特高压换流变压器现场局部放电试验技术分析 田丰

特高压换流变压器现场局部放电试验技术分析 田丰
特高压换流变压器现场局部放电试验技术分析 田丰

特高压换流变压器现场局部放电试验技术分析田丰

发表时间:2018-06-25T16:23:05.960Z 来源:《电力设备》2018年第4期作者:田丰

[导读] 摘要:特高压换流变压器现场局部放电试验的技术是很多电力部门比较热衷的话题。

(保定天威保变电气股份有限公司河北保定 071056)

摘要:特高压换流变压器现场局部放电试验的技术是很多电力部门比较热衷的话题。本文针对这个问题分析了特高压换流变压器现场ACLD试验、特高压换流变压器现场局部放电检测干扰源及抗干扰措施,以期望对特高压换流变压器现场局部放电试验提供借鉴和参考。

关键词:特高压;换流变压器;局部放电试验

1 引言

直流输电系统中的重要设备是特高压换流变压器,特高压换流变压器的运行状态直接对整个系统的安全性产生影响,换流变压器的安全运行状态主要取决于换流变压器本身的绝缘性能。通过现场的长时交流感应耐压试验可以对换流变压器本身的运输和绝缘缺陷进行检测,例如可以检测气泡、杂质和悬浮电位的放电缺陷等,这些项目的检测对换流变压器的安全运行是非常重要的。

2 特高压换流变压器现场ACLD试验分析

在进行特高压换流变压器现场ACLD试验的时候要对现场的干扰因素进行充分的考虑,因为试验现场电压高、环境复杂,某种程度来说现场的干扰因素是决定试验成功与否的重要条件。特高压换流变压器现场ACLD试验局部放电测试中要对干扰信号进行充分识别,对干扰信号的传播途径进行研究并制定出抑制干扰进行的策略。

本文主要根据±800kv换流变压器现场ACLD试验局部放电检测干扰信号进行研究,并根据试验中出现的情况制定出相应的抗干扰措施。±800kv直流输电工程主要包括HY和HD两个换流现场,是ACLD试验中的重要试验场地,其中HY换流变从阀侧加压。现场ACLD试验可以在很大程度上避免出现现场拆装的施工过程,不仅规避了风险同时节约了工程费用。本文中的实验采用的是JFD-4000局部放电系统进行多端测量。

3 特高压换流变压器现场局部放电检测干扰源及抗干扰措施分析

3.1 空间电磁波干扰分析

电力系统中的载波通信、高频保护信号和无线电广播等空间电磁波会产生高频正弦波对正常的波形产生干扰,这些干扰波往往具有固定的谐振频率和频带宽度,此次试验通过对局部放电检测仪设置软硬件滤波系统控制空间电磁波的干扰。软件内部设置的FIR可以通过滤波器和减法器等实现自动滤波的功能,硬件上设置的高通滤波器低通滤波档位可以实现滤波的功能。现场测量时需要根据局部放实来对系统的灵敏度和背景噪声进行测量,从而系统就可以选择合适的低频和高频滤波档位,来对测量中的干扰信号进行避开。这个过程不适宜选择宽度小的测量频带,因为过窄的测量频带对有效放电信号可以产生一定的忽略,因此在选择局部放电检测仪测量带的宽度时候一般不得小于100kHz。

通过这个过程将数据采集系统采集到具有局部放电信号和周期性干扰信号的输入列输入一系列的多通带FIR滤波器,最后输出的就是具有周期性的干扰信号,然后再使用减法器对干扰信号与输入列进行相减,从而是系统可以最大限度地避免干扰频率,最终输出局部放电信号。

3.2 电晕干扰分析

试验中的回路如果处于高电位的导电部分就会产生电晕放电现象,例如试验中使用的法兰、金属盖帽、试验变压器和耦合电容器的端部都是特别容易产生电晕的部分。另外,如果试验回路中如果有地方的连接处接触不良地方也是特别容易产生电晕的部分。电晕干扰的特点是会随着试验电压的升高而增大的,在局部放电检测中电晕干扰是非常明显的。

对高压端电晕放电的抑制的最好方法是选用合适的屏蔽环、罩、球等。检查所有的连接部位,从而保证连接处的接触良好从此来消除系统中的接触放电的现象发生。在选用屏蔽罩的时候要检验屏蔽罩的上部是否为半球形、下部是否为单环形。屏蔽双环必须由两个圆形的单环组成,并且屏蔽罩和屏蔽双环表面的最大强度不得大于1.5MV/m。屏蔽罩场的计算可以通过相应的公式来计算。

采用的高压导线和连接线按防晕设计中导线和连接的直径必须足够大,从而保证表面的最大场强不得大于1.5MV/m,这里场强可以采用原著对平板电机的场强计算公式来计算。

3.3 脉冲型干扰分析

脉冲型干扰在时域上是持续时间较短的脉冲信号,在频域上则是频率成分的款待信号,因而脉冲型干扰具有局部放电信号的大部分特征。因而在进行局部放电试验中,高频脉冲型干扰的波形和频率特征与放电脉冲极为相似,甚至在一般状态下很难区分,唯有使用三维图谱观察才能比较明显地对脉冲型干扰进行区分。高频脉冲型干扰大致可以分为三类:固定相位的脉冲干扰;与电压相位有时间相关规律的干扰;随机出现的干扰脉冲。脉冲型干扰在时域上呈离散型,针对这一特性应该采用时域开窗法来进行抑制,时域开窗也有硬件和软件之分,硬件方法主要有差动平衡阀和脉冲鉴别法。两者都是利用两个测量点之间的脉冲差来对外部干扰进行抑制。但是在实际应用中,由于进入两脉冲的脉冲干扰的来源和途径具有差异性,因而脉冲干扰在相位和幅值上的差别也是非常大的,因而采用的单一的方法是无法对所有脉冲干扰进行抑制的,可以采用超声波来进行识别提高识别的精确性。

随机干扰出现的相位、次数和量值具有很大的不确定性,并且非常容易出现相位错乱与局部放电相混合的现象,但是这种脉冲具有一个特点就是次数和零值与相位相当。在检测的时候直接对相位进行检测就可以起到很好的检测效果。

3.4 检测阻抗引起的干扰分析

在对换流变压器现场局部放电进行试验的过程中由于施加在变压器套管上的电压会很高,如果流经局部放电检测的阻抗电流较小就容易产生超过其本身的电流,在这种情况下就会引起检测阻抗的磁饱和,因此在测量电压时要检测阻抗内的磁饱和会产生谐波的影响。相关的试验证明这种谐波的幅值与所选用的检测阻抗的通流强度有关,如果系统选用的检测阻抗具有较大的调节上限,那么系统中能够通过的电流能力就强,产生谐波的可能性就越小。如果局部放电检测回路的灵敏可测性降低,那么检测就必须根据局部放电试验的具体情况来做相应的调整。

现场试验的时候应该根据试验回路的等效调节电容来选用测量阻抗,从而对局部放电信号进行排除,可以提高系统的抗干扰水平。如果测量回路的相关系数一经确定,测量回路的谐振电容就可以通过相应的公式来计算。根据所计算出来的电容公式来对系统的电感和电流

直流输电换流变压器基础知识

第一章换流变结构 一、换流变概述 通常,我们把用于直流输电的主变压器称为换流变压器。它在交流电网与直流线路之间起连接和协调作用,将电能由交流系统传输到直流系统或由直流系统传输到交流系统。换流变压器是超高压直流输电工程中至关重要的关键设备,是交、直流输电系统中换流、逆变两端接口的核心设备。 直流输电系统的接线方式有多种,目前常见的接线方式如图1-1所示。 图1-1 两个六脉冲换流桥构成一个单极十二脉动接线,这两个六脉冲换流桥分别由Yy与Yd联结的换流变压器供电。两个单极叠加在一起构成一个双极。每极所用的换流变压器可以由下述方式实现,两台三相双绕组变压器(一个Yy联结,一个Yd联结)或三台单相三绕

组变压器(一个网侧绕组和两个阀侧绕组,一个Y接,一个D接)或六台单相双绕组变压器(三个Yy 单相,三个Yd单相)。由建设规模的大小及直流电压等级可以确定换流变压器的大致型式。选择不同的型式主要受运输尺寸的限制,其次是考虑备用变容量的大小,当然,备用变容量越小越经济。 当直流输送容量较大时可采用每级两组基本换流单元的接线方式,此种接线方式有串联和并联两种方式。如目前在建的±800kv项目即采用了串联方式,其基本接线原理见图2。 800(HY) 600(HD) 400(L Y) 200(LD) 图1-2

图1-3 单相双绕组换流变压器外形 图1-4 单相三绕组换流变压器外形

图1-5 云广±800kV项目高端(800kV)换流变压器外形 二、绕组的常见类型 换流变中的绕组按照其连接的系统不同,通常可分为连接交流系统的网绕组及调压绕组;连接换流阀的阀绕组。绕组的排列方式通常有以下两种:铁心柱→阀绕组→网绕组→调压绕组;铁心柱→调压绕组→网绕组→阀绕组。 1.网绕组 目前,我公司的网绕组主要采用轴向纠结加连续式结构。与传统的纠结或内屏连续式不同,轴向纠结采用特殊的阶梯导线绕制n个双饼构成n/2个纠结单元。纠结绕制和换位示意见下图。

变压器实验报告汇总

大学电气信息学院 实验报告书 课程名称:电机学 实验项目:三相变压器的空载及短路实验专业班组:电气工程及其自动化105,109班实验时间:2014年11月21日 成绩评定: 评阅教师: 电机学老师:曾成碧 报告撰写:

一、实验目的: 1 用实验方法求取变压器的空载特性和短路特性。 2 通过空载及短路实验求取变压器的参数和损耗。 3 计算变压器的电压变化百分率和效率。 4掌握三相调压器的正确联接和操作。 5 复习用两瓦特法测三相功率的方法。 二.思考题的回答 1.求取变压器空载特性外施电压为何只能单方向调节?不单方向调节会出现什么问题? 答:因为当铁磁材料处于交变的磁场中时进行周期性磁化时存在磁滞现象。如果不单方向调节变压器外施电压,磁通密度并不会沿原来的磁化曲线下降,所以会影响实验结果的准确性。 2.如何用实验方法测定三相变压器的铜、铁损耗和参数?实验过程中作了哪些假定? 答:变压器的空载实验中认为空载电流很小,故忽略了铜耗,空载损耗近似等于变压器铁耗Fe P P ≈0,同时忽略了绕组的电阻和漏抗。空载时的铁耗可以直接用两瓦特法测得,根据公式2 003/I P r m ≈可以求得励磁电阻,由003/I U Z m ≈可

以求得励磁阻抗,由2 2 k m m r Z X -=可以求得励磁电抗值。 在变压器的短路实验中,由于漏磁场分布十分复杂,故在T 形等效电路计算时,可取k x x x 5.0'21==σσ,且k r r r 5.0'21==。同时由于外加电压低,忽略了铁耗,故假设短路损耗等于变压器铜耗。短路损耗k P 可直接由两瓦特法测得,有公式 k k k I P r 2/=可得k r ,k k k I U Z 3/=,故k k k r Z x 22-=。 3.空载和短路实验中,为减小测量误差,应该怎样联接电压接线?用两瓦特表法测量三相功率的原理。 答:变压器空载实验中应当采用电流表接法。因为空载实验测量的是励磁阻抗,阻抗值较大,若采用电流表外接法,电压表会有明显的分流作用,从而产生较大的误差。 变压器短路实验应当采用电流表外接法。因为短路实验中测量的是漏阻抗,阻抗值较小,若采用电流表接法,会产生明显的分压作用,导致测量不准确。 4.变压器空载和短路实验时,应注意哪些问题?一般电源应接在哪边比较合适?为什么? 答:在做变压器空载实验时,为了便于测量同时安全起见,应当在变压器低压侧加电源电压,让高压侧开路。在实验过程中应当将激磁电流由小到大递升到1.15N U 左右时,只能一个方向调节,中途不得有反方向来回升降。否则,由于铁芯的磁滞现象,会影响测量的准确性。 在做变压器短路实验时,电流较大,外加电压很小,为了便于测量,通常在

变压器局部放电试验

变压器局部放电试验内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

变压器局部放电试验 试验及标准 国家标准GB1094-85《电力变压器》中规定的变压器局部放电试验的加压时间步骤,如图5所示。其试验步骤为:首先试验电压升到U 2下进行测量,保持5min ;然后试验电压升到U 1,保持5s ;最后电压降到U 2下再进行测量,保持30min 。U 1、 U 2的电压值规定及允许的放电量为 U U 2153=.m 电压下允许放电量Q <500pC 或 U U 213 3=.m 电压下允许放电量Q <300pC 式中 U m ——设备最高工作电压。 试验前,记录所有测量电路上的背景噪声水平,其值应低于规定的视在放电量的50%。 测量应在所有分级绝缘绕组的线端进行。对于自耦连接的一对较高电压、较低电压绕组的线端,也应同时测量,并分别用校准方波进行校准。 在电压升至U 2及由U 2再下降的过程中,应记下起始、熄灭放电电压。 在整个试验时间内应连续观察放电波形,并按一定的时间间隔记录放电量Q 。放电量的读取,以相对稳定的最高重复脉冲为准,偶尔发生的较高的脉冲可忽略,但应作好记录备查。整个试验期间试品不发生击穿;在U 2的第二阶段的30min 内,所有测量端子测得的放电量Q ,连续地维持在允许的限值内,并无明显地、不断地向允许的限值内增长的趋势,则试品合格。 如果放电量曾超出允许限值,但之后又下降并低于允许的限值,则试验应继续进行,直到此后30min 的期间内局部放电量不超过允许的限值,试品才合格。利用变压器套管电容作为耦合电容C k ,并在其末屏端子对地串接测量阻抗Z k 。

变压器现场检测方法

变压器现场检测 关键词:配电变压器安装维护检测 1 变压器外表的检查 1)检查油枕上的油位计是否完好,油位是否清晰且在与环境温度相符的油位线上,不能过高或过低。过高了,在变压器投入运行带上负荷后,油温上升,油膨胀,很可能使油从油枕顶部的呼吸器连通管处溢出;过低了,则在冬季轻负荷或短时期内停运时,很可能使油位下降至油位计上看不到的位置。2)检查盖板、套管、油位计、排油阀等处是否密封良好,有无渗漏油现象。否则当变压器带上负荷后,在热状态下,会发生更严重的渗漏现象。3)检查防爆管(安全气道)的防爆膜是否完好。4)检查呼吸器的吸潮剂是否失效。5)检查变压器的外壳接地是否牢固可靠,因为它对变压器起着直接的保护作用。6)检查变压器一、二次出线套管及它与导线的连接是否良好,相色是否正确。7)检查变压器上的铭牌与所要求选择的变压器规格是否相符。例如各侧电压等级、变压器的接线组别、变压器的容量及分接开关位置等。2 测摇变压器绝缘用1000~2500V兆欧表测量变压器的一、二次绕组对地绝缘电阻(测量时非被测绕组接地),以及一、二次绕组间的绝缘电阻,并记录测摇时的环境温度,绝缘电阻的允许值没有硬性规定,但应与历史情况或原始数据相比较,不低于出厂值的70%(当被试变压器的温度与制造厂试验时的温度不同时,应换算到同一温度进行比较),但最低值不能低于25~130MΩ。3 测量绕组连同套管的直流电阻根据国家标准《电气装置安装工程电气设备交接试验标准》第6.0.2条的有关规定:配电变压器各相直流电阻的相互差值应小于平均值的4%,线间直流电阻的相互差值应小于平均值的2%。例如,一台S9-200/10型配电变压器,测得其绕组的三个线电阻分别为: RAB =10Ω、 R BC =9 95Ω、 R CA =10 05Ω,求直流电阻相互差值是否合格? 利用公式 ΔR = R max - R min R 式中 R max --三相实测值中最大电阻值; R min --三相实测值中最小电阻值; R --三相实测值的平均值。则Δ R =10 05-9 9510=1% 线间差未超过2%,所以合格。由于变压器结构等原因,直流电阻的相互差值不能满足上述要求时,可与同温度下产品出厂实测数值比较,相应变化不大于2%,也属正常。使用万用表测量变压器直流电阻时应注意两点:1)表笔接触良好,以表针稳定不动值为准;2)测量后注意放电。4 熔丝保护的检查配电变压器一、二次通常采用熔丝保护,在送电投运前,必须检查所用的熔丝规格是否与规定的数值相符合,因为熔丝是用来保护变压器的一、二次出线套管,二次配线和变压器的内部短路故

换流变压器教学教材

换流变压器

精品文档 一、换流变压器 1、定义: 换流变压器(Converter Transformer) 接在换流桥与交流系统之间的电力变压器。采用换流变压器实现换流桥与交流母线的连接,并为换流桥提供一个中性点不接地的三相换相电压。换流变压器与换流桥是构成换流单元的主体。 2、换流变压器在直流输电系统中的作用: (1)、传送电力;(2)、把交流系统电压变换到换流器所需的换相电压;(3)、利用变压器绕组的不同接法,为串接的两个换流器提供两组幅值相等、相位相差30°(基波电角度)的三相对称的换相电压以实现十二脉动换流;(4)、将直流部分与交流系统相互绝缘隔离,以免交流系统中性点接地和直流部分中性点接地造成直接短接,使得换相无法进行;(5)、换流变压器的漏抗可起到限制故障电流的作用;(6)、对沿着交流线路侵入到换流站的雷电冲击过电压波起缓冲抑制的作用。 3、换流变压器的特点及要求: (1)漏抗 以往由于晶闸管的额定电流和过负荷能力有限,为了限制阀臂短路和直流母线短路的故障电流,换流变压器的漏抗一般比普通电力变压器的大,一般为15-20%, 有些工程甚至超过20%。随着晶闸管的额定电流及其承受浪涌电流能力的提高,换流变压器的漏抗可按对应的容量和绝缘水平合理选择,阻抗相应降低,通常为12-18%,因此,设备主参数、绝缘水平、换流器无功消耗及能耗等都可相应降低,同时,换流器的运行性能也有所改进。 为减少非特征谐波,换流变压器的三相漏抗平衡度要求比普通电力变压器高,通常漏抗公差不大于2%。如果运输条件允许,工程多采用单相三绕组换流变压器结构,进一步减少十二脉动换流单元中换流变压器六个阻抗值的差别。(2)绝缘 换流变压器阀侧绕组和套管是在交流和直流电压共同作用之下工作的,由于油、纸两种绝缘材质的电导系数与介电系数之比差别很大,油纸复合绝缘中直流场强按电导系数分布,交流场强则按介电系数分布。当直流电压极性迅速变化时,会使油隙绝缘受到很大的电应力。在套管与底座的连接部分,由于绝缘结构复杂,这一问题最为严重。越接近直流两极的阀侧绕组对地电压越高,在设计时必然增大绕组端部与铁芯轭部的距离,使绕组端部的辐向漏磁和局部损耗增加,因谐波漏磁而引起的损耗则增加更多。作为阀侧绕组外绝缘的套管,其爬电距离要考虑到直流电压的分量,为了避免雨天时在直流电压作用下,由于不均匀湿闪而造成的闪络故障,一般阀侧套管均伸入阀厅。干式合成套管已得到实际应用。为了抗震,套管法兰盘处一般装有振动阻尼装置。(3)谐波 换流变压器漏磁的谐波分量会使变压器的杂散损耗增大,有时可能使某些金属部件和油箱产生局部过热现象。在有较强漏磁通过的部件要用非磁性材料或采用磁屏蔽措施。谐波磁通所引起的磁致伸缩噪声处于听觉较为灵敏的频带,必要时要采取更有效的隔音措施。(4)直流偏磁 换流器触发时刻的间隔不等,交流母线正序二次谐波电压和与直流线路并行的交流线路的感应作用等将在换流变压器阀侧绕组电流中产生直流分量;接地极入地电流引起的地电位变化会在交流侧绕组电流中产生直流分量,二者共 收集于网络,如有侵权请联系管理员删除

换流变压器与交流系统的主变压器比较

换流变压器与交流系统的主变压器比较 超高压直流输电由于其特有的优点,越来越广范的得到应用。这些优点[1>包括:不须考虑稳定问题;线路故障恢复能力较强;调节作用利于交流系统的稳定;减少互联交流系统的短路容量;超过一定距离建设投资更经济等。我国目前已投运的超高压直流输电工程包括葛上直流、天广直流和三常直流等,在这些工程中所有的保护与控制系统都是国外进口设备。 换流变压器是直流输电系统中必不可少的重要设备。它可以提供相位差为30°的12脉波交流电压,降低交流侧谐波电流;作为交流系统和直流系统的电气隔离,提供阀的换相电抗;通过换流变压器可以在较大范围内调节交流电压,以使直流系统运行在较优的状态等。 换流变压器的投资在换流站中占有很大的比例,换流变压器的可靠安全运行是直流输电系统可靠安全运行的基础。因此对换流变压器提供完善的保护功能对直流输电系统的安全稳定可靠运行显得尤为重要。下面主要讨论换流变压器的特点、直流输电的各种运行工况对换流变压器保护的影响,并结合其特点提出相应的保护原理与方案。 1 换流变压器的特点以及对保护带来的影响

1.1 短路阻抗 直流输电中阀的换相过程实际上就是两相短路,为了将换向过程中的电流限制在一定范围内,换流变压器的短路阻抗要大于一般变压器。短路阻抗过大,会使换流变压器二次侧故障时短路电流较一般变压器小,因此保护配置与整定要在这方面予以考虑。 1.2 直流偏磁 当直流系统在使用大地回线的情况下,在一些运行工况下会有直流电流流入大地,如双极不平衡运行,单极大地回线方式等,使地电位发生变化,造成直流电流流入变压器原边绕组,使换流变压器发生直流偏磁,工作点偏移。如果此直流电流过大,会导致换流变压器铁心饱和,同时损耗和温升也将增加。因此,要配置相应的保护防止这种情况下对换流变压器造成的损坏。 1.3 谐波 由于换流器的非线性,在交流和直流系统中将出现谐波电压和电流。对于换流变压器,主要会流过特征谐波电流,即p*n 1次谐波电流(p为脉波数,n为任意正整数)。在运行中,谐波电流会使换流变压器损耗和温升增加,产生局部过热,发出高频噪声,还会使交流电网中的发电机和电容器过热,对通讯设备产生干扰。这些谐波电流应加以考虑,以免对保护装置造成影响。

变压器实验报告

课程名称:电机与拖动指导老师:卢琴芬成绩: 实验名称:单相变压器同组学生:雪成文鑫 一、实验目的和要求(必填)二、实验容和原理(必填) 三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 一、实验目的 1.通过空载和短路实验测定变压器的变比和参数。 2.通过负载实验测取变压器的运行特性。 二、预习要点 1.变压器的空载和短路实验有什么特点?实验中电源电压一般加在哪一方较合适? 2.在空载和短路实验中,各种仪表应怎样联接才能使测量误差最小? 3.如何用实验方法测定变压器的铁耗及铜耗。 三、实验项目 1.空载实验 测取空载特性U0=f(I0), P0=f(U0)。 2.短路实验 测取空载特性U K=f(I K), P K=f(U K)。 3.负载实验 (1)纯电阻负载 保持U1=U1N, cos φ2=1的条件下,测取U2=f(I2)。 四、实验线路及操作步骤 1.空载试验 实验线路如图3-1所示,被试变压器选用DT40三相组式变压器,实验用其中的一相,其额定容量P N=76W,U1N/ U2N=220/55V,I1N/I2N=0.345/1.38A。变压器的低压线圈接电源,高压线圈开路。接通电源前,选好所有电表量程,将电源控制屏DT01的交流电源调压旋钮调到输出电压为零的位置,然后打开钥匙开头,按下DT01面板上“开”的按钮,此时变压器接

入交流电源,调节交流电源调压旋钮,使变压器空载电压U0=1.2 U N,然后,逐次降低电源电压,在1.2~0.5U N的围,测取变压器的U0、I0、 P0共取6-7组数据,记录于表2-1中,其中U=U N的点必测,并在该点附近测的点应密些。为了计算变压器的变化,在U N以下测取原方电压的同时,测出副方电压,取三组数据记录于表3-1中。 图3-1 空载实验接线图 COSφ2=1 U1= U N= 220 伏 2.短路实验:

电力变压器交接试验标准

第六章电力变压器 第6.0.1条电力变压器的试验项目,应包括下列内容:一、测量绕组连同套管的直流电阻;二、检查所有分接头的变压比;三、检查变压器的三相接线组别和单相变压器引出线的极性;四、测量绕组连同套管的绝缘电阻、吸收比或极化指数;五、测量绕组连同套管的介质损耗角正切值tgδ;六、测量绕组连同套管的直流泄漏电流;七、绕组连同套管的交流耐压试验;八、绕组连同套管的局部放电试验;九、测量与铁芯绝缘的各紧固件及铁芯接地线引出套管对外壳的绝缘电阻;十、非纯瓷套管的试验;十一、绝缘油试验;十二、有载调压切换装置的检查和试验;十三、额定电压下的冲击合闸试验;十四、检查相位;十五、测量噪音。注:①1600kVA以上油浸式电力变压器的试验,应按本条全部项目的规定进行。②1600kVA及以下油浸式电力变压器的试验,可按本条的第一、二、三、四、七、九、十、十一、十二、十四款的规定进行。③干式变压器的试验,可按本条的第一、二、三、四、七、九、十二、十三、十四款的规定进行。④变流、整流变压器的试验,可按本条的第一、二、三、四、七、九、十一、十二、十三、十四款的规定进行。⑤电炉变压器的试验,可按本条的第一、二、三、四、七、九、十、十一、十二、十三、十四款的规定进行。 ⑥电压等级在35kV及以上的变压器,在交接时,应提交变压器及非纯瓷套管的出厂试验记录。 第6.0.2条测量绕组连同套管的直流电阻,应符合下列规定:一、测量应在各分接头的所有位置上进行;二、1600kVA及以下三相变压器,各相测得值的相互差值应小于平均值的4%,线间测得值的相互差值应小于平均值的2%;1600kV A以上三相变压器,各相测得值的相互差值应小于平均值的2%;线间测得值的相互差值应小于平均值的 1%;三、变压器的直流电阻,与同温下产品出厂实测数值比较,相应变化不应大于2%;四、由于变压器结构等原因,差值超过本条第二款时,可只按本条第三款进行比较。

变压器局部放电试验方案

变压器局部放电试验方案批准:日期: 技术审核:日期: 安监审核:日期: 项目部审核:日期: 编写:日期: 2017年4月

1概述 变压器注油后已静置48小时以上并释放残余气体,且电气交接试验、油试验项目都已完成,并确认达到合格标准。 2试验地点 三明110kV双江变电站 3试验性质:交接试验 4试验依据 DL/T417-2006《电力设备局部放电现场测量导则》 GB1094.3-2003《电力变压器第三部分:绝缘水平绝缘试验和外绝缘空气间隙》GB50150-2006《电气装置安装工程电气设备交接试验标准》 DL/T596-1996《电力设备预防性试验规程》 Q/FJG 10029.1-2004《电力设备交接和预防性试验规程》 合同及技术协议 5试验仪器仪表 6、人员组织 6.1、项目经理: 6.2、技术负责: 6.3、现场试验负责人及数据记录:黄诗钟 6.4二次负责人: 6.5、试验设备接线及实际加压操作负责人: 6.6、专责安全员: 6.7、工器具管理员: 6.8、试验技术人员共4人,辅助工若干人 6.9、外部协助人员:现场安装人员,监理,厂家及业主代表等人员

7试验过程 7.1试验接线图(根据现场实际情况采用不同的试验原理图) 7.2试验加压时序 图2中,当施加试验电压时,接通电压并增加至 U3,,持续5min ,读取放电量值;无异常则增加电压至U2,持续5min ,读取放电量值;无异常再增加电压至U1,进行耐压试验,耐压时间为(120×50/?)s ;然后,立即将电压从U1降低至U2,保持30min (330kV 以上变压器为60min ),进行局部放电观测,在此过程中,每5min 记录一次放电量值;30min 满,则降电压至U 3,持续5min 记录放电量值;降电压,当 图1变压器局部放电试验原理图 图2 局部放电试验加压时序图

换流变压器与电力变压器的比较分析标准版本

文件编号:RHD-QB-K5575 (解决方案范本系列) 编辑:XXXXXX 查核:XXXXXX 时间:XXXXXX 换流变压器与电力变压器的比较分析标准版本

换流变压器与电力变压器的比较分 析标准版本 操作指导:该解决方案文件为日常单位或公司为保证的工作、生产能够安全稳定地有效运转而制定的,并由相关人员在办理业务或操作时进行更好的判断与管理。,其中条款可根据自己现实基础上调整,请仔细浏览后进行编辑与保存。 换流变压器是超高压直流输电工程中至关重要的关键设备,是交、直流输电系统中的换流、逆变两端接口的核心设备。它的投入和安全运行是工程取得发电效益的关键和重要保证。换流变压器的关键作用,要求其具有高可靠性和高技术性能。因为有交、直流电场、磁场的共同作用,所以换流变压器的结构特殊、复杂,关键技术高难,对制造环境和加工质量要求严格。开展换流变压器设计制造关键技术的研究、攻克和制造条件改造工作,不断提高试验手段,将有利于全面掌握换流变压器的设计制造技术,实现换流

变压器国产化,填补国内空白。同时可促进国内交、直流输电设备设计制造水平的进一步提高和发展,为特高压交、直流输变电设备的发展打下基础,做好前期准备,实现换流变压器国产化。 换流变压器(Converter Transformer) 接在换流桥与交流系统之间的电力变压器。采用换流变压器实现换流桥与交流母线的连接,并为换流桥提供一个中性点不接地的三相换相电压。换流变压器与换流桥是构成换流单元的主体。换流变压器在直流输电系统中的作用有:?传送电力;?把交流系统电压变换到换流器所需的换相电压;?利用变压器绕组的不同接法,为串接的两个换流器提供两组幅值相等、相位相差30°(基波电角度)的三相对称的换相电压以实现十二脉动换流;?将直流部分与交流系统相互绝缘隔

超高压直流系统中的换流变压器保护

编号:AQ-JS-02392 ( 安全技术) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 超高压直流系统中的换流变压 器保护 Converter transformer protection in UHVDC System

超高压直流系统中的换流变压器保 护 使用备注:技术安全主要是通过对技术和安全本质性的再认识以提高对技术和安全的理解,进而形成更加科学的技术安全观,并在新技术安全观指引下改进安全技术和安全措施,最终达到提高安全性的目的。 引言 超高压直流输电由于其特有的优点,越来越广范的得到应用。这些优点[1]包括:不须考虑稳定问题;线路故障恢复能力较强;调节作用利于交流系统的稳定;减少互联交流系统的短路容量;超过一定距离建设投资更经济等。我国目前已投运的超高压直流输电工程包括葛上直流、天广直流和三常直流等,在这些工程中所有的保护与控制系统都是国外进口设备。 换流变压器是直流输电系统中必不可少的重要设备。它可以提供相位差为30°的12脉波交流电压,降低交流侧谐波电流;作为交流系统和直流系统的电气隔离,提供阀的换相电抗;通过换流变压器可以在较大范围内调节交流电压,以使直流系统运行在最优的状

态等。 换流变压器的投资在换流站中占有很大的比例,换流变压器的可靠安全运行是直流输电系统可靠安全运行的基础。因此对换流变压器提供完善的保护功能对直流输电系统的安全稳定可靠运行显得尤为重要。下面主要讨论换流变压器的特点、直流输电的各种运行工况对换流变压器保护的影响,并结合其特点提出相应的保护原理与方案。 1换流变压器的特点以及对保护带来的影响 1.1短路阻抗 直流输电中阀的换相过程实际上就是两相短路,为了将换向过程中的电流限制在一定范围内,换流变压器的短路阻抗要大于一般变压器。短路阻抗过大,会使换流变压器二次侧故障时短路电流较一般变压器小,因此保护配置与整定要在这方面予以考虑。 1.2直流偏磁 当直流系统在使用大地回线的情况下,在一些运行工况下会有直流电流流入大地,如双极不平衡运行,单极大地回线方式等,使

变压器实验报告汇总

变压器实验报告汇总

四川大学电气信息学院 实验报告书 课程名称:电机学 实验项目:三相变压器的空载及短路实验专业班组:电气工程及其自动化105,109班实验时间:2014年11月21日 成绩评定: 评阅教师: 电机学老师:曾成碧 报告撰写:

一、实验目的: 1 用实验方法求取变压器的空载特性和短路特性。 2 通过空载及短路实验求取变压器的参数和损耗。 3 计算变压器的电压变化百分率和效率。 4掌握三相调压器的正确联接和操作。 5 复习用两瓦特法测三相功率的方法。 二.思考题的回答 1.求取变压器空载特性外施电压为何只能单方向调节?不单方向调节会出现什么问题? 答:因为当铁磁材料处于交变的磁场中时进行周期性磁化时存在磁滞现象。如果不单方向调节变压器外施电压,磁通密度并不会沿原来的磁化曲线下降,所以会影响实验结果的准确性。 2.如何用实验方法测定三相变压器的铜、铁损耗和参数?实验过程中作了哪些假定? 答:变压器的空载实验中认为空载电流很小,故忽略了铜耗,空载损耗近似等于变压器铁耗Fe P P ≈0,同时忽略了绕组的电阻和漏抗。空载时的铁耗可以直接用两瓦特法测得,根据公式2 003/I P r m ≈可以求得励磁电阻,由003/I U Z m ≈可以求得励磁阻抗,由2 2 k m m r Z X -=可以求得励磁电抗值。 在变压器的短路实验中,由于漏磁场分布十分复杂,故在T 形等效电路计算时,可取k x x x 5.0'21==σσ,且k r r r 5.0'21==。同时由于外加电压低,忽略了铁耗,故假设短路损耗等于变压器铜耗。短路损耗k P 可直接由两瓦特法测得,有公式k k k I P r 2/=可得k r ,k k k I U Z 3/=,故k k k r Z x 22-=。 3.空载和短路实验中,为减小测量误差,应该怎样联接电压接线?用两瓦特

电力变压器局部放电试验目的及基本方法

一变压器局部放电分类及试验目的 电力变压器是电力系统中很重要的设备,通过局部放电测量判断变压器的绝缘状况是相当有效的,并且已作为衡量电力变压器质量的重要检测手段之一。 高压电力变压器主要采用油一纸屏障绝缘,这种绝缘由电工纸层和绝缘油交错组成。由于大型变压器结构复杂、绝缘很不均匀。当设计不当,造成局部场强过高、工艺不良或外界原因等因素造成内部缺陷时,在变压器内必然会产生局部放电,并逐渐发展,后造成变压器损坏。电力变压器内部局部放电主要以下面几种情况出现: (1)绕组中部油一纸屏障绝缘中油通道击穿; (2)绕组端部油通道击穿; (3)紧靠着绝缘导线和电工纸(引线绝缘、搭接绝缘,相间绝缘)的油间隙击穿; (4)线圈间(匝间、饼闻)纵绝缘油通道击穿; (5)绝缘纸板围屏等的树枝放电; (6)其他固体绝缘的爬电; (7)绝缘中渗入的其他金属异物放电等。 因此,对已出厂的变压器,有以下几种情况须进行局部放电试验: (1)新变压器投运前进行局部放电试验,检查变压器出厂后在运输、安装过程中有无绝缘损伤。 (2)对大修或改造后的变压器进行局放试验,以判断修理后的绝缘状况。 (3)对运行中怀疑有绝缘故障的变压器作进一步的定性诊断,例如油中气体色谱分析有放电性故障,以及涉及到绝缘其他异常情况。

二测量回路接线及基本方法 1、外接耦合电容接线方式 对于高压端子引出套管没有尾端抽压端或末屏的变压器可按图1所示回路连接。 图1:变压器局部放电测试仪外接耦合电容测量方式110kV以上的电力变压器一般均为半绝缘结构,且试验电压较高,进行局部放电测量时,高压端子的耦合电容都用套管代替,测量时将套管尾端的末屏接地打开,然后串入检测阻抗后接地。测量接线回路见图2或图3。 图2:变压器局部放电测试中性点接地方式接线

变压器现场耐压试验的调研(DOC)

变压器现场耐压试验的调研 变压器耐压试验由于现场条件限制,只能做外施工频耐压试验及长时感应耐压试验(局放试验),110kV及以下变压器一般只做外施工频耐压试验。 外施工频耐压试验: 试验目的:用来验证线端和中性点端子及它所连接绕组对地及其他绕组的外施工频耐受强度。 试验原理及接线图:(此接线图为对高压及高压中性点进行工频试验,对低压进行工频试验时需将接地端与连接端) 高压工频耐压试验线路图 试验方法:加压前,首先检查调压器是否在零位。调压器在零位方可加压,升压时应呼唱。试验应从不大于规定值的1/3的电压开始,并与测量相配合尽快地增加到试验值(80%试验电压),维持其电压稳定,持续60S;试验结束,应

将电压迅速降低到试验值的1/3以下,然后切断电源。对于分级绝缘的绕组,本实验仅按中性点端子规定的试验电压进行。 试验步骤:试验电压要求如下:试验使用工频耐压器,非被试相短接接地(铁心、夹件、外壳均可靠接地),被试相短接加压。试验电压按产品绝缘水平的80%进行试验。 验收标准:各个绕组端子能够满足其协议要求的试验值的80%,电压升至要求电压值时维持时间为60秒。试验中,如果没有放电声、击穿、试验电流不出现突然上升或摆动,则认为试验合格。 试验设备:高压试验变压器/串联谐振试验装置(注:高压试验变压器体积较大、重量较重(110kV变压器使用的高压试验变压器约为1吨),若要现场测量,需要吊车或叉车)设备图片: 图1、高压试验变压器图2、串联谐振试验装置设备价格:(与选型有关,仅供参考) 110kV变压器外施工频耐压试验用设备: CQSB 100/150(YDJ 100/150)高压试验变压器(包括操作台):约15万; ZSXB 108/108串联谐振试验装置(包括操作台):约7—8万 设备说明书见附录

电力变压器试验规范标准[详]

电力变压器试验记录

试验单位:试验人:审核:

电力变压器、消弧线圈和油浸电抗器试验规程 第1条电力变压器、消弧线圈和油浸式电抗器的试验项目如下: 一、测量线圈连同套管一起的直流电阻; 二、检查所有分接头的变压比; 三、检查三相变压器的结线组别和单相变压器引出线的极性; 四、测量线圈连同套管一起的绝缘电阻和吸收比; 五、测量线圈连同套管一起的介质损失角正切值tgδ; 六、测量线圈连同套管一起的直流泄漏电流; 七、线圈连同套管一起的交流耐压试验; 八、测量穿芯螺栓(可接触到的)、轭铁夹件、绑扎钢带对铁轭、铁芯、油箱及线圈压环的绝缘电阻(不作器身检查的设备不进行); 九、非纯瓷套管试验; 十、油箱中绝缘油试验; 十一、有载调压切换装置的检查和试验; 十二、额定电压下的冲击合闸试验; 十三、检查相位。 注: (1)1250千伏安以下变压器的试验项目,按本条中一、二、三、四、七、八、十、十三项进行; (2)干式变压器的试验项目,按本条中一、二、三、四、七、八、十三项进行; (3)油浸式电抗器的试验项目,按本条中一、四、五、六、七、八、九、十项进行; (4)消弧线圈的试验项目,按本条中一、四、五、七、八、十项进行; (5)除以上项目外,尚应在交接时提交变压器的空载电流、空载损耗、短路阻抗(%) 和短路损耗的出厂试验记录。 第2条测量线圈连同套管一起的直流电阻。 一、测量应在各分接头的所有位置上进行;

二、1600千伏安以上的变压器,各相线圈的直流电阻,相互间差别均应不大于三相平均的值2%;无中点性引出时的线间差别应不大于三相平均值的1%;三、1600千伏安及以下的变压器相间差别应不大于三相平均值的4%,线间差别应不大于三相平均值的2%; 四、三相变压器的直流电阻,由于结构等原因超过相应标准规定时,可与产品出三厂实测数值比较,相应变化也应不大于2%。 第3条检查所有分接头的变压比。 变压比与制造厂铭牌数据相比,应无显著差别,且应符合变压比的规律。 第4条检查三相变压器的结线组别和单相变压器引出线的极性。 必须与变压器的标志(铭牌及顶盖上的符号)相符。 第5条测量线圈连同套管一起的绝缘电阻和吸收比。 一、绝缘电阻应不低于产品出厂试验数值的70%,或不低于表1—1的允许值; 油浸式电力变压器绝缘电阻的允许值(兆欧) 表1—1 二、当测量温度与产品出厂试验时温度不符合时,可按表1—2换算到同一温度时的数值进行比较; 油浸式电力变压器绝缘电阻的温度换算系数表1—2

换流变压器与电力变压器的比较分析示范文本

换流变压器与电力变压器的比较分析示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

换流变压器与电力变压器的比较分析示 范文本 使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 换流变压器是超高压直流输电工程中至关重要的关键 设备,是交、直流输电系统中的换流、逆变两端接口的核 心设备。它的投入和安全运行是工程取得发电效益的关键 和重要保证。换流变压器的关键作用,要求其具有高可靠 性和高技术性能。因为有交、直流电场、磁场的共同作 用,所以换流变压器的结构特殊、复杂,关键技术高难, 对制造环境和加工质量要求严格。开展换流变压器设计制 造关键技术的研究、攻克和制造条件改造工作,不断提高 试验手段,将有利于全面掌握换流变压器的设计制造技 术,实现换流变压器国产化,填补国内空白。同时可促进 国内交、直流输电设备设计制造水平的进一步提高和发

展,为特高压交、直流输变电设备的发展打下基础,做好前期准备,实现换流变压器国产化。 换流变压器(Converter Transformer) 接在换流桥与交流系统之间的电力变压器。采用换流变压器实现换流桥与交流母线的连接,并为换流桥提供一个中性点不接地的三相换相电压。换流变压器与换流桥是构成换流单元的主体。换流变压器在直流输电系统中的作用有:?传送电力;?把交流系统电压变换到换流器所需的换相电压;?利用变压器绕组的不同接法,为串接的两个换流器提供两组幅值相等、相位相差30°(基波电角度)的三相对称的换相电压以实现十二脉动换流;?将直流部分与交流系统相互绝缘隔离,以免交流系统中性点接地和直流部分中性点接地造成直接短接,使得换相无法进行;?换流变压器的漏抗可起到限制故障电流的作用;?对沿着交流线路侵入到换流站的

单相变压器实验报告

单相变压器实验报告 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

单相变压器实验报告学院:电气工程学院 班级:电气1204班 姓名:卞景季 学号: 组号: 22 一、实验目的 通过空载和短路实验测定变压器的变比和参数。 通过负载实验测取变压器的运行特性。 二、实验预习 1、变压器的空载和短路实验有什么特点实验中电源电压一般加在哪一方较合适 答:空载试验的电压一般加在低压侧,因为低压侧电压低,电流大,方便测量。短路试验就是负载实验,高压加,低压短路,得到试验数据。 2、在空载和短路实验中,各种仪表应怎样联接才能使测量误差最小 答:在量程范围内,按实验要求电流表串联、电压表并联、功率表串联(同相端短接)。 3、如何用实验方法测定变压器的铁耗及铜耗。 答:空载实验所测得的功率为铁耗,短路实验所测得的功率为铜耗。 三、实验项目 1、空载实验 测取空载特性U 0=f(I ),P =f(U ) , cosφ =f(U )。 2、短路实验 测取短路特性U K =f(I K ),P K =f(I K ), cosφ K =f(I K )。 四、实验方法1

2、屏上排列顺序 D33、DJ11、 3、空载实验 (1相组式变压器DJ11U 1N /U 2N =220/55V ,I 路。 (2 (3范围内,测取变压器的U 0、I 0、P 0。 (4)测取数据时,U=U N 点必须测,并在该点附近测的点较密,共测取数据7-8组。记录于表3-1中。 (5)为了计算变压器的变比,在U N 以下测取原方电压的同时测出副方电压数据也记录于表3-1中。 表4、短路实验 (1)按下控制屏上的“停止”按钮,切断三相调压交流电源,按图3-2接线(以后每次改接线路,都要关断电源)。将变压器的高压线圈接电源,低压线圈直接短路。 图3-2 短路实验接线图 (2)选好所有测量仪表量程,将交流调压器旋钮调到输出电压为零的位置。 (3)接通交流电源,逐次缓慢增加输入电压,直到短路电流等于 为止,在~I N 范围内测取变压器的U K 、I K 、P K 。 (4)测取数据时,I K =I N 点必须测,共测取数据6-7组记录于表3-2中。实验时记下周围环境温度(℃)。 X

变压器局部放电试验基础与原理

变压器试验基础与原理 1.概述 随着电力系统电压等级的不断提高,为使输变电设备和输电线路的建设和使用更加经济可靠,就必须改进限制过电压的措施,从而降低系统中过电压(雷电冲击电压和操作冲击电压)的水平。这样,长期工作电压对设备绝缘的影响相对地显得越来越重要。 电力产品出厂时进行的高电压绝缘试验(如:工频电压、雷电冲击电压、操作冲击电压等试验),其所施加的试验电压值,只是考核了产品能否经受住长期运行中所可能受到的各种过电压的作用。但是,考虑这种过电压值的试验与运行中长期工作电压的作用之间并没有固定的关系,特别对于超高电压系统,工作电压的影响更加突出。所以,经受住了过电压试验的产品能否在长期工作电压作用下保证安全运行就成为一个问题。为了解决这个问题,即为了考核产品绝缘长期运行的性能,就要有新的检验方法。带有局部放电测量的感应耐压试验(ACSD 和ACLD)就是用于这个目的的一种试验。 2.局部放电的产生 对于电气设备的某一绝缘结构,其中多少可能存在着一些绝缘弱点,它在-定的外施电压作用下会首先发生放电,但并不随即形成整个绝缘贯穿性的击穿。这种导体间绝缘仅被局部桥接的电气放电被称为局部放电。这种放电可以在导体附近发生也可以不在导体附近发生(GB/T 7354-2003《局部放电测量》)。 注1:局放一般是由于绝缘体内部或绝缘表面局部电场特别集中而引起的。通常这种放电表现为持续时间小于1微秒的脉冲。 注2:“电晕”是局放的一种形式,她通常发生在远离固体或液体绝缘的导体周围的气体中。 注3:局部放电的过程除了伴随着电荷的转移和电能的损耗之外,还会产生电磁辐射、超声、发光、发热以及出现新的生成物等。 高压电气设备的绝缘内部常存在着气隙。另外,变压器油中可能存在着微量的水份及杂质。在电场的作用下,杂质会形成小桥,泄漏电流的通过会使该处发热严重,促使水份汽化形成气泡;同时也会使该处的油发生裂解产生气体。绝缘内部存在的这些气隙(气泡),其介电常数比绝缘材料的介电常数要小,故气隙上承受的电场强度比邻近的绝缘材料上的电场强度要高。另外,气体(特别是空气)的绝缘强度却比绝缘材料低。这样,当外施电压达到某一数值时,绝缘内部

电力变压器交接试验项目

电力变压器交接试验项目

————————————————————————————————作者:————————————————————————————————日期:

电力变压器交接试验项目 电力变压器: 电力变压器是一种静止的电气设备,是用来将某一数值的交流电压(电流)通过铁芯导磁作用变成频率相同的另一种或几种数值不同的电压(电流)的电气设备,电力变压器通常用kVA或MVA来表示容量的大小,根据结构可以分为干式电力变压器、油浸式电力变压器、三相变压器等,变压器交接试验是在投运前按照国家相关技术标准进行预防性检验,其中,交接试验包括以下项目: 变压器交接试验项目: 1、绝缘油试验或SF6气体试验; 2、测量绕组连同套管的直流电阻; 3、检查所有分接的电压比; 4、检查变压器的二相接线组别和单相变压器引出线的极性; 5、测量铁心及夹件的绝缘电阻; 6、非纯瓷套管的试验; 7、有载调压切换装置的检查和试验; 8、测量绕组连同套管的绝缘电阻、吸收比或极化指数; 9、测量绕组连同套管的介质损耗因数(tanO')与电容量; 10、变压器绕组变形试验; 11、绕组连同套管的交流耐压试验; 12、绕组连同套管的长时感应耐压试验带局部放电测量; 13、额定电压下的冲击合闸试验; 14、检查相位; 15、测量噪音。 变压器试验项目应符合下列规定: 1 容量为1600kVA及以下油浸式电力变压器,可按第1、2、3、4、5、6,7,8、11、13和14条进行交接试验; 2 干式变压器可按本标准第2、3、4、5、7、8、11、13和14条进行试验; 3 变流、整流变压器可按本标准2、3、4、5、6、7、8、11、13和14条进行试验;

变压器实验报告

实验报告 课程名称: 电机与拖动指导老师: 实验名称:单相变压器同组学生姓名:刘雪成李文鑫 一、实验目得与要求(必填)????二、实验内容与原理(必填) 三、主要仪器设备(必填)??????四、操作方法与实验步骤 五、实验数据记录与处理??六、实验结果与分析(必填) 七、讨论、心得 一、实验目得 1.通过空载与短路实验测定变压器得变比与参数。 2.通过负载实验测取变压器得运行特性。 二、预习要点 1.变压器得空载与短路实验有什么特点?实验中电源电压一般加在哪一方较合适? 2。在空载与短路实验中,各种仪表应怎样联接才能使测量误差最小? 3.如何用实验方法测定变压器得铁耗及铜耗。 三、实验项目 1.空载实验 测取空载特性U0=f(I0),P0=f(U0)。 2.短路实验 测取空载特性UK=f(I K),P K=f(UK)。 3.负载实验 (1)纯电阻负载 保持U1=U1N, cosφ2=1得条件下,测取U2=f(I2)。 四、实验线路及操作步骤 1、空载试验 实验线路如图3-1所示,被试变压器选用DT40三相组式变压器,实验用其中得一相,其额定容量PN=76W,U1N/ U2N=220/55V,I1N/I2N=0。345/1。38A.变压器得低压线圈接电源,高压线圈开路。接通电源前,选好所有电表量程,将电源控制屏DT01得交流电源调压旋钮调到输出电压为零得位置,然后打开钥匙开头,按下DT01面板上“开”得按钮,此时变压器接入交流电源,调节交流电源调压旋钮,使变压器空载电压U0=1.2 UN,然后,逐次降低电源

电压,在1。2~0.5U N得范围内,测取变压器得U0、I0、P0共取6-7组数据,记录于表2-1中,其中U=U N得点必测,并在该点附近测得点应密些。为了计算变压器得变化,在U N以下测取原方电压得同时,测出副方电压,取三组数据记录于表3-1中.

相关文档
最新文档