a32+…+a n2==,故选C.2.若{a n}为等比数列a5•a11=3,a3+a13=4,则=()A.3B.C.3或D.-3或-答案:C解析:解:∵{a n}为等比数列a5•a11=3,∴a3•a13=3①∵a3+a13=4②由①②得a3=3,a13=1或a3=1,a13=3∴q10=或3,∴=或3,故选C.3.已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7C.6D.答案:A解析:解:a1a2a3=5⇒a23=5;a7a8a9=10⇒a83=10,a52=a2a8,∴,∴,故选A.4.等差数列{a n}中,a1=1,a3=4,则公差d等于()A.1B.2C.D.答案:D解析:解:∵数列{a n}是等差数列,a1=1,a3=4,∴a3=a1+2d,即4=1+2d,解得d=.故选:D.5.数列的前n项和为S n,a n=,则S n≥0的最小正整数n的值为()A.12B.13C.14D.15答案:A解析:解:令a n=<0,解得n≤6,当n>7时,a n>0,且a6+a7=a5+a8=a4+a9=a3+a10=a2+a11=a1+a12=0,所以S12=0,S13>0,即使S n≥0的最小正整数n=12.故选A.6.若数列{a n}的前n项和S n=2n2-2n,则数列{a n}是()A.公差为4的等差数列B.公差为2的等差数列C.公比为4的等比数列D.公比为2的等比数列答案:A解析:解:∵S n=2n2-2n,则S n-S n-1=a n=2n2-2n-[2(n-1)2-2(n-1)]=4n-4故数列{a n}是公差为4的等差数列故选A.7.已知数列{a n}的前n项和S n=2n-1,则此数列奇数项的前n项和为()A.B.C.D.答案:C解析:解:当n=1时,a1=S1=21-1=1,当n≥2时,a n=Sn-Sn-1=2n-1-(2n-1-1)=2•2n-1-2n-1=2n-1,对n=1也适合∴a n=2n-1,∴数列{a n}是等比数列,此数列奇数项也构成等比数列,且首项为1,公比为4.∴此数列奇数项的前n项和为==故选C8.在等比数列{a n} 中,a1=4,公比为q,前n项和为S n,若数列{S n+2}也是等比数列,则q 等于()A.2B.-2C.3D.-3答案:C解析:解:由题意可得q≠1由数列{S n+2}也是等比数列可得s1+2,s2+2,s3+2成等比数列则(s2+2)2=(S1+2)(S3+2)代入等比数列的前n项和公式整理可得(6+4q)2=24(1+q+q2)+12解可得q=3故选C.9.在数列{a n}中,a1=2,a2=2,a n+2-a n=1+(-1)n,n∈N*,则S60的值为()A.990B.1000C.1100D.99答案:A解析:解:当n为奇数时,a n+2-a n=1+(-1)n=0,可得a1=a3=…=a59=2.当n为偶数时,a n+2-a n=1+(-1)n=2,∴数列{a2n}为等差数列,首项为2,公差为2,∴a2+a4+…+a60=30×2+=930.∴S60=(a1+a3+…+a59)+(a2+a4+…+a60)=30×2+930=990.故选:A.10.若数列{a n}是公差为2的等差数列,则数列是()A.公比为4的等比数列B.公比为2的等比数列C.公比为的等比数列D.公比为的等比数列答案:A解析:解:∵数列{a n}是公差为2的等差数列∴a n=a1+2(n-1)∴∴数列是公比为4的等比数列故选A11.在数列{a n}中,a1=0,a n=4a n-1+3,则此数列的第5项是()A.252B.255C.215D.522答案:B解析:解:由a n=4a n-1+3可得a n+1=4a n-1+4=4(a n-1+1),故可得=4,由题意可得a1+1=1即数列{a n+1}为首项为1,公比为4的等比数列,故可得a5+1=44=256,故a5=255故选B12.数列{a n}、{b n}满足a n•b n=1,a n=n2+3n+2,则{b n}的前10项之和等于()A.B.C.D.答案:B解析:解:∵a n•b n=1∴b n==∴s10==(-)+=-=故选项为B.13.等比数列{a n}中,a1+a2=8,a3-a1=16,则a3等于()A.20B.18C.10D.8答案:B解析:解:设等比数列{a n}的公比为q,∵a1+a2=8,a3-a1=16,∴,解得,∴=2×32=18.故选:B.14.已知在等比数列{a n}中,S n为其前n项和,且a4=2S3+3,a5=2S4+3,则此数列的公比q为()A.2B.C.3D.答案:C解析:解:∵a4=2S3+3,a5=2S4+3,即2S4=a5-3,2S3=a4-3∴2S4-2S3=a5-3-(a4-3)=a5-a4=2a4,即3a4=a5∴3a4=a4q解得q=3,故选C15.数列{a n}的通项,则数列{a n}中的最大项是()A.第9项B.第8项和第9项C.第10项D.第9项和第10项答案:D解析:解:由题意得=,∵n是正整数,∴=当且仅当时取等号,此时,∵当n=9时,=19;当n=9时,=19,则当n=9或10时,取到最小值是19,而取到最大值.故选D.二.填空题(共__小题)16.已知等差数列{a n},有a1+a2+a3=8,a4+a5+a6=-4,则a13+a14+a15=______.答案:-40解析:解:设等差数列{a n}的公差为d,∵a1+a2+a3=8,a4+a5+a6=-4,∵a4+a5+a6=(a1+3d)+(a2+3d)+(a3+3d)=a1+a2+a3+9d,∴-4=8+9d,解得d=-,∴a13+a14+a15=a1+a2+a3+36d=8-×36=-40,故答案为:-4017.在等差数列{a n}中,a3+a5+a7+a9+a11=20,则a1+a13=______.答案:8解析:解:由等差数列的性质可得a3+a5+a7+a9+a11=(a3+a11)+a7+(a5+a9)=2a7+a7+2a7=5a7=20∴a7=4∴a1+a13=2a7=8故答案为:818.(2015秋•岳阳校级月考)数列{a n}的通项公式为a n=2n+2n-1,则数列a n的前n项和为______.答案:2n+n2-1解析:解:数列a n的前n项和S n=(2+22+23+…+2n)+[1+3+5+…+(2n-1)]=+=2n-1+n2.故答案为:2n-1+n2.19.数列{a n}中,a1=1,a n+1=2a n+1,则通项a n=______.答案:2n-1解析:解:由题可得,a n+1+1=2(a n+1),则=2,又a1=1,则a1+1=2,所以数列{a n+1}是以2为首项、公比的等比数列,所以a n+1=2•2n-1=2n,则a n=2n-1.故答案为:2n-1.20.数列{a n}是公差不为0的等差数列,且a2+a6=a8,则=______.答案:3解析:解:设等差数列{a n}的首项为a1,公差为d,由a2+a6=a8,得a1+d+a1+5d=a1+7d,即a1=d,所以==.故答案为3.21.已知数列{a n},a n+1=2a n+1,且a1=1,则a10=______.答案:1023解析:解:由题意,两边同加1得:a n+1+1=2(a n+1),∵a1+1=2∴{a n+1}是以2为首项,以2为等比数列∴a n+1=2•2n-1=2n∴a n=2n-1∴a10=1024-1=1023.故答案为:1023.22.设正项等比数列{an}的公比为q,且,则公比q=______.答案:解析:解:由题意知得∴6q2-q-1=0∴q=或q=-(与正项等比数列矛盾,舍去).故答案为:23.已知数列{a n}满足a1=3,a n+1=2a n+1,则数列{a n}的通项公式a n=______.答案:2n+1-1解析:解:由题意知a n+1=2a n+1,则a n+1+1=2a n+1+1=2(a n+1)∴=2,且a1+1=4,∴数列{a n+1}是以4为首项,以2为公比的等比数列.则有a n+1=4×2n-1=2n+1,∴a n=2n+1-1.24.数列{a n}为等差数列,已知a3+2a8+a9=20,则a7______.答案:=5解析:解:等差数列{a n}中,∵a3+2a8+a9=20,∴(a1+2d)+2(a1+7d)+(a1+8d)=4a1+24d=4(a1+6d)=4a7=20,∴a7=5.故答案为:5.25.设数列{a n}为正项等比数列,且a n+2=a n+1+a n,则其公比q=______.答案:解析:解:由题设条件知a1+a1q=a1q2,∵a1>0,∴q2-q-1=0解得,∵数列{a n}为正项等比数列,∴.故答案:.三.简答题(共__小题)26.已知等差数列{a n},前n项和为S n=n2+Bn,a7=14.(1)求B、a n;(2)设c n=n•,求T n=c1+c2+…+c n.答案:解:(1)∵a7=14.即a7=S7-S6=72+7B-62-6B=14.解得B=1,当n=1时,a1=S1=2;当n≥2时,a n=S n-S n-1=n2+n-(n-1)2-(n-1)=2n.n=1时也适合∴a n=2n(2)由(1)c n=n•=n•4n,T n=c1+c2+…+c n.=1•41+2•42+3•43+…n•4n①4T n=1•42+2•43+3•44+…(n-1)•4n+n•4n+1,②①-②得-3T n=41+42+43+…4n-n•4n+1=-n•4n+1=•4n+1∴T n=•4n+1解析:解:(1)∵a7=14.即a7=S7-S6=72+7B-62-6B=14.解得B=1,当n=1时,a1=S1=2;当n≥2时,a n=S n-S n-1=n2+n-(n-1)2-(n-1)=2n.n=1时也适合∴a n=2n(2)由(1)c n=n•=n•4n,T n=c1+c2+…+c n.=1•41+2•42+3•43+…n•4n①4T n=1•42+2•43+3•44+…(n-1)•4n+n•4n+1,②①-②得-3T n=41+42+43+…4n-n•4n+1=-n•4n+1=•4n+1∴T n=•4n+127.已知等差数列{a n}满足:a5=11,a2+a6=18(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若b n=a n+3n,求数列{b n}的前n项和S n.答案:解:(Ⅰ)设等差数列{a n}的公差为d,∵a5=11,a2+a6=18,∴,解得a1=3,d=2.∴a1=2n+1.(Ⅱ)由(I)可得:b n=2n+1+3n.∴S n=[3+5+…+(2n+1)]+(3+32+…+3n)=+=n2+2n+-.解析:解:(Ⅰ)设等差数列{a n}的公差为d,∵a5=11,a2+a6=18,∴,解得a1=3,d=2.∴a1=2n+1.(Ⅱ)由(I)可得:b n=2n+1+3n.∴S n=[3+5+…+(2n+1)]+(3+32+…+3n)=+=n2+2n+-.28.已知数列{a n}是公差不为0的等差数列,a1=2,且a2,a3,a4+1成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=,求数列{b n}的前n项和S n.答案:解:(Ⅰ)设数列{a n}的公差为d,由a1=2和a2,a3,a4+1成等比数列,得(2+2d)2-(2+d)(3+3d),解得d=2,或d=-1,当d=-1时,a3=0,与a2,a3,a4+1成等比数列矛盾,舍去.∴d=2,∴a n=a1+(n-1)d=2+2(n-1)=2n.即数列{a n}的通项公式a n=2n;(Ⅱ)由a n=2n,得b n==,∴S n=b1+b2+b3+…+b n==.解析:解:(Ⅰ)设数列{a n}的公差为d,由a1=2和a2,a3,a4+1成等比数列,得(2+2d)2-(2+d)(3+3d),解得d=2,或d=-1,当d=-1时,a3=0,与a2,a3,a4+1成等比数列矛盾,舍去.∴d=2,∴a n=a1+(n-1)d=2+2(n-1)=2n.即数列{a n}的通项公式a n=2n;(Ⅱ)由a n=2n,得b n==,∴S n=b1+b2+b3+…+b n==.29.已知数列{a n}满足.(1)求a2,a3,a4的值;(2)求证:数列{a n-2}是等比数列;(3)求a n,并求{a n}前n项和S n.答案:解:(1)∵数列{a n}满足,∴.…(3分)(2)∵,又a1-2=-1,∴数列{a n-2}是以-1为首项,为公比的等比数列.…(7分)(注:文字叙述不全扣1分)(3)由(2)得,…(9分)∴.…(12分)解析:解:(1)∵数列{a n}满足,∴.…(3分)(2)∵,又a1-2=-1,∴数列{a n-2}是以-1为首项,为公比的等比数列.…(7分)(注:文字叙述不全扣1分)(3)由(2)得,…(9分)∴.…(12分)30.在数列{a n}中,a1=16,数列{b n}是公差为-1的等差数列,且b n=log2a n(Ⅰ)求数列{a n}和{b n}的通项公式;(Ⅱ)在数列{b n}中,若存在正整数p,q使b p=q,b q=p(p>q),求p,q得值;(Ⅲ)若记c n=a n•b n,求数列{c n}的前n项的和S n.答案:解:(Ⅰ)数列{a n}中,a1=16,数列{b n}是公差为-1的等差数列,且b n=log2a n;∴b n+1=log2a n+1,∴b n+1-b n=log2a n+1-log2a n=log2=-1;∴=,∴{a n}是等比数列,通项公式为a n=16×=;∴{b n}的通项公式b n=log2a n=log2=5-n;(Ⅱ)数列{b n}中,∵b n=5-n,假设存在正整数p,q使b p=q,b q=p(p>q),则,解得,或;(Ⅲ)∵a n=,b n=5-n,∴c n=a n•b n=(5-n)×;∴{c n}的前n项和S n=4×+3×+2×+…+[5-(n-1)]×+(5-n)×①,∴s n=4×+3×+2×+…+[5-(n-1)]×+(5-n)×②;①-②得:s n=4×----…--(5-n)×=64--(5-n)×=48+(n-3)×;∴s n=96+(n-3)×.解析:解:(Ⅰ)数列{a n}中,a1=16,数列{b n}是公差为-1的等差数列,且b n=log2a n;∴b n+1=log2a n+1,∴b n+1-b n=log2a n+1-log2a n=log2=-1;∴=,∴{a n}是等比数列,通项公式为a n=16×=;∴{b n}的通项公式b n=log2a n=log2=5-n;(Ⅱ)数列{b n}中,∵b n=5-n,假设存在正整数p,q使b p=q,b q=p(p>q),则,解得,或;(Ⅲ)∵a n=,b n=5-n,∴c n=a n•b n=(5-n)×;∴{c n}的前n项和S n=4×+3×+2×+…+[5-(n-1)]×+(5-n)×①,∴s n=4×+3×+2×+…+[5-(n-1)]×+(5-n)×②;①-②得:s n=4×----…--(5-n)×=64--(5-n)×=48+(n-3)×;∴s n=96+(n-3)×.。

高中数学《数列》测试卷与答案

高中数学《数列》测试卷与答案

高中数学《数列》测试卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.{a n }是首项为1,公差为3的等差数列,若a n =2 017,则序号n 等于( D ) A .667 B .668 C .669D .673[解析] 由题意可得,a n =a 1+(n -1)d =1+3(n -1)=3n -2, ∴2 017=3n -2,∴n =673.2.在单调递减的等比数列{a n }中,若a 3=1,a 2+a 4=52,则a 1=( B )A .2B .4C . 2D .2 2 [解析] 由已知得:a 1q 2=1,a 1q +a 1q 3=52,∴q +q 3q 2=52,q 2-52q +1=0,∴q =12或q =2(舍),∴a 1=4.3.等比数列x,3x +3,6x +6,…的第四项等于( A ) A .-24 B .0 C .12D .24[解析] 由等比数列的前三项为x,3x +3,6x +6,可得(3x +3)2=x (6x +6),解得x =-3或x =-1(此时3x +3=0,不合题意,舍去),故该等比数列的首项x =-3,公比q =3x +3x=2,所以第四项为[6×(-3)+6]×2=-24.4.已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列,则a 2等于( B ) A .-4 B .-6 C .-8D .-10[解析] 由题意,得a 23=a 1a 4,∴(a 1+2d )2=a 1(a 1+3d ), ∴(a 1+4)2=a 1(a 1+6), 解得a 1=-8.∴a 2=a 1+d =-8+2=-6.5.已知等差数列{a n }的公差d ≠0且a 1,a 3,a 9成等比数列,则a 1+a 3+a 9a 2+a 4+a 10等于( C )A .1514B .1213C .1316D .1516[解析] 由题意,得a 23=a 1a 9, ∴(a 1+2d )2=a 1(a 1+8d ), ∴a 1=d . ∴a 1+a 3+a 9a 2+a 4+a 10=3a 1+10d 3a 1+13d =13a 116a 1=1316.6.等比数列{a n }满足a 2+8a 5=0,设S n 是数列{1a n}的前n 项和,则S 5S 2=( A ) A .-11 B .-8 C .5D .11[解析] 由a 2+8a 5=0得a 1q +8a 1q 4=0,解得q =-12.易知{1a n}是等比数列,公比为-2,首项为1a 1,所以S 2=1a 1[1--22]1--2=-1a 1,S 5=1a 1[1--25]1--2=11a 1,所以S 5S 2=-11,故选A .7.设S n 为数列{a n }的前n 项和,且S n =32(a n -1)(n ∈N *),则a n =( C )A .3(3n-2n) B .3n +2nC .3nD .3·2n -1[解析] 由S n =32(a n -1)(n ∈N *)可得S n -1=32(a n -1-1)(n ≥2,n ∈N *),两式相减可得a n=32a n -32a n -1(n ≥2,n ∈N *),即a n =3a n -1(n ≥2,n ∈N *).又a 1=S 1=32(a 1-1),解得a 1=3,所以数列{a n }是以3为首项,3为公比的等比数列,则a n =3n.8.在如图的表格中,如果每格填上一个数后,每一横行成等差数列,每一纵列成等比数列,那么x +y +z 的值为( B )A .1B .2C .3D .4[解析] 由表格知,第三列为首项为4,公比为12的等比数列,∴x =1.根据每行成等差数得第四列前两个数字分别为5,52,故第四列所成的等比数列的公比为12,∴y =5×(12)3=58,同理z =6×(12)4=38,∴x +y +z =2.9.我国古代数学巨著《九章算术》中,有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”这个问题用今天的白话叙述为:“有一位善于织布的女子,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这位女子每天分别织布多少?”根据上面的已知条件可求得该女子第4天所织布的天数为( D )A .815 B .1615 C .2031D .4031[解析] 设该女第n 天织布为a n 尺,且数列为公比q =2的等比数列,由题意,得a 11-251-2=5,解得a 1=531.故该女第4天所织布的尺数为a 4=a 1q 3=4031,故选D .10.已知等比数列{a n }中,a 1+a 3=10,a 4+a 6=54,则该数列的公比q 为( D )A .2B .1C .14D .12[解析] 由题意,得⎩⎪⎨⎪⎧a 11+q 2=10①a 41+q 2=54②,②①得q 3=18,∴q =12. 11.已知各项不为0的等差数列{a n }满足a 4-2a 27+3a 8=0,数列{b n }是等比数列,且b 7=a 7,则b 3b 8b 10=( B )A .1B .8C .4D .2[解析] 设{a n }的公差为d ,则由条件式可得,(a 7-3d )-2a 27+3(a 7+d )=0, 解得a 7=2或a 7=0(舍去). ∴b 3b 8b 10=b 37=a 37=8.12.若{a n }是等差数列,首项a 1>0,a 1 007+a 1 008>0,a 1 007·a 1 008<0,则使前n 项和S n >0成立的最大自然数n 是( C )A .2 012B .2 013C .2 014D .2 015[解析] ∵a 1 007+a 1 008>0, ∴a 1+a 2 014>0,∴S 2 014=2 014a 1+a 2 0142>0,∵a 1 007·a 1 008<0,a 1>0, ∴a 1 007>0,a 1 008<0, ∴2a 1 008=a 1+a 2 015<0, ∴S 2 015=2 015a 1+a 2 0152<0,故选C .二、填空题(本大题共4小题,每小题5分,共20分.将正确答案填在题中横线上) 13.已知S n 是等比数列{a n }的前n 项和,a 5=-2,a 8=16,则S 6等于__218__.[解析] ∵{a n }为等比数列,∴a 8=a 5q 3,∴q 3=16-2=-8,∴q =-2.又a 5=a 1q 4,∴a 1=-216=-18,∴S 6=a 11-q61-q=-18[1--26]1+2=218. 14.设数列{a n }中,a 1=2,a n +1=a n +n +1,则通项a n =__n 2+n +22__.[解析] ∵a n +1-a n =n +1, ∴a 2-a 1=2,a 3-a 2=3, a 4-a 3=4,…a n -a n -1=n (n ≥2).将上述n -1个式子相加得a n -a 1=2+3+4+…+n =2+nn -12,∴a n =2+2+nn -12=n 2+n +22(n ≥2).又a 1=2满足上式,∴a n =n 2+n +22.15.在数列{a n }中,a 1=1,a 2=2,且a n +2-a n =1+(-1)n (n ∈N *),则a 1+a 2+…+a 51=__676__.[解析] 利用分组求和法求解.当n 为正奇数时,a n +2-a n =0,又a 1=1,则所有奇数项都是1;当n 为正偶数时,a n +2-a n =2,又a 2=2,则所有偶数项是首项和公差都是2的等差数列,所以a 1+a 2+…+a 51=(a 1+a 3+…+a 51)+(a 2+a 4+…+a 50)=26a 1+25a 2+25×242×2=676. 16.在如下数表中,已知每行、每列中的数都成等差数列,那么位于表中的第n 行第n +1列的数是__n 2+n __.第1列 第2列 第3列 … 第1行 1 2 3 … 第2行 2 4 6 … 第3行 3 6 9 … ……………[解析] 设为{a n },则a 1=n ,d =2n -n =n ,所以a n +1=n +n ·n =n 2+n ,即第n 行第n +1列的数是n 2+n .三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分10分)已知等差数列{a n }中,a 3a 7=-16,a 4+a 6=0,求{a n }的前n 项和S n .[解析] 设{a n }的公差为d ,则⎩⎪⎨⎪⎧a 1+2d a 1+6d =-16a 1+3d +a 1+5d =0,即⎩⎪⎨⎪⎧a 21+8da 1+12d 2=-16a 1=-4d ,解得⎩⎪⎨⎪⎧a 1=-8d =2,或⎩⎪⎨⎪⎧a 1=8d =-2.因此S n =-8n +n (n -1)=n (n -9), 或S n =8n -n (n -1)=-n (n -9).18.(本题满分12分)设数列{a n }的前n 项和为S n ,数列{S n }的前n 项和为T n ,满足T n=2S n -n 2,n ∈N *.(1)求a 1的值;(2)求数列{a n }的通项公式.[解析] (1)当n =1时,T 1=2S 1-1, ∵T 1=S 1=a 1,所以a 1=2a 1-1,求得a 1=1.(2)当n ≥2时,S n =T n -T n -1=2S n -n 2-[2S n -1-(n -1)2]=2S n -2S n -1-2n +1, ∴S n =2S n -1+2n -1 ① ∴S n +1=2S n +2n +1 ② ②-①得a n +1=2a n +2, ∴a n +1+2=2(a n +2),即a n +1+2a n +2=2(n ≥2). 求得a 1+2=3,a 2+2=6,则a 2+2a 1+2=2, ∴{a n +2}是以3为首项,2为公比的等比数列. ∴a n +2=3·2n -1,∴a n =3·2n -1-2,n ∈N *.19.(本题满分12分)已知公差大于零的等差数列{a n }的前n 项和为S n ,且满足:a 3·a 4=117,a 2+a 5=22.(1)求数列{a n }的通项公式a n ; (2)若数列{b n }是等差数列,且b n =S nn +c,求非零常数c .[解析] (1){a n }为等差数列, ∵a 3+a 4=a 2+a 5=22, 又a 3·a 4=117,∴a 3,a 4是方程x 2-22x +117=0的两个根. 又公差d >0,∴a 3<a 4, ∴a 3=9,a 4=13.∴⎩⎪⎨⎪⎧a 1+2d =9a 1+3d =13,∴⎩⎪⎨⎪⎧a 1=1d =4.∴a n =4n -3.(2)由(1)知,S n =n ·1+n n -12·4=2n 2-n ,∴b n =S nn +c =2n 2-nn +c,∴b 1=11+c ,b 2=62+c ,b 3=153+c, ∵{b n }是等差数列,∴2b 2=b 1+b 3, ∴2c 2+c =0,∴c =-12(c =0舍去).20.(本题满分12分)已知数列{b n }是首项为1的等差数列,数列{a n }满足a n +1-3a n -1=0,且b 3+1=a 2,a 1=1.(1)求数列{a n }的通项公式;(2)令c n =a n ·b n ,求数列{c n }的前n 项和T n . [解析] (1)∵a n +1-3a n -1=0,∴a n +1=3a n +1, ∴a n +1+12=3(a n +12),又a 1+12=32.∴数列{a n +12}是首项为32,公比为3的等比数列.∴a n +12=32·3n -1=3n2,∴a n =3n-12.(2)由(1)知,b 3=a 2-1=3, 设等差数列{b n }的公差为d ,∴d =1, ∴b n =1+n -1=n ,∴c n =a n ·b n =n ·3n-12=n ·3n2-n2.∴T n =12(1×3+2×32+…+n ×3n )-12(1+2+3+…+n )=12(1×3+2×32+…+n ×3n)-n n +14.令S n =1×3+2×32+…+n ×3n① ∴3S n =1×32+…+(n -1)×3n +n ×3n +1②①-②得-2S n =3+32+…+3n -n ×3n +1=31-3n1-3-n ×3n +1=32(3n -1)-n ×3n +1 =3n +12-32-n ×3n +1=3n +1(12-n )-32,∴S n =3n +1(n 2-14)+34=2n -13n +1+34, ∴T n =2n -13n +1+38-n n +14.21.(本题满分12分)已知{a n }为等差数列,前n 项和为S n (n ∈N *),{b n }是首项为2的等比数列,且公比大于0,b 2+b 3=12,b 3=a 4-2a 1,S 11=11b 4.(1)求{a n }和{b n }的通项公式; (2)求数列{a 2n b n }的前n 项和(n ∈N *).[解析] (1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q . 由已知b 2+b 3=12,得b 1(q +q 2)=12, 而b 1=2, 所以q 2+q -6=0. 又因为q >0, 解得q =2, 所以b n =2n.由b 3=a 4-a 1,可得3d -a 1=8.① 由S 11=11b 4,可得a 1+5d =16.② 联立①②,解得a 1=1,d =3. 由此可得a n =3n -2.所以数列{a n }的通项公式a n =3n -2, 数列{b n }的通项公式为b n =2n.(2)设数列{a 2n b n }的前n 项和为T n .由a 2n =6n -2,得T n =4×2+10×22+16×23+…+(6n -2)×2n ,2T n =4×22+10×23+16×24+…+(6n -8)×2n +(6n -2)×2n +1.上述两式相减,得-T n =4×2+6×22+6×23+…+6×2n -(6n -2)×2n +1=12×1-2n1-2-4-(6n -2)×2n +1=-(3n -4)2n +2-16,所以T n =(3n -4)2n +2+16.所以,数列{a 2n b n }的前n 项和为(3n -4)2n +2+16.22.(本题满分12分)设数列{a n }的前n 项和为S n ,点(n ,S n n)(n ∈N +)均在函数y =3x -2的图象上.(1)求数列{a n }的通项公式; (2)设b n =3a n a n +1,T n 是数列{b n }的前n 项和,求使得T n <m20对所有n ∈N +都成立的最小正整数m .[解析] (1)依题意得:S nn=3n -2,即S n =3n 2-2n .当n ≥2时,a n =S n -S n -1=(3n 2-2n )-[3(n -1)2-2(n -1)]=6n -5; 当n =1时,a 1=S 1=3×12-2×1=1=6×1-5=1,满足上式. 所以a n =6n -5(n ∈N +). (2)由(1)得b n =3a n a n +1=36n -5[6n +1-5]=12(16n -5-16n +1), 故T n =12[(1-17)+(17-113)+…+(16n -5-16n +1)]=12(1-16n +1).因此,使得12(1-16n +1)<m 20(n ∈N +)成立的m 必须且仅需满足12≤m 20,即m ≥10,故满足要求的最小正整数m 为10.。

高中数列单元测试题及答案

高中数列单元测试题及答案

高中数列单元测试题及答案一、选择题(每题3分,共15分)1. 等差数列的首项为a1,公差为d,第n项an可以表示为:A. an = a1 + (n-1)dB. an = a1 + ndC. an = a1 + n(n-1)d/2D. an = a1 - (n-1)d2. 等比数列的首项为a1,公比为q,第n项bn可以表示为:A. bn = a1 * q^(n-1)B. bn = a1 * q^nC. bn = a1 + (n-1)qD. bn = a1 - (n-1)q3. 已知数列{an}的前n项和为Sn,若Sn = 2n^2 - 3n + 5,求a5:A. 4B. 7C. 10D. 134. 一个等差数列的前5项和为75,且第5项为25,求首项a1:A. 5B. 10C. 15D. 205. 一个等比数列的前3项和为13,且第3项为8,求首项a1:A. 1C. 3D. 4二、填空题(每题4分,共20分)6. 等差数列2, 5, 8, 11, ...的第10项是________。

7. 等比数列3, 6, 12, 24, ...的第6项是________。

8. 若数列{an}的通项公式为an = 3n - 2,求第20项的值是________。

9. 若数列{bn}的前n项和公式为Sn = n^2 + 1,求第5项b5的值是________。

10. 若数列{cn}的前n项和公式为Sn = 2^n,求第3项c3的值是________。

三、解答题(每题10分,共30分)11. 已知等差数列的前10项和为S10 = 440,求首项a1和公差d。

12. 已知等比数列的前5项和为S5 = 61,且第5项为32,求首项a1和公比q。

13. 求数列1, 1/2, 1/3, 1/4, ...的前n项和公式。

四、综合题(每题25分,共25分)14. 某工厂生产的产品数量构成等差数列,第一年生产了100件,每年生产量增加50件。

高中数列测试题及答案

高中数列测试题及答案

高中数列测试题及答案一、选择题(每题3分,共30分)1. 以下数列中,哪一个是等差数列?A. 1, 3, 5, 7, 9B. 2, 4, 6, 8, 10C. 1, 2, 4, 8, 16D. 1, 1, 2, 3, 52. 等比数列的公比为2,首项为1,其第五项是多少?A. 16B. 32C. 64D. 1283. 已知数列{a_n}的通项公式为a_n = 2n - 1,求a_5。

A. 7B. 9C. 11D. 134. 一个等差数列的前三项分别为3, 6, 9,求该数列的公差。

A. 1B. 2C. 3D. 45. 数列{a_n}满足a_1 = 2,且a_n = 2a_{n-1} + 1(n≥2),则a_3等于多少?A. 7B. 9C. 11D. 136. 一个等差数列的前n项和为S_n,若S_5 = 75,S_10 = 175,则该数列的公差d是多少?A. 5B. 10C. 15D. 207. 已知数列{a_n}的前n项和为S_n,且S_n = 2n^2 + n,求a_5。

A. 19B. 21C. 23D. 258. 等比数列{a_n}的前三项分别为1, 2, 4,求该数列的公比。

A. 1B. 2C. 3D. 49. 一个等差数列的前三项分别为2, 5, 8,求该数列的通项公式。

A. a_n = 3n - 1B. a_n = 3n + 1C. a_n = 2n + 1D. a_n = 2n - 110. 数列{a_n}满足a_1 = 1,且a_n = a_{n-1} + 2(n≥2),则a_4等于多少?A. 7B. 8C. 9D. 10二、填空题(每题4分,共20分)11. 若数列{a_n}是等差数列,且a_1 = 4,d = 3,则a_4 = _______。

12. 等比数列{a_n}的前三项分别为2, 6, 18,求该数列的公比q。

13. 已知数列{a_n}的通项公式为a_n = 3n + 2,求a_7。

高中数学精选单元测试卷集---数列单元测试02

高中数学精选单元测试卷集---数列单元测试02

数列单元测试002一、选择题(每题5分,共50分)1、在数列{}na 中,122,211=-=+n n a a a,则101a 的值为( )A .49B .50C .51D .52 2、等差数列{}na 中,12010=S,那么101a a +的值是()A .12B .24C .36D .48 3、设4321,,,a a aa 成等比数列,其公比为2,则432122a a a a++的值为( )A .41 B .21 C .81 D .14、数列3,5,9,17,33,…的通项公式na 等于( )A .n2 B .12+nC .12-nD .12+n5、数列{}na 的通项公式是11++=n n a n,若前n 项的和为10,则项数n 为( )A .11B .99C .120D .1216、计算机的成本不断降低,若每隔3年计算机价格降低31,现在价格为8100元的计算机,9年后的价格可降为( )A .2400元B .900元C .300元D .3600元 7、数列{}na 、{}nb 都是等差数列,其中100,75,2510010011=+==b a b a,那么{}n n b a +前100项的和为( )A .0B .100C .10000D .102400 8、等比数列{}na 中,===+q a a a a则,8,63232( )A .2B .21 C .2或21 D .-2或21-9、已知实数c b a 、、满足122,62,32===c b a,那么实数c b a 、、是( )A .等差非等比数列B .等比非等差数列C .既是等比又是等差数列D .既非等差又非等比数列 10、数列 ,1614,813,412,211前n 项的和为( )A .2212nn n ++B .12212+++-nn nC .2212nn n ++-D .22121nn n -+-+二、填空题(每题4分,共16分) 11、在等差数列{}na 中,已知2054321=++++a a a a a,那么3a 等于22、某厂在1995年底制定生产计划,要使2005年底的总产量在原有基础上翻两番,则年平均增长率为13、已知等差数列{}na 的公差0≠d ,且931,,a a a 成等比数列,则1042931a a a a a a++++的值是14、已知在等比数列{}na 中,各项均为正数,且,7,13211=++=a a a a则数列{}na 的通项公式是_________=na三、解答题(第15、16、17每题8分,第18题10分,共34分) 15、等差数列{}na 中,已知33,4,31521==+=n a a a a,试求n 的值16、数列{}na 中,*11,3,2N n n a a an n ∈=-=+,求数列{}n a 的通项公式n a17、在等比数列{}na 的前n 项和中,1a 最小,且128,66121==+-n n a a a a,前n 项和126=nS,求n 和公比q18、已知等比数列{}nb 与数列{}n a 满足*,3N n bn a n∈=(1) 判断{}na 是何种数列,并给出证明;(2) 若2021138,b b b m a a求=+答案一、二、11、4 12、1410- 13、14、12-n1613三、24、50333132 ,33313232)1(31,32 31,452411152==-∴=-=⋅-+==∴==+=++=+n n a n n a d a d a d d a a a n n 得又 25、由⎪⎩⎪⎨⎧-=-=-=-⇒=--+)1(3633123121n a a a a a a n a a n nn n将上面各等式相加,得2)1(32)1(3631-+=⇒-+++=-n n a n a a n n26、因为{}n a 为等比数列,所以64,2,,128661111121==≤⎩⎨⎧==+∴=-n n nn n n a a a a a a a a a a a a 解得且 依题意知1≠q 21261,1261=⇒=--∴=q qqa a Sn n6,6421=∴=-n qn27、(1)设{}nb 的公比为q, q n a a q bn a n a a nn n 311log 10(33,31-+=⇒=⋅∴=-所以{}na 是以q 3log 为公差的等差数列 (2)m a a=+138所以由等差数列性质得m a a a a=+=+138201m a a a b b b m a a a a a 10202120120213310220)(2021==⇒=⨯+=+++∴+++。

2024年高考数学总复习第六章《数列》测试卷及答案解析

2024年高考数学总复习第六章《数列》测试卷及答案解析

2024年高考数学总复习第六章《数列》测试卷及答案(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.已知等差数列{a n }的公差为2,前n 项和为S n ,且S 10=100,则a 7的值为()A .11B .12C .13D .14答案C解析由S 10=100及公差为2,得10a 1+10×(10-1)2×2=100,所以a 1=1.所以a n =2n -1,故a 7=13.故选C.2.若等差数列{a n }的公差d ≠0且a 1,a 3,a 7成等比数列,则a2a 1等于()A.32B.23C.12D .2答案A解析设等差数列的首项为a 1,公差为d ,则a 3=a 1+2d ,a 7=a 1+6d .因为a 1,a 3,a 7成等比数列,所以(a 1+2d )2=a 1(a 1+6d ),解得a 1=2d .所以a 2a 1=2d +d 2d=32.故选A.3.已知等差数列{a n }的前n 项和为S n ,若S 6=30,S 10=10,则S 16等于()A .-160B .-80C .20D .40答案B解析a 1+15d =30,a 1+45d =10,解得a 1=10,d =-2,故S 16=16a 1+120d =16×10+120×(-2)=-80,故选B.4.记等比数列{a n }的前n 项和为S n ,若S 3=2,S 6=18,则S 10S 5等于()A .-3B .5C .-31D .33答案D解析由题意知公比q ≠1,S 6S 3=a 1(1-q 6)1-qa 1(1-q 3)1-q =1+q 3=9,∴q =2,S 10S 5=a 1(1-q 10)1-qa 1(1-q 5)1-q=1+q 5=1+25=33.5.(2019·湖南五市十校联考)已知数列{a n }满足2a n =a n -1+a n +1(n ≥2),a 2+a 4+a 6=12,a 1+a 3+a 5=9,则a 1+a 6等于()A .6B .7C .8D .9答案B解析由数列{a n }满足2a n =a n -1+a n +1(n ≥2)得数列{a n }为等差数列,所以a 2+a 4+a 6=3a 4=12,即a 4=4,同理a 1+a 3+a 5=3a 3=9,即a 3=3,所以a 1+a 6=a 3+a 4=7.6.(2019·新乡模拟)为了参加冬季运动会的5000m 长跑比赛,某同学给自己制定了7天的训练计划:第1天跑5000m ,以后每天比前1天多跑200m ,则这个同学7天一共将跑()A .39200mB .39300mC .39400mD .39500m答案A解析依题意可知,这个同学第1天,第2天,…跑的路程依次成首项为5000,公差为200的等差数列,则这个同学7天一共将跑5000×7+7×62×200=39200(m).故选A.7.等差数列{a n }的前n 项和为S n ,已知a m -1+a m +1-a 2m =0,S 2m -1=38,则m 等于()A .38B .20C .10D .9答案C解析因为{a n }是等差数列,所以a m -1+a m +1=2a m ,由a m -1+a m +1-a 2m =0,得2a m -a 2m =0,由S 2m -1=38知a m ≠0,所以a m =2,又S 2m -1=38,即(2m -1)(a 1+a 2m -1)2=38,即(2m -1)×2=38,解得m =10,故选C.8.(2019·青岛调研)已知各项均不相等的等比数列{a n },若3a 2,2a 3,a 4成等差数列,设S n 为数列{a n }的前n 项和,则S 3a 3等于()A.139B.79C .3D .1答案A解析设等比数列{a n }的公比为q ,∵3a 2,2a 3,a 4成等差数列,∴2×2a 3=3a 2+a 4,∴4a 2q =3a 2+a 2q 2,化为q 2-4q +3=0,解得q =1或3.又数列的各项均不相等,∴q ≠1,当q =3时,S 3a 3=a 1(33-1)3-1a 1×9=139.故选A.9.(2019·广东六校联考)将正奇数数列1,3,5,7,9,…依次按两项、三项分组,得到分组序列如下:(1,3),(5,7,9),(11,13),(15,17,19),…,称(1,3)为第1组,(5,7,9)为第2组,依此类推,则原数列中的2019位于分组序列中的()A .第404组B .第405组C .第808组D .第809组答案A解析正奇数数列1,3,5,7,9,…的通项公式为a n =2n -1,则2019为第1010个奇数,因为按两项、三项分组,故按5个一组分组是有202组,故原数列中的2019位于分组序列中的第404组,故选A.10.(2019·新疆昌吉教育共同体月考)在数列{a n }中,a 1=2,其前n 项和为S n .在直线y =2x -1上,则a 9等于()A .1290B .1280C .1281D .1821答案C解析由已知可得S n +1n +1-1=又S11-1=a 1-1=1,1,公比为2的等比数列,所以Sn n -1=2n -1,得S n =n (1+2n -1),当n ≥2时,a n =S n -S n -1=(n +1)2n -2+1,故a 9=10×128+1=1281.11.(2019·长沙长郡中学调研)已知数列{a n }的前n 项和为S n ,且S n =n 2+4n ,若首项为13的数列{b n }满足1b n +1-1b n =a n ,则数列{b n }的前10项和为()A.175264B.3988C.173264D.181264答案A解析由S n =n 2+4n ,可得a n =2n +3,根据1b n +1-1b n=a n =2n +3,结合题设条件,应用累加法可求得1b n n 2+2n ,所以b n =1n 2+2n =1n (n +2)=所以数列{b n }的前n项和为T n -13+12-14+…+1n --1n +1-所以T 10-111-=175264,故选A.12.已知数列{a n }的通项a n =nx(x +1)(2x +1)…(nx +1),n ∈N *,若a 1+a 2+a 3+…+a 2018<1,则实数x 可以等于()A .-23B .-512C .-1348D .-1160答案B 解析∵a n =nx(x +1)(2x +1)…(nx +1)=1(x +1)(2x +1)…[n (x -1)+1]-1(x +1)(2x +1)…(nx +1)(n ≥2),∴a 1+a 2+…+a 2018=x x +1+1x +1-1(x +1)(2x +1)…(2018x +1)=1-1(x +1)(2x +1)…(2018x +1),当x =-23x +1>0,nx +1<0(2≤n ≤2018,n ∈N *),此时1-1(x +1)(2x +1)…(2018x +1)>1.当x =-512时,x +1>0,x +2>0,nx +1<0(3≤n ≤2018,n ∈N *),此时1-1(x +1)(2x +1)…(2018x +1)<1;当x =-1348时,x +1>0,x +2>0,x +3>0,nx +1<0(4≤n ≤2018,n ∈N *),此时1-1(x +1)(2x +1)…(2018x +1)>1;当x =-1160时,x +1>0,x +2>0,x +3>0,x +4>0,x +5>0,nx +1<0(6≤n ≤2018,n ∈N *),此时1-1(x +1)(2x +1)…(2018x +1)>1.故选B.二、填空题(本大题共4小题,每小题5分,共20分)13.设等差数列{a n }的公差为d ,其前n 项和为S n ,若a 4+a 10=0,2S 12=S 2+10,则d 的值为________.答案-10解析由a 4+a 10=0,2S 12=S 2+10,1+3d +a 1+9d =0,a 1+12×112d2a 1+d +10,解得d =-10.14.(2019·沈阳东北育才中学模拟)等差数列{a n },{b n }的前n 项和分别为S n 和T n ,若Sn T n =2n +13n +2,则a 3+a 11+a 19b 7+b 15=________.答案129130解析原式=3a 112b 11=32·2a 112b 11=32·a 1+a 21b 1+b 21=32·S 21T 21=32·2×21+13×21+2=129130.15.(2019·荆州质检)已知数列{a n }的前n 项和为S n ,若a n =(2n -2则S 2019=________.答案2020解析∵a n =(2n -2=(1-2n )sinn π2,∴a 1,a 2,…,a n 分别为-1,0,5,0,-9,0,13,0,-17,0,21,0,…,归纳可得,每相邻四项和为4,∴S 2019=504×4+a 2017+a 2018+a 2019=2016+[(1-2×2017)+0+(2×2019-1)]=2016+4=2020.16.(2019·长沙长郡中学调研)已知点列P 1(1,y 1),P 2(2,y 2),P 3(3,y 3),…,P n +1(n +1,y n +1)在x 轴上的投影为Q 1,Q 2,…,Q n +1,且点P n +1满足y 1=1,直线P n P n +1的斜率1n n P P k +=2n .则多边形P 1Q 1Q n +1P n +1的面积为________.答案3×2n -n -3解析根据题意可得y n +1-y n =2n ,结合y 1=1,应用累加法,可以求得y n +1=2n +1-1,根据题意可以将该多边形分成n 个直角梯形计算,且从左往右,第n 个梯形的面积为S n =y n +y n +12=3×2n -1-1,总的面积应用分组求和法,可求得多边形的面积为S =3(2n -1)-n =3×2n -n -3.三、解答题(本大题共70分)17.(10分)已知{a n }是以a 为首项,q 为公比的等比数列,S n 为它的前n 项和.(1)当S 1,S 3,S 4成等差数列时,求q 的值;(2)当S m ,S n ,S l 成等差数列时,求证:对任意自然数k ,a m +k ,a n +k ,a l +k 也成等差数列.(1)解由已知,得a n =aq n -1,因此S 1=a ,S 3=a (1+q +q 2),S 4=a (1+q +q 2+q 3).当S 1,S 3,S 4成等差数列时,S 4-S 3=S 3-S 1,可得aq 3=aq +aq 2,化简得q 2-q -1=0.解得q =1±52.(2)证明若q =1,则{a n }的各项均为a ,此时a m +k ,a n +k ,a l +k 显然成等差数列.若q ≠1,由S m ,S n ,S l 成等差数列可得S m +S l =2S n ,即a (q m -1)q -1+a (q l -1)q -1=2a (q n -1)q -1,整理得q m +q l =2q n .因此a m +k +a l +k =aq k -1(q m +q l )=2aq n+k -1=2a n +k ,所以a m +k ,a n +k ,a l +k 成等差数列.18.(12分)(2019·安徽皖南八校联考)数列{a n }的前n 项和记为S n ,且4S n =5a n -5,数列{b n }满足b n =log 5a n .(1)求数列{a n },{b n }的通项公式;(2)设c n =1b n b n +1,数列{c n }的前n 项和为T n ,证明T n <1.(1)解∵4S n =5a n -5,∴4a 1=5a 1-5,∴a 1=5.当n ≥2时,4S n -1=5a n -1-5,∴4a n =5a n -5a n -1,∴a n =5a n -1,∴{a n }是以5为首项,5为公比的等比数列,∴a n =5·5n -1=5n .∴b n =log 55n =n .(2)证明∵c n =1n (n +1)=1n -1n +1,∴T n…=1-1n +1<1.19.(12分)(2019·安徽皖中名校联考)已知数列{a n }满足:a n +1=2a n -n +1,a 1=3.(1)设数列{b n }满足:b n =a n -n ,求证:数列{b n }是等比数列;(2)求出数列{a n }的通项公式和前n 项和S n .(1)证明b n +1b n =a n +1-(n +1)a n -n =2a n -n +1-(n +1)a n -n=2(a n -n )a n -n =2,又b 1=a 1-1=3-1=2,∴{b n }是以2为首项,2为公比的等比数列.(2)解由(1)得b n =2n ,∴a n =2n +n ,∴S n =(21+1)+(22+2)+…+(2n +n )=(21+22+…+2n )+(1+2+3+…+n )=2(1-2n )1-2+n (n +1)2=2n +1-2+n (n +1)2.20.(12分)(2019·湖南衡阳八中月考)已知数列{a n }的前n 项和为S n ,且S n =2a n -n (n ∈N *).(1)证明:{a n +1}是等比数列;(2)若数列b n =log 2(a n +1)n 项和T n .(1)证明当n =1时,S 1=2a 1-1,∴a 1=1.∵S n =2a n -n ,∴S n +1=2a n +1-(n +1),∴a n +1=2a n +1,∴a n +1+1=2(a n +1),∴{a n +1}是以a 1+1=2为首项,2为公比的等比数列.(2)解由(1)得a n +1=2n ,∴b n =log 22n =n ,∴1b 2n -1·b 2n +1=1(2n -1)(2n +1)=∴T n -13+13-15+…+12n -1-=n 2n +1.21.(12分)(2019·青岛调研)已知数列{a n }的各项均为正数,其前n 项和为S n .(1)若对任意n ∈N *,S n =n 2+n +12都成立,求a n ;(2)若a 1=1,a 2=2,b n =a 2n -1+a 2n ,且数列{b n }是公比为3的等比数列,求S 2n .解(1)由S n =n 2+n +12,得S n -1=(n -1)2+n2,n ≥2,两式相减得a n =n ,n ≥2,又a 1=S 1=32,不满足a n =n ,∴a n n =1,n ≥2.(2)S 2n =a 1+a 2+…+a 2n =(a 1+a 2)+(a 3+a 4)+…+(a 2n -1+a 2n )=b 1+b 2+…+b n ,∵b 1=a 1+a 2=3,{b n }是公比为3的等比数列,∴S 2n =b 1+b 2+…+b n =3(1-3n )1-3=32(3n-1).22.(12分)(2019·湖南岳阳一中质检)已知数列{a n }的前n 项和为S n ,S n =2a n -2.(1)求数列{a n }的通项公式;(2)设数列{b n }的前n 项和为T n ,b 1=1,点(T n +1,T n )在直线x n +1-y n =12上,若存在n ∈N *,使不等式2b 1a 1+2b 2a 2+…+2b na n≥m 成立,求实数m 的最大值.解(1)∵S n =2a n -2,①∴S n +1=2a n +1-2,②∴②-①得a n +1=2a n +1-2a n (n ≥1),∴a n +1=2a n ,即a n +1a n=2,∴{a n }是首项为2,公比为2的等比数列.∴a n =2n .(2)由题意得,T n +1n +1-T n n =12,成等差数列,公差为12.首项T 11=b11=1,∴T n n =1+12(n -1)=n +12,T n =n (n +1)2,当n ≥2时,b n =T n -T n -1=n (n +1)2-n (n -1)2=n ,当n =1时,b 1=1成立,∴b n =n .∴2b n a n =2n2n =n 2n -1=-1,令M n =2b 1a 1+2b 2a 2+…+2b na n,只需(M n )max ≥m .∴M n =1+2×12+3+…+n -1,③12M n =12+2+3+…+n ,④③-④得,12M n =1+12++…-1-n 1-12n=2-(n +,∴M n =4-(n +-1.∵M n +1-M n =4-(n +-4+(n +-1=n +12n>0.∴{M n }为递增数列,且(n +-1>0,∴M n <4.∴m ≤4,实数m 的最大值为4.。

(完整版)高中数学数列练习题及答案解析

(完整版)高中数学数列练习题及答案解析

高中数学数列练习题及答案解析第二章数列1 .{an} 是首项a1=1,公差为d=3的等差数列,如果an=005,则序号n 等于.A .667B.668C.669D.6702 .在各项都为正数的等比数列{an} 中,首项a1 =3,前三项和为21 ,则a3+a4+a5=.A .33B.7C.84D.1893 .如果a1 ,a2,⋯,a8 为各项都大于零的等差数列,公差d≠ 0,则.A .a1a8> a4a5B.a1a8< a4a5C.a1+a8< a4+a5D.a1a8=a4a54 .已知方程=0 的四个根组成一个首项为|m-n|等于.A .1B.313C.D.8421 的等差数列,则5 .等比数列{an} 中,a2=9,a5=243,则{an} 的前4项和为.A .81B .120C .1D.1926 .若数列{an} 是等差数列,首项a1 > 0,a003+a004> 0,a003· a004< 0,则使前n 项和Sn> 0 成立的最大自然数n 是.A .005B.006C.007D.0087 .已知等差数列{an} 的公差为2,若a1 ,a3,a4 成等比数列, 则a2=.A .-4B.-6C.-8D.-108 .设Sn 是等差数列{an} 的前n 项和,若A .1B.-1 C.2D.1a2?a1 的值是.b2a5S5 =,则9=.a3S599 .已知数列- 1 ,a1 ,a2,- 4 成等差数列,-1,b1,b2,b3,-4成等比数列,则A .11111B.-C.-或D.2222210 .在等差数列{an} 中,a n≠ 0,an- 1 -an+an+1=0,若S2n-1=38,则n=.第 1 页共页A .38B.20 C.10D.9二、填空题11 .设 f = 12?x ,利用课本中推导等差数列前n项和公式的方法,可求得 f + f +⋯+ f +⋯+f + f 的值为12.已知等比数列{an} 中,若a3·a4·a5=8,则a2·a3·a4·a5·a6=.若a1 +a2=324,a3+a4=36,则a5+a6=.若S4=2,S8=6,则a17+a18+a19+a20=.82713 .在和之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为.314 .在等差数列{an} 中,3+2=24,则此数列前13 项之和为.15 .在等差数列{an} 中,a5=3,a6=-2,则a4+a5+⋯+a10=.16 .设平面内有n 条直线,其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用 f 表示这n 条直线交点的个数,则f=;当n> 4时,f =.三、解答题17 .已知数列{an} 的前n 项和Sn=3n2-2n,求证数列{an} 成等差数列.已知第页共页111b?cc?aa?b ,,成等差数列,求证,,也成等差数列. abcabc18 .设{an} 是公比为q 的等比数列,且a1,a3,a2 成等差数列.求q 的值;设{bn} 是以 2 为首项,q 为公差的等差数列,其前n 项和为Sn,当n≥2时,比较Sn 与bn 的大小,并说明理由.19 .数列{an} 的前n 项和记为Sn,已知a1=1,an+1=求证:数列{20 .已知数列{an} 是首项为a且公比不等于 1 的等比数列,Sn 为其前n 项和,a1 ,2a7,3a4 成等差数列,求证:12S3,S6,S12-S6 成等比数列.第页共页n?2Sn .nSn} 是等比数列.n第二章数列参考答案一、选择题1 .C解析:由题设,代入通项公式an=a1+d,即005=1+3,∴n=699.2 .C解析:本题考查等比数列的相关概念,及其有关计算能力.设等比数列{an} 的公比为q,由题意得a1+a2+a3=21,即a1 =21 ,又a1 =3,∴1+q+q2=7.解得q= 2 或q=-3,∴ a3+a4+a5=a1q2=3× 22× 7=84..B.解析:由a1 +a8=a4+a5,∴排除C.又a1· a8=a1=a12+7a1d,a12+7a1d +12d2> a1· a8.a4· a5==3 .C解析:解法 1 :设a1=中两根之和也为2,∴ a1+a2+a3+a4=1+6d=4,∴ d=∴ 11735,a1=,a4=是一个方程的两个根,a1=,a3=是另一个方程的两个根.44441111 ,a2=+d,a3=+2d,a4=+3d,而方程x2-2x +m=0 中两根之和为2,x2-2x+n=04444715,分别为m或n,1616第页共页∴|m-n|=1 ,故选C.解法2:设方程的四个根为x1 ,x2,x3,x4,且x1 +x2=x3+x4=2,x1·x2=m,x3·x4=n.由等差数列的性质:若?+s=p+q,则a?+as=a p+aq,若设x1 为第一项,x2 必为第四项,则x2=差数列为1357,,,,444715 ,n=,16161 .7,于是可得等4∴ m=∴|m-n|=5 .B解析:∵a2=9,a5=243,a5243=q3==27,a29∴ q=3,a1q=9,a1 =3,3 -35240∴ S4===120. 1 -326 .B解析:解法1:由a003+a004> 0,a003· a004< 0,知a003和a004 两项中有一正数一负数,又a1 > 0,则公差为负数,否则各项总为正数,故a003> a004,即a003> 0,a004< 0.∴ S006=∴ S007=40062=40062> 0,0074007·=·2a004<0,2故006 为Sn> 0 的最大自然数. 选B.解法2:由a1> 0,a003+a004> 0,a003·a004< 0,0 ,a004< 0,∴ S003 为Sn 中的最大值.∵ Sn 是关于n 的二次函数,如草图所示,∴ 003 到对称轴的距离比004 到对称轴的距离小,∴ 4007 在对称轴的右侧.同解法 1 的分析得a003>根据已知条件及图象的对称性可得006 在图象中右侧第页共页零点B的左侧,007,4第二章数列2 .在各项都为正数的等比数列{an} 中,首项a1 =3,前三项和为21 ,则a3+a4+a5=.A .3B.7C.8D.1894 .已知方程=0 的四个根组成一个首项为|m-n|等于.A . 1B . 1 的等差数列,则4C.1D.5 .等比数列{an} 中,a2=9,a5=243,则{an} 的前4项和为.A .81B .120C .1D.1926 .若数列{an} 是等差数列,首项a1 > 0,a003+a004> 0,a003· a004< 0,则使前n 项和Sn> 0 成立的最大自然数n 是.A .00B.00C.00D.0087 .已知等差数列{an} 的公差为2,若a1 ,a3,a4 成等比数列, 则a2=.A .-B.-C.-D.-108 .设S n 是等差数列{an} 的前n 项和,若A . 1B .-1a5S5=,则9=.a3S5C.D. 1a2?a1 的值是.b29 .已知数列-1,a1 ,a2,- 4 成等差数列,-1,b1,b2,b3,- 4 成等比数列,则A . 1B .- 1C .-11 或D. 1二、填空题12 .已知等比数列{an} 中,若a3·a4·a5=8,则a2·a3·a4·a5·a6=.若a1 +a2=324,a3+a4=36,则a5+a6=.若S4=2,S8=6,则a17+a18+a19+a20=.13 .在等差数列{an} 中,3+2=24,则此数列前13 项之和为.14 .在等差数列{an} 中,a5=3,a6=-2,则a4+a5+⋯+a10=.三、解答题15 .已知数列{an} 的前n 项和Sn=3n2-2n,求证数列{an} 成等差数列.已知18 .设{an} 是公比为q? 的等比数列,且a1 ,a3,a2成等差数列.求q 的值;设{bn} 是以 2 为首项,q 为公差的等差数列,其前n 项和为Sn,当n≥2时,比较Sn 与bn 的大小,并说明理由.111b?cc?aa?b ,,成等差数列,求证,,也成等差数列.abcabc19 .数列{an} 的前n 项和记为Sn,已知a1 =1,an+1=求证:数列{n?2Sn .nSn} 是等比数列.n20 .已知数列{an} 是首项为a 且公比不等于1的等比数列,Sn 为其前n 项和,a1 ,2a7,3a4 成等差数列,求证:12S3,S6,S12-S6 成等比数列.第二章数列参考答案一、选择题1 .C解析:由题设,代入通项公式an=a1+d,即005=1+3,∴n=699.2 .C解析:本题考查等比数列的相关概念,及其有关计算能力.设等比数列{an} 的公比为q,由题意得a1+a2+a3=21,即a1=21,又a1 =3,∴1+q+q2=7.解得q= 2 或q=-3,∴ a3+a4+a5=a1q2=3× 22× 7=84.3 .B.解析:由a1 +a8=a4+a5,∴排除C.又a1 · a8=a1 =a12+7a1d,∴ a4· a5==a12+7a1d +12d2> a1· a8.4 .C解析:解法 1 :设a1=两根之和也为2,∴a1+a2+a3+a4=1+6d=4,∴ d=∴1111,a2=+d,a3=+2d,a4=+3d,而方程x2-2x+m=0 中两根之和为2,x2-2x+n =0 中444411735,a1=,a4=是一个方程的两个根,a1 =,a3=是另一个方程的两个根.4444715,分别为m或n,16161 ,故选C.∴|m-n|=解法2:设方程的四个根为x1 ,x2,x3,x4,且x1 +x2=x3+x4=2,x1·x2=m,x3·x4=n.由等差数列的性质:若?+s=p+q,则a?+as=ap +aq,若设x1 为第一项,x2 必为第四项,则x2=数列为7,于是可得等差41357,,,,444715 ,n=,16161 .∴m=∴|m-n|=5 .B解析:∵a2=9,a5=243,a5243=q3==27,a29∴ q=3,a1q=9,a1 =3,3 -35240∴ S4===120.1 -326 .B解析:解法1:由a003+a004> 0,a003· a004< 0,知a003和a004 两项中有一正数一负数,又a1 > 0,则公差为负数,否则各项总为正数,故a003> a004,即a003> 0,a004< 0.∴ S006=∴ S007=40062=40062> 0,0074007·=·2a004<0,2故006 为Sn> 0 的最大自然数. 选B.解法2:由a1> 0,a003+a004> 0,a003· a004< 0,同a004 < 0,∴ S003 为Sn 中的最大值.∵ Sn 是关于n 的二次函数,如草图所示,∴ 003 到对称轴的距离比004 到对称轴的距离小,∴ 4007 在对称轴的右侧.解法 1 的分析得a003> 0,根据已知条件及图象的对称性可得006 在图象中右侧都在其右侧,Sn> 0 的最大自然数是006.7 .B解析:∵{an} 是等差数列,∴a3=a1+4,a4=a1+6,又由a1 ,a3,a4 成等比数列,∴ 2=a1 ,解得a1 =-8,∴ a2=-8+2=-6.8 . A 零点 B 的左侧,007,00899?a5S95 解析:∵9===·= 1 ,∴选A.5?a3S55929 .A解析:设d和q 分别为公差和公比,则-4=-1+3d且-4=q4,∴ d=- 1 ,q2=2,第二章数列1 .{an} 是首项a1=1,公差为d=3的等差数列,如果an=005,则序号n 等于.A .66B.66C.66D.6702 .在各项都为正数的等比数列{an} 中,首项a1 =3,前三项和为21 ,则a3+a4+a5=.A .3B.7C.8D.1893 .如果a1 ,a2,⋯,a8 为各项都大于零的等差数列,公差d≠ 0,则.A .a1a8> a4a B.a1a8< a4a C.a1+a8< a4+aD.a1a8=a4a54 .已知方程=0 的四个根组成一个首项为|m-n|等于.A . 1B . 1 的等差数列,则4C.1D.5 .等比数列{an} 中,a2=9,a5=243,则{an} 的前4项和为.A .81B .120C .1D.1926 .若数列{an} 是等差数列,首项a1 > 0,a003+a004> 0,a003· a004< 0,则使前n项和Sn> 0 成立的最大自然数n 是.A .00B.00C.00D.0087 .已知等差数列{an} 的公差为2,若a1 ,a3,a4 成等比数列, 则a2=.A .-B.-C.-D.-108 .设Sn 是等差数列{an} 的前n 项和,若A . 1B .-1a5S5=,则9=.a3S5C.D. 1a2?a1 的值是.b29 .已知数列-1,a1 ,a2,- 4 成等差数列,-1,b1,b2,b3,- 4 成等比数列,则A . 1B .- 1C .-11 或D. 1210 .在等差数列{an} 中,an≠ 0,an- 1-an+an+1=0,若S2n-1=38,则n=.A .3B.20 C.10 D.9二、填空题第 1 页共页11 .设 f =12x? ,利用课本中推导等差数列前n 项和公式的方法,可求得 f + f +⋯+ f +⋯+f+ f 的值为.12 .已知等比数列{an} 中,若a3·a4·a5=8,则a2·a3·a4·a5·a6=.若a1 +a2=324,a3+a4=36,则a5+a6=.若S4=2,S8=6,则a17+a18+a19+a20=.82713 .在和之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为.314 .在等差数列{an} 中,3+2=24,则此数列前13 项之和为.15 .在等差数列{an} 中,a5=3,a6=-2,则a4+a5+⋯+a10=.16 .设平面内有n 条直线,其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用 f 表示这n 条直线交点的个数,则f=;当n> 4时,f=.三、解答题17 .已知数列{an} 的前n 项和S n=3n2-2n,求证数列{an} 成等差数列.已知18 .设{an} 是公比为q? 的等比数列,且a1 ,a3,a2成等差数列.求q 的值;设{bn} 是以 2 为首项,q 为公差的等差数列,其前n 项和为Sn,当n≥2 时,比较Sn 与bn 的大小,并说明理由.第页共页111b?cc?aa?b ,,成等差数列,求证,,也成等差数列. abcabc19 .数列{an} 的前n 项和记为Sn,已知a1 =1,an+1=求证:数列{20 .已知数列{an} 是首项为 a 且公比不等于1 的等比数列,Sn 为其前n 项和,a1 ,2a7,3a4 成等差数列,求证:12S3,S6,S12-S6 成等比数列.n?2Sn .nSn} 是等比数列.n第二章数列第页共页参考答案一、选择题1 .C解析:由题设,代入通项公式an=a1+d,即005=1+3,∴n=699.2 .C解析:本题考查等比数列的相关概念,及其有关计算能力.设等比数列{an} 的公比为q,由题意得a1+a2+a3=21,即a1 =21 ,又a1 =3,∴1+q+q2=7.解得q= 2 或q=-3,∴ a3+a4+a5=a1q2=3× 22× 7=84.3 .B.解析:由a1 +a8=a4+a5,∴排除C.又a1· a8=a1=a12+7a1d,∴ a4· a5==a12+7a1d +12d2> a1· a8.4 .C解析:解法 1 :设a1=两根之和也为2,∴a1+a2+a3+a4=1+6d=4,∴ d=∴1111,a2=+d,a3=+2d,a4=+3d,而方程x2-2x+m=0 中两根之和为2,x2-2x +n=0中444411735,a1=,a4=是一个方程的两个根,a1 =,a3=是另一个方程的两个根.4444715,分别为m或n,16161 ,故选C.∴|m-n|=解法2:设方程的四个根为x1 ,x2,x3,x4,且x1 +x2=x3+x4=2,x1· x2=m,x3· x4=n.由等差数列的性质:若?+s=p+q,则a?+as=ap+aq,若设x1 为第一项,x2 必为第四项,则x2=数列为7,于是可得等差41357,,,,444715 ,n=,1616第页共页∴ m=∴|m-n|=5 . B 1.解析:∵a2=9,a5=243,a5243=q3==27,a29∴ q=3,a1q=9,a1 =3,3 -35240∴ S4===120.1 -326 .B解析:解法1:由a003+a004> 0,a003· a004< 0,知a003和a004 两项中有一正数一负数,又a1 > 0,则公差为负数,否则各项总为正数,故a003> a004,即a003> 0,a004< 0.∴ S006=∴ S007=40062=40062> 0,0074007·=·2a004<0,2故006 为Sn> 0 的最大自然数. 选B.解法2:由a1> 0,a003+a004> 0,a003· a004< 0,同a004 < 0,∴ S003 为Sn 中的最大值.∵ Sn 是关于n 的二次函数,如草图所示,∴ 003 到对称轴的距离比004 到对称轴的距离小,∴ 4007 在对称轴的右侧.解法 1 的分析得a003> 0,根据已知条件及图象的对称性可得006 在图象中右侧都在其右侧,Sn> 0 的最大自然数是006.7 .B解析:∵{an} 是等差数列,∴a3=a1+4,a4=a1+6,又由a1 ,a3,a4 成等比数列,∴ 2=a1 ,解得a1 =-8,∴ a2=-8+2=-6.8 .A第页共页零点B的左侧,007,008。

高中数学数列复习 题集附答案

高中数学数列复习 题集附答案

高中数学数列复习题集附答案高中数学数列复习题集附答案一、选择题1. 设数列 {an} 的通项公式为 an = 3n + 2,则 {an} 的首项是:A. 1B. 2C. 3D. 4答案:B2. 数列 {an} 的通项公式为 an = 2^n,则 {an} 的前5项分别是:A. 1, 2, 3, 4, 5B. 2, 4, 8, 16, 32C. 1, 4, 9, 16, 25D. 2, 3, 4, 5, 6答案:B3. 已知数列 {an} 的首项是 a1 = -5,公差是 d = 3,求 {an} 的通项公式。

A. an = -5 + 3nB. an = -5 - 3nC. an = -5n + 3D. an = -5 - 3^n答案:A二、填空题1. 求等差数列 {an} 的前5项和,已知首项 a1 = 3,公差 d = 4。

答案:S5 = 752. 求等差数列 {an} 的第10项,已知首项 a1 = 2,公差 d = -3。

答案:a10 = -253. 若等差数列 {an} 的第7项是 20,末项是 74,求首项和公差。

答案:a1 = -16,d = 6三、解答题1. 求等差数列 {an} 的通项公式,已知前三项分别是:a1 = 3,a2 = 7,a3 = 11。

解答:设通项公式为 an = a + (n-1)d,代入前三项得到以下等式:3 = a + 0d7 = a + 1d11 = a + 2d解上述方程组可得,a = 3,d = 4。

因此,该数列的通项公式为an = 3 + 4(n-1)。

2. 若等差数列 {bn} 的前5项的和为 40,已知首项 b1 = 1,公差 d = 2,求数列的前n项和 Sn。

解答:首先确定数列的通项公式为 bn = 1 + (n-1)2 = 2n-1。

因此,前n项和 Sn = (b1 + bn) * n / 2 = (1 + (2n-1)) * n / 2 = n^2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011年高考数学总复习数列单元测试卷及答案(满分:150分 时间:120分钟)一、选择题(本大题共12小题,每小题5分,共60分)1.已知等差数列{a n }中,a 7+a 9=16,a 4=1,则a 12的值是( ) A .15 B .30 C .31 D .64 答案:A解析:由{a n }是等差数列知a 7+a 9=2a 8=16, ∴a 8=8,又a 4=1,∴a 12=2a 8-a 4=15.故选A.2.已知等差数列{a n }的前n 项和为S n ,若a 4=18-a 5,则S 8等于( ) A .18 B .36 C .54 D .72 答案:D解析:a 4=18-a 5⇔a 4+a 5=18,∴S 8=8(a 1+a 8)2=4(a 4+a 5)=72.故选D.3.设S n 是公差不为0的等差数列{a n }的前n 项和,且S 1,S 2,S 4成等比数列,则a 2a 1等于( )A .1B .2C .3D .4 答案:C解析:由S 1,S 2,S 4成等比数列, ∴(2a 1+d )2=a 1(4a 1+6d ).∵d ≠0,∴d =2a 1.∴a 2a 1=a 1+d a 1=3a 1a 1=3.故选C.4.已知数列{a n }中,a n =n (2n -1),其前n 项和为S n ,则S n +12n (n +1)等于( )A .n ·2n +1-2nB .(n -1)·2n +1+2nC .n ·2n +1-2D .(n -1)·2n +1+2 答案:D5.已知数列{a n }的通项公式是a n =2n -12n ,其前n 项和S n =32164,则项数n 等于( )A .13B .10C .9D .6 答案:D解析:∵a n =1-12n ,∴S n =(1-12)+(1-14)+(1-18)+…+(1-12n )=n -(12+14+18+…+12n )=n -12[1-(12)n ]1-12=n -1+12n .∵S n =32164,∴n -1+12n =32164=5+164,∴n =6.故选D.6.等比数列{a n }的公比为q ,则“q >1”是“对任意n (n ∈N *),都有a n +1>a n ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案:D解析:a 1<0时充分性不成立,a n <0必要性不成立.故选D.7.在等比数列{a n }中,a 1=3,前n 项和为S n ,若数列{a n +1}也是等比数列,则S n 等于( )A .2n +1-2 B .3n C .2n D .3n -1 答案:B解析:因为{a n }是等比数列,设公比为q ,则a n =3·q n -1,又因为数列{a n +1}也是等比数列,则(a n +1+1)2=(a n +1)·(a n +2+1),即a 2n +1+2a n +1=a n ·a n +2+a n +a n +2,所以a n +a n +2=2a n +1,所以{a n }是等差数列,故{a n }是常数列,a n =3,所以S n =3n .故选B.8.(2009·黄冈3月)已知数列{a n }的通项公式是a n =n 2+kn +2,若对于n ∈N *,都有a n +1>a n 成立,则实数k 的取值范围是( )A .k >0B .k >-1C .k >-2D .k >-3 答案:D解析:依题意,(n +1)2+k (n +1)+2>n 2+kn +2对n ∈N *恒成立,即k >-2n -1对n ∈N *恒成立,因为-2n -1(n ∈N *)的最大值为-3,所以k >-3,选择D.9.(2009·郑州市二测)在等比数列{a n }中,若a 1+a 2+a 3+a 4=158,a 2a 3=-98,则1a 1+1a 2+1a 3+1a 4=( ) A.53 B.35C .-53D .-35答案:C解析:依题意,设公比为q ,则q ≠1,因此⎩⎨⎧a 1(1-q 4)1-q=158 ①a 21q 3=-98②,又1a 1,1a 2,1a 3,1a 4构成以1a 1为首项,以1q 为公比的等比数列,所以1a 1+1a 2+1a 3+1a 4=1a 1[1-(1q )4]1-1q=(1-q 4)a 1q 3(1-q ),①÷②得(1-q 4)a 1q 3(1-q )=-53,即1a 1+1a 2+1a 3+1a 4=-53,选择C.10.已知x >0,y >0,x ,a ,b ,y 成等差数列,x ,c ,d ,y 成等比数列,则(a +b )2cd的最小值是( )A .0B .1C .2D .4 答案:D解析:∵x ,a ,b ,y 成等差,∴x +y =a +b ,又∵x ,c ,d ,y 等比.∴xy =cd ,∴(a +b )2cd =(x +y )2xy =x y +yx+2≥2+2=4.11.设等比数列{a n }的前n 项和为S n ,则x =S 2n +S 22n ,y =S n (S 2n +S 3n )的大小关系是( ) A .x >y B .x =y C .x <y D .不能确定 答案:B解析:y =S n (S 2n +S 3n )=S n ·S 2n +S n ·S 3n =S n (S n +q n ·S n )+S n (S n +q n S n +q 2n S n )=S 2n +q n S 2n +S 2n+q n S 2n +q 2n S 2n ,x =S 2n +S 22n =S 2n +(S n +q n S n )2=y .故选B.12.已知数列{a n }满足a n +1=12+a n -a 2n ,且a 1=12,则该数列的前2010项的和等于( ) A.30152B .3015C .1005D .2010 答案:A解析:因为a 1=12,又a n +1=12+a n -a 2n ,所以a 2=1, 从而a 3=12,a 4=1,即得a n =⎩⎪⎨⎪⎧12,n =2k -1(k ∈N *)1,n =2k (k ∈N *),故数列的前2010项的和等于S 2010=1005(1+12)=30152.故选A.二、填空题(本大题共4小题,每小题5分,共20分) 13.(2009·江西重点中学联考)已知在等差数列{a n }中,S 1=1,S 19=95,则S 10=________. 答案:30解析:设等差设数列{a n }的公差为d ,则有19+19×182d =95,由此解得d =49,S 10=10+10×92×49=30.14.(2009·保定调研)已知{a n }是公比为q 的等比数列,且a 2,a 4,a 3成等差数列,则q =________.答案:-12或1解析:∵在等比数列{a n }中,a 2,a 4,a 3成等差数列,∴a 2+a 3=2a 4⇒a 2+a 2q =2a 2q 2⇒2q 2-q -1=0⇒q =-12或q =1.15.(2009·南昌二模)设f (n )=1+12+13+…+1n(n ∈N *),是否存在g (n ),使得等式f (1)+f (2)+f (3)+…+f (n )+n =g (n )f (n )总成立?若存在,请写出g (n )的通项公式(不必说明理由);若不存在,请说明理由.______________.答案:g (n )=n +1解析:存在,g (n )=n +1 当n =1时,1+1=g (1),∴g (1)=2;当n =2时,1+1+12+2=g (2)(1+12),∴g (2)=3;当n =3时,1+1+12+1+12+13+3=g (3)(1+12+13),∴g (3)=4,…,故存在,g (n )=n +1.16.若⊗表示一种运算,且有如下表示:1⊗1=2、m ⊗n =k 、(m +1)⊗n =k -1、m ⊗(n +1)=k +2,则2007⊗2007=________.答案:2008解析:由m ⊗(n +1)-m ⊗n =k +2-k =2,取m =1,可得数列{1⊗n }是以1⊗1=2为首项,以2为公差的等差数列,因此1⊗2007=2+(2007-1)×2=4014.又由(m +1)⊗n -m ⊗n =k -1-k =-1,取n =2007,得数列{m ⊗2007}是以1⊗2007=4014为首项,以-1为公差的等差数列,于是2007⊗2007=4014+(2007-1)×(-1)=2008.三、解答题(本大题共6小题,共70分)17.(本小题满分10分)数列{a n }是首项a 1=4的等比数列,且S 3,S 2,S 4成等差数列. (1)求数列{a n }的通项公式;(2)设b n =log 2|a n |,T n 为数列{1b n ·b n +1}的前n 项和,求T n .解:(1)当q =1时,S 3=12,S 2=8,S 4=16,不成等差数列.q ≠1时,2a 1(1-q 2)1-q =a 1(1-q 3)1-q +a 1(1-q 4)1-q得2q 2=q 3+q 4,∴q 2+q -2=0,∴q =-2.∴a n =4(-2)n -1=(-2)n +1,(2)b n =log 2|a n |=log 2|(-2)n +1|=n +1. 1b n b n +1=1(n +1)(n +2)=1n +1-1n +2∴T n =(12-13)+(13-14)+…+(1n +1-1n +2)=12-1n +2=n 2(n +2). 18.(本小题满分12分)已知数列{a n }满足2a n +1=a n +a n +2(n ∈N *),它的前n 项和为S n ,且a 3=10,S 6=72.若b n =12a n -30,求数列{b n }的前n 项和的最小值.解:在数列{a n }中,∵2a n +1=a n +a n +2,∴{a n }为等差数列,设公差为d ,由⎩⎪⎨⎪⎧a 3=a 1+2d =10S 6=6a 1+6×52d =72,得⎩⎪⎨⎪⎧a 1=2d =4. ∴a n =a 1+(n -1)d =4n -2,∴b n =12a n -30=2n -31∴n ≤15时,b n <0,n ≥16时,b n >0. ∴{b n }的前15项的和最小为-225.19.(本小题满分12分)等差数列{a n }中,公差d ≠0,a 2是a 1与a 4的等比中项,已知数列a 1,a 3,ak 1,ak 2,…,ak n ,…成等比数列.(1)求数列{k n }的通项k n ;(2)求数列{nk n}的前n 项和.解:(1)由已知得(a 1+d )2=a 1·(a 1+3d ),解得a 1=d 或d =0(舍去),所以数列{a n }的通项是a n =nd ,因为数列a 1,a 3,ak 1,ak 2,…,ak n ,…成等比数列,即数列d,3d ,k 1d ,k 2d ,…,k n d ,…成等比数列,其公比q =3dd=3,k 1d =32d ,故k 1=9,所以数列{k n }是以k 1=9为首项,以3为公比的等比数列,故k n =9×3n -1=3n +1.(2)令数列{nk n}的前n 项和为S n ,则S n =132+233+334+…+n3n +1①13S n =133+234+335+…+n -13n +1+n3n +2② ①-②并整理得S n =14(1-13n )-n2·3n +1.20.(本小题满分12分)(2008·厦门模拟)数列{a n }的前n 项和为S n ,a 1=1,a n +1-a n -1=0,数列{b n }满足b 1=2,a n b n +1=2a n +1b n .(1)求S 200; (2)求b n .解:(1)∵a n +1-a n -1=0,∴a n +1-a n =1.∴数列{a n }是以a 1=1为首项,d =1为公差的等差数列.∴S 200=200×1+200×1992×1=20100.(2)由(1)得a n =n ,∴nb n +1=2(n +1)b n .∴b n +1n +1=2·b nn .∴{b n n }是以b 11=2为首项,q =2为公比的等比数列,∴b n n =2×2n -1,∴b n =n ·2n . 21.(本小题满分12分)(2009·东北三校联考)(理)已知S n 为数列{a n }的前n 项和,a =(S n,1),b =(-1,2a n +2n +1),a ⊥b .(1)求证:数列{a n2n }为等差数列;(2)若b n =n -2011n +1a n ,问是否存在n 0,对于任意k (k ∈N *),不等式b k ≤bn 0恒成立.(文)已知数列{a n },满足a n +1-2a n =0,且a 3+2是a 2、a 4的等差中项,S n 为数列{a n }的前n 项和.(1)求{a n }的通项公式;(2)若b n =log 2(S n +2),求数列{1b n b n +1}的前n 项和T n 的值.解:(理)(1)∵a ⊥b ,∴-S n +2a n +2n +1=0,-S n +1+2a n +1+2n +2=0,∴a n +1=2a n -2n +1,∴a n +12n +1=a n 2n -1,∴数列{a n2n }为等差数列.(2)a n2n =-2-(n -1)=-(n +1), ∴b n =(2011-n )2n ,令b n +1≥b n ,(2010-n )2n +1≥(2011-n )2n ,n ≤2009, b n 的最大值为b 2010=b 2009, ∴n 0=2009或2010. (文)(1)∵a n +1-2a n =0,∴a 3=2a 2,a 4=2a 3,又a 3+2是a 2、a 4的等差中项, ∴a 1=2,a 2=4,∴数列{a n }是以2为首项,2为公比的等比数列,则 a n =2n .(2)∵S n =2n +1-2,又b n =log 2(S n +2),∴b n =n +1.∵1b n b n +1=1(n +1)(n +2)=1n +1-1n +2, ∴T n =12-13+13-14+…+1n +1-1n +2,∴T n =12-1n +2.22.(本小题满分12分)(2009·江西九所重点中学联考)(理)已知数列{a n }与{b n }满足关系:a 1=2a ,a n +1=12(a n +a 2a n ),b n =a n +a a n -a(n ∈N *,a >0).(1)求证:数列{lg b n }是等比数列;(2)证明:a n -a a n +1-a=32n -1+1;(3)设S n 是数列{a n }的前n 项和,当n ≥2时,S n 与(n +43)a 是否有确定的大小关系?若有,请加以证明,若没有,请说明理由.(文)已知P 1(a 1,b 1),P 2(a 2,b 2),…,P n (a n ,b n )(n ∈N *)都在函数y =log 12x 的图象上.(1)若数列{b n }是等差数列,求证数列{a n }是等比数列;(2)若数列{a n }的前n 项和为S n =1-2-n ,过点P n ,P n +1的直线与两坐标轴所围成的三角形的面积为c n ,求最小的实数t 使c n ≤t 对n ∈N *恒成立.解:(理)(1)∵a n +1=12(a n +a 2a n ),b n =a n +a a n -a ,∴b n +1=a n +1+a a n +1-a =12(a n +a 2a n )+a12(a n +a 2a n)-a =(a n +a )2(a n -a )2=b 2n>0,∴lg b n +1=2lg b n ,又a >0,∴b n =a n +a a n -a≠1,故lg b n ≠0.因此lg b n +1lg b n =2,故数列{lg b n }是等比数列.(2)b 1=a 1+a a 1-a=3,∴lg b n =(lg3)·2n -1⇒b n =32n -1,由b n =a n +a a n -a 得:a n =b n +1b n -1·a =32n -1+132n -1-1·a =a +2a32n -1-1,∴a n -a a n +1-a =2a 32n -1-12a 32n-1=32n -132n 1-1=(32n -1)2-132n 1-1=32n -1+1.(3)当n ≥2时,a n +1-a =a n -a 32n -1+1≤110(a n -a ),∴当n =2时,S n =S 2=a 1+a 2=2a +54a =134a ,(n +43)a =(2+43)a =103a ,即S n <(n +43)a ;当n ≥3时,a 3-a ≤110(a 2-a ),a 4-a ≤110(a 3-a ),…,a n -a ≤110(a n -1-a ),∴S n -a 1-a 2-(n -2)a ≤110[S n -1-2a -(n -2)a ],∵a 1=2a ,a 2=54a ,∴10S n -65a2-10(n -2)a ≤S n -a n -2a -(n -2)a ,∴S n ≤[(n -2)+6118-32n -1+19(32n -1-1)]a <(n +2518-19)a =(n +2318)a <(n +43)a .综上所述,n ≥2时,S n <(n +43)a .(文)(1)数列{b n }是等差数列,设公差为d ,则b n +1-b n =d 对n ∈N *恒成立,依题意b n =log 12a n ,a n =(12)b n ,所以a n +1a n =(12)b n +1-b n =(12)d 是定值,从而数列{a n }是等比数列. (2)当n =1时,a 1=12,当n ≥2时,a n =S n -S n -1=(12)n ,n =1也适合此式,即数列{a n }的通项公式是a n =(12)n .由b n =log 12a n ,得数列{b n }的通项公式是b n =n ,所以P n (12n ,n ),P n +1(12n +1,n +1).过这两点的直线方程是:y -n(n +1)-n=x -12n12n +1-12n可得与坐标轴的交点是A n (n +22n +1,0),B n (0,n +2),c n =12×|OA n |×|OB n |=(n +2)22n +2,由于c n -c n +1=(n +2)22n +2-(n +3)22n +3=2(n +2)2-(n +3)22n +3=n 2+2n -12n +3>0,即数列{c n }的各项依次单调递减,所以t ≥c 1=98,即存在最小的实数t =98满足条件.。

相关文档
最新文档