单端正激式开关电源_主电路的设计说明

合集下载

基于单管正激式的高效率开关电源的设计

基于单管正激式的高效率开关电源的设计

基于单管正激式的高效率开关电源的设计高效率开关电源是一种能够将输入电源有效地转换为所需输出电源的电力转换装置。

在实际应用中,高效率开关电源已经取代了传统的线性电源,更广泛地应用于各个领域。

一种常见的高效率开关电源设计是基于单管正激式的设计。

该设计方案具有简单、成本低廉、效率高等特点。

该设计方案的核心元件是一只功率MOS管(Metal-Oxide-Semiconductor Field-Effect Transistor)。

该MOS管作为开关,能够根据控制信号开启或关闭,从而实现电源的稳定输出。

MOS管的导通损耗较小,能够在高频率下工作,因此能够提高电源的转换效率。

设计方案的第一步是根据需要确定输入电源的范围和输出电源的需求。

通过采集输入电源的直流电压,可以确定MOS管的工作区间,从而选择合适的MOS管。

接下来,设计师需要根据输出电源的需求确定转换电路。

转换电路的核心是开关频率发生器,用于控制MOS管的开关频率。

开关频率的选择需要考虑到输出电源的负载特性和所需的转换效率。

通常情况下,开关频率越高,转换效率越高,但开关损耗也会增加。

在设计过程中,还需要考虑到输出电源的稳定性和电源滤波的问题。

稳压器是非常重要的一个模块,用于确保输出电压的稳定性。

电源滤波是为了减少开关频率带来的干扰和噪音,提高输出电源的纯净度。

最后,设计师需要进行电路模拟和实验验证。

通过电路模拟软件,可以模拟不同工作条件下的电源转换效率和稳定性。

随后,可以通过实验验证电路的性能,并对其进行调整和优化。

总结起来,基于单管正激式的高效率开关电源设计是一项复杂但非常有挑战性的任务。

设计师需要充分了解输入电源和输出电源的需求,合理选择核心元件和电路拓扑,进行模拟和实验验证,最终实现高效率的电源转换。

这种设计方案在各个领域中都有着广泛的应用前景。

基于UC2845单端正激式开关电源设计

基于UC2845单端正激式开关电源设计

基于UC2845单端正激式开关电源设计作者:李祥洪浩邱力军来源:《无线互联科技》2014年第12期摘要:本文论述一种采用UC2845为控制芯片的开关电源,介绍了正激式变压器的工作原理,并给出相关设计电路。

关键词:UC2845;单端正激;开关电源开关电源是利用现代电力电子技术,控制开关管占空比来维持稳定输出电压的一种电源,其中高频开关式直流稳压电源具有效率高、小型化、输出稳定、高可靠性等突出优点,在工业设备、军工装备、科研仪器、LED照明等领域得到广泛应用。

1 UC2845芯片UC2845是一种高性能单端输出式电流控制型脉宽调制器芯片,为设计人员只需最少的外部器件就能获得成本效益高的方案。

该集成电路的特点包括可微调的振荡器、可精准控制占空比、参考欠压锁定、高效益误差放大器、电流取样比较器和大电流图腾柱式输出,采用固定工作频率脉冲宽度可控调制方式,是驱动功率MOSFET的理想器件。

2 开关电源设计⑴系统参数及电路设计。

本文设计的电路参数为:输入电压为市电220V/50HZ,输出电压为直流5V/40A,工作频率50~100KHz。

整个电路由EMI滤波电路、整流滤波电路、高频变压器、电流检测和反馈补偿电路等几部分组成,其原理图如图1所示:⑵单端正单端正激式变压器原理。

本文采用单端正激式。

所谓单端,是指高频变压器的磁芯仅工作在磁滞回线的一侧,磁同单向变化。

所谓正激,在开关功率管导通时,后级整流二极管D2导通,依同名端工作关系,初级线圈上的电能通过磁芯耦合传输给次级绕组,并通过后级整流二极管传递到输出端;在开关功率管关断时,续流二极管和储能电感构成放电回路,继续对负载供能。

⑶UC2845外围电路设计。

振荡器频率由接在UC2845的4脚上的电阻R20和电容C12决定,振荡器频率为:f=1.72/(R20*C12),假若工作频率小于20KHz进入音频范围,则噪声较大,纹波增大;若开关频率较高时,开关损耗增大,系统效率降低,且电路对EMC的要求增大。

单管正激式开关电源变压器设计

单管正激式开关电源变压器设计

单管正激式开关电源变压器设计引言:设计目标:设计一个单管正激式开关电源变压器,输入电压为220V,输出电压为12V,输出电流为1A。

主要的设计目标如下:1.高能效:确保转换效率达到90%以上。

2.稳定性:在负载变化范围内,输出电压波动小于5%。

3.安全性:确保设计的变压器具有过载和短路保护功能。

4.成本:在满足以上要求的情况下,尽量降低设计成本。

设计过程:1.计算变压器的变比:由于输入电压为220V,输出电压为12V,所以变压器的变比为220/12=18.332.计算次级电流:输出电流为1A,因此次级电流为1A。

3.计算主磁环的Ae(过剩面积):根据磁环材料的选择,可以得到主磁环的Ae值。

4.计算主磁环的直径D:根据所选择的磁环材料的饱和磁感应强度,可以得到主磁环的直径D。

5.计算次级绕组的匝数:次级绕组的匝数可以根据变比计算得出。

6.计算次级绕组的截面积:由于次级电流和次级绕组匝数已知,可以计算出次级绕组的截面积。

7.选择铁芯截面积:根据所需的变压器功率,可以选择合适的铁芯截面积。

8.计算输出电压波动:根据设计目标的要求,计算负载变化时输出电压的波动范围。

9.设计过载和短路保护:根据设计目标的要求,设计过载和短路保护电路,以确保变压器的安全性。

设计要点:1.磁环材料的选择:磁环材料应具有高饱和磁感应强度和低磁滞损耗,以提高变压器的效率。

2.绕组材料的选择:绕组材料应具有良好的导电性和低电阻,以减小损耗和提高效率。

3.绝缘材料的选择:绝缘材料应具有良好的绝缘性能和耐高温性能,以确保变压器的安全性和可靠性。

4.冷却系统的设计:变压器在工作中会产生一定的热量,需要设计合适的冷却系统,以保持变压器的温度在安全范围内。

总结:单管正激式开关电源变压器是一种常见的电源转换器,设计时需要考虑效率、稳定性、安全性和成本等因素。

在设计过程中,需要计算变压器的变比、次级电流、主磁环的Ae和直径、次级绕组的匝数和截面积,选择合适的铁芯截面积,设计合适的过载和短路保护电路,并选用合适的磁环材料、绕组材料和绝缘材料。

100W单端正激开关电源方案分享之主电路设计

100W单端正激开关电源方案分享之主电路设计

100W 单端正激开关电源方案分享之主电路设计
单端正激式开关电源的设计和研发工作,对于很多工程师来说都是非常熟悉的了,这种开关电源在家电以及加工制造等领域是比较常见的。

本文将会在这里为大家分享一种100W 的单端正激开关电源设计方案,这一开关电源适合小功率应用方向的选择,设计相对简单易操作。

在今天的文章中,将会着重分享这一方案的主电路设计情况。

100W 单端正激开关电源的技术指标
本方案所设计的这种100W 单端正激式开关电源的技术指标要求是,输入市电220V/50HZ,输出12V/4A,工作温度为-40℃~+85℃,工作频率200~250KHZ,隔离电阻大于200MΩ,输入电压范围为交流176V~
260VAC/50HZ。

这一方案中的主要技术要求是输出电压精度维持在±1%左右,输出纹波需要控制在VP-P≤1%,负载调整率(主路)±0.5%。

同时,这一方案还要求输出具有短路保护功能,并能自动恢复。

效率η>82%。

主电路框架设计
下图图1 所示是本方案所选择的单端正激式开关电源电路的典型结构,可以看到,这一电源主要由整流滤波电路、DC/DC 变换电路、开关占空比控制电路以及取样比较电路等模块构成。

在这一单端正激式的开关电源主电路结构中,其前级整流滤波电路的主要作用是被用来消除来自电网的干扰,同时这一电路的设计也能够有效的防止开关电源产生的高频噪声向电网扩散,并将电网输入电压进行整流滤波,为变换器提供直流电压。

变换器是这一单端正激式开关电源的关键部分,在电源正常运行时,变换器可以把直流电压变换成高频交流电压,并且起到将输出部分与输入电网隔。

基于UC2845单端正激式开关电源设计

基于UC2845单端正激式开关电源设计

2开关电源设计
( 1 ) 系 统 参 数 及 电 路 设 计。本 文 设 计 的 电路 参 数 为 : 输
入 电压 为市 电2 2 0 V / 5 0 H Z , 输 出电压 为直 流5 V / 4 0 A , 工作频 率
波特性 , 断 电后还能使电源的进线端L 、 N 不带 电, 保证使用的安

技 术 应 用
基于UC 2 8 4 5 单端正激式开关电源设 计
李 祥 洪 浩 邱力军( 西京学院 控制工 程学院, 陕西 西安 7 1 0 1 2 3 )
摘 要: 本文论 述一种 采用U C 2 8 4 5 为控 制芯片的开关电源, 介绍了 正激 式变压 器的X - 作原 理, 并给 出 相 关设计 电路
全性。
( 5 ) 反馈电路设计。 过流保护电路是由R 2 ห้องสมุดไป่ตู้ 、 R 2 2 、 R 2 3 以及C l l
R 2 2 、 R 2 3 上 的电压反映了电流瞬 时值, 当开关电源发 生过 5 0  ̄I O O K H z 。 整个 电路 由E M I 滤波 电路、 整流滤波 电路、 高频变 组成 。 电流时, Q 1 漏极的电流会增大, U R S 会增大, U R S 接 入U C 2 8 4 5 的保 压器 、 电流检测和反馈补偿 电路等几部分组成 , 其 原理 图如 图1 护输入 端3 脚, 当U R S = I V 时, U C 2 8 4 5 芯片的输 出脉冲将关 断。 通 所示: 过调节R 2 1 和R 2 2 、 R 2 3 分压 比可以改变开关管的限流值 , 实现电
关键 词: U C 2 8 4 5 ; 单端 正激 ; 开关电源
开关电源 是利用现代 电力电子技术 , 控制开关管 占空比来 6 7 . 8 K H z 。 维持稳定输 出电压 的一种 电源, 其中高频开 关式直流稳压电源 设备、 军工装备、 科研仪器、 L E D 照明等领域得到广泛应用。 为了降低功耗 , U C 2 8 4 5 采用两条供 电电路, 一条是启动时 正常工作情况下的驱动 电流很大, 所以由变压器分一 个绕 组进 行供电, 可以降低功耗, c 5 起储 能和滤波作用, 因为U C 2 8 4 5 的瞬

SG3525A开关电源设计

SG3525A开关电源设计

6
六 、 原 理 图
1A/400V T1 TIP127 (100V/5A/Darl-L) R1 4K7
15 13
L1 10mH/0.5A
+12
R2 4K7 104 C4
9 1 2 16 11 14
4K7 R6
104 C4
FR107 D4 104 C6 4K7 R8 C5 470/16V
5K1 R10
续流管阴极电位VK 、 电感电流IL、负载电流IO Ipk=2(IO)max VO -VF (tON)min (tOFF)max 储能不足 (VIN)max-VSTA-VO (IO)max t
8.
图五:最大输入 满负荷时的续流波形 图五:最大输入/满负荷时的续流波形
IL
八、电感的绕制
t
1. 2.
铁氧体磁芯或磁罐(高频磁性材料、居里温度~230C)。 漆包线线径:考虑趋肤效应和机械强度,
软启动--上电时输出电压由低到高建立,需要一定时间。 上电时,C2充电需要一定时间,SS端电压由低逐渐变高,输出管的导 通时间逐渐增大,输出电压逐渐升高。
6
七、参数选择
1. 整流管:桥式整流,整流管电流=0.5负 载电流,最大反向电压=输入交流电压 峰值,IN4007(1A/1kV)可以满足要求。
IC VEC PT
VIN+VF
2.
IECO VSTA 滤波电容:RLC=(3~5)T,整流滤波后 直流电压VIN=18.0~28.8V, tON tOFF RL~18.0V/0.5A=36Ohm, T=10mS, 图四: 图四:开关管开关速度与功耗分析 1000uF/35V电解电容可满足要求。最 常用电解电容:1.0、2.2、3.3、4.7、 6.8及相应十百千uF,耐压有6、16、25、 35、50、63、100、120、200、400V。

基于单管正激式的高效率开关电源的设计

基于单管正激式的高效率开关电源的设计

基于单管正激式的高效率开关电源的设计高效率开关电源是一种电子电源,通过使用开关器件(如晶体管或MOSFET)以高效地转换输入电源的电压至所需的电压输出。

相比传统的线性电源,开关电源具有更高的效率和更小的体积。

本文将基于单管正激式的高效率开关电源进行设计。

首先,我们需要选择适合的开关器件。

常用的开关管有MOSFET和BJT。

在本设计中,我们选择使用MOSFET。

MOSFET具有较低的导通电阻和较高的开关速度,能够提供更高的效率。

接下来,我们需要设计正激式电源的基本电路。

正激式电源通常由脉宽调制(PWM)控制器、功率开关、功率变压器和输出滤波器等组成。

PWM控制器用于控制功率开关的开关信号,调整输出电压和电流。

常见的PWM控制器有TL494、SG3525等。

选择合适的PWM控制器并根据设计要求进行参数设置。

功率开关是用来控制输入电源与输出负载之间的连接和断开。

在本设计中,我们采用MOSFET作为功率开关,使用PWM控制器的输出信号来控制MOSFET的导通和截止。

功率变压器用于变换输入电压至所需的输出电压。

根据设计参数和要求,选择合适的功率变压器,并计算出合适的变比。

输出滤波器用于滤除开关频率的高频噪声,并平滑输出电压。

常见的输出滤波器包括电容滤波器和电感滤波器。

根据设计要求选择合适的滤波器并进行参数计算。

在设计过程中,需要对电源的输入电压范围、输出电压和电流进行仔细的选择和计算。

同时,需要考虑电源的功率损耗和效率。

通过合理的设计和选择,可以实现高效率的开关电源。

最后,为了确保设计的可靠性和安全性,需要进行电路的模拟和实际验证。

通过使用仿真软件进行模拟和调试,可以预测和解决潜在的问题。

同时,进行实物电路的组装和测试,验证设计的性能和参数是否满足要求。

综上所述,基于单管正激式的高效率开关电源的设计需要选择适合的开关器件、设计基本电路和参数,并进行模拟和实际验证。

通过合理的设计和选择,可以实现高效率、稳定和可靠的开关电源。

开关电源工作原理及电路图

开关电源工作原理及电路图

本文以丰富的开关电源案例分析,介绍单端正激式开关电源,自激式开关电源,推挽式开关电源、降压式开关电源、升压式开关电源和反转式开关电源。

随着全球对能源问题的重视,电子产品的耗能问题将愈来愈突出,如何降低其待机功耗,提高供电效率成为一个急待解决的问题。

传统的线性稳压电源虽然电路结构简单、工作可靠,但它存在着效率低(只有40%-50%)、体积大、铜铁消耗量大,工作温度高及调整范围小等缺点。

为了提高效率,人们研制出了开关式稳压电源,它的效率可达85%以上,稳压范围宽,除此之外,还具有稳压精度高、不使用电源变压器等特点,是一种较理想的稳压电源。

正因为如此,开关式稳压电源已广泛应用于各种电子设备中,本文对各类开关电源的工作原理作一阐述。

一、开关式稳压电源的基本工作原理开关式稳压电源接控制方式分为调宽式和调频式两种,在实际的应用中,调宽式使用得较多,在目前开发和使用的开关电源集成电路中,绝大多数也为脉宽调制型。

因此下面就主要介绍调宽式开关稳压电源。

调宽式开关稳压电源的基本原理可参见下图。

对于单极性矩形脉冲来说,其直流平均电压Uo取决于矩形脉冲的宽度,脉冲越宽,其直流平均电压值就越高。

直流平均电压U。

可由公式计算,即Uo=Um×T1/T式中Um为矩形脉冲最大电压值;T为矩形脉冲周期;T1为矩形脉冲宽度。

从上式可以看出,当Um与T不变时,直流平均电压Uo将与脉冲宽度T1成正比。

这样,只要我们设法使脉冲宽度随稳压电源输出电压的增高而变窄,就可以达到稳定电压的目的。

二、开关式稳压电源的原理电路1、基本电路图二开关电源基本电路框图开关式稳压电源的基本电路框图如图二所示。

交流电压经整流电路及滤波电路整流滤波后,变成含有一定脉动成份的直流电压,该电压进人高频变换器被转换成所需电压值的方波,最后再将这个方波电压经整流滤波变为所需要的直流电压。

控制电路为一脉冲宽度调制器,它主要由取样器、比较器、振荡器、脉宽调制及基准电压等电路构成。

100w单端正激开关电源设计05

100w单端正激开关电源设计05

辽宁工业大学电力电子技术课程设计(论文)题目:100W单端正激开关电源设计院(系):电子与信息工程学院专业班级:学号:学生姓名:指导教师:(签字)起止时间: 2014.12.15-2014.12.26课程设计(论文)报告的内容及其文本格式1、课程设计(论文)报告要求用A4纸排版,单面打印,并装订成册,内容包括:①封面(包括题目、院系、专业班级、学生学号、学生姓名、指导教师姓名、、起止时间等)②设计(论文)任务及评语③中文摘要(黑体小二,居中,不少于200字)④目录⑤正文(设计计算说明书、研究报告、研究论文等)⑥参考文献2、课程设计(论文)正文参考字数:2000字周数。

3、封面格式4、设计(论文)任务及评语格式5、目录格式①标题“目录”(小二号、黑体、居中)②章标题(小四号字、黑体、居左)③节标题(小四号字、宋体)④页码(小四号字、宋体、居右)6、正文格式①页边距:上2.5cm,下2.5cm,左3cm,右2.5cm,页眉1.5cm,页脚1.75cm,左侧装订;②字体:一级标题,小二号字、黑体、居中;二级,黑体小三、居左;三级标题,黑体四号;正文文字,小四号字、宋体;③行距:20磅行距;④页码:底部居中,五号、黑体;7、参考文献格式①标题:“参考文献”,小二,黑体,居中。

②示例:(五号宋体)期刊类:[序号]作者1,作者2,……作者n.文章名.期刊名(版本).出版年,卷次(期次):页次.图书类:[序号]作者1,作者2,……作者n.书名.版本.出版地:出版社,出版年:页次.课程设计(论文)任务及评语院(系):电子与信息工程学院 教研室: 电子信息工程 注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算 学 号学生姓名 专业班级 课程设计(论文)题目100W 单端正激开关电源设计 课程设计(论文)任务 课题完成的设计任务及功能、要求、技术参数实现功能:为实验室电子设备提供24V 直流电源,以取代低效率的线性稳压电源,减小电源的体积和重量及成本。

ACDC开关电源IGBT应用原理与主电路图

ACDC开关电源IGBT应用原理与主电路图

AC-DC开关电源IGBT应用原理与主电路图AC-DC开关电源IGBT应用原理与主电路图作者:微叶科技时间:2015-07-14 16:48随着高速IGBT得推出,工作频率可达50kHz以上,IGBT有用于SMPS(Switch Mode Power Supplies,市电输入得开关电源)得趋势。

AC-DC开关电源得电路拓扑一般就是指储能元件(开关变压器或者储能电感)与功率开关元件(IGBT、VMOS 等)得配置方式。

1、单端正激电路单端正激式(Forward) SMPS拓扑得电路简图如图1所示。

其中,单端就是指主开关为单管电路,正激指得就是主开关变压器初次级绕组得相位关系。

图1 正激式拓扑电路系统简图粗虚线框中得电路就是功率开关电路,T就是主开关变压器;Q1就是功率寸姜,D21就是次级整流二极管;D22就是续流二被管;L21就是储能电感,兼有扼流滤波作用;N1就是主绕组(初级);N4就是复位绕组;N2就是次级绕组;带箭头得虚线表明了瞬时电流得方向与路径。

所谓正激,即主开关变压器初、次级线圈得绕向就是一样得,电气相位相同。

这样做得好处就是,Q1开通时,N2从初级绕组获得能量,向L21、C2l与负载RL提供能量;Q1关断时,L21内存储得能量向负载RL释放,D22为电感内能量得释放提供通路。

同时,D2作为复位绕组N4得负载,在Q1关断期间消耗变压器磁心中存储得能量,使磁心复位。

复位电路也可以像4、25那样实现,在初级绕组上并联DRC(二极管、电阻、电容,Dll 、R11、C11)。

由于负载在Q1开通与关断期间都有能量(电流供应),因此正激式拓扑得输出纹波相对较小。

功率开关管Q1承受得最大直流电压约为主电路电压得1倍,电源输入为220V市电规格得条件下,Q1得电压规格至少为800V。

如果采用了APFC 电路,则Q1得电压规格至少为1000V。

·EMI与PFC 电路在SMPS中很常见。

EMI电路主要就是为了减小开关电源对电网得污染,PFC(功率因数校正)电路主要就是为了提高开关电源得功率因数。

开关电源设计技巧连载十正激式变压器开关电源电路参数的计算

开关电源设计技巧连载十正激式变压器开关电源电路参数的计算

开关电源设计技巧连载十正激式变压器开关电源电路参数的计算正激式变压器开关电源是一种常见的电源设计方案,广泛应用于各种电子设备中。

在设计正激式变压器开关电源时,我们需要计算一些电路参数来保证电源的正常工作。

以下是正激式变压器开关电源电路参数的计算方法。

1.输入电压计算:首先,需要确定正激式变压器开关电源的输入电压范围。

一般情况下,输入电压范围是根据电源的应用场所和要求来确定的。

例如,对于工业设备,输入电压范围一般为220VAC;对于电子设备,输入电压范围一般为110VAC。

因此,需要根据输入电压范围来选择合适的变压器。

2.输出电压计算:根据电源的应用场景和要求,确定所需的输出电压。

一般情况下,正激式变压器开关电源的输出电压范围是根据设备的工作电压要求来确定的。

例如,对于一些低功率的电子设备,输出电压一般为5VDC;对于一些高功率的电子设备,输出电压一般为12VDC或者24VDC。

因此,需要根据输出电压范围来选择合适的变压器和输出电路参数。

3.开关频率计算:开关频率是指开关管的开关频率,它决定了电源的工作频率。

一般情况下,开关频率是根据设备的工作要求来确定的。

例如,对于一些需要高效节能的设备,开关频率一般选择在20kHz以上;对于一些功率较低的设备,开关频率一般选择在50kHz以上。

因此,需要根据设备的工作要求来确定开关频率。

4.输出电流计算:输出电流是指电源输出给负载的电流,它决定了电源的输出功率。

一般情况下,输出电流是根据设备的功率要求和负载电阻来确定的。

例如,对于一些低功率的电子设备,输出电流一般在1A以下;对于一些高功率的电子设备,输出电流一般在10A以上。

因此,需要根据设备的功率要求和负载电阻来确定输出电流。

5.开关管参数计算:正激式变压器开关电源中的开关管是承担开关功能的主要器件。

在选择开关管时,需要根据前面计算的电路参数来确定合适的开关管。

例如,需要根据输入电压、输出电压、开关频率和输出电流来确定开关管的导通压降、导通电阻、关断速度和功耗等参数。

实验49-DC-DC 单端正激式变换电路设计实验

实验49-DC-DC 单端正激式变换电路设计实验

实验四十九 DC/DC 单端正激式变换电路设计实验(信号与系统—电力电子学—检测技术综合实验)一、 实验原理1. 单端正激变换器单端正激变换电路是隔离式DC/DC 变换电路中的一种,采用一个单管实现DC/DC 变换,例如图49-1所示的电路。

它在开关管Q 导通时电源的能量经隔离变压器T 、整流二极管和滤波电感直接送至负载,故称为正激;由于其变压器磁通只在单方向上变化而被称为单端。

这样的电路被称为单端正激式变换电路。

V O图49-1采用辅助绕组复位的单管正激变换器正激变换器由于具有电路结构简单、成本较低、输出电流大、工作可靠性高等优点而广泛应用于中小功率变换场合,更成为低压大电流功率变换器的首选拓扑结构。

正激变换器中,由于变压器的磁芯是单方向磁化的,每个周期都需要采用相应的措施,使磁芯回到磁化曲线的起点,否则磁芯磁会很快饱和而导致开关器件损坏,因此需要采用专门的复位电路,使变压器的磁芯磁复位。

当输入电压及占空比固定的时候,输出电压与负载电流无关。

因此DC/DC 单端正激变换电路具有低输出阻抗的特点。

在同等功率条件下,单端正激变换电路的集电极峰值电流很小,所以该变换器适合应用在低压,大电流,功率较大的场合。

2. 不同复位方式的正激变换器[2]通常采用的磁复位方法主要有以下几种: (1) 辅助绕组复位正激变换器采用辅助绕组复位的正激变换器见图49-1。

其中隔离变压器有三个绕组:一次绕组N 、二次绕组N 和去磁绕组N 。

在T 时间内,Q 导通,D 导通,D 、D 123ON 213截止,电源向负载传递能量,此时,磁通增量为I 1ON I 1(V /N )T (V /N )DT S ΔΦ=⋅=⋅,输出电压为V O =V N /N 。

I 21时间内,Q 阻断,D 截止,D 导通续流,D 在T OFF 213导通向电源回馈能量。

如果在整个T I S V (1D)T /N 3′ΔΦ=−时间内,D ,输出电压为V OFF 3都导通,磁通减少量最大为O =0,此时开关管Q 两端的反压为V (1+N I 1/N )。

SG3525A开关电源设计说明

SG3525A开关电源设计说明
软启动--上电时输出电压由低到高建立,需要一定时间。 上电时,C2充电需要一定时间,SS端电压由低逐渐变高,输出管的导 通时间逐渐增大,输出电压逐渐升高。
七、参数选择
IC VEC PT
1. 整流管:桥式整流,整流管电流=0.5负 载电流,最大反向电压=输入交流电压 峰值,IN4007(1A/1kV)可以满足要求。
11 OUTB
14
1000u/35V C1
7
4K7 3 R3
10
8
C2 10u/16V
OS C OUT
/SYNC SD
IC1
SG3525
SS
C OMP
9
R7 100K
IN-
1
R9 4K7
IN+
2
Vref
16
4K7 R8
C5 470/16V
R11 3K6
12 GND DI SC
7 5 CT 6 RT
R4
10
8
C2 10u/16V
OS C OUT
/SYNC SD
IC1
SG3525
SS
C OMP
9
R7 100K
IN-
1
R9 4K7
IN+
2
Vref
16
4K7 R8
C5 470/16V
R11 3K6
12 GND DI SC
7 5 CT 6 RT
R4
C3 R5
200
222 15K
图三:由TL494组成降压型开关稳压电源
六 、 原 理 图
1A/400V
L1 10mH/0.5A
T1
TIP1 27 (100V/5A/Darl-L)

基于UC3842的单端正激开关电源

基于UC3842的单端正激开关电源

和硬件 进 行 了合 理 的设计 以及 相 关参数 的计算 , 最后 对设 计 的 开 关 电源 进行 了测 试 。 实验 结 果表 明, 本 设计 的 开关 电 源具 有 良好 的稳压 作 用 , 精 度 可 以达 到 8 3 . 3 %。
关键 词 : U C 3 8 4 2;开 关 电源 ;测试
脚② 是放 大器 反 向输 入 端 , 也 是 本 次设 计 的 电 压反 馈信 号输 入端 , 与 同 向输 入端 比较 , 高 于 同 向和
收 稿 日期 : 2 0 1 7—0 3—2 1
作 者 简介 : 张
烨( 1 9 8 6 一) , 女, 河 北石 家庄人 , 助教 , 硕士研 究生 , 研 究方向为压缩 感知在 电能质 量 中的应 用 。
组成¨ J 。其 中 E MI 滤 波器 可 以抑 制 浪涌 电压 , 对 电
GND s , R
Ur e f
源起保 护作 用 ; 其中, 输 出 电压 经过 比较 器 反馈 给控
制芯 片控 制 P WM 波 占空 比 , 控 制 其 驱 动 开 关 管 关 断, 达 到调 节输 出等一 系列 步骤进 行工 作 。
脚 ̄G N D。
脚⑥为信号输 出端 , 图腾柱推挽输出模式 , 驱动
能力 为 ±1 A。
脚⑦ 是 电源供 电 , 输入 1 6 V 电压 开始 工 作 , 内
部3 4 V稳 压 , 经过 比较 器反 向端 接入 1 5 V 电压 , 达 到欠 压 自锁 功能 。芯 片功耗 为 l 5 m w。

RT , CT
辫 内 部 偏 置
振 荡器

电流检 测
l I 动 c 供 和 控 电 , 制 启 器 堡 L l _ 一 ’ I 功 开 1 率 关 l 变 压 1 l 器 控 制 甲 I I l

正激式开关电源详解

正激式开关电源详解
当 N1 等于 N3 时,即:L1 等于 L3 时,上式可以变为:
i3 =Ui(Ton-t)/L3 —— K 接通期间 (1-83)
(1-83)式表明,当变压器初级线圈 N1 绕组的匝数与次级线圈 N3 绕组的匝数相等 时,如果控制开关的占空比 D 小于 0.5,电流 i3 是不连续的;如果占空比 D 等于 0.5,电流 i3 为临界连续;如果占空比 D 大于 0.5,电流 i3 为连续电流。
精确计算电流 i3 的大小,可以根据(1-80)式以及下面方程式求得,当控制开关 K 关闭时:
e3 = -L3*di/dt = -Ui —— K 接通期间 (1-81)
i3 = -(Ui*Ton/nL1)- Ui*t/L3 —— K 关断期间 (1-82)
上式中右边的第一项就是流过变压器初级线圈 N1 绕组中的最大励磁电流被折算 到次级线圈 N3 绕组中的电流,第二项是 i3 中随着时间变化的分量。其中 n 为变 压器次级线圈与初级线圈的变压比。值得注意的是,变压器初、次级线圈的电感 量不是与线圈匝数 N 成正比,而是与线圈匝数 N2 成正比。由(1-82)式可以看出, 变压器次级线圈 N3 绕组的匝数增多,即:L3 电感量增大,变压器次级线圈 N3 绕组的电流 i3 就变小,并且容易出现断流,说明反电动势的能量容易释放完。 因此,变压器次级线圈 N3 绕组匝数与变压器初级线圈 N1 绕组匝数之比 n 最好 大于一或等于一。
图 1-17 是正激式变压器开关电源的简单工作原理图,图 1-17 中 Ui 是开关电源 的输入电压,T 是开关变压器,K 是控制开峰二极管,R 是负载电阻。 在图 1-17 中,需要特别注意的是开关变压器初、次级线圈的同名端。如果把开 关变压器初线圈或次级线圈的同名端弄反,图 1-17 就不再是正激式变压器开关 电源了。 我们从(1-76)和(1-77)两式可知,改变控制开关 K 的占空比 D,只能改变输出电 压(图 1-16-b 中正半周)的平均值 Ua ,而输出电压的幅值 Up 不变。因此,正激 式变压器开关电源用于稳压电源,只能采用电压平均值输出方式。 图 1-17 中,储能滤波电感 L 和储能滤波电容 C,还有续流二极管 D2,就是电压 平均值输出滤波电路。其工作原理与图 1-2 的串联式开关电源电压滤波输出电路
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要:电源是各种电子设备不可或缺的组成部分,其性能优劣直接关系到电子设备的技术指标及能否安全可靠工作。

目前,开关电源因具有体积小、重量轻、效率高、发热量低、性能稳定等优点而逐渐取代传统技术制造的相控稳压电源,并广泛应用于电子设备中。

本设计的单端正激式开关电源是一种间接直流变流技术,本设计以正激电路为主体,采用以TOPSwitch系列开关电源集成芯片TOP244Y为核心的脉宽调制电路实现交-直-交-直变流,输出稳压稳频的直流电。

关键词开关电源;正激电路;变压器;脉宽调制;ABSTRACT Power is an indispensable part of electronic equipment, its performance directly related to electronic equipment technical indicators and safe work can. At present, switching power supply for has the advantages of small size, light weight, high efficiency, low calorific value and stable performance advantages and replace traditional technology of phased manostat, and widely used in electronic equipment.The design of the single straight separate-excited switching power supply is a kind of indirect dc converter technology, this design was adopted for the main circuit, induced by TOPSwitch series of switch power integration chip TOP244Y as the core of the pulse width modulation circuit implementation delivered straight into - - - the voltage output variable flow straight, dc frequency stability.KEY WORDS Switching power supply;Is induced circuit;Transformer;Pulse width modulation目录前言 (1)1. 开关电源的发展及趋势 (2)1.1 开关电源的发展历史 (3)1.2 开关电源的发展趋势 (3)2. 开关电源概念及基本原理 (4)2.1 开关电源概念 (5)2.1.1 基本概念 (5)2.1.2 开关电源通常由六大部分组成 (5)2.2 开关电源各部分电路基本原理 (5)2.2.1 脉宽调制式开关电源的基本原理 (5)2.2.2 TOPSwitch—GX系列TOP244Y芯片 (6)2.2.3 单相二极管整流桥 (7)2.2.4 缓冲电路(吸收电路) (8)2.2.5 正激电路 (9)2.2.6 开关电源中的滤波电路 (11)3. 开关电源变压器的设计 (13)3.1 确定磁心的尺寸 (13)3.2正激式变压器的设计 (15)3.2.1 变压器匝数比的确定 (16)3.3 变压器的绕线技术 (17)3.3.1 绕组符合安全规程 (17)3.3.2 低漏感的绕制方法 (18)3.3.3 变压器紧密耦合的绕制方法 (19)4. 单端正激式开关电源主电路设计 (21)4.1 输入电路设计 (21)4.2 正激电路的设计 (22)4.2.1 复位电路 (22)4.2.2 导向电路和续流电路 (22)4.2.3 抑制阻尼振荡电路 (22)4.3 正激变压器设计 (22)4.4 输出电路的设计 (23)5. 实验结果 (23)5.1 空载试验 (23)5.2 带金属负载试验 (24)4)TOPSwitch漏源极之间电压Uds 波形为 (24)5.3 试验过程出现的问题及解决 (25)结论 (25)致 (26)参考文献 (27)前言本课题主要是研究基于TOPSwitch—GX系列芯片TOP244Y构成的,以脉宽调制PWM为控制方式的高频单端正激式开关电源。

本人负责主电路的设计。

电源是各种电子设备不可或缺的组成部分,其性能优劣直接关系到电子设备的技术指标及能否安全可靠工作。

目前,开关电源因具有体积小、重量轻、效率高、发热量低、性能稳定等优点而逐渐取代传统技术制造的相控稳压电源,并广泛应用于电子设备中。

本设计的主要目的是将电网电压(市电),经滤波后进入单相二极管整流桥,再经大电容滤波得到直流高压,通过PWM控制,在正激变换器的变压器二次侧得到高频矩形波电压,再经滤波得到平稳的直流输出;输出电压为12V,输出功率约为30W。

根据设计任务的要求和给定的条件,分析单端正激式开关电源是由哪几部分电路组成,主电路包括哪些部分。

在大量查阅了有关开关电源资料上的基础之上选择相应的方案设计。

在主电路的设计过程中,主要克服的难点是正激式变化器的设计和电路中元器件参数计算,尤其是变压器的磁心尺寸选取、变压器的绕制方法。

基于理论水平和时间的局限,并请教指导老师、已毕业在外从事开关电源研究开发的师兄,在本设计中有些元器件参数采用经验估计法。

1. 开关电源的发展及趋势1.1 开关电源的发展历史开关电源已有几十年的发展历史。

早期产品的开关频率很低,成本昂贵,仅用于卫星电源等少数领域。

20世纪60年代出现过晶闸管相位控制式开关电源,70年代由分立元件制成的各种开关电源,均因效率不够高、开关频率低、电路复杂、调试困难而难于推广,使之应受到限制。

70年代后期以来,随着集成电路设计与制造技术的进步,各种开关电源专用芯片大量面世,这种新型节能电源才重获发展。

目前,开关频率已从20KHz左右提高到几百千赫兹至几兆赫兹。

与此同时,供开关电源使用的元器件也获得长足发展。

MOS功率开关管(MOSFET)肖特基二极管(SRD)、瞬态电压抑制器(TVS)、压敏电阻器(VSR)、熔断器电阻器(FR)、自恢复保险丝(RF)、线性光耦合器、可调式精密并联稳压器(TL431)、电磁干扰滤波器(EMI Filter)、高导磁率磁性材料等一大批新型器件、新材料正在被广泛采用。

所以这些,都为开关电源的推广与普及提供了必要条件[1]。

1.2 开关电源的发展趋势目前,开关电源以小型、轻量和高效率的特点被广泛应用予以电子计算机为主导的各种终端设备、通信设备中。

而随着近些年来科学技术的不断发展,开关电源技术在实际需要的推动下快速的发展,具体的发展趋势可以总结为以下几个方面:(1)高频化开关频率的提高有利于开关电源的体积减小,重量减轻,动态响应得到改善。

早期开关电源的频率仅为几千赫兹,随着电力电子器件及磁性材料性能的不断改进,开关频率渐渐地提高。

在这个过程中,IGBT的出现,使得开关电源的容量不断增大,在许多中等容量围,迅速取代了晶闸管相控电源。

并且,IGBT的开关速度很高,通态压降低。

但是,随着开关频率的提高,电源的电磁干扰问题也变得突出起来。

如何在提高开关频率的情况下,最大限度的减少电磁干扰对电源的影响,是一个摆在科研工作者面前的急需解决的问题。

(2)非隔离DC/DC技术近年来,非隔离IX;/DC技术发展迅速。

它们基本上可以分成两大类。

一类在部含有功率开关元件,称DC/IX;转换器。

另一类不含功率开关,需要外接功率MOSFET,称DC/DC控制器。

按照电路功能划分,有降压的STEP-DOWN、升压的BOOST,还有能升降压的BUCK-BOOST或SEPIC等,以及正压转成负压的INVERTOR 等。

其中品种最多,发展最快的还是降压的STEP-DOWN。

根据输出电流的大小,分为单相、两相及多相。

控制方式上以PWM 为主,少部分为PFM。

目前一套电子设备或电子系统由于负载不同,会要求电源系统提供多个电压挡级。

如台式PC 机就要求有+12 V、+5 V、+3.3 V、一12 V四种电压以及待机的+5 V 电压,主机板上则需要2.5 V、1.8 V、1.5 V甚至1 V等。

一套AC/DC中不可能给出这样多的电压输出,而大多数低压供电电流都很大,因此开发了很多非隔离的DC /DC。

(3)数字化高频开关电源的另一发展趋势是数字化。

过去在传统功率电子技术中,控制部分是按模拟信号来设计和工作的。

随着数字处理技术的发展成熟,其优点明显便于计算机处理控制、避免模拟信号的畸变失真、减小杂散信号的干扰,提高抗干扰能力、便于软件包的调试和遥感遥测遥调,也便于自诊断、容错等技术的植入等。

这类电源大体上包括两个部分,即硬件和软件。

其中,硬件部分包括PWM 的逻辑部分、时钟、放大器环路的模数转换、数模转换以及数字处理、驱动、同步整流的检测和处理等。

而在软件方面可以通过DSP实现对PWM和PFC的数字式控制。

因此,数字化是除了上述的三个方面的发展趋势之外,开关电源同一些新兴技术结合方面的容也成为大家研究的方向,比如软开关技术、功率因数校正技术、低输出电压技术、设计和测试技术、模块化技术等[2]。

2. 开关电源概念及基本原理2.1 开关电源概念2.1.1 基本概念凡是用半导体功率器件作为开关,将一种电源形态转变成为另外一形态的主电路叫做开关变换器电路;在转变时,以自动控制稳定输出并有各种保护环节的电路,称为开关电源。

开关电源是进行AC/DC、DC/DC、DC/AC功率变换的装置。

这些变换由主回路和控制回路两大部分完成。

主回路将输入的交流电传递给负载,它决定开关电路的结构形式,变换要求,功率大小,负载能力等。

控制回路按输入、输出的条件来检测、控制回路的工作状况。

2.1.2 开关电源通常由六大部分组成图2-1 开关电源工作原理框图[5]2.2 开关电源各部分电路基本原理2.2.1 脉宽调制式开关电源的基本原理脉宽调制式开关电源的基本原理如图2-2所示。

交流220V输入电压经过整流滤波后变成直流电压yI,再由功率开关管VT(或MOSFET)斩波、高频变压器T 降压,得到高频矩形波电压,最后通过输出整流滤波器VD、C2,获得所需要的直流输出电压Uo脉宽调制器是这类开关电源的核心,它能产生频率固定而脉冲宽度可调的驱动信号,控制功率开关管的通断状态,来调节输出电压的高低,达到耪压目的。

锯齿波发牛器提供时钟信早。

利用误劳放大器和PWM比较器构成闭环调节系统。

相关文档
最新文档