高三理科数学《立体几何》测试题带答案.doc
(完整版)高三数学立体几何复习测试题含答案
高三数学立体几何复习一、填空题1. 分别在两个平行平面内的两条直线间的地址关系不可以能为.... ①平行 ②订交③异面④垂直【答案】②【剖析】两平行平面没有公共点,因此两直线没有公共点,因此两直线不可以能订交2.已知圆锥的母线长为 8,底面周长为 6π,则它的体积为【答案】 3 55【剖析】设底面半径为r, 2 r 6 , r 3 , 设圆锥的高为 h ,那么 h823255 ,那么圆锥的体积 V1 r2 h 1 955 3 55 ,故填: 3 55 .3 33.已知平面/ / 平面 , P且 P ,试过点 P 的直线 m 与 , 分别交于 A , C ,过点 P 的直线 n 与 ,分别交于 B , D 且 PA6 , AC9, PD 8 ,则 BD 的长为 ___________.【答案】24 或 245【剖析】 第一种情况画出图形以以下列图所示,由于“若是两个平行平面同时和第三个平面订交,那么它们的交线相互平行 . ”因此 AB / /CD ,设 BD x ,依照平行线分线段成比率,有6 8x, x249 x5第二种情况画出图形以以下列图所示,由于“若是两个平行平面同时和第三个平面订交, 那么它们的交线相互平行. ”因此 AB / /CD ,设 BDx ,依照平行线分线段成比率,有PBA DCB A6X8, x 24 .384.半径为 R 的球 O 中有一内接圆柱,当圆柱的侧面积最大时,圆柱的侧面积与球的表面积之比是 ____________.【答案】 1: 2PCDr 2h2rhr2h 2h时取等号,【剖析】 R2,圆柱的侧面积2 rh 44 242 R 2,当且仅当 r42 2此时圆柱的侧面积与球的表面积之比为 2 R 2 : 4 R 2 1: 25.以下列图, G 、N 、M 、 H 分别是正三棱柱(两底面为正三角形的直棱柱)的极点或所在棱的中点,则表示直线 GH 、MN 是异面直线的图形有 ____________(填上所有正确答案的序号) .【答案】②④【剖析】由题意得,可知( 1)中,直线 GH // MN ;图( 2)中,G , H , N 三点共面,但M 面 GHN ,因此直线 GH 与 MN 异面;图( 3)中,连接 MG , GM // HN ,因此 GH 与MNG ,因此直线 GH 与 MN 共面;图( 4)中, G , M , N 共面,但 H面 GHN ,因此直线 GH 与 MN试卷第 1 页,总 9 页异面.6.已知 m, n 为直线,,m, n // ;②为空间的两个平面,给出下列命题:①m nm m mn,,m // n .其中的正确命题为, m // n ;③// ;④.m n//【答案】③④【剖析】关于① , 也会有n的结论 , 因此不正确;关于②, 也会有m, n异面的可能的结论, 因此不正确;简单考据关于③④都是正确的, 故应填答案③④ .7.设 a,b 是两条不同样的直线, , 是两个不同样的平面,则以下四个命题①若a b, a,b则,②若 a b, a则 b / /,③若 a,,则 a / /④若a / /, a,则其中正确的命题序号是.【答案】①④【剖析】① a b ,不如设a, b订交(如异面平移到订交地址),确定一个平面,设平面与平面的交线为 c ,则由 b,得 b c ,从而 a // c ,于是有 c,因此,①正确;②若a b, a,b 可能在内,②错;③若 a,, a 可能在内,③错;④若 a / / ,则由线面平行的性质定理,在内有直线 b 与a平行,又a,则 b,从而,④正确.故答案为①④.8.已知三棱锥 P ABC 的所有极点都在球 O 的球面上,ABC 是边长为1的正三角形,PC 为球 O 的直径,该三棱锥的体积为2,则球 O 的表面积为__________.6【答案】4【剖析】设 ABC 的中心为O1,由题意得 S ABC3212OO1SABC OO12, 因此球O的;6334半径 R 满足R2OO12( 3)2211,球O的表面积为 4R2 4 .3339.以下列图 ,在直三棱柱 ABC A1 B1C1中, AB BC CC11,AB BC, E 为CC1的中点,则三棱锥 C1ABE 的体积是.【答案】112【剖析】由于 E 是 CC1中点,因此 V C ABE 1V C ABC11(11 1)11.1212321210. 以下列图,在直三棱柱ABC A1 B1C1中,ACB90 , AA12, AC BC1 ,则异面直线A1 B 与AC所成角的余弦值是.【答案】66【剖析】由于AC / / A1C1,因此BA1C1(或其补角)就是所求异面直线所成的角,在 BA1C1中,A1 B6 ,A1C11, BC15, cos BAC11615 6 .261611.如图,在棱长为 1 的正方体ABCD - A1B1C1D1中,M , N分别是BB1, BC的中点,则图中阴影部分在平面 ADA1D1上的投影的面积为.【答案】1 8【剖析】图中点 M 在平面的投影是AA1的中点,点N在平面的投影是AD 的中点,点 D 的投影还是点 D ,连接三点的三角形的面积是1111,故填: 1 .2228812. 如图 , 正方体ABCD A1 B1C1D1中 ,AB 2 ,点 E 为 AD 的中点,点 F 在D F CECD 上,若 EF // 平面AB1C,则 EF________.A B【答案】 EF2D 1C1【剖析】依照题意,由于 EF // 平面AB1C ,因此EF // AC.又由于点E是AD中A1B1点,因此点 F 是 CD 中点.由于在 Rt DEF 中, DE DF 1,故EF2.13. 在棱长为 1 的正方体ABCD A B C D 中, E 为 AB 的中点,在面ABCD11111D 1C1中取一点 F ,使 EF FC1最小,则最小值为__________.A 1B 1【答案】142D E C 【剖析】如图,将正方体ABCD A1B1C1D1关于面ABCD对称,则 EC1就是所A BD1C1A1N B132114 .求的最小值, EC1EN 2NC121242D1C1 14.点 M 是棱长为3 2 的正方体ABCD A1B1C1D1的内切球 O球面上的动 A 1NB1点,点 N 为B1C1上一点,2NB1NC1, DM BN ,则动点M的轨迹的长度为 __________ .DM C【答案】310A B 5【剖析】由于DM BN ,因此 M 在过 D 且垂直于 BN 的平面上,以以下列图( 1 ),取BS 1SB1,2AT 1TA1,则BN平面 DTSC ,因此 M 在一个圆周上,如图以下列图(2),正方体的中心O 到该平面的2距离即为 O1F,在直角三角形 O1FC中, O1F O1C sin O1CF 3sin O1CF ,而111,故 sin5 3 5tan O CF tan BCS3O1CF,O1 F, M 所在的圆周的半径1411255322为 3 2353 30,故其轨迹的长度为 3 1025105D 1C 1B1C1NA 1NB 1O1OD STM S CA B图( 1)二、解答题FB C图( 2)15.如图,四棱锥P ABCD 中,底面 ABCD 为平行四边形,DAB60o,AB 2 AD , PD底面ABCD .( 1)证明:PA BD ;( 2)设PD AD 2 ,求点 D 到面 PBC 的距离.解析:( 1 )证明:因为DAB60o,AB2AD ,由余弦定理得BD3AD .从而BD2AD 2AB2,∴ BD AD ,又由 PD 底面EABCD , BD面 ABCD ,可得 BDPD . ∴ BD 面 PAD , PA面 PAD ,∴ PABD .( 2)法 1:在平面 PDB 内作 DEPB ,垂足为 E . ∵ PD 底面 ABCD ,BC 面 ABCD ,∴ PD BC ,由( 1 )知 BDAD ,又 BC / / AD ,∴ BC BD ,又 AD I BD D , . ∴ BC 平面 PBD ,又AD I BD D ∴ BC DE . 则 DE 平面 PBC . 由题设知, PD 2 ,则 BD2 3 , PB 4,依照DE gPB PD gBD ,得 DE3 ,即点 D 到面 PBC 的距离为3 .法2 : 设 点 D到平 面 PBC 的 距 离 为 d , 由 ( 1 ) 得 BD AD , ∴ AB4 ,V P BCD1V PABCD 11S Y ABCD PD1 2 43 24 3 , 又 V 1 S PBCd , 由2236 23 P BCD 3PD 底 面ABCD , BD 面 ABCD , DC面 ABCD ,PBD , PCD 为 Rt, ∴PCPD 2 CD 22 5 , PBPD 2CD 2 4 , 又 BCAD2 , ∴PBC 为 Rt且SPBC1 2 44 ,∴ d3 .216. 已知直角梯形 ABCD 中, AB / /CD , AB AD , CD2, AD2 , AB 1 ,如图 1所示,将ABD 沿 BD 折起到 PBD 的地址,如图2 所示 .( 1)当平面 PBD平面 PBC 时,求三棱锥 P BCD 的体积;( 2)在图 2 中, E 为 PC 的中点,若线段BQ / /CD ,且 EQ / / 平面 PBD ,求线段 BQ 的长;剖析 :( 1)当平面PBD 平面 PBC 时,由于 PB PD ,且平面 PBD I 平面 PBCPB , PD平面PBD ,因此 PD平面 PBC ,由于 PC 平面 PBC ,因此 PD PC . 由于在直角梯形ABCD 中,AB / /CD , AB AD , CD 2 , AD 2 , AB 1 , 所 以 BD BC3 , DP2 . 所 以CPCD 2 PD 22 . 又 因 为 BP1 , 所 以 BP 2CP 2 BC 2 , 所 以 BPCP . 所 以S PBC1PB PC2. 因此三棱锥PBCD 的体积等于VD PBC1S PBCgPD1221.223323(2)取 PD 的中点 F ,连接 EF , BF ,如上图所示 . 又由于 E 为 PC 的中点,因此EF / /CD ,且EF1CD . 又由于 BQ / /CD ,因此 EF / / BQ . 因此 B , F , E , Q 共面 .2因 为 EQ / / 平 面 PBD , EQ平 面 BFEQ , 且 平 面 BFEQ I 平 面试卷第 5 页,总 9 页PBD BF , 所 以 EQ / / FB . 又 因 为 EF / / BQ , 所 以 四 边 形 BFEQ 是 平 行 四 边 形 . 所 以 BQEF1CD 1 .2ACDF 所在平面与梯形BCDE 所在平面垂直,且BC 2DE , DE / / BC ,17. 如图几何体中,矩形BD AD , M 为 AB 的中点 .( 1)证明: EM / / 平面 ACDF ; ( 2)证明: BD 平面 ACDF .剖析 :( 1)法 1:延长 BE 交 CD 与 G ,连接 AG ,∵ E, M 为中点,∴EM // AG , EM 平面 AFDC , AG 平面 AFDC ,∴ EM / / 面 ACDF .G法 2:如图,取 BC 的中点 N ,连接 MN 、 EN .在 ABC 中, M 为 AB 的中点, N 为 BC 的中点,∴ MN / / AC ,又由于 DE / / BC ,且 DE1 CN ,∴四边形 CDEN 为平行四边形,BC2∴ EN / / DC ,又∵ MN I EN N , AC I CD C . ∴平面 EMN / / 平面 ACDF ,又∵ EM面EMN ,∴ EM / / 面 ACDF .法 3:如图,取 AC 的中点 P ,连接 PM , PD . 在 ABC 中, P 为 AC 的中点, M 为 AB 的中点,∴PM / / BC ,且 PM11BC ,又∵ DE / /BC , DEBC , ∴ PM / / DE ,故四边形 DEMP 为平行四22边形,∴ ME / / DP ,又∵ DP 平面 ACDF , EM平面 ACDF ,∴ EM / / 面 ACDF .( 2)∵平面 ACDF平面 BCDE ,平面 ACDF I平面 BCDEDC ,又 AC DC ,∴ AC平面BCDE ,∴ AC BD ,又 BD AD , BD I ADA ,∴ BD 平面 ACDF .18. 如图,在四棱锥 P - ABCD 中,四边形 ABCD 为矩形, AB ⊥ BP , M 为 AC 的中点, N 为 PD 上一点 .( 1)若 MN ∥平面 ABP ,求证: N 为 PD 的中点;( 2)若平面 ABP ⊥平面 APC ,求证: PC ⊥平面 ABP.【剖析】( 1)连接 BD ,由四边形 ABCD 为矩形得: M 为 AC 和 BD 的中点,∵ MN ∥平面 ABP , MN 平面 BPD ,平面 BPD I 平面 ABP = BP ,∴MN ∥ BP ,∵ M 为 AC 的中点,∴ N 为 PD 的中点 .( 2)在△ ABP 中,过点 B 作 BE ⊥ AP 于 E ,∵平面 ABP ⊥平面 APC ,平面 ABP ∩平面 APC =AP ,BE 平面 ABP , BE ⊥ AP∴ BE ⊥平面 APC ,又 PC 平面 APC ,∴ BE ⊥ PC.∵ ABCD 为矩形,∴ AB ⊥ BC ,又 AB ⊥ BP , BC ∩BP= B ,BC ,BP 平面 BPC ,∴ AB ⊥平面 BPC , ∴AB ⊥PC ,又 BE ⊥ PC , AB 平面 ABP ,BE 平面 ABP ,AB ∩BE =B , ∴ PC ⊥平面 ABPP ABCD∥1 是线段的中点 .19. 如图 ,在四棱锥AB, MPA中,AB DC , AD DC2( 1)求证: DM ∥ 平面 PCB ;( 2)若AD AB ,平面 PAC 平面 PBC ,求证: PA BC .【剖析】(1)如图,取PB中点N , 连接CN , MN . 由于M是线段PA的中点 ,因此 MN∥ AB, MN 1AB , 2因为 DC∥ AB, CD 1CD ,所以四边形 CDFM 为平行四边形,所以AB ,所以 MN∥DC , MN2CN∥DM ,由于 CN平面PCB,DM平面PCB,因此DM∥平面PCB.P( 2)连接AC , 在四边形ABCD中,由于AD AB,CD∥AB ,因此 AD CD ,设MNAD a ,因为 AD DC1AB ,所以 CD a, AB2a ,在ADC中,A2B ADC 90 , AD DC,所以DCA DAC45,从而D CAC2a,CAB45,在ACB中,AB2a, AC2a,CAB45 ,所以BC AC 2AB2 2 AB AC cos CAB2a, 所以AC 2BC 2AB2, 即AC BC .在平面PAC 中,过点 A 作 AE PC ,垂足为 E ,由于平面PAC平面 PBC ,因此 AE平面 PBC ,又由于BC平面 PBC ,因此 AE BC ,由于 AE平面PAC ,AC平面 PAC ,因此BC平面 PAC .因为PA 平面 PAC ,因此 PA BC .20. 如图 , 在直三棱柱ABC A B C 中,ACB 900,E, F ,G 分别是 AA , AC , BB 的中点,且1 1 111CG C1G .(1)求证:CG //平面BEF;( 2)求证:平面BEF平面 AC1 1G .【剖析】证 :( Ⅰ ) 连接AG交BE于D , 连接DF , EG . ∵E,G分别是AA1, BB1的中点,∴ AE ∥BG且 AE =BG,∴四边形AEGB 是矩形.∴D是 AG 的中点,又∵F是AC 的中点,∴ DF ∥CG,则由 DF面 BEF , CG面 BEF ,得CG∥面 BEF( Ⅱ ) ∵在直三棱柱ABC A1 B1C1中, C1C ⊥底面 A1B1C1,∴ C1C ⊥ A1C1.又∵A1C1B1ACB900,即 C1B1⊥ A1C1,∴ A1C1⊥面 B1C1CB ,而CG面 B1C1CB ,∴ A1C1⊥CG,又 CG C1G ,由(Ⅰ)DF∥CG ,AC DF , DF C G DF AC G,Q DF BEF BEF11 1 ,∴平面1 1平面,∴平面平面AC G .1 1三、提高练习21.在三棱锥P ABC 中,AB BC ,AB 6 ,BC 2 3 ,O 为 AC 的中点,过 C 作 BO 的垂线,交 BO 、 AB 分别于 R 、 D ,若DPR CPR ,则三棱锥 P ABC 体积的最大值为 __________.【答案】 3 3【剖析】在 Rt ABC 中, ACB 60,OCB 为等边三角形,DCB 30 ,因此 CD 4 , CR 3 , 因此 DR1,在 PDC 中, DPRCPR ,因此PDDR1 ,以以下列图( 2),设 P x, y , D 0,0 ,PC RC32则 C 4,0 ,从而有 9 x2y2x2y 2,整理获取 x1 y29,故 PCD 的边 CD 上的高424的最大值为3,从而 PABC 体积的最大值为 1 31 2 3 63 323 22PbPAODRCBD R C x图 (1)图( 2)22. 如图,直三棱柱 ABCA 1B 1C 1 中,D 、E 分别是棱 BC 、AB的中点,点F 在棱 CC 1 上,已知AB AC , AA 1 3 ,BC CF2 .( 1)求证: C 1E // 平面 ADF ;( 2)设点 M 在棱 BB 1 上,当 BM 为何值时, 平面 CAM 平面 ADF ?【剖析】( 1)连接 CE 交 AD 于 O ,连接 OF .由于 CE , AD 为ABC 中线,因此 O 为 ABC 的重心,CFCO 2.从而CC 1CE3OF // C 1E . OF 面 ADF , C 1E平面 ADF ,因此 C 1 E // 平面 ADF .( 2)当 BM 1 时,平面 CAM 平面 ADF .在直三棱柱ABC A 1 B 1C 1 中,由于 B 1 B 平面 ABC , B 1B 平面 B 1BCC 1 ,因此平面 B 1BCC 1 平面 ABC .由于 ABAC , D 是 BC 中点,因此 AD BC .又平面 B 1BCC 1 ∩平面 ABC BC , 因此 AD 平面(完满版)高三数学立体几何复习测试题含答案B1BCC1.而CM平面B1BCC1,于是AD CM .由于BM CD 1,BC CF 2 ,因此Rt CBM Rt FCD ,因此 CM DF DF , AD 订交,因此CM平面ADF,CM平面CAM ,因此平面CAM平面ADF.试卷第 9 页,总 9 页11 / 11。
高三数学立体几何专项练习题及答案
高三数学立体几何专项练习题及答案一、选择题1. 下列哪个几何体的所有面都是三角形?A. 正方体B. 圆柱体C. 正六面体D. 球体答案:C2. 一个有8个面的多面体,其中6个面是正方形,另外2个面是等边三角形,它的名字是?A. 正八面体B. 正十二面体C. 正二十面体D. 正二十四面体答案:C3. 空间中任意一点到四个角落连线的垂直距离相等的四棱锥称为?A. 正四棱锥B. 圆锥台C. 四棱锥D. 无法确定答案:C4. 任意多面体的面数与顶点数、棱数的关系是?A. 面数 + 顶点数 = 棱数 + 2B. 面数 + 棱数 = 顶点数 + 2C. 顶点数 + 棱数 = 面数 + 2D. 顶点数 + 面数 = 棱数 + 2答案:A5. 求下列多面体的棱数:(1)正六面体(2)正八面体(3)正十二面体答案:(1)正六面体的棱数为 12(2)正八面体的棱数为 24(3)正十二面体的棱数为 30二、填空题1. 下列说法正确的是:一棱锥没有底面时,它的底面是一个______。
答案:点2. 铅垂线是指从一个多面体的一个顶点到与它相对的棱上所作的垂线,它与该棱垂足的连线相交于该多面体的______上。
答案:中点3. 对正八面体,下列说法不正确的是:_____条对角线与_____两两垂直。
答案:六,相邻面三、计算题1. 一个棱锥的底面是一个边长为6cm的正三角形,其高为8cm。
求棱锥体积。
解答:底面积 S = (1/2) ×底边长 ×高 = (1/2) × 6 × 8 = 24 cm²棱锥体积 V = (1/3) × S ×高 = (1/3) × 24 × 8 = 64 cm³所以,棱锥的体积为64 cm³。
2. 一个正四棱锥的底面是一个边长为10cm的正方形,其高为12cm。
求四棱锥的体积。
解答:底面积 S = 边长² = 10² = 100 cm²四棱锥体积 V = (1/3) × S ×高 = (1/3) × 100 × 12 = 400 cm³所以,四棱锥的体积为400 cm³。
(完整版)高考立体几何大题及答案(理)
故AD=AF。又AD⊥AF,所以四边形ADEF为正方形。
因为BC⊥AF,BC⊥AD,AF∩AD=A,故BC⊥平面DEF,因此平面BCD⊥平面DEF。
连接AE、DF,设AE∩DF=H,则EH⊥DF,EH⊥平面BCD。
连接CH,则∠ECH为 与平面BCD所成的角。
因ADEF为正方形,AD= ,故EH=1,又EC= =2,
(II)设线段 、 的中点分别为 、 ,
求证: ∥
(III)求二面角 的大小。
10.如题(18)图,在五面体 中, ∥ , , ,四边形 为平行四边形, 平面 , .求:
(Ⅰ)直线 到平面 的距离;
(Ⅱ)二面角 的平面角的正切值.
11.如图,四棱锥PABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.
(Ⅱ)设平面BCD的法向量 则
又 =(-1,1,0),
=(-1,0,c),故
令x=1,则y=1,z= , =(1,1, ).
又平面 的法向量 =(0,1,0)
由二面角 为60°知, =60°,
故 °,求得
于是 ,
,
°
所以 与平面 所成的角为30°
3、(Ⅰ)证明:连接 ,在 中, 分别是 的中点,所以 ,又 ,所以 ,又 平面ACD,DC 平面ACD,所以 平面ACD
(1)证明:PA⊥BD;
(2)设PD=AD,求二面角A-PB-C的余弦值.
12(本小题满分12分)
如图,已知四棱锥P-ABCD的底面为等腰梯形,AB CD,AC BD,垂足为H,
PH是四棱锥的高,E为AD中点
(1)证明:PE BC
(2)若 APB= ADB=60°,求直线PA与平面PEH所成角的正弦值
高三数学 立体几何多选题测试试题及解析
高三数学 立体几何多选题测试试题及解析一、立体几何多选题1.如图①,矩形ABCD 的边2BC =,设AB x =,0x >,三角形BCM 为等边三角形,沿BC 将三角形BCM 折起,构成四棱锥M ABCD -如图②,则下列说法正确的有( )A .若T 为BC 中点,则在线段MC 上存在点P ,使得//PD 平面MATB .当)3,2x ∈时,则在翻折过程中,不存在某个位置满足平面MAD ⊥平面ABCDC .若使点M 在平面ABCD 内的射影落在线段AD 上,则此时该四棱锥的体积最大值为1 D .若1x =,且当点M 在平面ABCD 内的射影点H 落在线段AD 上时,三棱锥M HAB -6322++【答案】BCD 【分析】对于A ,延长AT 与DC 的延长线交于点N ,此时,DP 与MN 必有交点; 对于B ,取AD 的中点H ,表示出2223MH MT HT x --,验证当)3,2x ∈时,无解即可; 对于C ,利用体积公式21233V x x =⨯⨯-,借助基本不等式求最值即可; 对于D ,要求外接球半径与内切球半径,找外接圆的圆心,又内接圆半径为2323r =++【详解】对于A ,如图,延长AT 与DC 的延长线交于点N ,则面ATM ⋂面()MDC N MN =.此时,DP 与MN 必有交点,则DP 与面ATM 相交,故A 错误; 对于B ,取AD 的中点H ,连接MH ,则MH AD ⊥.若面MAD ⊥面ABCD ,则有2223MH MT HT x =-=- 当)3,2x ∈时,无解,所以在翻折过程中,不存在某个位置满足平面MAD ⊥平面ABCD故B 正确;对于C ,由题可知,此时面MAD ⊥面ABCD ,由B 可知,(3x ∈,所以()22222221223232331333232x x V x x x x ⎛⎫+-⎛⎫=⨯⨯-=-≤== ⎪ ⎪⎝⎭⎝⎭当且仅当223x x =-,即6x =时等号成立.故C 正确; 对于D ,由题可知,此时面MAD ⊥面ABCD ,且2MH =因为AHB ,MHB 都是直角三角形,所以M ABH -底面外接圆的圆心是中点,所以1R =,由等体积法,可求得内接圆半径为2323r =++,故61322R r ++=,故D 正确.故选:BCD . 【点睛】本题从多个角度深度考查了立体几何的相关内容,注意辅助线的作法,以及求内接圆半径的公式、基本不等式、构造函数等核心思想.2.如图,在直三棱柱111ABC A B C -中,12AC BC AA ===,90ACB ∠=︒,D ,E ,F 分别为AC ,1AA ,AB 的中点.则下列结论正确的是( )A .1AC 与EF 相交B .11//BC 平面DEF C .EF 与1AC 所成的角为90︒D .点1B 到平面DEF 的距离为322【答案】BCD 【分析】利用异面直线的位置关系,线面平行的判定方法,利用空间直角坐标系异面直线所成角和点到面的距离,对各个选项逐一判断. 【详解】对选项A ,由图知1AC ⊂平面11ACC A ,EF平面11ACC A E =,且1.E AC ∉由异面直线的定义可知1AC 与EF 异面,故A 错误;对于选项B ,在直三棱柱111ABC A B C -中,11B C //BC .D ,F 分别是AC ,AB 的中点, //∴FD BC ,11B C ∴ //FD .又11B C ⊄平面DEF ,DF ⊂平面DEF ,11B C ∴ //平面.DEF 故B 正确;对于选项C ,由题意,建立如图所示的空间直角坐标系,则(0C ,0,0),(2A ,0,0),(0B ,2,0),1(2A ,0,2),1(0B ,2,2),1(0C ,0,2),(1D ,0,0),(2E ,0,1),(1F ,1,0).(1EF ∴=-,1,1)-,1(2AC =-,0,2). 1·2020EF AC =+-=,1EF AC ∴⊥,1EF AC ∴⊥. EF 与1AC 所成的角为90︒,故C 正确;对于选项D ,设向量(n x =,y ,)z 是平面DEF 的一个法向量. (1DE =,0,1),(0DF =,1,0), ∴由n DE n DF ⎧⊥⎨⊥⎩,,,即·0·0n DE n DF ⎧=⎨=⎩,,,得00.x z y +=⎧⎨=⎩,取1x =,则1z =-,(1n ∴=,0,1)-, 设点1B 到平面DEF 的距离为d . 又1(1DB =-,2,2),1·1023222DB n d n-+-∴===, ∴点1B 到平面DEF 的距离为322,故D 正确.故选:BCD 【点睛】本题主要考查异面直线的位置关系,线面平行的判定,异面直线所成角以及点到面的距离,还考查思维能力及综合分析能力,属难题.3.已知正方体1111ABCD A B C D -的棱长为2,点E ,F 在平面1111D C B A 内,若||5AE =,AC DF ⊥,则( )A .点E 的轨迹是一个圆B .点F 的轨迹是一个圆C .EF 21-D .AE 与平面1A BD 21530+【答案】ACD 【分析】对于A 、B 、C 、D 四个选项,需要对各个选项一一验证. 选项A :由2211||5AE AA A E =+=1||1A E =,分析得E 的轨迹为圆;选项B :由AC DBF ⊥,而点F 在11B D 上,即F 的轨迹为线段11B D ,; 选项C :由E 的轨迹为圆,F 的轨迹为线段11B D ,可分析得min ||EF d r =-; 选项D :建立空间直角坐标系,用向量法求最值. 【详解】 对于A:2211||5AE AA A E =+=221|25A E +=1||1A E =,即点E 为在面1111D C B A 内,以1A 为圆心、半径为1 的圆上;故A 正确;对于B: 正方体1111ABCD A B C D -中,AC ⊥BD ,又AC DF ⊥,且BD ∩DF=D ,所以AC DBF ⊥,所以点F 在11B D 上,即F 的轨迹为线段11B D ,故B 错误;对于C:在平面1111D C B A 内,1A 到直线11B D 的距离为2,d=当点E ,F 落在11A C 上时,min ||21EF =-;故C 正确; 对于D:建立如图示的坐标系,则()()()()10,0,0,2,0,0,0,0,2,0,2,0A B A D因为点E 为在面1111D C B A 内,以1A 为圆心、半径为1 的圆上,可设()cos ,sin ,2E θθ 所以()()()1cos ,sin ,2,2,0,2,2,2,0,AE A B BD θθ==-=-设平面1A BD 的法向量(),,n x y z =,则有1·220·220n BD x y n A B x z ⎧=-+=⎪⎨=-=⎪⎩ 不妨令x =1,则()1,1,1n =, 设AE 与平面1A BD 所成角为α,则:|2sin 2|||4sin |cos ,|||||5315n AE n AE n AE πθα⎛⎫++ ⎪⎝⎭====⨯⨯当且仅当4πθ=时,sin α有最大值22215301515++=, 故D 正确 故选:CD 【点睛】多项选择题是2020年高考新题型,需要要对选项一一验证.4.已知图1中,A 、B 、C 、D 是正方形EFGH 各边的中点,分别沿着AB 、BC 、CD 、DA 把ABF 、BCG 、CDH △、DAE △向上折起,使得每个三角形所在的平面都与平面ABCD 垂直,再顺次连接EFGH ,得到一个如图2所示的多面体,则( )A .AEF 是正三角形B .平面AEF ⊥平面CGHC .直线CG 与平面AEF 2D .当2AB =时,多面体ABCD EFGH -的体积为83【答案】AC 【分析】取CD 、AB 的中点O 、M ,连接OH 、OM ,证明出OH ⊥平面ABCD ,然后以点O 为坐标原点,OM 、OC 、OH 所在直线分别为x 、y 、z 轴建立空间直角坐标系,求出EF ,可判断A 选项的正误,利用空间向量法可判断BC 选项的正误,利用几何体的体积公式可判断D 选项的正误. 【详解】取CD 、AB 的中点O 、M ,连接OH 、OM , 在图1中,A 、B 、C 、D 是正方形EFGH 各边的中点,则1122CH GH EH DH ===,O 为CD 的中点,OH CD ∴⊥,平面CDH ⊥平面ABCD ,平面CDH 平面ABCD CD =,OH ⊂平面CDH ,OH ∴⊥平面ABCD ,在图1中,设正方形EFGH的边长为()0a >,可得四边形ABCD 的边长为2a , 在图1中,ADE 和ABF 均为等腰直角三角形,可得45BAF DAE ∠=∠=, 90BAD ∴∠=,∴四边形ABCD 是边长为2a 的正方形,O 、M 分别为CD 、AB 的中点,则//OC BM 且OC BM =,且90OCB ∠=,所以,四边形OCBM 为矩形,所以,OM CD ⊥,以点O 为坐标原点,OM 、OC 、OH 所在直线分别为x 、y 、z 轴建立空间直角坐标系,则()2,,0A a a -、()2,,0B a a 、()0,,0C a 、()0,,0D a -、(),,E a a a -、()2,0,F a a 、(),,G a a a 、()0,0,H a .对于A选项,由空间中两点间的距离公式可得AE AF EF ===,所以,AEF 是正三角形,A 选项正确;对于B 选项,设平面AEF 的法向量为()111,,m x y z =,(),0,AE a a =-,()0,,AF a a =,由111100m AE ax az m AF ay az ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,取11z =,则11x =,11y =-,则()1,1,1m =-, 设平面CGH 的法向量为()222,,n x y z =,(),0,CG a a =,()0,,CH a a =-, 由22220n CG ax az n CH ay az ⎧⋅=+=⎪⎨⋅=-+=⎪⎩,取21z =-,可得21x =,21y =-,则()1,1,1n =--,()22111110m n ⋅=+--⨯=≠,所以,平面AEF 与平面CGH 不垂直,B 选项错误;对于C选项,cos ,2CG m CG m a CG m⋅<>===⋅设直线CG 与平面AEF 所成角为θ,则sin θ=,cos θ==所以,sin tan cos θθθ==C 选项正确; 对于D 选项,以ABCD 为底面,以OH 为高将几何体ABCD EFGH -补成长方体1111ABCD A B C D -,则E 、F 、G 、H 分别为11A D 、11A B 、11B C 、11C D 的中点,因为2AB =,即1a =,则1OH =,长方体1111ABCD A B C D -的体积为2214V =⨯=,11211111113326A A EF A EF V S AA -=⋅=⨯⨯⨯=△,因此,多面体ABCD EFGH -的体积为111044463ABCD EFGH A A EF V V V --=-=-⨯=, D 选项错误. 故选:AC. 【点睛】方法点睛:计算线面角,一般有如下几种方法:(1)利用面面垂直的性质定理,得到线面垂直,进而确定线面角的垂足,明确斜线在平面内的射影,即可确定线面角;(2)在构成线面角的直角三角形中,可利用等体积法求解垂线段的长度h ,从而不必作出线面角,则线面角θ满足sin hlθ=(l 为斜线段长),进而可求得线面角; (3)建立空间直角坐标系,利用向量法求解,设a 为直线l 的方向向量,n 为平面的法向量,则线面角θ的正弦值为sin cos ,a n θ=<>.5.如图,一个结晶体的形状为平行六面体1111ABCD A B C D -,其中,以顶点A 为端点的三条棱长都等于1,且它们彼此的夹角都是60,下列说法中正确的是( )A .()()2212AA AB ADAC ++=B .1A 在底面ABCD 上的射影是线段BD 的中点C .1AA 与平面ABCD 所成角大于45 D .1BD 与AC所成角的余弦值为3【答案】AC 【分析】对A ,分别计算()21++AA AB AD 和2AC ,进行判断;对B ,设BD 中点为O ,连接1A O ,假设1A 在底面ABCD 上的射影是线段BD 的中点,应得10⋅=O AB A ,计算10⋅≠O AB A ,即可判断1A 在底面ABCD 上的射影不是线段BD 的中点;对C ,计算11,,A A AC AC ,根据勾股定理逆定理判断得11⊥A A AC ,1AA 与平面ABCD 所成角为1A AC ∠,再计算1tan ∠A AC ;对D ,计算1,AC BD 以及1BD AC ⋅,再利用向量的夹角公式代入计算夹角的余弦值. 【详解】对A ,由题意,11111cos602⋅=⋅=⋅=⨯⨯=AA AB AA AD AD AB ,所以()2222111112*********++=+++⋅+⋅+⋅=+++⨯⨯=AA AB ADAA AB AD AA AB AB AD AA AD ,AC AB AD =+,所以()222221113=+=+⋅+=++=AC AB ADAB AB AD AD ,所以()()22126++==AA AB AD AC ,故A 正确;对B ,设BD 中点为O ,连接1A O ,1111111222=+=+=++AO A A AO A A AC A A AD AB ,若1A 在底面ABCD 上的射影是线段BD 的中点,则1A O ⊥平面ABCD ,则应10⋅=O AB A ,又因为21111111111110222222224⎛⎫⋅=++⋅=-⋅+⋅+=-+⨯+=≠ ⎪⎝⎭O AB A A AD AB AB AA AB AD AB AB A ,故B 错误;对D ,11,BD AD AA AB AC AB AD =+-=+,所以()()2211=2,=3=+-=+AD A B A AB AC AB AD D ()()2211111⋅=+-⋅+=⋅++⋅+⋅--⋅=AC AD AA AB AB AD AD AB ADAA AB AA AD AB AB AD BD,111cos ,2⋅<>===B AC D BD BD AC ACD 不正确;对C,112==AC BD ,在1A AC 中,111,===A A AC AC 22211+=A A AC AC ,所以11⊥A A AC ,所以1AA 与平面ABCD 所成角为1A AC ∠,又1tan 1∠=>A AC ,即145∠>A AC ,故C 正确;故选:AC【点睛】方法点睛:用向量方法解决立体几何问题,需要树立“基底”意识,利用基向量进行线性运算,要理解空间向量概念、性质、运算,注意和平面向量类比;同时对于立体几何中角的计算问题,往往可以利用空间向量法,利用向量的夹角公式求解.6.在长方体1111ABCD A B C D -中,23AB =12AD AA ==,,,P Q R 分别是11,,AB BB AC 上的动点,下列结论正确的是( ) A .对于任意给定的点P ,存在点Q 使得1D P CQ ⊥ B .对于任意给定的点Q ,存在点R 使得1D R CQ ⊥ C .当1AR A C ⊥时,1AR D R ⊥D .当113AC A R =时,1//D R 平面1BDC 【答案】ABD 【分析】如图所示建立空间直角坐标系,计算142D P CQ b ⋅=-,()12222D R CQ b λλ⋅=--,134AR D R ⋅=-,10D R n ⋅=,得到答案.【详解】如图所示,建立空间直角坐标系,设()2,,0P a ,0,23a ⎡∈⎣,()2,23,Q b ,[]0,2b ∈,设11A R AC λ=,得到()22,23,22R λλλ--,[]0,1λ∈. ()12,,2P a D -=,()2,0,CQ b =,142D P CQ b ⋅=-,当2b =时,1D P CQ ⊥,A 正确;()122,23,2D R λλλ=--,()12222D R CQ b λλ⋅=--,取22bλ=+时,1D R CQ ⊥,B 正确;1AR A C ⊥,则()()12,23,222,23,2212440AR AC λλλλλλ⋅=--⋅--=-+-+=, 14λ=,此时11333313,,,,022224AR D R ⎛⎫⎛⎫⋅=-⋅-=-≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,C 错误; 113AC A R =,则4234,,33R ⎛⎫ ⎪ ⎪⎝⎭,14232,,33D R ⎛⎫=- ⎪ ⎪⎝⎭,设平面1BDC 的法向量为(),,n x y z =,则100n BD n DC ⎧⋅=⎪⎨⋅=⎪⎩,解得()3,1,3n =-,故10D R n ⋅=,故1//D R 平面1BDC ,D 正确. 故选:ABD .【点睛】本题考查了空间中的线线垂直,线面平行,意在考查学生的计算能力和空间想象能力,推断能力.7.如图,已知矩形ABCD 中,2AB AD =,E 为边AB 的中点,将ADE ∆沿直线DE 翻折成1A DE ∆,若M 为线段1A C 的中点,则ADE ∆在翻折过程中,下列说法正确的是( )A .线段BM 的长是定值B .存在某个位置,使1DE AC ⊥ C .点M 的运动轨迹是一个圆D .存在某个位置,使MB ⊥平面1A DE 【答案】AC 【分析】取CD 中点F ,连接BF ,MF ,根据面面平行的判定定理可得平面//BMF 平面1A DE ,由面面平行的性质定理可知//BM 平面1A DE ,可判断D ;在BFM ∆中,利用余弦定理可求得BM a =为定值,可判断A 和C ;假设1DE A C ⊥,由线面垂直的判定定理可得DE ⊥平面1A CE ,由线面垂直的性质定理可知1DE A E ⊥,与11DA A E ⊥矛盾,可判断B . 【详解】解:取CD 的中点F ,连接BF ,MF ,∵M ,F 分别为1A C 、CD 中点, ∴1MF A D ∥,∵1A D ⊂平面1A DE ,MF ⊄平面1A DE , ∴MF 平面1A DE , ∵DF BE ∥且DF BE =, ∴四边形BEDF 为平行四边形, ∴BFDE ,∵DE ⊂平面1A DE ,BF ⊄平面1A DE , ∴BF ∥平面1A DE , 又BFMF F =,BF 、MF ⊂平面BMF ,∴平面//BMF 平面1A DE , ∵BM ⊂平面BMF , ∴BM ∥平面1A DE ,即D 错误,设22AB AD a ==, 则112MF A D a ==,2BF DE a ==,145A DE MFB ︒∠=∠=, ∴222cos45BM MF BF MF BF a ︒=+-⋅⋅=,即BM 为定值,所以A 正确,∴点M 的轨迹是以B 为圆心,a 为半径的圆,即C 正确, ∵DE CE ==,2CD AB a ==,∴222DE CE CD +=,∴DE CE ⊥, 设1DE A C ⊥,∵1A C 、CE ⊂平面1A CE ,1AC CE C =,∴DE ⊥平面1A CE , ∵1A E ⊂平面1A CE ,∴1DE A E ⊥,与11DA A E ⊥矛盾, 所以假设不成立,即B 错误. 故选:AC . 【点睛】本题考查立体几何中的翻折问题,涉及到线段长度的求解、直线与平面位置关系的判定、点的轨迹的求解、反证法的应用等知识点,考查学生的空间立体感和推理论证能力.8.已知正四棱柱1111ABCD A B C D -的底面边长为2,侧棱11AA =,P 为上底面1111D C B A 上的动点,给出下列四个结论中正确结论为( )A .若3PD =,则满足条件的P 点有且只有一个B .若PD =,则点P 的轨迹是一段圆弧C .若PD ∥平面1ACB ,则DP 长的最小值为2D .若PD ∥平面1ACB ,且PD =,则平面BDP 截正四棱柱1111ABCD A B C D -的外接球所得平面图形的面积为94π【答案】ABD 【分析】若3PD =,由于P 与1B 重合时3PD =,此时P 点唯一;()13PD =,,则1PD =P 的轨迹是一段圆弧;当P 为11A C 中点时,DP 有最小值为=断C ;平面BDP 截正四棱柱1111ABCD A B C D -的外接球所得平面图形为外接球的大圆,其半径为32=,可得D . 【详解】 如图:∵正四棱柱1111ABCD A B C D -的底面边长为2, ∴1122B D =,又侧棱11AA =, ∴()2212213DB =+=,则P 与1B 重合时3PD =,此时P 点唯一,故A 正确;∵()313PD =∈,,11DD =,则12PD =,即点P 的轨迹是一段圆弧,故B 正确; 连接1DA ,1DC ,可得平面11//A DC 平面1ACB ,则当P 为11A C 中点时,DP 有最小值为()22213+=,故C 错误;由C 知,平面BDP 即为平面11BDD B ,平面BDP 截正四棱柱1111ABCD A B C D -的外接球所得平面图形为外接球的大圆,其半径为2221322122++=,面积为94π,故D 正确. 故选:ABD . 【点睛】本题考查了立体几何综合,考查了学生空间想象,逻辑推理,转化划归,数学运算的能力,属于较难题.9.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,点P 在线段B 1C 上运动,则( )A .直线BD 1⊥平面A 1C 1DB .三棱锥P ﹣A 1C 1D 的体积为定值C .异面直线AP 与A 1D 所成角的取值范用是[45°,90°]D .直线C 1P 与平面A 1C 1D所成角的正弦值的最大值为3【答案】ABD 【分析】在A 中,推导出A 1C 1⊥BD 1,DC 1⊥BD 1,从而直线BD 1⊥平面A 1C 1D ;在B 中,由B 1C ∥平面 A 1C 1D ,得到P 到平面A 1C 1D 的距离为定值,再由△A 1C 1D 的面积是定值,从而三棱锥P ﹣A 1C 1D 的体积为定值;在C 中,异面直线AP 与A 1D 所成角的取值范用是[60°,90°];在D 中,以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,利用向量法能求出直线C 1P 与平面A 1C 1D. 【详解】解:在A 中,∵A 1C 1⊥B 1D 1,A 1C 1⊥BB 1,B 1D 1∩BB 1=B 1, ∴A 1C 1⊥平面BB 1D 1,∴A 1C 1⊥BD 1,同理,DC 1⊥BD 1, ∵A 1C 1∩DC 1=C 1,∴直线BD 1⊥平面A 1C 1D ,故A 正确; 在B 中,∵A 1D ∥B 1C ,A 1D ⊂平面A 1C 1D ,B 1C ⊄平面A 1C 1D , ∴B 1C ∥平面 A 1C 1D ,∵点P 在线段B 1C 上运动,∴P 到平面A 1C 1D 的距离为定值,又△A 1C 1D 的面积是定值,∴三棱锥P ﹣A 1C 1D 的体积为定值,故B 正确; 在C 中,异面直线AP 与A 1D 所成角的取值范用是[60°,90°],故C 错误;在D 中,以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系, 设正方体ABCD ﹣A 1B 1C 1D 1中棱长为1,P (a ,1,a ),则D (0,0,0),A 1(1,0,1),C 1(0,1,1),1DA =(1,0,1),1DC =(0,1,1),1C P =(a ,0,a ﹣1), 设平面A 1C 1D 的法向量(),,n x y z =,则1100n DA x z n DC y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩,取x =1,得1,1,1n,∴直线C 1P 与平面A 1C 1D 所成角的正弦值为:11||||||C P n C Pn ⋅⋅=∴当a =12时,直线C 1P 与平面A 1C 1D ,故D 正确. 故选:ABD .【点睛】求直线与平面所成的角的一般步骤:(1)、①找直线与平面所成的角,即通过找直线在平面上的射影来完成;②计算,要把直线与平面所成的角转化到一个三角形中求解; (2)、用空间向量坐标公式求解.10.如图,已知P 为棱长为1的正方体对角线1BD 上的一点,且()()10,1BP BD λλ=,下面结论中正确结论的有( )A .11A D C P ⊥;B .当1A P PD +取最小值时,23λ=;C .若()0,1λ∈,则7,312APC ππ⎛⎫∠∈⎪⎝⎭; D .若P 为1BD 的中点,四棱锥11P AA D D -的外接球表面积为94π. 【答案】ABD 【分析】以D 为坐标原点建立如图空间直角坐标系,利用向量关系可判断ABC ;根据几何体外接球关系建立方程求出球半径即可判断D. 【详解】以D 为坐标原点建立如图空间直角坐标系, 则()1,1,0B ,()10,0,1D ,设(),,P x y z ,()()10,1BP BD λλ=,1BP BD λ∴=,即()()1,1,1,1,1x y z λ--=--,则可解得()1,1,P λλλ--, 对A ,()()()111,0,1,0,0,0,0,1,1A D C ,()11,0,1A D ∴=--,()11,,1C P λλλ=---,则()()()()11110110A D C P λλλ⋅=-⨯-+⨯-+-⨯-=,则11A D C P ⊥,故A 正确;对B ,()()()()()2222221111111A P PD λλλλλλ+=--+-+--+-+222223422333λλλ⎛⎫=-+=-+ ⎪⎝⎭则当23λ=时,1A P PD +取最小值,故B 正确; 对C ,()()1,0,0,0,1,0A C ,(),1,PA λλλ∴=--,()1,,PC λλλ=--,则222321cos 1321321PA PCAPC PA PC λλλλλλ⋅-∠===--+-+⋅, 01λ<<,则2232123λλ≤-+<,则2111123212λλ-≤-<-+, 即11cos 22APC -≤∠<,则2,33APC ππ⎛⎤∠∈ ⎥⎝⎦,故C 错误; 对于D ,当P 为1BD 中点时,四棱锥11P AA D D -为正四棱锥,设平面11AA D D 的中心为O ,四棱锥11P AA D D -的外接球半径为R ,所以222122R R ⎛⎫-+= ⎪⎝⎭⎝⎭,解得34R =, 故四棱锥11P AA D D -的外接球表面积为94π,所以D 正确. 故选:ABD.【点睛】关键点睛:本题考查空间相关量的计算,解题的关键是建立空间直角坐标系,利用向量建立关系进行计算.。
高三数学 立体几何多选题测试附解析
高三数学 立体几何多选题测试附解析一、立体几何多选题1.已知球O 为正方体1111ABCD A B C D -的内切球,平面11A C B 截球O 的面积为24π,下列命题中正确的有( )A .异面直线AC 与1BC 所成的角为60°B .1BD ⊥平面11AC B C .球O 的表面积为36πD .三棱锥111B AC B -的体积为288 【答案】AD 【分析】连接11A C ,1A B ,通过平移将AC 与1BC 所成角转化为11A C 与1BC 所成角可判断A ;通过反证法证明B ;由已知平面11A C B 截球O 的面积为24π求出正方体棱长,进而求出内切球的表面积可判断C ;利用等体积法可求得三棱锥111B AC B -的体积可判断D. 【详解】对于A ,连接11A C ,1A B ,由正方体1111ABCD A B C D -,可知11//A C AC ,11AC B ∴∠为异面直线AC 与1BC 所成的角,设正方体边长为a,则1111AC A B BC ==,由等边三角形知1160A C B ∠=,即异面直线AC 与1BC 所成的角为60,故A 正确; 对于B ,假设1BD ⊥平面11A C B ,又1A B ⊂平面11A C B ,则11BD B A ⊥,设正方体边长为a ,则11A D a =,1A B =,1BD =,由勾股定理知111A D B A ⊥,与假设矛盾,假设不成立,故1BD 不垂直于平面11A C B ,故B 错误; 对于C ,设正方体边长为a,则11AC =,内切球半径为2a,设内切球的球心O 在面11A C B 上的投影为O ',由等边三角形性质可知O '为等边11A C B △的重心,则11123233O A AC a ='=⨯=,又12OA a =,∴球心O 到面11A C B 的距离6a ==,又球心与截面圆心的连线垂直于截面,∴=,又截面圆的面积2246S a ππ⎛⎫= ⎪ ⎪⎝⎭=,解得12a =,则内切球半径为6,内切球表面积214644S ππ==⨯,故C 错误;对于D ,由等体积法知111111111111212122812383B A C B B A C B A C B V V S a --==⨯⨯=⨯⨯=,故D 正确; 故选:AD【点睛】关键点点睛:本题考查了正方体和它的内切球的几何结构特征,关键是想象出截面图的形状,从而求出正方体的棱长,进而求出内切球的表面积及三棱锥的体积,考查了空间想象能力,数形结合的思想,属于较难题.2.如图,已知正方体1ABCD ABC D -的棱长为a ,E 是棱CD 上的动点.则下列结论中正确的有( )A .11EB AD ⊥B .二面角11E A B A --的大小为4π C .三棱锥11A B D E -体积的最小值为313a D .1//D E 平面11A B BA 【答案】ABD 【分析】连接1A D 、1B C ,则易证1AD ⊥平面11A DCB ,1EB ⊂平面11A DCB ,则由线面垂直的性质定理可以判断选项A 正确;二面角11E A B A --的平面角为1DA A ∠,易知14DA A π∠=,则可判断选项B 正确;用等体积法,将求三棱锥11A B D E -的体积转化为求三棱锥11E AB D -的体积,当点E 与D 重合时,三棱锥11E AB D -的体积最小,此时的值为316a ,则选项C 错误;易知平面11//D DCC 平面11A B BA ,而1D E ⊂平面11D DCC ,则根据面面平行的性质定理可得1//D E 平面11A B BA ,可判断选项D 正确. 【详解】选项A ,连接1A D 、1B C ,则由正方体1ABCD ABC D -可知,11A D AD ⊥,111A B AD ⊥,1111A DA B A =,则1AD ⊥平面11A DCB ,又因为1EB ⊂平面11A DCB ,所以11EB AD ⊥,选项A 正确; 选项B ,因为11//DE A B ,则二面角11E A B A --即为二面角11D A B A --, 由正方体1ABCD ABC D -可知,11A B ⊥平面1DA A , 则1DA A ∠为二面角11D A B A --的平面角,且14DA A π∠=,所以选项B 正确;选项C ,设点E 到平面11AB D 的距离为d , 则11111113A B D E E AB D AB D V V S d --==⋅,连接1C D 、1C B ,易证平面1//BDC 平面11AB D ,则在棱CD 上,点D 到平面11AB D 的距离最短, 即点E 与D 重合时,三棱锥11A B D E -的体积最小, 由正方体1ABCD ABC D -知11A B ⊥平面1ADD ,所以1111123111113326D AB D B ADDADD a V V S A B a a --==⋅=⋅⋅=, 则选项C 错误;选项D ,由正方体1ABCD ABC D -知,平面11//CC D D 平面11A B BA ,且1D E ⊂平面11CC D D , 则由面面平行的性质定理可知1//D E 平面11A B BA ,则选项D 正确. 故选:ABD. 【点睛】关键点点睛:本题对于选项C 的判断中,利用等体积法求三棱锥的体积是解题的关键.3.在三棱锥M ABC -中,下列命题正确的是( )A .若1233AD AB AC =+,则3BC BD = B .若G 为ABC 的重心,则111333MG MA MB MC =++C .若0MA BC ⋅=,0MC AB ⋅=,则0MB AC ⋅=D .若三棱锥M ABC -的棱长都为2,P ,Q 分别为MA ,BC 中点,则2PQ = 【答案】BC 【分析】作出三棱锥M ABC -直观图,在每个三角形中利用向量的线性运算可得. 【详解】对于A ,由已知12322233AD AB AC AD AC AB AD AC AB AD =+⇒=+⇒-=-,即2CD DB =,则32BD BD DC BC =+=,故A 错误; 对于B ,由G 为ABC 的重心,得0GA GB GC ++=,又MG MA AG =+,MG MB BG =+,MG MC CG =+,3MA MB MC MG ∴++=,即111333MG MA MB MC =++,故B 正确;对于C ,若0MA BC ⋅=,0MC AB ⋅=,则0MC MA BC AB ⋅+⋅=,即()00MA BC AC CB MA BC AC C MC C M B M C ⋅++=⇒⋅++⋅⋅=⋅()00MA BC A MC MC MC MC C BC MA BC AC ⋅⋅⋅⇒⋅+-=⇒-+=⋅()000MC M CA BC AC AC CB AC CB AC C MC ⇒+=⇒+=⇒+=⋅⋅⋅⋅⋅,即0MB AC ⋅=,故C 正确;对于D ,111()()222PQ MQ MP MB MC MA MB MC MA ∴=-=+-=+- ()21122PQ MB MC MA MB MC MA ∴=+-=+-,又()2222222MB MC MA MB MC MA MB MC MB MA MC MA+-=+++⋅-⋅-⋅2221112222222222228222=+++⨯⨯⨯-⨯⨯⨯-⨯⨯⨯=,1PQ ∴==,故D 错误. 故选:BC 【点睛】关键点睛:本题考查向量的运算,用已知向量表示某一向量的三个关键点: (1)用已知向量来表示某一向量,一定要结合图形,以图形为指导是解题的关键.(2)要正确理解向量加法、减法与数乘运算的几何意义,如首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量. (3)在立体几何中三角形法则、平行四边形法则仍然成立.4.在直角梯形ABCD 中,2ABC BCD π∠=∠=,1AB BC ==,2DC =,E 为DC 中点,现将ADE 沿AE 折起,得到一个四棱锥D ABCE -,则下列命题正确的有( ) A .在ADE 沿AE 折起的过程中,四棱锥D ABCE -体积的最大值为13B .在ADE 沿AE 折起的过程中,异面直线AD 与BC 所成的角恒为4π C .在ADE 沿AE 折起的过程中,二面角A EC D --的大小为45︒D .在四棱锥D ABCE -中,当D 在EC 上的射影恰好为EC 的中点F 时,DB 与平面ABCE所成的角的正切为5【答案】ABD 【分析】对于A ,四棱锥D ABCE -的底面面积是固定值,要使得体积最大,需要平面DAE ⊥平面ABCE ,此时DE CE ⊥,可求得1133D ABCE ABCE V S DE -=⋅=可判断A ;对于B ,在ADE 沿AE 折起的过程中,//AE BC ,所以异面直线AD 与AE 所成的角即为AD 与BC所成角,由翻折前可知4DAE π∠=可判断B ;对于C ,利用线面垂直的判定定理,结合翻折前可知AE ⊥平面DEC ,又AE ⊂平面ABCE ,所以平面DEC ⊥平面ABCE ,即二面角A EC D --的在大小为2π判断C ;对于D ,利用线面垂直的判定定理可知DF ⊥平面ABCE ,所以DBF ∠为直线DB 与平面ABCE 所成的角,在直角DFB △中,15tan 5DF DBF BF ∠==,可判断D 正确;【详解】对于A ,ADE 沿AE 折起得到四棱锥D ABCE -,由四棱锥底面面积是固定值,要使得体积最大,需要四棱锥的高最大,即平面DAE ⊥平面ABCE ,此时DE CE ⊥,由已知得1DE =,则111111333D ABCE ABCE V S DE -=⋅=⨯⨯⨯=,故A 正确; 对于B ,在ADE 沿AE 折起的过程中,//AE BC ,所以异面直线AD 与AE 所成的角即为AD 与BC 所成角,又1AB BC ==,2DC =,E 为DC 中点,可知4DAE π∠=,即异面直线AD 与BC 所成的角恒为4π,故B 正确; 对于C ,由翻折前知,,AE EC AE ED ⊥⊥,且ECED E =,则AE ⊥平面DEC ,又AE ⊂平面ABCE ,所以平面DEC ⊥平面ABCE ,即二面角A EC D --的大小为2π,故C 错误; 对于D ,如图连接,DF BF ,由C 选项知,AE ⊥平面DEC ,又DF ⊂平面DEC ,则AE DF ⊥,又由已知得EC DF ⊥,且EC AE E ⋂=,则DF ⊥平面ABCE ,所以DBF ∠为直线DB 与平面ABCE 所成的角,在直角DFB △中,222222113122152tan 5511122DE CE DFDBF BFBC CE ⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭∠=====⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭,所以DB 与平面ABCE 所成的角的正切为15,故D 正确; 故选:ABD 【点睛】关键点睛:本题考查立体几何综合问题,求体积,求线线角,线面角,面面角,解题的关键要熟悉几种角的定义,通过平移法找到线线角,通过证垂直找到线面角和面面角,再结合三角形求出角,考查了学生的逻辑推理能力,转化能力与运算求解能力,属于难题.5.如图,矩形ABCD 中, 22AB AD ==,E 为边AB 的中点.将ADE 沿直线DE 翻折成1A DE △(点1A 不落在底面BCDE 内),若M 在线段1A C 上(点M 与1A ,C 不重合),则在ADE 翻转过程中,以下命题正确的是( )A .存在某个位置,使1DE A C ⊥B .存在点M ,使得BM ⊥平面1A DC 成立 C .存在点M ,使得//MB 平面1A DE 成立D .四棱锥1A BCDE -体积最大值为24【答案】CD 【分析】利用反证法可得A 、B 错误,取M 为1A C 的中点,取1A D 的中点为I ,连接,MI IE ,可证明//MB 平面1A DE ,当平面1A DE ⊥平面BCDE 时,四棱锥1A BCDE -体积最大值,利用公式可求得此时体积为24. 【详解】如图(1),取DE 的中点为F ,连接1,A F CF , 则45CDF ∠=︒,22DF =,故212254222222CF =+-⨯⨯=, 故222DC DF CF ≠+即2CFD π∠≠.若1CA DE ⊥,因为11,A D A E DF FE ==,故1A F DE ⊥,而111A F A C A ⋂=, 故DE ⊥平面1A FC ,因为CF ⊂平面1A FC ,故DE CF ⊥,矛盾,故A 错. 若BM ⊥平面1A DC ,因为DC ⊂平面1A DC ,故BM DC ⊥, 因为DC CB ⊥,BM CB B ⋂=,故CD ⊥平面1A CB ,因为1AC ⊂平面1A CB ,故1CD A C ⊥,但1A D CD <,矛盾,故B 错. 当平面1A DE ⊥平面BCDE 时,四棱锥1A BCDE -体积最大值, 由前述证明可知1A F DE ⊥,而平面1A DE平面BCDE DE =,1A F ⊂平面1A DE ,故1A F ⊥平面BCDE ,因为1A DE △为等腰直角三角形,111A D A E ==,故122A F =, 又四边形BCDE 的面积为13211122⨯-⨯⨯=, 故此时体积为13223224⨯⨯=D 正确. 对于C ,如图(2),取M 为1A C 的中点,取1A D 的中点为I ,连接,MI IE ,则1//,2IM CD IM CD =,而1//,2BE CD BE CD =, 故//,IM BE IM BE =即四边形IEBM 为平行四边形,故//IE BM ,因为IE ⊂平面1A DE ,BM ⊄平面1A DE ,故//MB 平面1A DE , 故C 正确. 故选:CD.【点睛】本题考查立体几何中的折叠问题,注意对于折叠后点线面的位置的判断,若命题的不成立,往往需要利用反证法来处理,本题属于难题.6.(多选题)在四面体P ABC -中,以上说法正确的有( )A .若1233AD AC AB =+,则可知3BC BD = B .若Q 为△ABC 的重心,则111333PQ PA PB PC =++C .若0PA BC =,0PC AB =,则0PB AC =D .若四面体P ABC -各棱长都为2,M N ,分别为,PA BC 的中点,则1MN = 【答案】ABC 【分析】作出四面体P ABC -直观图,在每个三角形中利用向量的线性运算可得. 【详解】对于A ,1233AD AC AB =+,32AD AC AB ∴=+,22AD AB AC AD ∴-=- , 2BD DC ∴=,3BD BD DC BC ∴=+=即3BD BC ∴=,故A 正确;对于B ,Q 为△ABC 的重心,则0QA QB QC ++=,33PQ QA QB QC PQ ∴+++=()()()3PQ QA PQ QB PQ QC PQ ∴+++++=,3PA PB PC PQ ∴++=即111333PQ PA PB PC ∴=++,故B 正确; 对于C ,若0PA BC =,0PC AB =,则0PA BC PC AB +=,()0PA BC PC AC CB ∴++=,0PA BC PC AC PC CB ∴++=0PA BC PC AC PC BC ∴+-=,()0PA PC BC PC AC ∴-+= 0CA BC PC AC ∴+=,0AC CB PC AC ∴+=()0AC PC CB ∴+=,0AC PB ∴=,故C 正确;对于D ,111()()222MN PN PM PB PC PA PB PC PA ∴=-=+-=+- 1122MN PB PC PA PA PB PC ∴=+-=-- 222222PA PB PC PA PB PC PA PB PA PC PC PB --=++--+22211122222222222222222=++-⨯⨯⨯-⨯⨯⨯+⨯⨯⨯=2MN ∴=,故D 错误.故选:ABC 【点睛】用已知向量表示某一向量的三个关键点(1)用已知向量来表示某一向量,一定要结合图形,以图形为指导是解题的关键. (2)要正确理解向量加法、减法与数乘运算的几何意义,如首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量. (3)在立体几何中三角形法则、平行四边形法则仍然成立.7.已知棱长为1的正方体1111ABCD A B C D -,过对角线1BD 作平面α交棱1AA 于点E ,交棱1CC 于点F ,以下结论正确的是( ) A .四边形1BFD E 不一定是平行四边形 B .平面α分正方体所得两部分的体积相等 C .平面α与平面1DBB 不可能垂直 D .四边形1BFD E 面积的最大值为2 【答案】BD 【分析】由平行平面的性质可判断A 错误;利用正方体的对称性可判断B 正确;当E 、F 为棱中点时,通过线面垂直可得面面垂直,可判断C 错误;当E 与A 重合,F 与1C 重合时,四边形1BFD E 的面积最大,且最大值为2,可判断D 正确. 【详解】 如图所示,对于选项A,因为平面1111//ABB A CC D D ,平面1BFD E 平面11ABB A BE =,平面1BFD E平面111CC D D D F =,所以1//BE D F ,同理可证1//D E BF ,所以四边形1BFD E 是平行四边形,故A 错误; 对于选项B,由正方体的对称性可知,平面α分正方体所得两部分的体积相等,故B 正确; 对于选项C,在正方体1111ABCD A B C D -中,有1,AC BD AC BB ⊥⊥, 又1BD BB B ⋂=,所以AC ⊥平面1BB D , 当E 、F 分别为棱11,AA CC 的中点时, 有//AC EF ,则EF ⊥平面1BB D ,又因为EF ⊂平面1BFD E ,所以平面1BFD E ⊥平面1BB D ,故C 错误;对于选项D,四边形1BFD E 在平面ABCD 内的投影是正方形ABCD , 当E 与A 重合,F 与1C 重合时,四边形1BFD E 的面积有最大值, 此时1212S D E BE =⋅=⋅=,故D 正确; 故选:BD. 【点睛】本题考查了正方体的几何性质与应用问题,也考查了点线面的位置关系应用问题,属于中档题.8.如图,正四棱锥S -BCDE 底面边长与侧棱长均为a ,正三棱锥A -SBE 底面边长与侧棱长均为a ,则下列说法正确的是( )A .AS ⊥CDB .正四棱锥S -BCDE 的外接球半径为22C .正四棱锥S -BCDE 的内切球半径为212a ⎛- ⎝⎭ D .由正四棱锥S -BCDE 与正三棱锥A -SBE 拼成的多面体是一个三棱柱 【答案】ABD 【分析】取BE 中点H ,证明BE ⊥平面SAH 即可证AS CD ⊥;设底面中心为1O ,有112O B O S ==2;用等体积法求内切球半径即可判断;由////SA DE BC 且==SA DE BC 可知多面体是一个三棱柱.【详解】 如图所示:A 选项:取BE 中点H 连接,AH SH ,正三棱锥A SBE -中,,AH BE SH BE ⊥⊥ 又AHSH H =,所以BE ⊥平面SAH ,则BE AS ⊥,又//BE CD 所以AS CD ⊥ ,故A 正确;B 选项:设底面中心为1O ,球心为O 半径为R ,因为正四棱锥S -BCDE 外接球球心在1O S 上,所以OS OB R ==,因为,正四棱锥S -BCDE 底面边长与侧棱长均为a所以112O B O S ==,由()22211OB O B O S OS =+- 得2222222R a R ⎛⎫⎛⎫=+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭解得2R =,故B 正确; C 选项:设内切球半径为r ,易求得侧面面积为2213sin 234S a a π=⋅=, 由等体积法得222121134333a a r r =⋅+⋅⋅ 解得624a r = ,故C 错;D 选项:取SE 中点F ,连结AF ,DF ,BF ,则BFD ∠和BFA ∠分别是D SE B --和A SE B --的二面角的平面角,由)22222223321cos 2332aBF DF BDBFD BF DF ⎫⎫+-⎪⎪+-⎝⎭⎝⎭∠===-⋅⎫⎪⎝⎭2222222331cos 2332a AF BF BA AFD AF BF ⎫⎫+-⎪⎪+-⎝⎭⎝⎭∠===⋅⎫⎪⎝⎭,故BFD ∠与BFA ∠互补,所以ASDE 共面,又因为AS AE ED SD ===,则ASDE 为平行四边形,故AS ED BC故正四棱锥S-BCDE与正三棱锥A-SBE拼成的多面体是一个三棱柱,所以////D正确故选:ABD【点睛】求外接球半径的常用方法:(1)补形法:侧面为直角三角形或正四面体或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;(2)利用球的性质:几何体在不同面均对直角的棱必然是球的直径;(3)定义法:到各个顶点距离均相等的点为球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.。
高三理科数学《立体几何》测试题带答案
高三理科数学《立体几何》测试题(带答案)1、如图,在C ∆AB 中,C 45∠AB =,点O 在AB 上,且2C 3OB =O =AB ,PO ⊥平面C AB ,D //A PO ,1D 2A =AO =PO . ()1求证://PB 平面C D O ;()2求二面角CD O --A 的余弦值.(1)证明:因为ABC PO 平面⊥,D//A PO,DA AB PO AB ⊥⊥所以4,21π=∠==AOD PO AO DA 所以又……………………2分 ,//4,,21PB OD OBP OP OB PO AO ,即所以即又π=∠==……………….4分 COD PB COD OD COD PB 平面所以平面平面又//,,⊂⊄。
……………….6分(2)解:过A 作,,,AN N CD MN M M DO AM 连接于作,过垂足为⊥⊥ 则的平面角。
即为二面角A CD O ANM --∠……………….8分,中,得,在直角中,得,在等腰直角设a MN COD a AM AOD a AD 3322=∆=∆=510cos 630=∠=∆ANM a AN AMN ,所以中,得在直角……………….12分2、如图,在棱长为2的正方体1111CD C D AB -A B 中,E 、F 分别为11D A 和1CC 的中点.()1求证:F//E 平面1CD A ;()2求异面直线F E 与AB 所成的角的余弦值;()3在棱1BB 上是否存在一点P ,使得二面角C P -A -B 的大小为30?若存在,求出BP 的长;若不存在,请说明理由.解:如图分别以DA 、DC 、DD 1所在的直线为x 轴、y 轴、z 轴建立空间直角坐标系D-xyz ,由已知得D (0,0,0)、A (2,0,0)、B (2,2,0)、C (0,2,0)、B 1(2,2,2)、D 1(0,0,2)、E (1,0,2 )、F (0,2,1).(1)取AD 1中点G ,则G (1,0,1),CG -→=(1,-2,1),又EF -→=(-1,2,-1),由EF -→=-→-CG ,∴EF -→与CG -→共线.从而EF∥CG,∵CG ⊂平面ACD 1,EF ⊄平面ACD 1,∴EF ∥平面ACD 1. ………………………………………………………………4分 (2) ∵AB =(0,2,0), cos<EF ,AB>=||||2EF AB EF AB ⋅==⋅, ∴异面直线EF 与AB 所成角的余弦值为36.…………………………………………………8分 (3)假设满足条件的点P 存在,可设点P (2,2,t )(0<t ≤2),平面ACP 的一个法向量为n =(x ,y ,z ),则0,0.n AC n AP ⎧⋅=⎪⎨⋅=⎪⎩ ∵AP =(0,2,t ), AC =(-2,2,0),∴220,20,x y y tz -+=⎧⎨+=⎩取2(1,1,)n t =-.易知平面ABC 的一个法向量1(0,0,2)BB =, 依题意知,<1BB ,n >=30°或<1BB ,n >=150°,∴|cos<1BB ,n4||-=,即22434(2)4t t =+,解得3t =∵(0,2]3∴在棱BB 1上存在一点P ,当BPP -AC -B 的大小为30°……………13分3、如图所示,在四棱锥CD P -AB 中,底面CD AB 为矩形,PA ⊥平面CD AB ,点E 在线段C P 上,C P ⊥平面D B E . ()1求证:D B ⊥平面C PA ;()2若1PA =,D 2A =,求二面角C B -P -A 的余弦值.(1) 证明:∵PA ABCD ⊥平面,BD ABCD ⊂平面 ∴PA BD ⊥.同理由PC BDE ⊥平面,可证得PC BD ⊥. 又PAPC P =,∴BD PAC ⊥平面.(2)解:如图,分别以射线AB ,AD ,AP 为x 轴,y 轴,z 轴的正半轴建立空间直角坐标系A xyz -.由(1)知BD PAC ⊥平面,又AC P A C ⊂平面, ∴BD AC ⊥.故矩形ABCD 为正方形,∴2AB BC CD AD ====. ∴00020022()()00(20001)()()A B C D P ,,,,,,,,,,,,,,. ∴ ()()()2,0,1,0,2,0,2,2,0PB BC BD ===-.设平面PBC 的一个法向量为(,,)n x y z =,则0n PB n BC ⎧⋅=⎪⎨⋅=⎪⎩,即2000200x y z x y z +⋅-=⎧⎨⋅++⋅=⎩,∴20z xy =⎧⎨=⎩,取1x =,得(1,0,2)n =.∵BD PAC ⊥平面,∴(2,2,0)BD =-为平面PAC 的一个法向量.所以10cos ,10n BD n BD n BD⋅<>==-. 设二面角B PC A --的平面角为α,由图知02πα<<,则10cos cos ,D 10n α=B=∴二面角C B -P -A4、如图,平面CD AB ⊥平面D F A E ,其中CD AB 为矩形,D F A E 为梯形,F//D A E ,F F A ⊥E ,F D 2D 2A =A =E =.()1求异面直线F E 与C B 所成角的大小;()2若二面角F D A -B -的平面角的余弦值为13,求AB 的长.解:(1) 延长AD ,FE 交于Q .因为ABCD 是矩形,所以BC ∥AD ,所以∠AQF 是异面直线EF 与B C 所成的角.在梯形ADEF 中,因为DE ∥AF ,AF ⊥FE ,AF =2,DE =1得∠AQF =30°.………………………5分(2) 方法一:设AB =x .取AF 的中点G .由题意得 DG ⊥AF .因为平面ABCD ⊥平面ADEF ,A B ⊥AD ,所以AB ⊥平面ADEF ,所以AB ⊥DG .所以DG ⊥平面ABF . 过G 作GH ⊥BF ,垂足为H ,连结DH ,则DH ⊥BF , 所以∠DHG 为二面角A -BF-D 的平面角. 在直角△AGD 中,AD =2,AG =1,得DG 在直角△BAF中,由AB BF =sin ∠AFB =GH FG ,得GHx,所以GH.在直角△DGH 中,DGGH ,得DH =因为cos ∠DHG =GH DH =13,得x AB 15分方法二:设AB =x .以F 为原点,AF ,FQ 所在的直线分别为x 轴,y 轴建立空间直角坐标系Fxyz .则 F (0,0,0),A (-2,0,0),E (3,0,0),D (-10),B (-2,0,x ),所以DF =(10),BF =(2,0,-x ). 因为EF ⊥平面ABF所以平面ABF 的法向量可取1n =(0,1,0).设2n =(x 1,y 1,z 1)为平面BFD的法向量,则111120,0,x z x x -=⎧⎪⎨=⎪⎩所以,可取2n =1.因为cos<1n ,2n >=1212||||n n n n ⋅⋅=13,得xAB .5、如图,已知AB ⊥平面CD A ,D E ⊥平面CD A ,C ∆AB 为等边三角形, D D 2A =E =AB ,F 为CD 的中点. ()1求证:F//A 平面C B E ;()2求证:平面C B E ⊥平面CD E ;()3求直线F B 和平面C B E 所成角的正弦值.(1)证明:取CE 的中点G,连FG 、BG .可证得四边形GFAB 为平行四边形,则AF//BG即可证得AF//平面BCE. …………………………..(4分)(2)依题意证得BG ⊥平面CDE ,即可证得平面BCE ⊥平面CDE …….(8分) (3)解:设AD=DE=2AB=2,建立如图所示的坐标系A —xyz, 则A(0,0,0),C(2,0,0),B(0,0,1),D(1,3,0),E(1,3,2),F ()0,23,23 设平面BCE 的法向量为),,,(z y x =由0,0=⋅=⋅可取)2,3,1(-=,)1,23,23(-= 设BF 和平面BCE 所成的角为θ,则: sin θ42=……………………………(12分)6、如图,三棱柱111C C AB -A B 的底面是边长为4的正三角形,1AA ⊥平面C AB ,1AA =M 为11A B 的中点.()1求证:C M ⊥AB ;()2在棱1CC 上是否存在点P ,使得C M ⊥平面ABP ?若存在,确定点P 的位置;若不存在,请说明理由.()3若点P 为1CC 的中点,求二面角C B -AP -的余弦值.(1)解:取AB 中点O ,连结OM ,C O . M 为11A B 的中点 ∴1//MO A A1AA ⊥平面C AB ∴MO ⊥平面C AB∴MO ⊥AB …………2分7、如图,已知111C C AB -A B 是正三棱柱,它的底面边长和侧棱长都是2,D 为侧棱1CC 的中点,E 为11A B 的中点.()1求证:D AB ⊥E ;()2求直线11A B 到平面D AB 的距离;()3求二面角D C A -B -的正切值.(1)证明:连结C 1E,则C 1E ⊥A 1B 1, 又∵A 1B 1⊥C 1C ∴A 1B 1⊥平面EDC 1 ∴A 1B 1⊥DE, 而A 1B 1//AB ∴AB ⊥DE.(2) 取AB 中点为F,连结EF,DF,则EF ⊥AB ∴AB ⊥DF过E 作直线EH ⊥DF 于H 点,则EH ⊥平面DAB ∴EH 就是直线A 1B 1到平面DAB 的距离在矩形C 1EFC 中,∵AA 1=AB=2,∴EF=2,C 1E=3,DF=2, ∴在△DEF 中,EH=3,故直线A 1B 1到平面DAB 的距离为 3(3)过A 作AM ⊥BC 于M 点,则AM ⊥平面CDB 过M 作MN ⊥BD 于N 点,连结AN,则AN ⊥BD ∴∠ANM 即为所求二面角的平面角 在Rt △DCB 中,BC=2,DC=1,M 为BC 中点∴MN=55在Rt △AMN 中,tan ∠ANM=AMMN =158、如图,在直三棱柱111C C A B -AB 中,C AB ⊥A ,C 2AB =A =,14AA =,点D 是C B 的中点.()1求异面直线1A B 与1C D 所成角的余弦值;()2求平面1DC A 与平面1ABA 所成二面角的正弦值.(1)以},,{1→→→AA AC AB 为单位正交基底建立空间直角坐标系xyz A -, 则)0,0,0(A ,)0,0,2(B ,)0,2,0(C ,)4,0,0(1A ,)0,1,1(D ,)4,2,0(1C .)4,0,2(1-=∴→B A ,)4,1,1(1--=→D C10103182018,cos 111111==⋅>=<∴→→→→DC B A DC B AD C B A ∴异面直线B A 1与D C 1所成角的余弦值为10103. 6分(2))0,2,0(=→AC 是平面1ABA 的的一个法向量 设平面1ADC 的法向量为),,(z y x m =→,)0,1,1(=→AD ,)4,2,0(1=→AC ,由→→⊥AD m ,→→⊥1AC m 得 ⎩⎨⎧=+=+0420z y y x取1=z ,得2-=y ,2=x ,所以平面1ADC 的法向量为)1,2,2(-=→m . 设平面1ADC 与1ABA 所成二面角为θ .32324,cos cos =⨯-=⋅>=<=∴→→→→→mAC m AC m AC θ, 得35sin =θ. 所以平面1ADC 与1ABA 所成二面角的正弦值为35. 12分。
高考数学《立体几何》练习题及答案
立体几何1.[四川省宜宾市第四中学高2020届一诊模拟考试理科数学]若某空间几何体的三视图如图所示,则该几何体的体积是A .2B .1C .D .【答案】B2.[湖南省衡阳县2020届高三12月联考数学(理)试题]【答案】D 【解析】3.[【全国百强校首发】四川省棠湖中学2020届高三一诊模拟考试数学(理)试题] 在正方体1111ABCD A B C D -中,动点E 在棱1BB 上,动点F 在线段11A C 上,O 为底面ABCD 的中心,若1,BE x A F y ==,则四面体O AEF -的体积 A .与,x y 都有关 B .与,x y 都无关 C .与x 有关,与y 无关D .与y 有关,与x 无关【答案】B4.[黑龙江省哈尔滨师范大学附属中学2020届高三上学期期中考试数学(理)试题]5.[四川省宜宾市第四中学高2020届一诊模拟考试理科数学] 一个圆锥SC的高和底面直径相等,且这个圆锥SC和圆柱OM的底面半径及体积也都相等,则圆锥SC和圆柱OM的侧面积的比值为A.322B.23C.35D.45【答案】C6.[辽宁葫芦岛锦化高中协作校高三上学期第二次考试数学理科试题]【答案】D【解析】7.[广东省三校(广州真光中学、深圳市第二中学、珠海市第二中学)2020届高三上学期第一次联考数学(理)试题] 在如图直二面角ABDC中,△ABD、△CBD均是以BD为斜边的等腰直角三角形,取AD的中点E,将△ABE 沿BE 翻折到△A1BE,在△ABE的翻折过程中,下列不可能成立的是A.BC与平面A1BE内某直线平行B.CD∥平面A1BEC.BC与平面A1BE内某直线垂直D.BC⊥A1B【答案】D8.[湖南省衡阳县2020届高三12月联考数学(理)试题]【答案】D【解析】9.[陕西省汉中市2020届高三教学质量第一次检测考试理科数学试题] 圆锥的侧面展开图是半径为R 的半圆,则该圆锥的体积为________. 【答案】33πR 10.[辽宁省本溪高级中学2020届高三一模考试数学(理)试卷]【答案】4π11.[安徽省合肥一中、安庆一中等六校教育研究会2020届高三上学期第一次素质测试数学(理)试题] 如图,在棱长为 1 的正方体1111ABCD A B C D -中,点M 是AD 的中点,动点P 在底面ABCD 内(不包括边界),若1B P ∥平面1A BM ,则1C P 的最小值是________.【答案】305【解析】 【分析】由面面平行找到点P 在底面ABCD 内的轨迹为线段DN ,再找出点P 的位置,使1C P 取得最小值,即1C P 垂直DN 于点O ,最后利用勾股定理求出最小值. 【详解】取BC 中点N ,连接11,,B D B N DN ,作CO DN ⊥,连接1C O ,因为平面1B DN ∥平面1A BM ,所以动点P 在底面ABCD 内的轨迹为线段DN ,当点P 与点O 重合时,1C P 取得最小值,因为11152225DN CO DC NC CO ⋅=⋅⇒==,所以221min 11130()155C P C O CO CC ==+=+=. 故1C P 的最小值是305. 【点睛】本题考查面面平行及最值问题,求解的关键在于确定点P 的位置,再通过解三角形的知识求最值.12.[四川省成都外国语学校2019-2020学年高三(上)期中数学试卷(理科)]已知某几何体的三视图如图所示,则该几何体的外接球的半径为________.21【答案】【解析】【分析】根据三视图还原几何体,设球心为O,根据外接球的性质可知,O与PAB△和正方形ABCD中心的连线分别与两个平面垂直,从而可得到四边形OGEQ 为矩形,求得OQ和PQ后,利用勾股定理可求得外接球半径.【详解】由三视图还原几何体如下图所示:设PAB△的中心为Q,正方形ABCD的中心为G,外接球球心为O,则OQ⊥平面PAB,OG⊥平面ABCD,E为AB中点,∴四边形OGEQ为矩形,112OQ GE BC ∴===,2233PQ PE ==, ∴外接球的半径:22213R GE PQ =+=. 故答案为21. 【点睛】本题考查多面体外接球半径的求解,关键是能够根据球的性质确定球心的位置,从而根据长度关系利用勾股定理求得结果. 13.[湖南省衡阳县2020届高三12月联考数学(理)试题]【答案】【解析】14.[黑龙江省哈尔滨师范大学附属中学2020届高三上学期期中考试数学(理)试题]【答案】1 315.[江苏省南通市2020届高三第一学期期末考试第一次南通名师模拟试卷数学试题]如图,在四棱锥P ABCD-中,底面ABCD是平行四边形,平面ABP⊥平面BCP,90APB=,M为CP的中点.求证:∠=︒,BP BC(1)AP//平面BDM;(2)BM ACP⊥平面.【解析】(1)设AC 与BD 交于点O ,连接OM , 因为ABCD 是平行四边形,所以O 为AC 中点, 因为M 为CP 的中点,所以AP ∥OM , 又AP ⊄平面BDM ,OM ⊂平面BDM , 所以AP ∥平面BDM .(2)平面ABP ⊥平面BCP ,交线为BP , 因为90APB ∠=︒,故AP BP ⊥,因为AP ⊂平面ABP ,所以AP ⊥平面BCP , 因为BM ⊂平面BCP ,所以AP ⊥BM . 因为BP BC =,M 为CP 的中点,所以BM CP ⊥. 因为AP CP P =I ,AP CP ⊂,平面ACP , 所以BM ⊥平面ACP .16.[河南省新乡市高三第一次模拟考试(理科数学)] 如图,在四棱锥ABCDV -中,二面角D BC V --为︒60,E 为BC 的中点. (1)证明:VE BC =;(2)已知F 为直线VA 上一点,且F 与A 不重合,若异面直线BF 与VE 所成角为︒60,求.VA VFABCDPMABCDPMO【解析】17.[四川省成都外国语学校2019-2020学年高三(上)期中数学试卷(理科)]如图,在底面是菱形的四棱锥P-ABCD中,PA⊥平面ABCD,∠ABC=60°,PA=AB=2,点E,F分别为BC,PD的中点,设直线PC与平面AEF交于点Q.(1)已知平面PAB∩平面PCD=l,求证:AB∥l.(2)求直线AQ 与平面PCD 所成角的正弦值. 【解析】 【分析】(1)证明AB ∥平面PCD ,然后利用直线与平面平行的性质定理证明AB ∥l ; (2)以点A 为原点,直线AE 、AD 、AP 分别为轴建立空间直角坐标系,求出平面PCD 的法向量和直线AQ 的方向向量,然后利用空间向量的数量积求解直线AQ 与平面PCD 所成角的正弦值即可.【详解】(1)证明:∵AB ∥CD ,AB ⊄平面PCD ,CD ⊂平面PCD . ∴AB ∥平面PCD ,∵AB ⊂平面PAB ,平面PAB ∩平面PCD =l , ∴AB ∥l ;(2)∵底面是菱形,E 为BC 的中点,且AB =2, ∴13BE AE AE BC ==⊥,,, ∴AE ⊥AD ,又PA ⊥平面ABCD ,则以点A 为原点,直线AE 、AD 、AP 分别为x 、y 、z 轴建立如图所示空间直角坐标系,则()()()()020,002,30,300D P C E,,,,,,,,,∴()0,1,1F ,()()()()3000,11310022AE AF DC DP ===-=-u u u r u u u r u u u r u u u r,,,,,,,,,,,设平面PCD 的法向量为(),,x y z =n ,有0PD ⋅=u u u r n ,0CD ⋅=u u u rn ,得()133=,,n ,设()1AQ AC AP λλ=+-u u u r u u u r u u u r,则()()321AQ λλλ=-u u u r ,,,再设(3,,)AQ mAE n m n n AF =+=u u u r u u u r u u u r,则()3321m n nλλλ⎧=⎪=⎨⎪-=⎩,解之得23m n λ===,∴2223333AQ ⎛⎫=⎪⎝⎭u u u r ,,, 设直线AQ 与平面PCD 所成角为α,则3105sin cos ,AQ AQ AQα⋅>=<==u u u r u u u r u u u r n n n ,∴直线AQ 与平面PCD 所成角的正弦值为3105. 【点睛】本题考查直线与平面平行的判定定理以及性质定理的应用,直线与平面所成角的向量求法,合理构建空间直角坐标系是解决本题的关键,属中档题.18.[安徽省合肥一中、安庆一中等六校教育研究会2020届高三上学期第一次素质测试数学(理)试题] 已知三棱柱111ABC A B C -中,1AB AC AA ==,侧面11ABB A ⊥底面ABC ,D 是BC 的中点,160B BA ∠=︒,1B D AB ⊥.(1)求证:ABC △为直角三角形;(2)求二面角1C AD B --的余弦值. 【解析】(1)取AB 中点O ,连接OD ,1B O ,易知1ABB △为等边三角形,从而得到1B O AB ⊥,结合1B D AB ⊥,可根据线面垂直判定定理得到AB ⊥平面1B OD ,由线面垂直的性质知AB OD ⊥,由平行关系可知AB AC ⊥,从而证得结论;(2)以O 为坐标原点可建立空间直角坐标系,根据空间向量法可求得平面1ADC 和平面ADB 的法向量的夹角的余弦值,根据所求二面角为钝二面角可得到最终结果. 【详解】(1)取AB 中点O ,连接OD ,1B O ,在1ABB △中,1AB B B =,160B BA ∠=︒,1ABB ∴△是等边三角形, 又O 为AB 中点,1B O AB ∴⊥,又1B D AB ⊥,111B O B D B =I ,11,B O B D ⊂平面1B OD ,AB ∴⊥平面1B OD ,OD ⊂Q 平面1B OD ,AB OD ∴⊥, 又OD AC ∥,AB AC ∴⊥, ∴ABC △为直角三角形.(2)以O 为坐标原点,建立如下图所示的空间直角坐标系:令12AB AC AA ===,则()1,2,0C -,()1,0,0A -,()0,1,0D ,()1,0,0B ,()10,0,3B ,()11,0,3BB ∴=-u u u v ,()0,2,0AC =u u u v ,()1,1,0AD =u u u v,()1111,2,3AC AC CC AC BB =+=+=-u u u u v u u u v u u u u v u u u v u u u v,设平面1ADC 的法向量为(),,x y z =m ,10230AD x y AC x y z ⎧⋅=+=⎪∴⎨⋅=++=⎪⎩u u u v u u u u v m m ,令1x =,则1y =-,3z =,()1,1,3∴=-m , 又平面ADB 的一个法向量为()0,0,1=n ,315cos ,5113∴<>==++m n , Q 二面角1C AD B --为钝二面角,∴二面角1C AD B --的余弦值为15-.【点睛】本题考查立体几何中垂直关系的证明、空间向量法求解二面角的问题,涉及到线面垂直判定定理和性质定理的应用;证明立体几何中线线垂直关系的常用方法是通过证明线面垂直得到线线垂直的关系.19.[江西省宜春市上高二中2020届高三上学期第三次月考数学(理)试题]20.[黑龙江省哈尔滨师范大学附属中学2020届高三上学期期中考试数学(理)试题]21.[辽宁葫芦岛锦化高中协作校高三上学期第二次考试数学理科试题]【解析】22.[【全国百强校首发】四川省棠湖中学2020届高三一诊模拟考试数学(理)试题] 如图,在四棱锥P ABCD-中,底面ABCD为矩形,平面PCD⊥平面ABCD,2AB=,1BC=,2PC PD==,E为PB中点.(1)求证:PD∥平面ACE;(2)求二面角E AC D--的余弦值;(3)在棱PD上是否存在点M,使得AM⊥BD?若存在,求PMPD的值;若不存在,说明理由.【解析】(1)设BD交AC于点F,连接EF. 因为底面ABCD是矩形,所以F为BD中点 . 又因为E为PB中点,所以EF∥PD.因为PD ⊄平面,ACE EF ⊂平面ACE ,所以PD ∥平面ACE.(2)取CD 的中点O ,连接PO ,FO .因为底面ABCD 为矩形,所以BC CD ⊥.因为PC PD =,O CD 为中点,所以,PO CD OF ⊥∥BC ,所以OF CD ⊥. 又因为平面PCD ⊥平面ABCD ,PO ⊂平面,PCD 平面PCD ∩平面ABCD =CD . 所以PO ⊥平面ABCD ,如图,建立空间直角坐标系O xyz -, 则111(1,1,0)(0,1,0)(1,1,0),(0,0,1),(,,)222A C B P E -,,, 设平面ACE 的法向量为(,,)x y z =m ,131(1,2,0),(,,)222AC AE =-=-u u u r u u u r , 所以20,2,0,131.00222x y x y AC z y x y z AE -+=⎧⎧=⎧⋅=⎪⇒⇒⎨⎨⎨=--++=⋅=⎩⎩⎪⎩u u u v u u u v m m 令1y =,则2,1x z ==-,所以2,11=-(,)m .平面ACD 的法向量为(0,0,1)OP =u u u r ,则6cos ,OP OP OP⋅<>==-⋅u u u r u u u r u u u r m m |m |. 如图可知二面角E AC D --为钝角,所以二面角E AC D --的余弦值为66-. (3)在棱PD 上存在点M ,使AM BD ⊥.设([0,1]),(,,)PM M x y z PD=∈λλ,则,01,0PM PD D =-u u u u r u u u r λ(,).因为(,,1)(0,1,1)x y z -=--λ,所以(0,,1)M --λλ. (1,1,1),(1,2,0)AM BD =---=--u u u u r u u u r λλ.因为AM BD ⊥,所以0AM BD ⋅=u u u u r u u u r .所以12(1)0λ--=,解得1=[0,1]2∈λ. 所以在棱PD 上存在点M ,使AM BD ⊥,且12PM PD =。
(完整)高中数学《立体几何》大题及答案解析.doc
高中数学《立体几何》大题及答案解析( 理)1.( 2009 全国卷Ⅰ)如图,四棱锥S ABCD 中,底面 ABCD 为矩形, SD底面ABCD,AD2 ,DCo SD 2 ,点 M 在侧棱 SC 上,∠ABM=60。
(I )证明:M是侧棱SC的中点;求二面角 S AM B 的大小。
2.( 2009 全国卷Ⅱ)如图,直三棱柱DE ⊥平面 BCC 1(Ⅰ)证明: AB=AC 的角的大小ABC-A 1B1C1中, AB ⊥ AC,D 、E 分别为 AA 1、 B1C 的中点,(Ⅱ)设二面角A-BD-C 为 60°,求 B 1C 与平面 BCD 所成A 1 C1B1D EACB3. ( 2009浙江卷)如图,DC平面ABC,EB / / DC,AC BC EB 2DC 2 ,ACB 120o, P,Q 分别为 AE , AB 的中点.(I)证明: PQ / / 平面ACD;(II)求AD与平面 ABE 所成角的正弦值.4.( 2009 北京卷)如图,四棱锥P ABCD 的底面是正方形,PD 底面 ABCD ,点E在棱PB上.(Ⅰ)求证:平面AEC 平面 PDB ;(Ⅱ)当 PD2AB 且E为PB的中点时,求 AE 与平面 PDB 所成的角的大小.5.( 2009 江西卷)如图,在四棱锥P ABCD 中,底面 ABCD 是矩形, PA平面ABCD,PA AD 4 , AB 2 .以 BD 的中点 O 为球心、 BD 为直径的球面交PD 于点 M .(1)求证:平面ABM⊥平面PCD;(2)求直线PC与平面ABM所成的角;(3)求点O到平面ABM的距离.PMA DOBC6(. 2009 四川卷)如图,正方形ABCD所在平面与平面四边形ABEF所在平面互相垂直,△ ABE 是等腰直角三角形,AB AE , FA FE , AEF 45 (I)求证: EF 平面 BCE ;( II )设线段 CD 、 AE 的中点分别为 P 、 M ,求证: PM ∥平面BCE ( III )求二面角 F BD A 的大小。
高三立体几何习题(含答案)
1CBAC 1B 1A 1高三立体几何习题一、 填空题1.已知AB 是球O 的一条直径,点1O 是AB 上一点,若14OO =,平面α过点1O 且垂直AB ,截得圆1O ,当圆1O 的面积为9π时,则球O 的表面积是 .【答案】100p2.把一个大金属球表面涂漆,共需油漆2.4公斤.若把这个大金属球熔化制成64个大小都相同的小金属球, 不计损耗,将这些小金属球表面都涂漆,需要用漆 公斤.【答案】9.63.已知球的表面积为64π2cm ,用一个平面截球,使截面圆的半径为2cm ,则截面与球心的距离是 cm【答案】234.一个圆锥与一个球体积相等且圆锥的底面半径是球半径的2倍,若圆锥的高为1,则球的表面积为 .【答案】4p 5.一个底面置于水平面上的圆锥,若主视图是边长为2的正三角形,则圆锥的侧面积为 .【答案】4p6.如图所示:在直三棱柱111ABC A B C -中,AB BC ⊥,1AB BC BB ==,则平面11A B C 与平面ABC 所成的二面角的大小为 . 【答案】4π二、选择题1.如图,已知圆锥的底面半径为10r =,点Q 为半圆弧 AB 的中点, 点P 为母线SA 的中点.若PQ 与SO 所成角为4π,则此圆锥的 全面积与体积分别为( ) A .100051006,3ππ B .10005100(16),3ππ+ C .100031003,3ππ D .10003100(13),3ππ+【答案】B2.如图,取一个底面半径和高都为R 的圆柱,从圆柱中挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥,把所得的几何体与一个半径为R 的半球放在同一水平面α上.用一平行于平面α的平面去截这两个几何体,截面分别为圆面和圆环面(图中阴影部分).设截面面积分别为S 圆和S 圆环,那么( ) A .S 圆>S 圆环 B .S 圆<S 圆环 C .S 圆=S 圆环 D .不确定PSAQO B3.如图所示,PAB ∆所在平面α和四边形ABCD 所在的平面β互相垂直,且AD α⊥,BC α⊥,4AD =,8BC =,6AB =,若tan 2tan 1ADP BCP ∠-∠=,则动点P 在平面α内的轨迹是( ) A.线段 B.椭圆的一部分 C.抛物线 D.双曲线的一部分 【答案】D4.在空间中,下列命题正确的是( )A .若两直线,a b 与直线l 所成的角相等,那么//a bB .空间不同的三点A 、B 、C 确定一个平面C. 如果直线//l 平面α且//l 平面β,那么//αβ D .若直线a 与平面M 没有公共点,则直线//a 平面M【答案】D5.如图,已知直线l ⊥平面α,垂足为O ,在ABC △中,2,2,22BC AC AB ===,点P 是边AC 上的动点.该三角形在空间按以下条件作自由移动:(1)A l ∈,(2)C α∈.则OP PB +的最大值为( )(A) 2. (B) 22. (C) 15+. (D) 10.【答案】C6.平面α上存在不同的三点到平面β的距离相等且不为零,则平面α与平面β的位置关系为( ))(A 平行 )(B 相交 )(C 平行或重合 )(D 平行或相交【答案】D7.a b c 、、表示直线,α表示平面,下列命题正确的是( )A .若//,//αa b a ,则//αbB . 若,α⊥⊥a b b ,则α⊥aC .若,⊥⊥a c b c ,则//a bD .若,αα⊥⊥a b ,则//a b 【答案】D8.下列命题中,正确的个数是【 】① 直线上有两个点到平面的距离相等,则这条直线和这个平面平行; ② a 、b 为异面直线,则过a 且与b 平行的平面有且仅有一个; ③ 直四棱柱是直平行六面体;④ 两相邻侧面所成角相等的棱锥是正棱锥.A 、0B 、1C 、2D 、3 【答案】B9.在四棱锥ABCD V -中,1B ,1D 分别为侧棱VB ,VD 的中点,则四面体11CD AB 的体积与四棱锥 ABCD V -的体积之比为( ) A .6:1 B .5:1 C .4:1D .3:1【答案】CβαP B A DC A Bl C αNPO3三、解答题1.(本题满分14分)本题共有2小题,第(1)小题满分6分,第(2)小题满分8分. 如图,在长方体1111ABCD A B C D -中,11AD AA ==,2AB =,点E 在棱AB 上移动. (1)证明:11D E A D ⊥;(2)AE 等于何值时,二面角1D EC D --的大小为4π.【答案】解:(1)在如图所示的空间直角坐标系中,11(1,0,1),(0,0,0),(0,0,1)A D D 设(1,,0)([0,2])E y y ∈ 则11(1,,1),(1,0,1)D E y DA =-= …所以110D E DA ⋅=……所以11D E A D ⊥……(2)方法一:设(,,)n u v w =为平面1DCE 的一个法向量 由1100n CD n D E ⎧⋅=⎪⎨⋅=⎪⎩,得200v w u yv w -+=⎧⎨+-=⎩,所以(2)2u y v w v =-⎧⎨=⎩… 因为二面角1D EC D --的大小为4π,所以2222(0,0,1)(,,)22cos ||42(2)5u v w u v w y π⋅===++-+ 又[0,2]y ∈,所以23y =-,即当23AE =-时二面角1D EC D --的大小为4π2.(本题满分14分)本题共有2小题,第(1)小题满分6分,第(2)小题满分8分. 如图,在长方体1111ABCD A B C D -中,11AD AA ==,2AB =,点E 在棱AB 上移动. (1)当E 为AB 的中点时,求四面体1E ACD -的体积; (2)证明:11D E A D ⊥.【答案】解:(1)1122ACE S AE BC ∆=⋅=… 因为1D D ACE ⊥平面,所以1111136E ACD D ACE ACE V V S D D --∆==⋅=… (2)正方形11ADD A 中,11A D AD ⊥……因为11AB ADD A ⊥平面,所以1AB A D ⊥…所以11A D AD E ⊥平面…所以11D E A D ⊥……D 1C 1A 1A E DB 1B C Ox y zD 1C 1A 1AEDB 1B C3.三棱柱111C B A ABC -中,它的体积是315,底面ABC ∆中,090=∠BAC ,3,4==AC AB ,1B 在底面的射影是D ,且D 为BC 的中点.(1)求侧棱1BB 与底面ABC 所成角的大小;(7分)(2)求异面直线D B 1与1CA 所成角的大小.(6分)【答案】解:(1)依题意,⊥D B 1面ABC ,BD B 1∠就是侧棱1BB 与底面ABC 所成的角θ 2分111111431532ABC A B C ABC V S B D B D -∆=⋅=⨯⨯⨯=4分1532B D =5分计算25=BD ,θθtan 25tan 1==BD D B , tan 3,3πθθ=∴= 7分 (2)取11C B 的中点E ,连E A EC 1,,则1ECA ∠(或其补角)为所求的异面直线的角的大小 9分 ⊥D B 1面ABC ,D B 1‖CE ,面ABC ‖面111C B A ⊥∴CE 面111C B A ,E A CE 1⊥∴ 11分33325tan 251===∠EC AE CE A 12分 所求异面直线D B 1与1CA 所成的角6π13分4.在如图所示的几何体中,四边形CDPQ 为矩形,四边形ABCD 为直角梯形,且90BAD ADC ∠=∠= ,平面CDPQ ⊥平面ABCD ,112AB AD CD ===,2PD =.(1)若M 为PA 的中点,求证:AC //平面DMQ ;(2)求平面PAD 与平面PBC 所成的锐二面角的大小.【答案】解:(1)如图,设CP 与M 的交点为N ,连接MN .易知点N 是CP 的中点,又M 为PA 的中点,故//AC MN .…4分于是,由MN ∉平面DMQ ,得//AC 平面DMQ .……………6分 (2)如图,以点D 为原点,分别以DA DB DC 、、为x 轴,y 轴,z 轴,建立空间直角坐标系,则(0,0,0),(1,0,0),(1,1,0),(0,2,0),(0,0,2)D A B C P .易知1(0,1,0)n = 为平面PAD 的一个法向量,设2(,,)n x y z =为平面PBC 的一个法向量.则220220n BC x y n PC y z ⎧=-+=⎪⎨=-=⎪⎩2x y z y =⎧⎪⇒⎨=⎪⎩,令1y =,得2(1,1,2)n = .…………………10分 设平面PAD 与平面PBC 所成的锐二面角为θ,则12121cos 2n n n n θ== ,…………………12分1A ABCQP D M5(第20题图)D 1C 1B 1BCDA 1A故平面PAD 与平面PBC 所成的锐二面角的大小为3π.………………………………………14分5.(本题满分14分) 本题共2个小题,第1小题6分,第2小题8分. 在如图所示的直四棱柱1111ABCD A B C D -中,底面ABCD 是边长为2的 菱形,且60,BAD ∠=︒1 4.AA =(1)求直四棱柱1111ABCD A B C D -的体积; (2)求异面直线11AD BA 与所成角的大小.【答案】解:(1)因菱形ABCD 的面积为2sin6023,AB ⋅︒= ……2分故直四棱柱1111ABCD A B C D -的体积为:12348 3.ABCD S AA ⋅=⨯=底面……6分(2)连接111BC AC 、,易知11//BC AD ,故11A BC ∠等于异面直线11AD BA 与所成角. ……8分由已知,可得111125,23,A B BC AC === ……10分则在11A BC ∆中,由余弦定理,得 222111111117cos .210A B BC AC A BC A B BC +-∠==⋅ ……12分 故异面直线11AD BA 与所成角的大小为7cos .10arc……14分6.(本题满分12分)本题共2小题,第1小题满分6分,第2小题满分6分.在长方体1111ABCD A B C D -中,2AB BC ==,13AA =,过11,,A C B 三点的平面截去长方体的一个角后,得到如下所示的几何体111ABCD AC D -.(1)若11A C 的中点为1O ,求求异面直线1BO 与11A D 所成角的大小(用反三角函数值表示);(2)求点D 到平面11A BC 的距离d .【答案】解:(1)按如图所示建立空间直角坐标系.由题知,可得点D(0,0,0)、(2,2,0)B 、1(0,0,3)D 、1(2,0,3)A 、1(0,2,3)C . 由1O 是11AC 中点,可得1(1,1,3)O .于是,111(1,1,3),(2,0,0)BO A D =--=-. 设异面直线1BO 与11A D 所成的角为θ,则111111211cos 11||||211BO A D BO A D θ⋅===. 因此,异面直线1BO 与11A D 所成的角为11arccos11. (2)设(,,)n x y z = 是平面ABD 的法向量. ∴110,0.n BA n BC ⎧⋅=⎪⎨⋅=⎪⎩又11(0,2,3),(2,0,3)BA BC =-=- ,∴230,230.y z x z -+=⎧⎨-+=⎩ 取2z =, A BC D1A 1C 1D可得3,3,2.x y z =⎧⎪=⎨⎪=⎩即平面11BAC 的一个法向量是(3,3,2)n = . ∴||n DB d n ⋅=62211=.7.(本题满分12分)本题共有2个小题,第1小题满分6分,第2小题满分6分.在长方体1111ABCD A B C D -中,2AB BC ==,13AA =,过1A 、1C 、B 三点的平面截去长方体的 一个角后,得到如下所示的几何体111ABCD AC D -.(1)求几何体111ABCD AC D -的体积,并画出该几何体的左视图(AB 平行主视图投影所在的平面); (2)求异面直线1BC 与11A D 所成角的大小(结果用反三角函数值表示).【答案】解: 2AB BC ==,13AA =,11111=2232231032ABCD A D C V V V -∴=-⨯⨯-⨯⨯⨯⨯=长方体三棱锥.左视图如右图所示. (2)依据题意,有11,A D AD AD BC ,即11A D BC . ∴1C BC ∠就是异面直线1BC 与11A D 所成的角. 又 1C C BC ⊥,∴113tan 2C C C BC BC ∠==.∴异面直线1BC 与11A D 所成的角是3tan 2arc . 8. (本题满分12分)本题共有2个小题,第1小题满分4分,第2小题满分8分.如图,在直三棱柱111C B A ABC -中,已知21===AB BC AA ,AB ⊥BC . (1)求四棱锥111A BCC B -错误!未指定书签。
高三精选立体几何大题30题(含详细解答)
A BC第1题图ABCD第1题图立体几何大题1.如下图,一个等腰直角三角形的硬纸片ABC中,∠ACB=90°,AC=4cm,CD是斜边上的高沿CD 把△ABC折成直二面角.(1)如果你手中只有一把能度量长度的直尺,应该如何确定A,B的位置,使二面角A-CD-B是直二面角?证明你的结论.(2)试在平面ABC上确定一个P,使DP与平面ABC内任意一条直线都垂直,证明你的结论.(3)如果在折成的三棱锥内有一个小球,求出小球半径的最大值.2.如图,已知正四棱柱ABCD—A1B1C1D1的底面边长为3,侧棱长为4,连结A1B过A作AF⊥A1B垂足为F,且AF的延长线交B1B于E。
(Ⅰ)求证:D1B⊥平面AEC;(Ⅱ)求三棱锥B—AEC的体积;(Ⅲ)求二面角B—AE—C的大小的正弦值.3.如图,正三棱柱ABC—A1B1C1的底面边长为1,点M在BC上,△AMC1是以M为直角顶点的等腰直角三角形.(I)求证:点M为BC的中点;(Ⅱ)求点B到平面AMC1的距离;(Ⅲ)求二面角M—AC1—B 的正切值. 4.如图,已知多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,三角形ACD是正三角形,且AD=DE=2,AB=1,F是CD的中点.(Ⅰ)求证:AF∥平面BCE;(Ⅱ)求多面体ABCDE的体积;(Ⅲ)求二面角C-BE-D 的正切值.5.已知:ABCD是矩形,设PA=a,PA⊥平面ABCD.M、N分别是AB、PC的中点.(Ⅰ)求证:MN⊥AB;(Ⅱ)若PD=AB,且平面MND⊥平面PCD,求二面角P—CD—A的大小;(Ⅲ)在(Ⅱ)的条件下,求三棱锥D—AMN的体积.6.在正方体ABCD—A1B1C1D1中,P、M、N分别为棱DD1、AB、BC的中点。
(I)求二面角B1—MN—B的正切值;(II)证明:PB⊥平面MNB1;(III)画出一个正方体表面展开图,使其满足“有4个正方形面相连成一个长方形”的条件,并求出展开图中P、B两点间的距离。
高三精选立体几何大题30题(含详细解答)
1.如下图,一个等腰直角三角形的硬纸片ABC中,∠ACB=90°,AC=4cm,CD是斜边上的高沿CD把△ABC折成直二面角.
(1)如果你手中只有一把能度量长度的直尺,应该如何确定A,B的位置,使二面角A-CD-B是直二面角?证明你的结论.
(2)试在平面ABC上确定一个P,使DP与平面ABC内任意一条直线都垂直,证明你的结论.
∴ ,∴ .
∴ .
5.已知:ABCD是矩形,设PA=a,PA⊥平面ABCD.M、N分别是AB、PC的中点.
(Ⅰ)求证:MN⊥AB;
(Ⅱ)若PD=AB,且平面MND⊥平面PCD,求二面角P—CD—A的大小;
(Ⅲ)在(Ⅱ)的条件下,求三棱锥D—AMN的体积.
(Ⅰ)连结AC,AN.由BC⊥AB,AB是PB在
.
6.如图,正方体ABCD—A1B1C1D1中,P、M、N
分别为棱DD1、AB、BC的中点。
(I)求二面角B1—MN—B的正切值;
(II)证明:PB⊥平面MNB1;
(III)画出一个正方体表面展开图,使其满足
“有4个正方形面相连成一个长方形”的条件,
(Ⅲ)求二面角C-BE-D的正切值.
证:(Ⅰ)取CE中点M,连结FM,BM,则有 .
∴四边形AFMB是平行四边形.
∴AF//BM,
∵ 平面BCE,
平面BCE,
∴AF//平面BCE.
(Ⅱ)由于DE⊥平面ACD,
则DE⊥AF.
又△ACD是等边三角形,则AF⊥CD.而CD∩DE=D,因此AF⊥平面CDE.
= × ×3×3×
= (10分)
解(Ⅲ)连CF,
∵CB⊥平面A1B1BA,又BF⊥AE,
由三垂线定理知,CF⊥AE.
高中立体几何试题及答案
高中立体几何试题及答案一、选择题(每题3分,共15分)1. 空间中,如果直线a与平面α平行,那么直线a与平面α内的任意直线b的位置关系是:A. 平行B. 异面C. 相交D. 垂直2. 一个正方体的棱长为a,那么它的对角线长度为:A. a√2B. a√3C. 2aD. 3a3. 已知一个圆锥的底面半径为r,高为h,圆锥的体积是:A. πr²hB. 1/3πr²hC. 2πr²hD. 3πr²h4. 一个球的半径为R,那么它的表面积是:A. 4πR²B. 2πR²C. πR²D. R²5. 空间中,如果两个平面α和β相交于直线l,那么直线l与平面α和平面β的位置关系是:A. 平行B. 垂直C. 相交D. 包含二、填空题(每题2分,共10分)6. 空间直角坐标系中,点A(2,3,4)到原点O的距离是________。
7. 一个正四面体的每个顶点都与其它三个顶点相连,那么它的边长与高之比为________。
8. 已知一个长方体的长、宽、高分别为l、w、h,那么它的体积是________。
9. 空间中,如果一个点到平面的距离是d,那么这个点到平面上任意一点的距离的最大值是________。
10. 一个圆柱的底面半径为r,高为h,它的侧面积是________。
三、解答题(共75分)11. (15分)已知空间直角坐标系中,点A(1,2,3),B(4,5,6),点C 在平面ABC内,且AC=BC=2,求点C的坐标。
12. (20分)一个圆锥的底面半径为3,高为4,求圆锥的全面积和表面积。
13. (20分)一个长方体的长、宽、高分别为5、3、2,求其外接球的半径。
14. (20分)已知一个球的表面积为4π,求该球的体积。
答案:一、选择题1. A2. B3. B4. A5. C二、填空题6. √(1²+2²+3²)=√147. √3:18. lwh9. d+R10. 2πrh三、解答题11. 点C的坐标可以通过向量运算求得,设C(x,y,z),则向量AC=向量BC,即(1-x,2-y,3-z)=(x-4,5-y,6-z),解得x=3,y=4,z=5,所以点C的坐标为(3,4,5)。
(完整word版)高中立体几何大量习题及答案
立体几何一、选择题1. 给出下列四个命题①垂直于同一直线的两条直线互相平行;②垂直于同一平面的两个 平面互相平行;③若直线4与同一平面所成的角相等,则4互相平行;④若直线 /|仏是异面直线,则与都相交的两条直线是异面直线。
其中假命题的个数是()A. 1B. 2 C ・ 3 D. 42. 将正方形ABCD 沿对角线〃£)折成一个120。
的二面角,点C 到达点G ,这时异面直 线AD 与BCi 所成角的余弦值是()A. —B. -C.逅D.- 2 2 4 43. —个长方体一顶点的三个面的面积分别是血、巧、后,这个长方体对角线的长为()6. 正方体A ,B ,C ,D ,—ABCD 的棱长为a, EF 在AB 上滑动,且|EF|=b (b<a=9 Q 点在DC 上滑动,则四面体N —EFQ 的体积()A ・与E 、尸位置有关 B.与Q 位置有关C.与E 、F 、0位置都有关D.与E 、F 、0位買均无关,是定值 7. 三个两两垂直的平面,它们的三条交线交于一点O,点P 到三个平面的距离比为1 :2 : 3, PO=2V14 ,则P 到这三个平面的距离分别是()4. A. 2^3 B. 3^2 C. 6 如图,在正三角形ABC 中,D 、E 、尸分别为各边的中点,G 、H 、I 、丿分别为AF 、AD. BE 、DE 的中点.将△ ABC 沿QE 、EF 、Q 尸折成三棱锥以后,与〃所成角的度数为(A. 90° B ・ 60° C. 45。
5.两相同的正四棱锥组成如图所示的几何体,可放棱 长为1的正方体内,使正四棱锥的底面ABCD 与正 方体的某一个平面平行,且各顶点均在正方体的面 上,则这样的几何体体积的可能值有()A ・I 个B. 2个C. 3个 D0°D.A. 1, 2, 3 B・ 2, 4, 6 C・ 1, 4, 6 D・ 3, 6, 98. 如图,在四而体ABCD 中,截rfij AEF 经过四面 体的内切球(与四个面都相切的球)球心O,且 与BC, DC 分别截于E 、F,如果截面将四面体 分成体积相等的两部分,设四棱锥A —BEFD 与 三棱锥A-EFC 的表面积分别是Si ,52,则必有 ()A. S\<S2B. Si>S2C. S I =52D. 5I ,S2的大小关系不能确定 9. 条件甲:四棱锥的所有侧面都是全等三角形,条件乙:这个四棱锥是正四棱锥,则条 件甲是条件乙的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件10. 已知棱锥的顶点为P, P 在底面上的射影为O, PO=a,现用平行于底面的平面去截 这个棱锥,截面交PO 于点M,并使截得的两部分侧面积相等,设OM=b ,则a 与b 的关系是() B ・ h= ( V2 +1) aD.后土色 2 —♦ f11. 已知向量d=(2, 4, x ), 〃=(2, y, 2),若f |=6, “ 丄〃,则 x+y 的值是()12. 一个长方体共一顶点的三个面的面积分别是迈,JI 亦,这个长方体它的八个顶点都在同一个球面上,这个球的表面积是()A.1271B. 1871C.3671D. 6兀 13. 己知某个几何体的三视图如下,图中标出的尺寸(单位:cm ),则这个几何体的体积是()已知圆锥的全面积是底面积的3倍,那么该圆锥的侧tfri 展开图扇形的圆心角为( A.12O 0 B.15O 0 C.180° D.24O 0A ・ b= ( 5/2 —l)a A. 4000 14. A8000 正视图 俯视图20. 15.在一个倒置的正三棱锥容器内,放入一个钢球,钢球恰好与棱锥的四个而都接触,经 过棱锥的一条侧棱和高作截面,正确的截面图形是()“(-1,0,2),且几+》与必―》互相垂直,贝IJR 值是() 厂3 “7 C. — D.— 5516. 正四棱柱 ABCD-AiBiCiDi 中,AB=3, BBi=4.长为 1 的线段PQ 在棱AAi 上移动,长为3的线段MN 在棱 CCi±移动,点R 在棱BBi 上移动,则四棱锥R- PQMN 的体积是()A. 6B. 10 C ・12 D ・不确定17. 已知三棱锥0—ABC 中,OA 、OB 、OC 两两互相垂直,若x+y=4,则已知三棱锥O —ABC 体积的最大值是()1 2 >/3 B. — C. — D. 3 3 3 A.l18. 如图,在正四面体A-BCD 中,E 、F 、G 分别是三角形ADC 、ABD 、BCD 的中心, 则AEFG 在该正四面体各个面上的射影所有可能的序号是()A.①③B.②®® c.③④D.②④ A/ \ /◎、L ________ \ ① MB — — —②19. 如來底而直径和高相等的圆柱的侧面积是s •那么圆柱的体积等于A.-VSB.-J-C.-VSD.- 2 2V K 44 vn 已知直线AB. CD 是异面直线,AC 丄AB, AC 丄CD, BD 丄CD, 则异面直线AB 与CD 所成角的大小为()A. 30°B. 45° 且 AB=2, CD=1,C. 60°D. 75°已知向量”m°),B.- 5 A. 1 OC=1, OA=x, OB=y,22. 在四棱锥的四个侧面中,直角三角形最参可有()A.4个B.2个C.3个D.1个23. 三棱锥A-BCD 中,AC 丄BD, E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点,则四边形EFGH 是()A.菱形B.矩形C.梯形D.正方形24. 在正四面体P —ABC 中,D 、E 、F 分别是AB 、BC 、CA 的中点,下面四个结论中不 成立的是()25. 一棱锥被平行于底面的平面所截,若截面1何积与底面面积的比为1: 3,则此截面把一条侧棱分成的两线段之比为()A.1: 3B.1: 2C.1:羽D.1:羽一 1 26. 正四面体P —ABC 中,M 为棱AB 的中点,则PA 与CM 所成角的余弦值为()A 並B 並C 返D 迴 A. 2 B. § C. 4 D. 327. —个三棱锥S —ABC 的三条侧棱SA 、SB 、SC 两两互相垂直,且长度分别为1, & ,3 已知该三棱锥的四个顶点都在一个球而上,则这个球的表面积为()A.16nB.32 兀C.36 兀D.64 兀28. 在棱长为。
高考数学的立体几何多选题附答案
高考数学的立体几何多选题附答案一、立体几何多选题1.如图①,矩形ABCD 的边2BC =,设AB x =,0x >,三角形BCM 为等边三角形,沿BC 将三角形BCM 折起,构成四棱锥M ABCD -如图②,则下列说法正确的有( )A .若T 为BC 中点,则在线段MC 上存在点P ,使得//PD 平面MATB .当)3,2x ∈时,则在翻折过程中,不存在某个位置满足平面MAD ⊥平面ABCDC .若使点M 在平面ABCD 内的射影落在线段AD 上,则此时该四棱锥的体积最大值为1 D .若1x =,且当点M 在平面ABCD 内的射影点H 落在线段AD 上时,三棱锥M HAB -6322++【答案】BCD 【分析】对于A ,延长AT 与DC 的延长线交于点N ,此时,DP 与MN 必有交点; 对于B ,取AD 的中点H ,表示出2223MH MT HT x --,验证当)3,2x ∈时,无解即可; 对于C ,利用体积公式21233V x x =⨯⨯-,借助基本不等式求最值即可; 对于D ,要求外接球半径与内切球半径,找外接圆的圆心,又内接圆半径为2323r =++【详解】对于A ,如图,延长AT 与DC 的延长线交于点N ,则面ATM ⋂面()MDC N MN =.此时,DP 与MN 必有交点,则DP 与面ATM 相交,故A 错误; 对于B ,取AD 的中点H ,连接MH ,则MH AD ⊥.若面MAD ⊥面ABCD ,则有2223MH MT HT x =-=- 当)3,2x ∈时,无解,所以在翻折过程中,不存在某个位置满足平面MAD ⊥平面ABCD故B 正确;对于C ,由题可知,此时面MAD ⊥面ABCD ,由B 可知,(3x ∈,所以()22222221223232331333232x x V x x x x ⎛⎫+-⎛⎫=⨯⨯-=-≤== ⎪ ⎪⎝⎭⎝⎭当且仅当223x x =-,即6x =时等号成立.故C 正确; 对于D ,由题可知,此时面MAD ⊥面ABCD ,且2MH =因为AHB ,MHB 都是直角三角形,所以M ABH -底面外接圆的圆心是中点,所以1R =,由等体积法,可求得内接圆半径为2323r =++,故61322R r ++=,故D 正确.故选:BCD . 【点睛】本题从多个角度深度考查了立体几何的相关内容,注意辅助线的作法,以及求内接圆半径的公式、基本不等式、构造函数等核心思想.2.已知图1中,A 、B 、C 、D 是正方形EFGH 各边的中点,分别沿着AB 、BC 、CD 、DA 把ABF 、BCG 、CDH △、DAE △向上折起,使得每个三角形所在的平面都与平面ABCD 垂直,再顺次连接EFGH ,得到一个如图2所示的多面体,则( )A .AEF 是正三角形B .平面AEF ⊥平面CGHC .直线CG 与平面AEF 2D .当2AB =时,多面体ABCD EFGH -的体积为83【答案】AC【分析】取CD 、AB 的中点O 、M ,连接OH 、OM ,证明出OH ⊥平面ABCD ,然后以点O 为坐标原点,OM 、OC 、OH 所在直线分别为x 、y 、z 轴建立空间直角坐标系,求出EF ,可判断A 选项的正误,利用空间向量法可判断BC 选项的正误,利用几何体的体积公式可判断D 选项的正误. 【详解】取CD 、AB 的中点O 、M ,连接OH 、OM , 在图1中,A 、B 、C 、D 是正方形EFGH 各边的中点,则1122CH GH EH DH ===,O 为CD 的中点,OH CD ∴⊥,平面CDH ⊥平面ABCD ,平面CDH 平面ABCD CD =,OH ⊂平面CDH ,OH ∴⊥平面ABCD ,在图1中,设正方形EFGH的边长为()0a >,可得四边形ABCD 的边长为2a , 在图1中,ADE 和ABF 均为等腰直角三角形,可得45BAF DAE ∠=∠=, 90BAD ∴∠=,∴四边形ABCD 是边长为2a 的正方形,O 、M 分别为CD 、AB 的中点,则//OC BM 且OC BM =,且90OCB ∠=,所以,四边形OCBM 为矩形,所以,OM CD ⊥,以点O 为坐标原点,OM 、OC 、OH 所在直线分别为x 、y 、z 轴建立空间直角坐标系,则()2,,0A a a -、()2,,0B a a 、()0,,0C a 、()0,,0D a -、(),,E a a a -、()2,0,F a a 、(),,G a a a 、()0,0,H a .对于A选项,由空间中两点间的距离公式可得AE AF EF ===,所以,AEF 是正三角形,A 选项正确;对于B 选项,设平面AEF 的法向量为()111,,m x y z =,(),0,AE a a =-,()0,,AF a a =,由111100m AE ax az m AF ay az ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,取11z =,则11x =,11y =-,则()1,1,1m =-, 设平面CGH 的法向量为()222,,n x y z =,(),0,CG a a =,()0,,CH a a =-, 由222200n CG ax az n CH ay az ⎧⋅=+=⎪⎨⋅=-+=⎪⎩,取21z =-,可得21x =,21y =-,则()1,1,1n =--,()22111110m n ⋅=+--⨯=≠,所以,平面AEF 与平面CGH 不垂直,B 选项错误;对于C 选项,6cos ,323CG m CG m a CG m⋅<>===⨯⋅, 设直线CG 与平面AEF 所成角为θ,则sin 63θ=,23cos 1sin θθ=-=,所以,sin tan 2cos θθθ==,C 选项正确; 对于D 选项,以ABCD 为底面,以OH 为高将几何体ABCD EFGH -补成长方体1111ABCD A B C D -,则E 、F 、G 、H 分别为11A D 、11A B 、11B C 、11C D 的中点,因为2AB =,即1a =,则1OH =,长方体1111ABCD A B C D -的体积为2214V =⨯=,11211111113326A A EF A EF V S AA -=⋅=⨯⨯⨯=△,因此,多面体ABCD EFGH -的体积为111044463ABCD EFGH A A EF V V V --=-=-⨯=, D 选项错误. 故选:AC. 【点睛】方法点睛:计算线面角,一般有如下几种方法:(1)利用面面垂直的性质定理,得到线面垂直,进而确定线面角的垂足,明确斜线在平面内的射影,即可确定线面角;(2)在构成线面角的直角三角形中,可利用等体积法求解垂线段的长度h ,从而不必作出线面角,则线面角θ满足sin hlθ=(l 为斜线段长),进而可求得线面角; (3)建立空间直角坐标系,利用向量法求解,设a 为直线l 的方向向量,n 为平面的法向量,则线面角θ的正弦值为sin cos ,a n θ=<>.3.一副三角板由一块有一个内角为60°的直角三角形和一块等腰直角三角形组成,如图所示,090B F ∠=∠=,060,45,A D BC DE ∠=∠==,现将两块三角形板拼接在一起,得三棱锥F CAB -,取BC 中点O 与AC 中点M ,则下列判断中正确的是( )A .BC FM ⊥B .AC 与平面MOF 所成的角的余弦值为32C .平面MOF 与平面AFB 所成的二面角的平面角为45°D .设平面ABF 平面MOF l =,则有//l AB【答案】AD 【分析】证明BC ⊥面FOM 可判断A ;根据AC 与平面MOF 所成的角为060CMO ∠=判断B ;利用特殊位置判断C ;先证明//AB 面MOF ,由线面平行的性质定理可判断D ; 【详解】由三角形中位线定理以及等腰三角形的性质可得,,BC OF BC OM OM OF O ⊥⊥=,所以BC ⊥面FOM BC FM ⇒⊥,故A 正确;因为BC ⊥面FOM ,所以AC 与平面MOF 所成的角为060CMO ∠=,所以余弦值为12,故B 错误; 对于C 选项可以考虑特殊位置法,由BC ⊥面FOM 得面ABC ⊥面FOM ,所以点F 在平面ABC 内的射影在直线OM 上,不妨设点F 平面ABC 内的射影为M ,过点M 作//BC MN ,连结NF .易证AB ⊥面MNF ,则l ⊥面MNF ,所以MFN ∠为平面MOF与平面AFB 所成的二面角的平面角,不妨设2AB =,因为060A,所以23BC =,则13,12OF BC OM ===,显然MFN ∠不等于45°,故C 错误. 设面MOF 与平面ABF 的交线为l ,又因为//,AB OM AB ⊄面MOF ,OM ⊂面MOF ,所以//AB 面MOF ,由线面平行的性质定理可得://l AB ,故D 正确; 故选:AD.【点睛】方法点睛:求直线与平面所成的角有两种方法:一是传统法,证明线面垂直找到直线与平面所成的角,利用平面几何知识解答;二是利用空间向量,求出直线的方向向量以及平面的方向向量,利用空间向量夹角余弦公式求解即可.4.如图,在棱长为2的正方体1111ABCD A B C D -,中,E 为棱1CC 上的中点,F 为棱1AA 上的点,且满足1:1:2A F FA =,点F ,B ,E ,G ,H 为过三点B ,E ,F 的平面BMN 与正方体1111ABCD A B C D -的棱的交点,则下列说法正确的是( )A .//HF BEB .三棱锥的体积14B BMN V -=C .直线MN 与平面11A B BA 所成的角为45︒D .11:1:3D G GC = 【答案】ABD 【分析】面面平行性质定理可得出A 正确;等体积法求得B 正确;直线MN 与平面11A B BA 所成的角为1B MN ∠,求其正切值不等于1即可得出C 错误;利用面面平行性质定理和中位线求出11,D G GC 长度即可得出D 正确. 【详解】解:对于A.在正方体1111ABCD A B C D -中平面11//ADA D 平面11BCB C , 又平面11ADA D 平面BMN HF =,平面11BCB C ⋂平面BMN BE =,有平面与平面平行的性质定理可得//HF BE ,故正确; 对于B.因为1:1:2A F FA =,所以111332B M A B ==,又E 为棱1CC 上的中点,所以14B N =,所以1111234432B BMN N B BMV V --⎛⎫==⨯⨯⨯⨯= ⎪⎝⎭,故正确; 对于C.由题意及图形可判定直线MN 与平面11A B BA 所成的角为1B MN ∠, 结合B 选项可得1114tan 13B N B MN B M ∠==≠,故错误; 对于D.同A 选项证明方法一样可证的11//GC B M ,因为E 为棱1CC 上的中点,1C 为棱1B N 上的中点,所以1113=22GC B M = 所以11G=2D ,所以11:1:3D G GC =,故正确. 故选:ABD 【点睛】求体积的常用方法:(1)直接法:对于规则的几何体,利用相关公式直接计算;(2)等体积法:选择合适的底面来求几何体体积,常用于求三棱锥的体积,即利用三棱锥的任一个面可作为三棱锥的底面进行等体积变换;(3)割补法:首先把不规则的几何体分割成规则的几何体,然后进行体积计算;或者把不规则的几何体补成规则的几何体,不熟悉的几何体补成熟悉的几何体,便于计算.5.已知四面体ABCD 的所有棱长均为2,则下列结论正确的是( ) A .异面直线AC 与BD 所成角为60︒ B .点A 到平面BCD的距离为3C .四面体ABCDD .动点P 在平面BCD 上,且AP 与AC 所成角为60︒,则点P 的轨迹是椭圆 【答案】BC 【分析】在正四面体中通过线面垂直可证得AC ⊥BD ,通过计算可验证BC,通过轨迹法可求得P 的轨迹为双曲线方程即可得D 错误. 【详解】取BD 中点E ,连接,AE CE ,可得BD ⊥面ACE ,则AC ⊥BD ,故A 错误;在四面体ABCD 中,过点A 作AF ⊥面BCD 于点F ,则F 为为底面正三角形BCD 的重心,因为所有棱长均为2,AF ==即点A 到平面BCD的距离为3,故B 正确;设O 为正四面体的中心则OF 为内切球的半径,OA 我外接球的半径,因为11433A BCD BCD BCD V S AF S OF -=⋅=⨯⋅△△,所以4AF OF =,即62=66OF AO =,, 所以四面体ABCD 的外接球体积3344633V R OA πππ===,故C 正确; 建系如图:26230,0,,0,,0A C ⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,设(,,0)P x y ,则262326,,0,,333AP x y AC →→⎛⎫⎛⎫=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,因为cos 60AP AC AP AC →→→→⋅=,所以22232481224193972y x y +=++⨯+⨯, 即222388=33y x y +++,平方化简可得:2232340039y x y ----,可知点P 的轨迹为双曲线,故D 错误. 故选:BC .【点睛】方法点睛:立体几何中动点轨迹的求解问题,解决此类问题可采用空间向量法,利用空间向量法表示出已知的角度或距离的等量关系,从而得到轨迹方程.6.如图,点E 为正方形ABCD 边CD 上异于点C ,D 的动点,将ADE 沿AE 翻折成SAE △,在翻折过程中,下列说法正确的是( )A .存在点E 和某一翻折位置,使得SB SE ⊥ B .存在点E 和某一翻折位置,使得//AE 平面SBCC .存在点E 和某一翻折位置,使得直线SB 与平面ABC 所成的角为45°D .存在点E 和某一翻折位置,使得二面角S AB C --的大小为60° 【答案】ACD 【分析】依次判断每个选项:当SE CE ⊥时,⊥SE SB ,A 正确,//AE 平面SBC ,则//AE CB ,这与已知矛盾,故B 错误,取二面角D AE B --的平面角为α,取4=AD ,计算得到2cos 3α=,C 正确,取二面角D AE B --的平面角为60︒,计算得到5tan θ=,故D 正确,得到答案. 【详解】当SE CE ⊥时,SE AB ⊥,SE SA ⊥,故SE ⊥平面SAB ,故⊥SE SB ,A 正确; 若//AE 平面SBC ,因AE ⊂平面ABC ,平面ABC 平面SBC BC =,则//AE CB ,这与已知矛盾,故B 错误;如图所示:DF AE ⊥交BC 于F ,交AE 于G ,S 在平面ABCE 的投影O 在GF 上, 连接BO ,故SBO ∠为直线SB 与平面ABC 所成的角,取二面角D AE B --的平面角为α,取4=AD ,3DE =,故5AE DF ==,1CE BF ==,125DG =,12cos 5OG α=,故只需满足12sin 5SO OB α==, 在OFB △中,根据余弦定理:2221213121312sin 1cos 2cos cos 55555OFB ααα⎛⎫⎛⎫⎛⎫=+---∠ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,解得2cos 3α=,故C 正确; 过O 作OMAB ⊥交AB 于M ,则SMO ∠为二面角S AB C --的平面角,取二面角D AE B --的平面角为60︒,故只需满足22DG GO OM ==,设OAG OAM θ∠=∠=,84ππθ<<,则22DAG πθ∠=-,tan tan 22DG OGAG πθθ==⎛⎫- ⎪⎝⎭,化简得到2tan tan 21θθ=,解得5tan 5θ=,验证满足,故D 正确;故选:ACD .【点睛】本题考查了线线垂直,线面平行,线面夹角,二面角,意在考查学生的计算能力,推断能力和空间想象能力.7.(多选题)在四面体P ABC -中,以上说法正确的有( )A .若1233AD AC AB =+,则可知3BC BD = B .若Q 为△ABC 的重心,则111333PQ PA PB PC =++C .若0PA BC =,0PC AB =,则0PB AC =D .若四面体P ABC -各棱长都为2,M N ,分别为,PA BC 的中点,则1MN = 【答案】ABC 【分析】作出四面体P ABC -直观图,在每个三角形中利用向量的线性运算可得. 【详解】对于A ,1233AD AC AB =+,32AD AC AB ∴=+,22AD AB AC AD ∴-=- , 2BD DC ∴=,3BD BD DC BC ∴=+=即3BD BC ∴=,故A 正确;对于B ,Q 为△ABC 的重心,则0QA QB QC ++=,33PQ QA QB QC PQ ∴+++=()()()3PQ QA PQ QB PQ QC PQ ∴+++++=,3PA PB PC PQ ∴++=即111333PQ PA PB PC ∴=++,故B 正确; 对于C ,若0PA BC =,0PC AB =,则0PA BC PC AB +=,()0PA BC PC AC CB ∴++=,0PA BC PC AC PC CB ∴++=0PA BC PC AC PC BC ∴+-=,()0PA PC BC PC AC ∴-+= 0CA BC PC AC ∴+=,0AC CB PC AC ∴+=()0AC PC CB ∴+=,0AC PB ∴=,故C 正确;对于D ,111()()222MN PN PM PB PC PA PB PC PA ∴=-=+-=+- 1122MN PB PC PA PA PB PC ∴=+-=-- 222222PA PB PC PA PB PC PA PB PA PC PC PB --=++--+22211122222222222222222=++-⨯⨯⨯-⨯⨯⨯+⨯⨯⨯=2MN ∴=,故D 错误.故选:ABC 【点睛】用已知向量表示某一向量的三个关键点(1)用已知向量来表示某一向量,一定要结合图形,以图形为指导是解题的关键. (2)要正确理解向量加法、减法与数乘运算的几何意义,如首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量. (3)在立体几何中三角形法则、平行四边形法则仍然成立.8.如图,点O 是正四面体P ABC -底面ABC 的中心,过点O 的直线交AC ,BC 于点M ,N ,S 是棱PC 上的点,平面SMN 与棱PA 的延长线相交于点Q ,与棱PB 的延长线相交于点R ,则( )A .若//MN 平面PAB ,则//AB RQ B .存在点S 与直线MN ,使PC ⊥平面SRQC .存在点S 与直线MN ,使()0PS PQ PR ⋅+= D .111PQPRPS++是常数【答案】ABD 【分析】对于选项A ,根据线面平行的性质定理,进行推理判断即可;对于选项B ,当直线MN 平行于直线AB , 13SC PC =时,通过线面垂直的判定定理,证明此时PC ⊥平面SRQ ,即可证明,存在点S 与直线MN ,使PC ⊥平面SRQ ;对于选项C ,假设存在点S 与直线MN ,使()0PS PQ PR ⋅+=,利用线面垂直的判定定理可证得PC ⊥平面PAB ,此时通过反证法说明矛盾性,即可判断; 对于选项D ,利用S PQR O PSR O PSQ O PQR V V V V ----=++,即可求得111PQPRPS++是常数.【详解】 对于选项A , 若//MN 平面PAB ,平面SMN 与棱PA 的延长线相交于点Q ,与棱PB 的延长线相交于点R ,∴平面SMN 平面PAB =RQ ,又MN ⊂平面SMN ,//MN 平面PAB ,∴//MN RQ ,点O 在面ABC 上,过点O 的直线交AC ,BC 于点M ,N ,∴MN ⊂平面ABC ,又//MN 平面PAB ,平面ABC平面PAB AB =,∴//MN AB , ∴//AB RQ ,故A 正确; 对于选项B ,当直线MN 平行于直线AB ,S 为线段PC 上靠近C 的三等分点,即13SC PC =, 此时PC ⊥平面SRQ ,以下给出证明: 在正四面体P ABC -中,设各棱长为a ,∴ABC ,PBC ,PAC △,PAB △均为正三角形,点O 为ABC 的中心,//MN AB ,∴由正三角形中的性质,易得23CN CM a ==, 在CNS 中,23CN a =,13SC a =,3SCN π∠=,∴由余弦定理得,3SN a ==, ∴222249SC SN a CN +==,则SN PC ⊥, 同理,SM PC ⊥,又SM SN S =,SM ⊂平面SRQ ,SN ⊂平面SRQ ,∴PC ⊥平面SRQ ,∴存在点S 与直线MN ,使PC ⊥平面SRQ ,故B 正确; 对于选项C ,假设存在点S 与直线MN ,使()0PS PQ PR ⋅+=, 设QR 中点为K ,则2PQ PR PK +=,∴PS PK ⊥,即PC PK ⊥,()cos cos 0PC AB PC PB PA PC PB CPB PC PA CPA ⋅=⋅-=⋅∠-⋅∠=,∴PC AB ⊥,又易知AB 与PK 为相交直线,AB 与PK 均在平面PQR 上,∴PC ⊥平面PQR ,即PC ⊥平面PAB ,与正四面体P ABC -相矛盾,所以假设不成立, 故C 错误; 对于选项D ,易知点O 到面PBC ,面PAC ,面PAB 的距离相等,记为d , 记PC 与平面PAB 所处角的平面角为α,α为常数,则sin α也为常数, 则点S 到PQR 的距离为sin PS α, 又13sin 234PQRSPQ PR PQ PR π=⋅=⋅ ∴()()1133sin sin sin33S PQR PQRV PS S PS PQ PR PQ PR PS ααα-=⋅=⋅⋅=⋅⋅, 又13sin23PSRSPS PR PS PR π=⋅=⋅, 13sin 234PSQS PS PQ PS PQ π=⋅=⋅, 13sin23PQRSPQ PR PQ PR π=⋅=⋅,()12S PQR O PSR O PSQ O PQR V V V V d PS PR PS PQ PQ PR ----=++=⋅+⋅+⋅,∴()3sin PQ PR PS d PS PR PS PQ PQ PR α⋅⋅=⋅+⋅+⋅, ∴111sin d PQPRPSα++=为常数,故D 正确. 故选:ABD. 【点睛】本题考查了线面平行的性质定理、线面垂直的判定定理,考查了三棱锥体积的计算,考查了向量的运算,考查了转化能力与探究能力,属于较难题.9.如图所示,在长方体1111ABCD A B C D -中,11,2,AB BC AA P ===是1A B 上的一动点,则下列选项正确的是( )A .DP 35B .DP 5C .1AP PC +6D .1AP PC +的最小值为1705【答案】AD 【分析】DP 的最小值,即求1DA B △底边1A B 上的高即可;旋转11A BC 所在平面到平面11ABB A ,1AP PC +的最小值转化为求AC '即可.【详解】求DP 的最小值,即求1DA B △底边1A B 上的高,易知115,2A B A D BD ===,所以1A B 边上的高为355h =111,AC BC ,得11A BC ,以1A B 所在直线为轴,将11A BC 所在平面旋转到平面11ABB A ,设点1C 的新位置为C ',连接AC ',则AC '即为所求的最小值,易知11122,2,cos 10AA AC AAC ''==∠=-, 所以217042222()105AC '=+-⨯⨯⨯-=. 故选:AD. 【点睛】本题考查利用旋转求解线段最小值问题.求解翻折、旋转问题的关键是弄清原有的性质变化与否, (1)点的变化,点与点的重合及点的位置变化;(2)线的变化,翻折、旋转前后应注意其位置关系的变化;(3)长度、角度等几何度量的变化.10.如果一个棱锥的底面是正方形,且顶点在底面内的射影是底面的中心,那么这样的棱锥叫正四棱锥.若一正四棱锥的体积为18,则该正四棱锥的侧面积最小时,以下结论正确的是( ).A .棱的高与底边长的比为22B .侧棱与底面所成的角为4π C 2 D .侧棱与底面所成的角为3π 【答案】AB设四棱锥S ABCD -的高为h ,底面边长为a ,由21183V a h ==得254h a=,然后可得侧面积为242108a a+,运用导数可求出当32a =时侧面积取得最小值,此时3h =,然后求出棱锥的高与底面边长的比和SAO ∠即可选出答案. 【详解】设四棱锥S ABCD -的高为h ,底面边长为a 可得21183V a h ==,即254h a= 所以其侧面积为2222244215410842244a a a h a a a⋅⋅+=+=+令()242108f a a a =+,则()23321084f a a a ⨯'=-令()233210840f a a a⨯'=-=得32a = 当(0,32a ∈时()0f a '<,()f a 单调递减当()32,a ∈+∞时()0f a '>,()f a 单调递增所以当32a =时()f a 取得最小值,即四棱锥的侧面积最小 此时3h =所以棱锥的高与底面边长的比为22,故A 正确,C 错误 侧棱与底面所成的角为SAO ∠,由3h =,32a =可得3AO = 所以4SAO π∠=,故B 正确,D 错误故选:AB本题考查的知识点有空间几何体的体积和表面积、线面角及利用导数求最值,属于综合题.。
高考数学立体几何练习题及答案
高考数学立体几何练习题及答案一、选择题1. 已知正方体的体积为216cm³,求正方体一个面上的对角线长度。
(选项)A. 12cmB. 9cmC. 6cmD. 3cm2. 锥体的侧面积为15√3cm²,求锥体的体积。
(选项)A. 45cm³B. 30cm³C. 15cm³D. 10cm³3. 平面α与平面β相交于直线l,直线l与平面γ相交于点O,若平面α与平面β的夹角为60°,直线l与平面γ的夹角为45°,则平面α与平面γ的夹角为(选项)A. 45°B. 30°C. 60°D. 75°二、填空题1. 一个正方体的棱长为a,其对角线的长度为____。
2. 若棱长为3的正方体的一个面上有一点P,离该面的距离为2,则线段OP的长度为_____。
3. 一个正方体的一个顶点到另一个顶点的距离为a,其体对角线的长度为____。
三、解答题1. 已知一个正方体的棱长为a,求:a) 正方体的体积;b) 正方体一个面的面积;c) 正方体的对角线长度。
解答:a) 正方体的体积为a³。
b) 正方体一个面的面积为a²。
c) 正方体的对角线长度为a√3。
2. 一个圆柱的高为10cm,直径为6cm,求:a) 圆柱的底面积;b) 圆柱的侧面积;c) 圆柱的体积。
解答:a) 圆柱的底面积为π(3cm)²=9πcm²。
b) 圆柱的侧面积为2π(3cm)(10cm)=60πcm²。
c) 圆柱的体积为π(3cm)²(10cm)=90πcm³。
3. 已知一个球的表面积为100πcm²,求球的体积。
解答:设球的半径为r,则球的表面积为4πr²。
根据题意,4πr²=100π,解得r=5cm。
球的体积为4/3πr³=(4/3π)(5cm)³=500/3πcm³。
高考数学复习—立体几何练习试卷、参考答案
高考数学复习—立体几何练习试卷第Ⅰ卷 (选择题 共50分)一、选择题(10×5′=50′)1.如图,设O 是正三棱锥P-ABC 底面三角形ABC 的中心, 过O 的动平面与P-ABC 的三条侧棱或其延长线的交点分别记为Q 、R 、S ,则PSPR PQ 111++ ( ) A.有最大值而无最小值 B.有最小值而无最大值C.既有最大值又有最小值,且最大值与最小值不等D.是一个与平面QRS 位置无关的常量2.在正n 棱锥中,相邻两侧面所成的二面角的取值范围是 ( ) A.⎪⎭⎫ ⎝⎛ππ-,1n n B.⎪⎭⎫ ⎝⎛ππ-,2n n C.⎪⎭⎫ ⎝⎛π2,0 D.⎪⎭⎫ ⎝⎛π-π-n n n n 1,2 3.正三棱锥P-ABC 的底面边长为2a ,点E 、F 、G 、H 分别是P A 、PB 、BC 、AC 的中点,则四边形EFGH 的面积的取值范围是 ( )A.(0,+∞)B.⎪⎪⎭⎫⎝⎛+∞,332a C.⎪⎪⎭⎫ ⎝⎛+∞,632a D.⎪⎭⎫ ⎝⎛+∞,212a 4.已知二面角α-a -β为60°,点A 在此二面角内,且点A 到平面α、β的距离分别是AE =4,AF =2,若B ∈α,C ∈β,则△ABC 的周长的最小值是 ( )A.43B.27C.47D.23 5.如图,正四面体A-BCD 中,E 在棱AB 上,F 在棱CD 上, 使得FDCFEB AE ==λ(0<λ<+∞),记f (λ)=αλ+βλ,其中αλ表示EF 与AC 所成的角,βλ表示EF 与BD 所成的角,则 ( ) A.f (λ)在(0,+∞)单调增加 B.f (λ)在(0,+∞)单调减少C.f (λ)在(0,1)单调增加,在(1,+∞)单调减少D.f (λ)在(0,+∞)为常数6.直线a ∥平面β,直线a 到平面β的距离为1,则到直线a 的距离与平面β的距离都等于54的点的集合是 ( )A.一条直线B.一个平面C.两条平行直线D.两个平面 7.正四棱锥底面积为Q ,侧面积为S ,则它的体积为 ( )A.)(6122Q S Q - B.)(3122Q S Q - C.)(2122Q S Q - D.S Q 31第1题图第5题图8.已知球O的半径为R,A、B是球面上任意两点,则弦长|AB|的取值范围为( )A.[0,2R]B.(0,2R]C.(0,2R)D.[R,2R]9.已知平面α∩平面β=l,m是平面α内的一条直线,则在平面β内()A..一定存在直线与直线m平行,也一定存在直线与直线m垂直B.一定存在直线与直线m平行,但不一定存在直线与直线m垂直C.不一定存在直线与直线m平行,但一定存在直线与直线m垂直D.不一定存在直线与直线m平行,也不一定存在直线与直线m垂直10.如图为一个简单多面体的表面展开图(沿图中虚线折叠即可还原),则这个多面体的顶点数为( )A.6B.7C.8D.9第10题图二、填空题(4×4′=16′)11.边长为a的等边三角形内任一点到三边距离之和为定值,这个定值为;推广到空间,棱长为a的正四面体内任一点到各面距离之和为.12.在△ABC中,AB=9,AC=15,∠BAC=120°,其所在平面外一点P到A、B、C三个顶点的距离都是14,则P点到直线BC的距离为.13.已知将给定的两个全等的正三棱锥的底面粘在一起,恰得到一个所有二面角都相等的六面体,并且该六面体的最短棱的长为2,则最远的两顶点间的距离是.14.有120个等球密布在正四面体A-BCD内,问此正四面体的底部放有个球.三、解答题(4×10′+14′=54′)15.定直线l1⊥平面α,垂足为M,动直线l2在平面α内过定点N,但不过定点M.MN=a为定值,在l1、l2上分别有动线段AB=b,CD=c.b、c为定值.问在什么情况下四面体ABCD的体积最大?最大值是多少?16.如图所示,已知四边形ABCD、EADM和MDCF都是边长为a的正方形,点P、Q分别是ED 和AC的中点,求:(1)PM与FQ所成的角;(2)P点到平面EFB的距离;(3)异面直线PM与FQ的距离.第16题图17.如图,在梯形ABCD 中,AB ∥CD ,∠ADC =90°,3AD =DC =3,AB =2,E 是CD 上一点,满足DE =1,连结AE ,将△DAE 沿AE 折起到△D 1AE 的位置,使得∠D 1AB =60°,设AC 与BE 的交点为O .(1)试用基向量AB ,AE ,1AD 表示向量1OD(2)求异面直线OD 1与AE 所成的角.(3)判断平面D 1AE 与平面ABCE 是否垂直,并说明理由.18.如图,在斜棱柱ABC —A 1B 1C 1中,底面为正三角形,侧棱长等于底面边长,且侧棱与底面所成的角为60°,顶点B 1在底面ABC 上的射影O 恰好是AB 的中点.(1)求证:B 1C ⊥C 1A ;(2)求二面角C 1-AB-C 的大小.19.如图所示,在三棱锥P-ABC 中,P A=PB=PC ,BC =2a ,AC =a ,AB =3a ,点P 到平面ABC 的距第17题图第18题图3a.离为2(1)求二面角P-AC-B的大小;(2)求点B到平面P AC的距离.第19题图参考答案一、选择题1.D 设正三棱锥P-ABC 中,各棱之间的夹角为α,棱与底面夹角为β,h 为点S 到平面PQR 的距离,则V S-PQR =31S △PQR ·h =31(21PQ ·PR ·sin α)·PS ·sin β,另一方面,记O 到各平面的距离为d ,则有V S-PQR =V O-PQR +V O-PRS +V O-PQS =31S △PQR ·d +31S △PRS ·d +31S △PQS ·d =3d·21·PQ ·PR ·sin α+3d ·21PS ·PR ·sin α+3d·21·PQ ·PS ·sin α.故有PQ ·PR ·PS ·sin β=d (PQ ·PR +PR ·PS +PQ ·PS ),即PS PR PQ 111++=dβsin =常量. 2.B 设正n 棱锥的高为h ,相邻两侧面所成二面角为θ.当h →0时,正n 棱锥的极限为正n 边形,这时相邻两侧面所成二面角为平面角,即二面角θ→π.当h →∞时,正n 棱锥的极限为正n 棱柱,这时相邻两侧面所成二面角为正n 边形的内角,即θ→nn 2-π.故选B. 3.B 如图,易知四边形EFGH 为矩形,当P →底面△ABC 的中心O 时,矩形EFGH →矩形E 1F 1GH .GH F E S 11矩形 =E 1F 1·F 1G =a ·33a =33a 2.即S 矩形EFGH →33a 2.当P →∞时,S 矩形EFGH →∞. ∴S 矩形EFGH ∈⎪⎪⎭⎫⎝⎛+∞,332a .故选B.4.C 如图,∵a ⊥AE ,a ⊥AF ,∴a ⊥平面AEF .设a 交平面AEF 于点G ,则∠EGF 是二面角α-a -β的平面角,∠EGF =60°,∠EAF =120°,且易知当△ABC 的周长最小时,B ∈EG ,C ∈FG .设点A 关于平面α的对称点为A ′,点A 关于平面β的对称点为A ″,连结A ′A ″,分别交线段EG 、FG 于点B 、C ,则此时△ABC 的周长最短,记为l .由中位线定理及余弦定理得l =2EF =2︒⨯⨯-+120cos 2422422=47.第3题图解第4题图解5.D 因为ABCD 是正四面体,故AC ⊥BD ,作EG ∥AC 交BC 于G ,连结GF ,则αλ=∠GEF ,且FDCFEB AE GB CG ==, ∴GF ∥BD ,故GF ⊥EG ,且βλ=∠EFG ,∴f (λ)=αλ+βλ=90°为常数. 6.C 这两条直线在距a 为51的平面上,分布在a 在该平面上的射影的两侧. 7.A 设正四棱锥各棱长均为1,则Q =1,S =3,此时,正四棱锥的高h =22, ∴V =31Qh =62,将Q =1,S =3代入选择支,知A 正确. 8.B 考虑A 、B 两点在球面上无限靠近但又不重合,及A 、B 两点应为直径的两端点时的情况. 点评 若忽视几何里的两点、两直线、两平面等均应是相异的两元素,就会误选A ,球的最长弦就是直径,但球没有最短弦.9.C 若m ∥l ,则β内必有与m 平行的直线;若m 与l 相交,则β内无直线与m 平行.∴不一定存在直线与直线m 平行,排除A 、B.又β内一定存在与m 在β内的射影垂直的直线,由三垂线定理知,β内一定存在直线与m 垂直,故选C.10.B 本题考查简单多面体的表面展开与翻折,着重考查考生的空间想像能力,该多面体是正方体切割掉一个顶点,故有7个顶点. 二、填空题11.a 23;36a 本题通过等积找规律. 12.727分析 P 点到A 、B 、C 距离相等,故P 点在平面ABC 上的射影是三角形ABC 的外心,故可由△ABC 的已知条件求出△ABC 外接圆半径,进而求得P 点到平面ABC 的距离,及外心到直线BC 的距离,从而最终解决问题.解 记P 点在平面ABC 上的射影为O ,则AO 、BO 、CO 分别是P A 、PB 、PC 在平面ABC 上的射影∵P A=PB=PC ,∴OA=OB=OC , ∴O 为△ABC 的外心.在△ABC 中,BC =15915922⨯++=21 由正弦定理,2R =︒120sin 21,∴R =73P 点到平面ABC 的距离为()7371422=-.O 点到直线BC 的距离OD =327221)37(22=⎪⎭⎫⎝⎛+ (D 为BC 边的中点)∵OP ⊥平面ABC ,OD ⊥BC ,∴PD ⊥BC .∴P 到BC 的距离PD =727327722=⎪⎭⎫⎝⎛+.13.3 如图所示,作CE ⊥AD ,连结EF ,易证EF ⊥AD , 则∠CEF 为面ADF 和面ACD 所成二面角的平面角.设G 为 CD 的中点,同理∠AGB 为面ACD 和面BCD 所成二面角的 平面角,由已知∠CEF =∠AGB .设底面△CDF 的边长为2a ,侧棱AD 长为b .在△ACD 中,CE ·b =AG ·2a ,所以CE =baa b ba AG 2222⋅-=⋅在△ABC 中,易求得AB =22222342332a b a b -=⎪⎪⎭⎫ ⎝⎛-, 由△CEF ∽△AGB 得CEAGCF AB =,即aba b a b aa b 22342222222⋅--=-解得b =34a ,因此b =2时,2a =3,∴最远的两顶点间距离为3. 14.36 正四面体ABCD 的底部是正△BCD ,假设离BC 边最近的球有n 个,则与底面△BCD 相切的球也有n 排,各排球的个数分别为n 、n -1、…、3、2、1,这样与底面相切的球共有1+2+…+n =2)1(+n n 个.由于正四面体各面都是正三角形.因此,正四面体内必有n 层球,自上而下称为:第1层、第2 层、…第n 层,那么第n -1层,第n -2层,…第2层,第1层球的个数分别是:1+2+…+n =2)1(+n n 、1+2+…+n -1=2)1(nn -, 1+2=232⨯,1=221⨯ ∴,1202212)1(2)1(=⨯++-++ n n n n 即61n (n +1)(n +2)=120. 即(n -8)(n 2+11n +90)=0,∴n =8,因此正四面体内共有8层小球,其底部所放球数为298⨯=36(个). 三、解答题15.分析 在四面体ABCD 的基础上,补上一个三棱锥B-MCD . 解 如图,连结MC 、MD ,则∵AM ⊥平面MDC ,BM ⊥平面MDC∴V A-BCD =V A-MDC -V B-MDC =31S △MDC ·(AM-BM ) =31S △MDC ·AB 设M 到CD 的距离为x ,则S △MDC =21CD ·x =21cx ,第13题图解第15题图解∴V A-BCD =31×21cx ·b =61bcx ∵x ≤MN =a ,∴当x =a 时,即MN 为l 1与l 2的公垂线时,V A-BCD 最大,它的最大值为61abc . 点评 x ≤MN ,包含x =MN ,也包含x<MN ,垂线段小于斜线段.16.解 建立空间直角坐标系,使得D (0,0,0),A (a ,0,0),B (a ,a ,0),C (0,a ,0),M (0,0,a ),E (a ,0,a ),F (0,a ,a ),则由中点坐标公式得P (2a ,0,2a ),Q (2a ,2a,0), (1) 所以PM =(-2a ,0,2a ),FQ (2a ,-2a ,-a ),PM ·FQ =(-2a )×2a +0+2a ×(-a )=-43a 2, 且|PM |=22a ,|FQ |=26a ,所以cos PM ,FQ 23262243||||2-=⨯-=a a aFQ PM . 故得两向量所成的角为150°;(2) 设n =(x ,y ,z )是平面EFB 的单位法向量,即|n |=1,n ⊥平面EFB ,所以n ⊥EF ,且n ⊥BE , 又EF =(-a ,a ,0),BE =(0,-a ,a ),即有⎪⎩⎪⎨⎧=-=+-=++,0,0,1222az ay ay ax z y x 得其中的一个解是⎪⎪⎪⎩⎪⎪⎪⎨⎧===;33,33,33z y x∴n =⎪⎪⎭⎫⎝⎛33,33,33,PE =⎪⎭⎫ ⎝⎛2,0,2a a , 设所求距离为d ,则d =|PE ·n |=a 33; (3) 设e =(x 1,y 1,z 1)是两异面直线的公垂线上的单位方向向量, 则由PM =⎪⎭⎫ ⎝⎛-2,0,2a a ,FQ =⎪⎭⎫ ⎝⎛--a a a ,2,2,得⎪⎪⎪⎩⎪⎪⎪⎨⎧=--=+-=++.022,022,111111212121az y a x az a x a z y x 求得其中的一个e =⎪⎪⎭⎫ ⎝⎛-33,33,33, 而MF =(0,a ,0),设所求距离为m ,则m =|MF ]·e |=|-33a |=33a .17.解 (1)根据已知,可得四边形ABCE 为平行四边形,所以O 为BE 中点.AE AB AD AE AB AD AO AD OD 2121)(211111--=+-=-=. (2).1)2(2145cos 222145cos 21)2121(211-=-︒⨯⨯-︒⨯⨯=⋅--=⋅AE AE AB AD AE OD ∵(1OD )2=(1AD -21AB -21AE )2=23,∴|1OD |=26. ∴cos<1OD ,AE >=332261||||11-=⨯-=⋅⋅AE OD AE OD , 所以OD 1与AE 所成角为arccos 33.(3)设AE 的中点为M ,则1MD =1AD -21AE . ∵1MD ·AB =1AD ·AB -21AE ·AB =1×2×cos60°-21×2×2cos45°=0, ∴1MD ⊥AB .1MD ·AE =1AD ·AE -212AE =2cos 45°-21×(2)2=0,∴1MD ⊥AE . 所以MD 1垂直于平面ABCE 内两条相交直线,∴MD 1⊥平面ABCE .而D 1M 平面AD 1E ,所以平面AD 1E ⊥平面ABCE .18.(1)解法一 连结BC 1、CO ,∵B 1O ⊥平面ABC ,CO ⊥AB ,∴B 1C ⊥AB , 又∵在菱形BB 1C 1C 中,B 1C ⊥BC 1, ∴B 1C ⊥平面ABC 1,∴B 1C ⊥C 1A .(2)作C 1Q ⊥平面ABC 于Q 点,连接AQ ,∴∠C 1CQ 是侧棱与底面所成的角,即∠C 1CQ =60°, 在△C 1CQ 中,CQ =21CC 1=AO ,C 1Q =23CC 1, 由BC ,B 1C 1,OQ 平行且相等,又∵CO ⊥AB ,∴QA ⊥AB ,∴C 1A ⊥AB ,∴∠QAC 1是二面角C 1-AB -C 的平面角, 在△AQC 1中,C 1Q =AQ ,∴∠QAC 1=45°第18题图解(1)第18题图解(2)解法二 (1)以O 为原点,OC 所在直线为x 轴,AB 所在直线为y 轴,建立空间直角坐标系,如图,∵B 1O ⊥平面ABC ,∴∠B 1BO 是侧棱与底面所成角,∴∠B 1BO =60°.设棱长为2a ,则OB 1=3a ,BO =a ,又CO 为正三角形的中线,∴CO =3a . 则A (0,a ,0),B (0,-a ,0),C (3a ,0,0),B 1(0,0,3a ),C 1(3a ,a ,3a ).C B 1=(3a ,0,-3a ),A C 1=(-3a ,0,-3a ).∵C B 1·A C 1=-3a 2+0+3a 2=0,∴B 1C ⊥C 1A .(2)在△C 1AB 中,|A C 1|=6a ,|1BC |=|(3a ,2a ,3a )|=10a ,|AB |=2a , ∴S △C 1AB =6a 2,作C 1Q ⊥平面ABC 于Q 点,则Q (3a ,a ,0). ∴S △ABQ =3a 2,设二面角C 1-AB-C 的平面角为θ, 则cos θ=221=∆∆ABC ABQ S S . 二面角C 1-AB -C 的平面角为45°.19.(1)解法一 由条件知△ABC 为直角三角形,∠BAC =90°,∵P A=PB=PC ,∴点P 在平面ABC 上的射影是△ABC 的外心,即斜边BC 的中点E ,取AC 中点D ,连结PD 、DE 、PE ,PE ⊥平面ABC .DE ⊥AC (∵DE ∥AB ).∴AC ⊥PD ,∠PDE 为二面角P-AC-B 的平面角.tan PDE =32323==a a DEPE , ∴∠PDE =60°,故二面角P-AC-B 的平面角为60°.第19题图解解法二 设O 为BC 的中点,则可证明PO ⊥面ABC ,建立如图空间直角坐标系, 则A ⎪⎪⎭⎫ ⎝⎛-0,23,21a a ,B (-a ,0,0),C (a ,0,0),P ⎪⎭⎫ ⎝⎛a 230,0, AC 中点D ⎪⎪⎭⎫⎝⎛-0,43,43a a , AB =⎪⎪⎭⎫ ⎝⎛-0,23,23a a ,DP =⎪⎪⎭⎫ ⎝⎛-a a a 23,43,43 ∵AB ⊥AC ,P A =PC ,PD ⊥AC , cos<AB ,DP >即为二面角P-AC -B 的余弦值.而cos<AB ,DP >=21491631690434904323)43)(23(22222=++⨯+++⨯+--a a a a a a a a a 二面角P-AC-B 的平面角为60°(2)解法一 PD =a a a DE PE 349432222=+=+, S △APC =21·AC ·PD =223a 设点B 到平面P AC 的距离为h , 则由V P-ABC =V B-APC 得31·S △ABC ·PE =31·S △APC ·h , h =a a a a a S PE S APC ABC 2323233212=⋅⋅⋅=⋅∆∆. 故点B 到平面P AC 的距离为a 23. 解法二 点E 到平面P AC 的距离容易求得,为43a ,而点B 到平面P AC 的距离是其2倍, ∴点B 到平面P AC 的距离为a 23.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三理科数学《立体几何》测试题(带答案)1、如图,在 C 中, C 45 ,点在上,且 C 2,平3面 C , D // , D 1.21 求证:// 平面 C D ;2 求二面角CD 的余弦值.( 1)明:因PO 平面 ABC ,D// 所以 DA AB, PO AB又 DA AO 1PO ,所以AOD4⋯⋯⋯⋯⋯⋯⋯⋯2 分2又 AO 1PO,即 OB OP, 所以 OBP ,即 OD // PB, ⋯⋯⋯⋯⋯⋯.4分2 4又 PB 平面 COD, OD 平面 COD, 所以 PB // 平面 COD 。
⋯⋯⋯⋯⋯⋯.6分( 2)解:A作AM DO,垂足为 M,过 M作MN CD于N ,连接AN ,ANM 即为二面角 O CD A的平面角。
⋯⋯⋯⋯⋯⋯.8分设 AD a,在等腰直角AOD 中,得 AM 2a,在直角COD 中,得 MN3a,2 3在直角AMN 中,得 AN 30a,所以 cos ANM 10 ⋯⋯⋯⋯⋯⋯ .12分6 52、如图,在棱长为2的正方体CD11C1D1中,、F分别为1D1和CC1的中点.1 求证:F// 平面CD1;2 求异面直线 F 与所成的角的余弦值;3 在棱 1 上是否存在一点,使得二面角C的大小为 30 ?若存在,求出的长;若不存在,请说明理由.解:如分以DA、DC、DD1所在的直x 、 y 、 z 建立空 直角坐 系D-xyz ,由已知得 D (0 , 0, 0) 、 A (2 , 0, 0) 、 B (2 , 2, 0) 、 C (0 , 2, 0) 、B 1(2 , 2, 2) 、 D 1(0 , 0,2) 、 E (1 , 0, 2 ) 、 F (0 , 2, 1) .(1) 取 AD 1 中点 G , G ( 1, 0, 1), CG =(1, -2 , 1),又 EF =( -1 , 2, -1 ),由 EF = CG ,∴ EF 与 CG 共 .从而 EF ∥ CG,∵ CG 平面 ACD 1, EF平面 ACD 1,∴ EF ∥平面 ACD 1. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分(2) ∵ AB =(0,2 , 0) ,cos< EF , AB >=EF AB 4 6 ,| EF | | AB | 2 63∴异面直 EF 与 AB 所成角的余弦6. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分3(3) 假 足条件的点 P 存在,可 点 P (2 , 2,t )(0< t ≤2) ,平面 ACP 的一个法向量n =( x ,y , z ) ,n AC0,AC =(-2 , 2, 0) ,∵ AP =(0 , 2, t ),n AP 0.2x 2 y 0,2∴tz取 n (1,1,) .2 y 0,t易知平面 ABC 的一个法向量 BB 1(0,0,2) ,依 意知, < BB 1 , n >=30°或 < BB 1 , n >=150 °,| 4 |3∴ |cos< BB 1 , n >|=t4 ,2222t即4 3(24) ,解得 t 6 . t 2 4 t 2 36(0,2]∵3∴在棱 BB 上存在一点 P,当 BP的 6 ,二面角P- AC- B的大小30°⋯⋯⋯⋯⋯13 分133、如图所示,在四棱锥CD在线段 C 上,C平面D.1 求证:D平面 C ;中,底面CD 为矩形,平面CD ,点2 若1, D 2 ,求二面角C的余弦值.(1) 明:∵PA 平面 ABCD ,BD 平面 ABCD∴PA BD .同理由 PC 平面 BDE ,可得 PC BD .又 PA PC P ,∴ BD 平面 PAC .(2)解:如,分以射 AB , AD , AP x, y ,z的正半建立空直角坐系A xyz .由 (1) 知BD平面PAC,又AC平面PAC,∴BD AC .故矩形 ABCD 正方形,∴AB= BC= CD= AD=2 .∴A(0,0,0), B(2,0,0), C( 2,2,0), D (0,2,0), P(0,01,) .∴ PB 2,0,1 , BC 0,2,0 , BD 2,2,0 .平面 PBC 的一个法向量nn PB 0 2x 0 y z 0 (x, y, z) ,,即,n BC 0 0 x 2y 0 z 0z 2x(1,0,2) .∴,取 x 1 ,得 ny 0∵ BD 平面 PAC ,∴BD ( 2,2,0) 平面PAC的一个法向量.所以cos n, BDn BD 10n BD .10二面角 B PCA 的平面角,由 知 0 , cos10 cos n, D210二面角C的余弦 是10 104、如图,平面 CD 平面 D F ,其中 CD 为矩形, D F 为梯形, F//D,F F , F D 2D 2 .1 求异面直线 F 与 C 所成角的大小;2 若二面角F D 的平面角的余弦值为1,求3的长.解: (1) 延 AD , FE 交于 Q . 因 ABCD 是矩形,所以 BC ∥AD ,所以∠ AQF 是异面直 EF 与 BC 所成的角.在梯形 ADEF 中,因 DE ∥ AF ,AF ⊥FE ,AF =2, DE = 1 得∠ AQF =30°.⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分(2) 方法一: AB = x .取 AF 的中点 G .由 意得DG ⊥ AF .因 平面 ABCD ⊥平面 ADEF , AB ⊥ AD ,所以 AB ⊥平面 ADEF ,所以 AB ⊥ DG .所以 DG ⊥平面 ABF .G 作 GH ⊥ BF ,垂足 H , DH , DH ⊥ BF ,所以∠ DHG 二面角 A - BF - D 的平面角.在直角△ AGD 中, AD = 2, AG = 1,得 DG = 3 . 在直角△ BAF 中,由AB=sin ∠AFB =GH,得GH=1 ,BFFG xx 2 4所以 GH =x .在直角△ DGH 中, DG = 3 , GH =x ,得 DH = 2x 23 .x 24x 24 x 2 4因 cos ∠ DHG =GH= 1,得 x =215 ,所以 AB = 215 .⋯⋯⋯⋯15 分DH355方法二: AB = x .以 F 原点, AF , FQ 所在的直 分x , y 建立空 直角坐 系 Fxyz .F(0, 0, 0), A(- 2, 0,0), E(3 , 0, 0), D( -1, 3 , 0), B(- 2, 0, x),所以 DF = (1,- 3 , 0), BF = (2, 0,- x).z因 EF ⊥平面 ABFBC所以平面 ABF 的法向量可取 n 1 = (0, 1, 0).ADyEF xn 2 = (x 1,y 1,z 1) 平面 BFD的法向量, 2x 1 z 1 x 0, x 13y 10,所以,可取 n 2 = (2 33 ,1,).xn 1 n 2 =1 ,得 x =2 ,所以 AB =2 .因 cos< n 1 , n 2 >= 3 15 15| n 1 | | n 2 |555、如图,已知D D 21 求证:F//平面 CD , D , F 为 CD 的中点.平面 C ;平面CD,C 为等边三角形,2 求证:平面C平面 CD;3 求直线F 和平面C 所成角的正弦值.( 1) 明:取 CE 的中点 G, FG 、 BG. 可 得四 形 GFAB 平行四 形,AF//BG即可 得 AF// 平面 BCE. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..(4 分)( 2)依 意 得 BG平面 CDE ,即可 得平面BCE平面 CDE ⋯⋯ .(8 分 )( 3)解:AD=DE=2AB=2, 建立如 所示的坐 系A — xyz,A(0,0,0),C(2,0,0),B(0,0,1),D(1, 3 ,0),E(1, 3( 33,0),2),F ,22平面 BCE 的法向量 n ( x, y, z), 由 n BE0, n BC 0可取 n (1,3,2) , BF( 3 , 3, 1)2 2BF 和平面 BCE 所成的角, :BF n2sin =⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ (12 分 )4BF n6、如图,三棱柱C1 1C 1 的底面是边长为 4 的正三角形,1平面C ,1 2 6 , 为11 的中点.1 求证:C;2 在棱 CC 1 上是否存在点 ,使得 C 平面?若存在,确定点 的位置;若不存在,请说明理由.3 若点 为 CC 1 的中点,求二面角C 的余弦值.(1)解:取中点,连结, C .为 1 1 的中点//11平面 C平面 C⋯⋯⋯⋯ 2 分7、如图,已知C 1 1C1 是正三棱柱,它的底面边长和侧棱长都是 2 , D 为侧棱 CC1的中点,为1 1 的中点.1 求证:D;2 求直线 1 1到平面 D 的距离;3 求二面角 D C 的正切值.(1)证明 :连结 C1 E,则 C1E A1B1,又∵ A1B1 C1C∴A1B1平面 EDC1∴A1B1 DE,而 A1B1//AB∴ AB DE.(2) 取 AB 中点为 F,连结 EF,DF,则 EF AB∴ AB DF过 E 作直线 EH DF 于 H 点 ,则 EH 平面 DAB∴ EH 就是直线 A1B1到平面 DAB的距离在矩形 C1 EFC中,∵ AA1=AB=2,∴ EF=2,C1E= 3,DF=2, ∴在△ DEF中 ,EH= 3,故直线 A1B1到平面 DAB的距离为 3(3)过 A 作 AM BC于 M 点 ,则 AM 平面 CDB过 M 作 MN BD 于 N 点 ,连结 AN,则 AN BD∴∠ ANM 即为所求二面角的平面角在Rt△ DCB中 ,BC=2,DC=1,M为 BC中点∴ MN=55AM在 Rt△ AMN 中 ,tan∠ ANM== 15MN8、如图,在直三棱柱 1 1C1 C 中, C , C 2 ,1 4 ,点D 是 C 的中点.1 求异面直线1与 C1D 所成角的余弦值;2 求平面 DC1与平面 1 所成二面角的正弦值.( 1)以{ AB, AC, AA1}为单位正交基底建立空间直角坐标系A xyz ,则A( 0,0,0) , B(2,0,0) , C (0,2,0) ,A1( 0,0,4), D (1,1,0) ,C1(0,2,4).A1 B (2,0, 4) , C1 D (1, 1, 4)cosA1 B C1 D 18 3 10 A1 B,C1D20 18 10A1 B C1D异面直线 A1B 与 C1 D 所成角的余弦值为 3 10. 6 分10( 2)AC(0,2,0) 是平面ABA1的的一个法向量设平面 ADC1的法向量为m( x, y, z) , AD (1,1,0) , AC1 (0,2,4) ,由 m AD , m AC1 得x y 0 2 y 4z 0取z 1 得y 2, x 2,,所以平面ADC1的法向量为m (2, 2,1) .设平面ADC1与ABA1所成二面角为.cos cos AC, mAC m 4 22 3 ,得AC m 3sin5.3所以平面 ADC1与 ABA1所成二面角的正弦值为 5 .12 分3。