2007-2010年江苏高考数学试卷及答案

合集下载

2010年江苏高考数学试题答案

2010年江苏高考数学试题答案

2010年江苏高考数学试题及参考答案一、填空题1、设集合A={-1,1,3},B={a+2,a2+4},A∩B={3},则实数a=______▲________ 答案:1;2、右图是一个算法的流程图,则输出S的值是______▲_______答案:63;3、函数y=x2(x>0)的图像在点(a k,a k2)处的切线与x轴交点的横坐标为a k+1,k为正整数,a1=16,则a1+a3+a5=____▲_____答案:21;解答题15、(14分)在平面直角坐标系xOy中,点A(-1,-2),B(2,3),C(-2,-1)(1)求以线段AB、AC为邻边的平行四边形两条对角线的长(2)设实数t满足()·=0,求t的值(1)求两条对角线长即为求与,由,得,由,得。

(2),∵()·,易求,,所以由()·=0得。

16、(14分)如图,四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB ∥DC,∠BCD=900(1)求证:PC⊥BC(2)求点A到平面PBC的距离(1)∵PD⊥平面ABCD,∴,又,∴面,∴。

(2)设点A到平面PBC的距离为,∵,∴容易求出17、(14分)某兴趣小组测量电视塔AE的高度H(单位m),如示意图,垂直放置的标杆BC高度h=4m,仰角∠ABE=α,∠ADE=β(1)该小组已经测得一组α、β的值,tanα=1.24,tanβ=1.20,,请据此算出H 的值(2)该小组分析若干测得的数据后,发现适当调整标杆到电视塔的距离d(单位m),使α与β之差较大,可以提高测量精确度,若电视塔实际高度为125m,问d为多少时,α-β最大现在上传的图片版与WORD试卷都有错误,该题似乎缺少长度的条件,暂无法解答(1)∵,,∴(2)直线,化简得令,解得,即直线过轴上定点。

19.(16分)设各项均为正数的数列的前n项和为,已知,数列是公差为的等差数列.20.(16分)设使定义在区间上的函数,其导函数为.如果存在实数和函数,其中对任意的都有>0,使得,则称函数具有性质.(1)设函数,其中为实数①求证:函数具有性质求函数的单调区间(2)已知函数具有性质,给定,,且,若||<||,求的取值范围(1)估计该问题目有错,似乎为,则有如下解答:①∵时,恒成立,∴函数具有性质;【理科附加题】21(从以下四个题中任选两个作答,每题10分)(1)几何证明选讲AB是⊙O的直径,D为⊙O上一点,过点D作⊙O的切线交AB延长线于C,若DA=DC,求证AB=2BC(证明略)(2)矩阵与变换在平面直角坐标系xOy中,A(0,0),B(-3,),C(-2,1),设k≠0,k∈R,M=,N=,点A、B、C在矩阵MN对应的变换下得到点A1,B1,C1,△A1B1C1的面积是△ABC面积的2倍,求实数k的值(B点坐标不清,略)(3)参数方程与极坐标在极坐标系中,圆ρ=2cosθ与直线3ρcosθ+4ρsinθ+a=0相切,求实数a 的值(过程略)(4)不等式证明选讲已知实数a,b≥0,求证:(略)22、(10分)某厂生产甲、乙两种产品,生产甲产品一等品80%,二等品20%;生产乙产品,一等品90%,二等品10%。

2007年江苏高考数学试卷及答案

2007年江苏高考数学试卷及答案

2007年普通高等学校招生全国统一考试(江苏卷) 数 学参考公式:n 次独立重复试验恰有k 次发生的概率为:()(1)k kn k n n P k C p p -=-一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,恰有一项....是符合题目要求的。

1.下列函数中,周期为2π的是 A .x y =sin2B .y=sin2xC .cos4x y = D .y=cos4x2.已知全集U=Z ,A={-1,0,1,2},B={x ︱x 2=x },则A ∩C U B 为A .{-1,2}B .{-1,0}C .{0,1}D .{1,2}3.在平面直角坐标系xOy 中,双曲线中心在原点,焦点在y 轴上,一条渐近线方程为x -2y=0,则它的离心率为A2.24.已知两条直线,m n ,两个平面α,β,给出下面四个命题:①//,m n m n αα⊥⇒⊥ ②//,,//m n m n αβαβ⊂⊂⇒ ③//,////m n m n αα⇒ ④//,//,m n m n αβαβ⊥⇒⊥ 其中正确命题的序号是A .①、③B .②、④C .①、④D .②、③ 5.函数()sin ([,0])f x x x x π=∈-的单调递增区间是A .5[,]6ππ--B .5[,]66ππ-- C .[,0]3π- D .[,0]6π-6.设函数f (x )定义在实数集上,它的图像关于直线x=1对称,且当x ≥1时,f (x )=3x-1,则有A .132()()()323f f f <<B .231()()()323f f f <<C .213()()()332f f f <<D .321()()()233f f f <<7.若对于任意实数x ,有x 3=a 0+a 1(x -2)+a 2(x -2)2+a 3(x -2)3,则a 2的值为A .3B .6C .9D .128.设2()lg()1f x a x=+-是奇函数,则使f (x )<0的x 的取值范围是 A .(-1,0) B .(0,1) C .(-∞,0) D .(-∞,0)∪(1,+∞) 9.已知二次函数f (x )=ax 2+bx+c 的导数为f ′(x ),f ′(0)>0,对于任意实数x 都有f (x )≥0,则(1)'(0)f f 的最小值为A . 3B .52C .2D .3210.在平面直角坐标系xOy ,已知平面区域A={(x ,y )︱x+y ≤1且x ≥0,y ≥0},则平面区域{(,)|(,)}B x y x y x y A =+-∈的面积为 A .2 B .1 C .12D .14二、填空题:本大题共6小题,每小题5分,共30分。

2010年江苏高考数学试题 参考答案

2010年江苏高考数学试题    参考答案

2010 年江苏高考数学试题
参考答案
第 4 页 共 5 页
(2)依题意,至少需要生产 3 件一等品
3 P C4 0.83 0.2 0.84 0.8192
答:利润不少于 10 万元的概率是 0.8192.
23、 (1)设三边长分别为 a , b, c , cos A 为
b2 c2 a 2 ,∵ a , b, c 是有理数, a , b, c 均可表示 2bc
1 cos(n 1) Acos A {cos[(n 1) A A] cos[(n 1) A A]} 2 ∴ cos nA 2cos(n 1) A cos A cos(n 2) A ,
∵cosA, cos 2 A 是有理数,∴ cos 3 A 是有理数,∴ cos 4 A 是有理数,……,依次类推, 当 cos(n 1) A,cos(n 2) A 为有理数时, cos nA 必为有理数。
b2 c2 a 2 q q ( p, q 为互质的整数)形式∴ 必能表示为 ( p, q 为互质的整数)形式, 2bc p p
∴cosA 是有理数 (2)∵ cos 2 A 2cos 2 A 1 ,∴ cos 2 A 也是有理数, 当 n 3 时,∵ cos nA cos(n 1) A cos A sin(n 1) A sin A
2010 年江苏高考数学试题
1、1 2、 3、 10、 4、30 11、 5、-1
参考答案
6、4 12、27 7、63 13、4 8、21 14、
9、 (+39,-39)
15、 (1) AB (3,5), AC (1,1) 求两条对角线长即为求 | AB AC | 与 | AB AC | , 由 AB AC (2,6) ,得 | AB AC | 2 10 , 由 AB AC (4,4) ,得 | AB AC | 4 2 。 (2) OC (2, 1) , ∵( AB t OC )· OC AB OC tOC ,

2010年江苏高考数学真题及答案

2010年江苏高考数学真题及答案

2010年江苏高考数学真题及答案参考公式:锥体的体积公式: V 锥体=13Sh ,其中S 是锥体的底面积,h 是高。

一、填空题:本大题共14小题,每小题5分,共70分。

请把答案填写在答题卡相应的位.......置上...1、设集合A={-1,1,3},B={a+2,a 2+4},A ∩B={3},则实数a =______▲_____. [解析] 考查集合的运算推理。

3∈B, a+2=3, a=1.2、设复数z 满足z(2-3i)=6+4i (其中i 为虚数单位),则z 的模为______▲_____. [解析] 考查复数运算、模的性质。

z(2-3i)=2(3+2 i), 2-3i 与3+2 i 的模相等,z 的模为2。

3、盒子中有大小相同的3只白球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的概率是_ ▲__.[解析]考查古典概型知识。

3162p ==4、某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图所示,则其抽样的100根中,有_▲___根在棉花纤维的长度小于20mm 。

[解析]考查频率分布直方图的知识。

100×(0.001+0.001+0.004)×5=305、设函数f(x)=x(e x+ae -x)(x ∈R)是偶函数,则实数a =_______▲_________ [解析]考查函数的奇偶性的知识。

g(x)=e x+ae -x为奇函数,由g(0)=0,得a =-1。

6、在平面直角坐标系xOy 中,双曲线112422=-y x 上一点M ,点M 的横坐标是3,则M 到双曲线右焦点的距离是___▲_______ [解析]考查双曲线的定义。

422MF e d ===,d 为点M 到右准线1x =的距离,d =2,MF=4。

7、右图是一个算法的流程图,则输出S 的值是______▲_______[解析]考查流程图理解。

2007年高考数学试题(江苏卷)含答案

2007年高考数学试题(江苏卷)含答案

2007年普通高等学校招生全国统一考试数 学(江苏卷)一、选择题:本大题共10小题,每小题5分,共计50分.在每小题给出的四个选项中,恰有一项....是符合题目要求的. 1.下列函数中,周期为π2的是( ) A.sin2x y =B.sin 2y x =C.cos4x y =D.cos4y x =2.已知全集U =Z ,{}1012A =-,,,,{}2B x x x ==,则U A B ð为( ) A.{}12-, B.{}10-, C.{}01,D.{}12,3.在平面直角坐标系xOy 中,双曲线的中心在坐标原点,焦点在y 轴上,一条渐近线的方程为20x y -=,则它的离心率为( )D.24.已知两条直线m n ,,两个平面αβ,.给出下面四个命题: ①m n ∥,m n αα⇒⊥⊥;②αβ∥,m α⊂,n m n β⊂⇒∥; ③m n ∥,m n αα⇒∥∥;④αβ∥,m n ∥,m n αβ⇒⊥⊥. 其中正确命题的序号是( ) A.①、③ B.②、④C.①、④ D.②、③5.函数[]()sin (π0)f x x x x =∈-,的单调递增区间是( ) A.5ππ6⎡⎤--⎢⎥⎣⎦, B.5ππ66⎡⎤--⎢⎥⎣⎦, C.π03⎡⎤-⎢⎥⎣⎦,D.π06⎡⎤-⎢⎥⎣⎦,6.设函数()f x 定义在实数集上,它的图像关于直线1x =对称,且当1x ≥时,()31xf x =-,则有( )A.132323f f f ⎛⎫⎛⎫⎛⎫<< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭B.231323f f f ⎛⎫⎛⎫⎛⎫<<⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C.213332f f f ⎛⎫⎛⎫⎛⎫<<⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D.321233f f f ⎛⎫⎛⎫⎛⎫<<⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭7.若对于任意的实数x ,有3230123(2)(2)(2)x a a x a x a x =+-+-+-,则2a 的值为( )A.3B.6C.9D.128.设2()lg 1f x a x ⎛⎫=+ ⎪-⎝⎭是奇函数,则使()0f x <的x 的取值范围是( ) A.(10)-,B.(01),C.(0)-∞, D.(0)(1)-∞+∞ ,,9.已知二次函数2()f x ax bx c =++的导数为()f x ',(0)0f '>,对于任意实数x ,有()0f x ≥,则(1)(0)f f '的最小值为( ) A.3B.52C.2D.3210.在平面直角坐标系xOy 中,已知平面区域{}()100A x y x y x y =+,≤,且≥,≥,则平面区域{}()()B x y x y x y A =+-∈,,的面积为( ) A.2B.1C.12D.14二、填空题:本大题共6小题,每小题5分,共计30分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上. 11.若1cos()5αβ+=,3cos()5αβ-=,则tan tan αβ= _____. 12.某校开设9门课程供学生选修,其中A B C ,,三门由于上课时间相同,至多选一门,学校规定,每位同学选修4门,共有_____种不同的选修方案.(用数值作答)13.已知函数3()128f x x x =-+在区间[]33-,上的最大值与最小值分别为M ,m ,则M m -=_____.14.正三棱锥P ABC -的高为2,侧棱与底面ABC 成45角,则点A 到侧面PBC 的距离为_____.15.在平面直角坐标系xOy 中,已知ABC △的顶点(40)A -,和(40)C ,,顶点B 在椭圆221259x y +=上,则sin sin sin A CB+=_____. 16.某时钟的秒针端点A 到中心点O 的距离为5cm ,秒针均匀地绕点O 旋转,当时间0t =时,点A 与钟面上标12的点B 重合.将A B ,两点间的距离(cm)d 表示成(s)t 的函数,则d =_____,其中[]060t ∈,. 三、解答题:本大题共5小题,共计70分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.17.(本题满分12分)某气象站天气预报的准确率为80%,计算(结果保留到小数点后第2位): (1)5次预报中恰有2次准确的概率;(4分) (2)5次预报中至少有2次准确的概率;(4分)(3)5次预报中恰有2次准确,且其中第3次预报准确的概率.(4分) 18.(本题满分12分)如图,已知1111ABCD A B C D -是棱长为3的正方体,点E 在1AA 上,点F 在1CC 上,且11AE FC ==. (1)求证:1E B F D ,,,四点共面;(4分)(2)若点G 在BC 上,23BG =,点M 在1BB 上,GM BF ⊥,垂足为H ,求证:EM ⊥平面11BCC B ;(4分)(3)用θ表示截面1EBFD 和侧面11BCC B 所成的锐二面角的大小,求tan θ.(4分) 19.(本题满分14分)如图,在平面直角坐标系xOy 中,过y 轴正方向上一点(0)C c ,任作一直线,与抛物线2y x =相交于A B ,两点.一条垂直于x 轴的直线,分别与线段AB 和直线:l y c =-交于点P Q ,.(1)若2OA OB =,求c 的值;(5分) (2)若P 为线段AB 的中点,求证:QA 为此抛物线的切线;(5分) (3)试问(2)的逆命题是否成立?说明理由.(4分)20.(本题满分16分)已知{}n a 是等差数列,{}n b 是公比为q 的等比数列,11a b =,221a b a =≠,记n S 为数列{}n b 的前n 项和.(1)若k m b a =(m k ,是大于2的正整数),求证:11(1)k S m a -=-;(4分) (2)若3i b a =(i 是某个正整数),求证:q 是整数,且数列{}n b 中的每一项都是数列{}n a 中的项;(8分)C BAG HMDEF1B1A1D1C(3)是否存在这样的正数q ,使等比数列{}n b 中有三项成等差数列?若存在,写出一个q 的值,并加以说明;若不存在,请说明理由.(4分) 21.(本题满分16分)已知a b c d ,,,是不全为零的实数,函数2()f x bx cx d =++,32()g x ax bx cx d =+++.方程()0f x =有实数根,且()0f x =的实数根都是(())0g f x =的根;反之,(())0g f x =的实数根都是()0f x =的根.(1)求d 的值;(3分)(2)若0a =,求c 的取值范围;(6分)(3)若1a =,(1)0f =,求c 的取值范围.(7分)2007年普通高等学校招生全国统一考试数 学(江苏卷)参考答案一、选择题:本题考查基本概念和基本运算.每小题5分,共计50分.1.D 2.A 3.A 4.C 5.D 6.B 7.B 8.A 9.C 10.B二、填空题:本题考查基础知识和基本运算.每小题5分,共计30分.11.12 12.75 13.32 14 15.54 16.π10sin 60t三、解答题17.本小题主要考查概率的基本概念、互斥事件有一个发生及相互独立事件同时发生的概率的计算方法,考查运用概率知识解决实际问题的能力.满分12分. 解:(1)5次预报中恰有2次准确的概率为22522355(2)0.8(10.8)100.80.20.05P C -=⨯⨯-=⨯⨯≈.(2)5次预报中至少有2次准确的概率为551(0)(1)P P --005011515510.8(10.8)0.8(10.8)C C --=-⨯⨯--⨯⨯-10.000320.00640.99=--≈.(3)“5次预报中恰有2次准确,且其中第3次预报准确”的概率为1412340.80.8(10.8)40.80.20.02C -⨯⨯⨯-=⨯⨯≈.18.本小题主要考查平面的基本性质、线线平行、线面垂直、二面角等基础知识和基本运算,考查空间想象能力、逻辑推理能力和运算能力.满分12分. 解法一:(1)如图,在1DD 上取点N ,使1DN =,连结EN ,CN ,则1AE DN ==,12CF ND ==.因为AE DN ∥,1ND CF ∥,所以四边形ADNE ,1CFD N 都为平行四边形.从而EN AD ∥,1FD CN ∥. 又因为AD BC ∥,所以EN BC ∥,故四边形BCNE 是平行四边形,由此推知CN BE ∥,从而1FD BE ∥.因此,1E B F D ,,,四点共面.(2)如图,GM BF ⊥,又BM BC ⊥,所以BGM CFB =∠∠,tan tan BM BG BGM BG CFB == ∠∠23132BC BG CF ==⨯=. 因为AE BM ∥,所以ABME 为平行四边形,从而AB EM ∥. 又AB ⊥平面11BCC B ,所以EM ⊥平面11BCC B .(3)如图,连结EH .因为MH BF ⊥,EM BF ⊥,所以BF ⊥平面EMH ,得EH BF ⊥. 于是EHM ∠是所求的二面角的平面角,即EHM θ=∠. 因为MBH CFB =∠∠,所以sin sin MH BM MBH BM CFB == ∠∠1BM ===tan EMMHθ== 解法二:(1)建立如图所示的坐标系,则(301)BE = ,,,(032)BF =,,,1(333)BD = ,,, C BAG HMDE F 1B1A1D1CN所以1BD BE BF =+ ,故1BD ,BE ,BF共面.又它们有公共点B ,所以1E B F D ,,,四点共面.(2)如图,设(00)M z ,,,则203GM z ⎛⎫=- ⎪⎝⎭,,, 而(032)BF = ,,,由题设得23203GM BF z =-+=得1z =.因为(001)M ,,,(301)E ,,,有(300)ME =,,, 又1(003)BB = ,,,(030)BC =,,,所以10ME BB = ,0ME BC = ,从而1ME BB ⊥,ME BC ⊥.故ME ⊥平面11BCC B .(3)设向量(3)BP x y = ,,⊥截面1EBFD ,于是BP BE ⊥,BP BF⊥. 而(301)BE = ,,,(032)BF = ,,,得330BP BE x =+= ,360BP BF y =+=,解得1x =-,2y =-,所以(123)BP =--,,. 又(300)BA = ,,⊥平面11BCC B ,所以BP 和BA的夹角等于θ或πθ-(θ为锐角). 于是cos BP BA BP BAθ==故tan θ=19.本小题主要考查抛物线的基本性质、直线与抛物线的位置关系、向量的数量积、导数的应用、简易逻辑等基础知识和基本运算,考查分析问题、探索问题的能力.满分14分. 解:(1)设直线AB 的方程为y kx c =+, 将该方程代入2y x =得20x kx c --=. 令2()A a a ,,2()B b b ,,则ab c =-.因为2222OA OB ab a b c c =+=-+=,解得2c =, 或1c =-(舍去).故2c =.(2)由题意知2a b Q c +⎛⎫- ⎪⎝⎭,,直线AQ 的斜率为22222AQ a c a ab k a a b a b a +-===+--.又2y x =的导数为2y x '=,所以点A 处切线的斜率为2a , 因此,AQ 为该抛物线的切线. (3)(2)的逆命题成立,证明如下: 设0()Q x c -,.若AQ 为该抛物线的切线,则2AQ k a =, 又直线AQ 的斜率为2200AQa c a ab k a x a x +-==--,所以202a aba a x -=-, 得202ax a ab =+,因0a ≠,有02a bx +=. 故点P 的横坐标为2a b+,即P 点是线段AB 的中点. 20.本小题主要考查等差、等比数列的有关知识,考查运用方程、分类讨论等思想方法进行分析、探索及论证问题的能力.满分16分.解:(1)设等差数列的公差为d ,则由题设得11a d a q +=,1(1)d a q =-,且1q ≠. 由k m b a =得111(1)k b qa m d -=+-,所以11(1)(1)kb q m d --=-,11111(1)(1)(1)(1)(1)111k k b q m a q m d S m a q q q ------====----.故等式成立.(2)(ⅰ)证明q 为整数:由3i b a =得211(1)b q a i d =+-,即2111(1)(1)a q a i a q =+--, 移项得11(1)(1)(1)(1)a q q a i q +-=--.因110a b =≠,1q ≠,得2q i =-,故q 为整数. (ⅱ)证明数列{}n b 中的每一项都是数列{}n a 中的项: 设n b 是数列{}n b 中的任一项,只要讨论3n >的情形. 令111(1)n b qa k d -=+-,即1111(1)(1)n a q a k a q --=--,得1221121n n q k q q q q ---=+=++++- . 因2q i =-,当1i =时,1q =-,22n q q q-+++ 为1-或0,则k 为1或2;而2i ≠,否则0q =,矛盾.当3i ≥时,q 为正整数,所以k 为正整数,从而n k b a =. 故数列{}n b 中的每一项都是数列{}n a 中的项.(3)取12q =,21b b q =,341b b q =. 33141112(1)11)2b b b q b b b ⎡⎤⎢⎥+=+=+==⎢⎥⎝⎭⎣⎦. 所以1b ,2b ,4b 成等差数列.21.本小题主要考查函数、方程、不等式的基本知识,考查综合运用分类讨论、等价转化等思想方法分析问题及推理论证的能力.满分16分.解:(1)设r 为方程的一个根,即()0f r =,则由题设得(())0g f r =.于是,(0)(())0g g f r ==,即(0)0g d ==.所以,0d =.(2)由题意及(1)知2()f x bx cx =+,32()g x ax bx cx =++. 由0a =得b c ,是不全为零的实数,且2()()g x bx cx x bx c =+=+, 则[]22(())()()()()g f x x bx c bx bx c c x bx c b x bcx c =+++=+++.方程()0f x =就是()0x bx c +=.①方程(())0g f x =就是22()()0x bx c b x bcx c +++=.②(ⅰ)当0c =时,0b ≠,方程①、②的根都为0x =,符合题意. (ⅱ)当0c ≠,0b =时,方程①、②的根都为0x =,符合题意. (ⅲ)当0c ≠,0b ≠时,方程①的根为10x =,2cx b=-,它们也都是方程②的根,但它们不是方程220b x bcx c ++=的实数根.由题意,方程220b x bcx c ++=无实数根,此方程根的判别式22()40bc b c ∆=-<,得04c <<.综上所述,所求c 的取值范围为[)04,. (3)由1a =,(1)0f =得b c =-,2()(1)f x bx cx cx x =+=-+,2(())()()()g f x f x f x cf x c ⎡⎤=-+⎣⎦.③由()0f x =可以推得(())0g f x =,知方程()0f x =的根一定是方程(())0g f x =的根. 当0c =时,符合题意.当0c ≠时,0b ≠,方程()0f x =的根不是方程2()()0f x cf x c -+= ④ 的根,因此,根据题意,方程④应无实数根.那么当2()40c c --<,即04c <<时,2()()0f x cf x c -+>,符合题意.当2()40c c --≥,即0c <或4c ≥时,由方程④得2()f x cx cx =-+=,即202c cx cx ±-+=,⑤则方程⑤应无实数根,所以有2()402c c c--<且2()402c c c ---<.当0c <时,只需220c --<,解得1603c <<,矛盾,舍去.当4c ≥时,只需220c -+,解得1603c <<.因此,1643c <≤.综上所述,所求c 的取值范围为1603⎡⎫⎪⎢⎣⎭,.。

2010江苏省高考数学真题(含答案)

2010江苏省高考数学真题(含答案)
3、[解析]考查古典概型知识。 p 3 1
62
4、[解析]考查频率分布直方图的知识。 100×(0.001+0.001+0.004)×5=30
6
5、[解析]考查函数的奇偶性的知识。g(x)=ex+ae-x为奇函数,由 g(0)=0,得 a=-1。
6、[解析]考查双曲线的定义。 MF e 4 2 , d 为点 M 到右准线 x 1 的距离, d
2、设复数 z 满足 z(2-3i)=6+4i(其中 i 为虚数单位),则 z 的模为______▲_____.
3、盒子中有大小相同的 3 只白球,1 只黑球,若从中随机地摸出两只球,两只球颜色不 同的概率是_ ▲__.
4、某棉纺厂为了了解一批棉花的质量,从中随机抽 取了 100根棉花纤维的长度(棉花纤维的长度是棉 花质量的重要指标),所得数据都在区间[5,40]中, 其频率分布直方图如图所示,则其抽样的 100根 中,有_▲___根在棉花纤维的长度小于 20mm。
23、(本小题满分 10分)
5
已知△ABC的三边长都是有理数。 (1)求证 cosA是有理数;(2)求证:对任意正整数 n,cosnA是有理数。
2010年答案 填空题 1、[解析] 考查集合的运算推理。3 B, a+2=3, a=1 2、[解析] 考查复数运算、模的性质。z(2-3i)=2(3+2 i), 2-3i与 3+2 i 的模相等,z 的 模为 2。
3
(1)设动点 P 满足 PF PB 4 ,求点 P 的轨迹;
(2)设 x1
2, x2
1
2
,求点
2
T
的坐标;
3
(3)设t 9 ,求证:直线 MN必过 x 轴上的一定点(其坐标与 m 无关)。

2010江苏省高考数学真题(含答案)

2010江苏省高考数学真题(含答案)

2010年普通高等学校招生全国统一考试江苏卷数学全解全析数学Ⅰ试题注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,包含填空题(第1题——第14题)、解答题(第15题——第20题)。

本卷满分160分,考试时间为120分钟。

考试结束后,请将本卷和答题卡一并交回。

2.答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。

3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符。

4.请在答题卡上按照晤顺序在对应的答题区域内作答,在其他位置作答一律无效。

作答必须用0.5毫米黑色墨水的签字笔。

请注意字体工整,笔迹清楚。

5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗。

6.请保持答题卡卡面清洁,不要折叠、破损。

参考公式:1锥体的体积公式:V 锥体=Sh,其中S是锥体的底面积,h是高。

3一、填空题:本大题共14小题,每小题5分,共70分。

请把答案填写在答题.卡.相.应.的.位..置.上..1、设集合A={-1,1,3},B={a+2,a 2+4},A∩B={3},则实数a=______▲_____.2、设复数z满足z(2-3i)=6+4i(其中i为虚数单位),则z的模为______▲_____.3、盒子中有大小相同的3只白球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的概率是_▲__.4、某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图所示,则其抽样的100根中,有_▲___根在棉花纤维的长度小于20mm。

5、设函数f(x)=x(e x+ae-x)(xR)是偶函数,则实数a=_______▲_________2y2x6、在平面直角坐标系x Oy中,双曲线1上一点M,点M的横坐标是3,则M到412双曲线右焦点的距离是___▲_______7、右图是一个算法的流程图,则输出S的值是______▲_______8、函数y=x2(x>0)的图像在点(ak,a k2)处的切线与x轴交点的横坐标为ak+1,k为正整数,a1=16,则a1+a3+a5=____▲_____2y29、在平面直角坐标系x Oy中,已知圆x4上有且仅有四个点到直线12x-5y+c=0的距离为1,则实数c的取值范围是______▲_____10、定义在区间0,上的函数y=6cosx的图像与y=5tanx的图像的交点为P,过点P作2PP1⊥x轴于点P1,直线PP1与y=sinx的图像交于点P2,则线段P1P2的长为_______▲_____。

2010江苏省高考数学真题(含答案)

2010江苏省高考数学真题(含答案)

Sn 是公差
为 d 的等差数列。
(1)求数列 a n 的通项公式(用 n, d 表示);
( 2) 设 c 为 实 数 , 对 满 足 m n 3k且m n 的 任 意 正 整 数 m, n, k , 不 等 式
Sm
Sn
cS
k
都成立。求证:
c
的最大值为
9 2

20、(本小题满分 16分)
设 f (x) 是定义在区间 (1, ) 上的函数,其导函数为 f '(x) 。如果存在实数 a 和函 数 h(x) ,其中 h(x) 对任意的 x (1, ) 都有 h(x) >0,使得 f '( x) h(x)(x 2 ax 1) ,则称函数 f (x) 具有性质 P(a) 。 (1)设函数 f (x) ln x bx 12 (x 1) ,其中b 为实数。
(2)设实数 t 满足( ABLeabharlann tOC )·OC =0,求 t 的值。
16、(本小题满分 14分) 如图,在四棱锥 P-ABCD中,PD⊥平面 ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=900。 (1)求证:PC⊥BC; (2)求点 A 到平面 PBC的距离。
17、(本小题满分 14分) 某兴趣小组测量电视塔 AE的高度 H(单位:m),如示意图,垂直放置的标杆 BC的高度 h=4m,仰角∠ABE= ,∠ADE= 。 (1)该小组已经测得一组 、 的值,tan =1.24,tan =1.20,请据此算出 H 的值; (2)该小组分析若干测得的数据后,认为适当调整标杆到电视塔的距 离 d(单位:m),使 与 之差较大,可以提高测量精确度。若电视 塔的实际高度为 125m,试问 d 为多少时, - 最大?

2007年高考数学试卷(江苏卷)

2007年高考数学试卷(江苏卷)

22007年普通高等学校招生全国统一考试数 学(江苏卷)参考答案一、选择题:本题考查基本概念和基本运算.每小题5分,共计50分.1.D 2.A 3.A 4.C 5.D 6.B 7.B 8.A 9.C 10.B二、填空题:本题考查基础知识和基本运算.每小题5分,共计30分. 11.1212.75 13.32 14.65515.5416.π10sin60t三、解答题17.本小题主要考查概率的基本概念、互斥事件有一个发生及相互独立事件同时发生的概率的计算方法,考查运用概率知识解决实际问题的能力.满分12分. 解:(1)5次预报中恰有2次准确的概率为22522355(2)0.8(10.8)100.80.20.05P C -=⨯⨯-=⨯⨯≈.(2)5次预报中至少有2次准确的概率为551(0)(1)P P --005011515510.8(10.8)0.8(10.8)C C --=-⨯⨯--⨯⨯-10.000320.00640.99=--≈.(3)“5次预报中恰有2次准确,且其中第3次预报准确”的概率为1412340.80.8(10.8)40.80.20.02C -⨯⨯⨯-=⨯⨯≈.18.本小题主要考查平面的基本性质、线线平行、线面垂直、二面角等基础知识和基本运算,考查空间想象能力、逻辑推理能力和运算能力.满分12分. 解法一:(1)如图,在1D D 上取点N ,使1D N =,连结E N ,C N ,则1A E D N ==,12C F N D ==.因为A E D N ∥,1N D C F ∥,所以四边形A D N E ,1C F D N 都为平行四边形.从而E N A D ∥,1F D C N ∥.又因为A D B C ∥,所以E N B C ∥,故四边形B C N E 是平行四边形,由此推知C N B E ∥,从而1F D B E ∥.CBAG HMDEF 1B1A1D1CN因此,1E B F D ,,,四点共面.(2)如图,G M B F ⊥,又B M B C ⊥,所以B G M C F B =∠∠,tan tan B M B G B G M B G C F B == ∠∠23132B C B G C F ==⨯= . 因为A E B M ∥,所以A B M E 为平行四边形,从而A B E M ∥. 又A B ⊥平面11B C C B ,所以E M ⊥平面11B C C B .(3)如图,连结E H .因为M H B F ⊥,E M B F ⊥,所以B F ⊥平面E M H ,得E H B F ⊥. 于是E H M ∠是所求的二面角的平面角,即E H M θ=∠.因为M B H C F B =∠∠,所以sin sin M H B M M B H B M C F B == ∠∠22223311332B CB M B CC F==⨯=++,tan 13E M M Hθ==.解法二:(1)建立如图所示的坐标系,则(301)B E = ,,,(032)B F =,,,1(333)B D = ,,, 所以1B D B E B F =+ ,故1B D ,B E ,B F共面.又它们有公共点B ,所以1E B F D ,,,四点共面.(2)如图,设(00)M z ,,,则203G M z ⎛⎫=- ⎪⎝⎭,,, 而(032)B F = ,,,由题设得23203G M B F z =-+= , 得1z =.因为(001)M ,,,(301)E ,,,有(300)M E =,,, 又1(003)B B = ,,,(030)B C =,,,所以10M E B B = ,0M E B C = ,从而1M E B B ⊥,M E B C ⊥.故M E ⊥平面11B C C B .(3)设向量(3)B P x y =,,⊥截面1E B F D ,于是B P B E ⊥,B P B F ⊥. 而(301)B E = ,,,(032)B F = ,,,得330B P B E x =+= ,360B P B F y =+=,解得1x =-,2y =-,所以(123)B P =--,,.CBAG HMD EF1B1A 1D1C zyx又(300)B A =,,⊥平面11B C C B ,所以B P 和B A 的夹角等于θ或πθ-(θ为锐角). 于是1co s 14B P B AB P B Aθ==.故tan 13θ=.19.本小题主要考查抛物线的基本性质、直线与抛物线的位置关系、向量的数量积、导数的应用、简易逻辑等基础知识和基本运算,考查分析问题、探索问题的能力.满分14分. 解:(1)设直线A B 的方程为y kx c =+, 将该方程代入2y x =得20x kx c --=. 令2()A a a ,,2()B b b ,,则ab c =-.因为2222O A O B ab a b c c =+=-+=,解得2c =,或1c =-(舍去).故2c =.(2)由题意知2a b Q c +⎛⎫-⎪⎝⎭,,直线A Q 的斜率为22222A Q a c a a b k a a b a b a +-===+--. 又2y x =的导数为2y x '=,所以点A 处切线的斜率为2a , 因此,A Q 为该抛物线的切线. (3)(2)的逆命题成立,证明如下:设0()Q x c -,. 若A Q 为该抛物线的切线,则2A Q k a =, 又直线A Q 的斜率为22A Q a c a a b k a x a x +-==--,所以22a a b a a x -=-,得202a x a a b =+,因0a ≠,有02a b x +=.故点P 的横坐标为2a b +,即P 点是线段A B 的中点.20.本小题主要考查等差、等比数列的有关知识,考查运用方程、分类讨论等思想方法进行分析、探索及论证问题的能力.满分16分.解:(1)设等差数列的公差为d ,则由题设得11a d a q +=,1(1)d a q =-,且1q ≠. 由k m b a =得111(1)k b qa m d -=+-,所以11(1)(1)k b qm d --=-,A BC PQOxyl11111(1)(1)(1)(1)(1)111k k b qm a q m d S m a q q q ------====----.故等式成立. (2)(ⅰ)证明q 为整数:由3i b a =得211(1)b q a i d =+-,即2111(1)(1)a q a i a q =+--, 移项得11(1)(1)(1)(1)a q q a i q +-=--.因110a b =≠,1q ≠,得2q i =-,故q 为整数. (ⅱ)证明数列{}n b 中的每一项都是数列{}n a 中的项: 设n b 是数列{}n b 中的任一项,只要讨论3n >的情形. 令111(1)n b qa k d -=+-,即1111(1)(1)n a qa k a q --=--,得1221121n n qk q q qq ---=+=++++- .因2q i =-,当1i =时,1q =-,22n q q q -+++ 为1-或0,则k 为1或2;而2i ≠,否则0q =,矛盾.当3i ≥时,q 为正整数,所以k 为正整数,从而n k b a =. 故数列{}n b 中的每一项都是数列{}n a 中的项.(3)取512q -=,21b b q =,341b b q =.3314111251(1)1(51)22b b b q b b b ⎡⎤⎛⎫-⎢⎥+=+=+=-= ⎪ ⎪⎢⎥⎝⎭⎣⎦. 所以1b ,2b ,4b 成等差数列.21.本小题主要考查函数、方程、不等式的基本知识,考查综合运用分类讨论、等价转化等思想方法分析问题及推理论证的能力.满分16分.解:(1)设r 为方程的一个根,即()0f r =,则由题设得(())0g f r =.于是,(0)(())0g g f r ==,即(0)0g d ==.所以,0d =.(2)由题意及(1)知2()f x bx cx =+,32()g x ax bx cx =++.由0a =得b c ,是不全为零的实数,且2()()g x bx cx x bx c =+=+, 则[]22(())()()()()g f x x bx c bx bx c c x bx c b x bcx c =+++=+++.方程()0f x =就是()0x bx c +=.①方程(())0g f x =就是22()()0x bx c b x bcx c +++=.②(ⅰ)当0c =时,0b ≠,方程①、②的根都为0x =,符合题意. (ⅱ)当0c ≠,0b =时,方程①、②的根都为0x =,符合题意. (ⅲ)当0c ≠,0b ≠时,方程①的根为10x =,2c x b=-,它们也都是方程②的根,但它们不是方程220b x bcx c ++=的实数根.由题意,方程220b x bcx c ++=无实数根,此方程根的判别式22()40bc b c ∆=-<,得04c <<.综上所述,所求c 的取值范围为[)04,. (3)由1a =,(1)0f =得b c =-,2()(1)f x bx cx cx x =+=-+,2(())()()()g f x f x f x cf x c ⎡⎤=-+⎣⎦.③由()0f x =可以推得(())0g f x =,知方程()0f x =的根一定是方程(())0g f x =的根. 当0c =时,符合题意.当0c ≠时,0b ≠,方程()0f x =的根不是方程2()()0f x cf x c -+= ④ 的根,因此,根据题意,方程④应无实数根.那么当2()40c c --<,即04c <<时,2()()0f x cf x c -+>,符合题意.当2()40c c --≥,即0c <或4c ≥时,由方程④得224()2c c c f x cx cx ±-=-+=,即22402c c c cx cx ±--+=,⑤则方程⑤应无实数根,所以有224()402c c c c c+---<且224()402c c c c c ----<.当0c <时,只需22240c c c c ---<,解得1603c <<,矛盾,舍去. 当4c ≥时,只需22240c c c c -+-<,解得1603c <<.因此,1643c<≤.综上所述,所求c的取值范围为163⎡⎫⎪⎢⎣⎭,.。

2007年江苏省高考数学试卷及解析

2007年江苏省高考数学试卷及解析

2007年江苏省高考数学试卷一、选择题(共10小题,每小题5分,满分50分)1.(5分)下列函数中,周期为的是()A. B.y=sin2x C. D.y=cos4x2.(5分)已知全集U=Z,A={﹣1,0,1,2},B={x|x2=x},则A∩∁U B为()A.{﹣1,2}B.{﹣1,0}C.{0,1}D.{1,2}3.(5分)在平面直角坐标系xOy中,双曲线中心在原点,焦点在y轴上,一条渐近线方程为x﹣2y=0,则它的离心率为()A.B.C.D.24.(5分)已知两条直线m,n,两个平面α,β,给出下面四个命题:①m∥n,m⊥α⇒n⊥α②α∥β,m⊂α,n⊂β⇒m∥n③m∥n,m∥α⇒n∥α④α∥β,m∥n,m⊥α⇒n⊥β其中正确命题的序号是()A.①③B.②④C.①④D.②③5.(5分)函数f(x)=sinx﹣cosx(x∈[﹣π,0])的单调递增区间是()A.[﹣π,﹣]B.[﹣,﹣]C.[﹣,0]D.[﹣,0] 6.(5分)设f(x)定义域为R,对任意的x都有f(x)=f(2﹣x),且当x≥1时,f(x)=2x﹣1,则有()A.f()<f()<f()B.f()<f()<f()C.f()<f ()<f()D.f()<f()<f()7.(5分)若对于任意实数x,有x3=a0+a1(x﹣2)+a2(x﹣2)2+a3(x﹣2)3,则a2的值为()A.3 B.6 C.9 D.128.(5分)设f(x)=lg(+a)是奇函数,则使f(x)<0的x的取值范围是()A.(﹣1,0)B.(0,1) C.(﹣∞,0)D.(﹣∞,0)∪(1,+∞)9.(5分)已知二次函数f(x)=ax2+bx+c的导数为f′(x),f′(0)>0,对于任意实数x都有f(x)≥0,则的最小值为()A.3 B.C.2 D.10.(5分)在平面直角坐标系xOy,已知平面区域A={(x,y)|x+y≤1,且x ≥0,y≥0},则平面区域B={(x+y,x﹣y)|(x,y)∈A}的面积为()A.2 B.1 C.D.二、填空题(共6小题,每小题5分,满分30分)11.(5分)若cos(α+β)=,cos(α﹣β)=,则tanαtanβ=.12.(5分)山东省某中学,为了满足新课改的需要,要开设9门课程供学生选修,其中A、B、C三门由于上课时间相同,至多选一门,学校规定,每位同学选修4门,共有种不同的选修方案.(用数值作答)13.(5分)已知函数f(x)=x3﹣12x+8在区间[﹣3,3]上的最大值与最小值分别为M,m,则M﹣m=.14.(5分)正三棱锥P﹣ABC高为2,侧棱与底面所成角为45°,则点A到侧面PBC的距离是.15.(5分)在平面直角坐标系xOy中,已知△ABC顶点A(﹣4,0)和C(4,0),顶点B在椭圆上,则=.16.(5分)某时钟的秒针端点A到中心点O的距离为5cm,秒针均匀地绕点O 旋转,当时间t=0时,点A与钟面上标12的点B重合,将A,B两点的距离d (cm)表示成t(s)的函数,则d=,其中t∈[0,60].三、解答题(共5小题,满分70分)17.(12分)某气象站天气预报的准确率为80%,计算(结果保留到小数点后面第2位)(1)5次预报中恰有2次准确的概率;(2)5次预报中至少有2次准确的概率;(3)5次预报中恰有2次准确,且其中第3次预报准确的概率.18.(12分)如图,已知ABCD﹣A1B1C1D1是棱长为3的正方体,点E在AA1上,点F在CC1上,且AE=FC1=1.(1)求证:E,B,F,D1四点共面;(2)若点G在BC上,BG=,点M在BB1上,GM⊥BF,垂足为H,求证:EM ⊥面BCC1B1;(3)用θ表示截面EBFD1和面BCC1B1所成锐二面角大小,求tanθ.19.(14分)如图,在平面直角坐标系xOy中,过y轴正方向上一点C(0,c)任作一直线,与抛物线y=x2相交于AB两点,一条垂直于x轴的直线,分别与线段AB和直线l:y=﹣c交于P,Q,(1)若,求c的值;(2)若P为线段AB的中点,求证:QA为此抛物线的切线;(3)试问(2)的逆命题是否成立?说明理由.20.(16分)已知{a n}是等差数列,{b n}是公比为q的等比数列,a1=b1,a2=b2≠a1,记S n为数列{b n}的前n项和,(1)若b k=a m(m,k是大于2的正整数),求证:S k﹣1=(m﹣1)a1;(2)若b3=a i(i是某一正整数),求证:q是整数,且数列{b n}中每一项都是数列{a n}中的项;(3)是否存在这样的正数q,使等比数列{b n}中有三项成等差数列?若存在,写出一个q的值,并加以说明;若不存在,请说明理由.21.(16分)已知a,b,c,d是不全为零的实数,函数f(x)=bx2+cx+d,g(x)=ax3+bx2+cx+d.方程f(x)=0有实数根,且f(x)=0的实数根都是g(f(x))=0的根;反之,g(f(x))=0的实数根都是f(x)=0的根.(1)求d的值;(2)若a=0,求c的取值范围;(3)若a=1,f(1)=0,求c的取值范围.2007年江苏省高考数学试卷参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1.(5分)(2007•江苏)下列函数中,周期为的是()A. B.y=sin2x C. D.y=cos4x【分析】利用公式对选项进行逐一分析即可得到答案.【解答】解:根据公式,的周期为:T=4π,排除A.y=sin2x的周期为:T=π,排除B.的周期为:T=8π,排除C.故选D2.(5分)(2007•江苏)已知全集U=Z,A={﹣1,0,1,2},B={x|x2=x},则A ∩∁U B为()A.{﹣1,2}B.{﹣1,0}C.{0,1}D.{1,2}【分析】B为二次方程的解集,首先解出,再根据交集、补集意义直接求解.【解答】解:由题设解得B={0,1},C U B={x∈Z|x≠0且x≠1},∴A∩C U B={﹣1,2},故选A3.(5分)(2007•江苏)在平面直角坐标系xOy中,双曲线中心在原点,焦点在y轴上,一条渐近线方程为x﹣2y=0,则它的离心率为()A.B.C.D.2【分析】根据双曲线中心在原点,焦点在y轴上,一条渐近线方程为x﹣2y=0能够得到,由此能够推导出双曲线的离心率.【解答】解:由得b=2a,,.故选A.4.(5分)(2007•江苏)已知两条直线m,n,两个平面α,β,给出下面四个命题:①m∥n,m⊥α⇒n⊥α②α∥β,m⊂α,n⊂β⇒m∥n③m∥n,m∥α⇒n∥α④α∥β,m∥n,m⊥α⇒n⊥β其中正确命题的序号是()A.①③B.②④C.①④D.②③【分析】由题意用线面垂直和面面平行的定理,判断线面和面面平行和垂直的关系.【解答】解:用线面垂直和面面平行的定理可判断①④正确;②中,由面面平行的定义,m,n可以平行或异面;③中,用线面平行的判定定理知,n可以在α内;故选C.5.(5分)(2007•江苏)函数f(x)=sinx﹣cosx(x∈[﹣π,0])的单调递增区间是()A.[﹣π,﹣]B.[﹣,﹣]C.[﹣,0]D.[﹣,0]【分析】先利用两角和公式对函数解析式化简整理,进而根据正弦函数的单调性求得答案.【解答】解:f(x)=sin x﹣cos x=2sin(x﹣),因x﹣∈[﹣π,﹣],故x﹣∈[﹣π,﹣],得x∈[﹣,0],故选D6.(5分)(2007•江苏)设f(x)定义域为R,对任意的x都有f(x)=f(2﹣x),且当x≥1时,f(x)=2x﹣1,则有()A.f()<f()<f()B.f()<f()<f()C.f()<f ()<f()D.f()<f()<f()【分析】本题是关于函数图象对称性的一个题,方法一:由f(x)定义域为R,对任意的x都有f(x)=f(2﹣x),知对称轴是x=1,故有f()=f(),f()=f(),又x≥1时,f(x)=2x﹣1,函数在(1,+∞)上是增函数,>>,由此可选出正确选项;方法二:由f(x)定义域为R,对任意的x都有f(x)=f(2﹣x),知对称轴是x=1,由对称性知其在(﹣∞,1)上是减函数,其图象的特征是自变量离1的距离越远,其函数值越大,由此特征判断函数值的大小即可.【解答】解:方法一:由条件f(x)=f(2﹣x)可得函数图象关于直线x=1对称,则f()=f(),f()=f(),由于当x≥1时,f(x)=2x﹣1,即函数在[1,+∞)上为增函数,由于>>,故有f()=f()>f()>f()=f ()故应选B.方法二:由f(x)定义域为R,对任意的x都有f(x)=f(2﹣x),知对称轴是x=1,由对称性知其在(﹣∞,1)上是减函数,其图象的特征是自变量离1的距离越远,其函数值越大,∵1﹣<﹣1<1﹣∴f()<f()<f()故应选B.7.(5分)(2007•江苏)若对于任意实数x,有x3=a0+a1(x﹣2)+a2(x﹣2)2+a3(x﹣2)3,则a2的值为()A.3 B.6 C.9 D.12【分析】由等式右边可以看出是按照x﹣2的升幂排列,故可将x写为2+x﹣2,利用二项式定理的通项公式可求出a2的值.【解答】解:x3=(2+x﹣2)3,故a2=C322=6故选B8.(5分)(2007•江苏)设f(x)=lg(+a)是奇函数,则使f(x)<0的x 的取值范围是()A.(﹣1,0)B.(0,1) C.(﹣∞,0)D.(﹣∞,0)∪(1,+∞)【分析】首先由奇函数定义,得到f(x)的解析式的关系式(本题可利用特殊值f(0)=0),求出a,然后由对数函数的单调性解之.【解答】解:由f(﹣x)=﹣f(x),,,即=,1﹣x2=(2+a)2﹣a2x2此式恒成立,可得a2=1且(a+2)2=1,所以a=﹣1则即解得﹣1<x<0故选A9.(5分)(2007•江苏)已知二次函数f(x)=ax2+bx+c的导数为f′(x),f′(0)>0,对于任意实数x都有f(x)≥0,则的最小值为()A.3 B.C.2 D.【分析】先求导,由f′(0)>0可得b>0,因为对于任意实数x都有f(x)≥0,所以结合二次函数的图象可得a>0且b2﹣4ac≤0,又因为,利用均值不等式即可求解.【解答】解:∵f'(x)=2ax+b,∴f'(0)=b>0;∵对于任意实数x都有f(x)≥0,∴a>0且b2﹣4ac≤0,∴b2≤4ac,∴c>0;∴,当a=c时取等号.故选C.10.(5分)(2007•江苏)在平面直角坐标系xOy,已知平面区域A={(x,y)|x+y ≤1,且x≥0,y≥0},则平面区域B={(x+y,x﹣y)|(x,y)∈A}的面积为()A.2 B.1 C.D.【分析】将x+y和x﹣y看成整体,设,根据题意列出关于u,v的约束条件,画出区域求面积即可.【解答】解析:令,∴,作出区域是等腰直角三角形,可求出面积选B二、填空题(共6小题,每小题5分,满分30分)11.(5分)(2007•江苏)若cos(α+β)=,cos(α﹣β)=,则tanαtanβ=.【分析】先由两角和与差的公式展开,得到α,β的正余弦的方程组,两者联立解出两角正弦的积与两角余弦的积,再由商数关系求出两角正切的乘积.【解答】解:由已知,,∴cosαcosβ=,sinαsinβ=∴故应填12.(5分)(2007•江苏)山东省某中学,为了满足新课改的需要,要开设9门课程供学生选修,其中A、B、C三门由于上课时间相同,至多选一门,学校规定,每位同学选修4门,共有75种不同的选修方案.(用数值作答)【分析】由题意知本题需要分类来解,可以从A、B、C三门选一门有C31•C63,也可以从其他六门中选4门有C64,根据分类计数加法得到结果.【解答】解:由题意知本题需要分类来解,第一类,若从A、B、C三门选一门有C31•C63=60,第二类,若从其他六门中选4门有C64=15,∴根据分类计数加法得到共有60+15=75种不同的方法.故答案为:7513.(5分)(2007•江苏)已知函数f(x)=x3﹣12x+8在区间[﹣3,3]上的最大值与最小值分别为M,m,则M﹣m=32.【分析】先对函数f (x)进行求导,令导函数等于0求出x,然后根据导函数的正负判断函数f(x)的单调性,列出在区间[﹣3,3]上f(x)的单调性、导函数f'(x)的正负的表格,从而可确定最值得到答案.【解答】解:令f′(x)=3x2﹣12=0,得x=﹣2或x=2,列表得:x﹣3(﹣3,﹣2)﹣2(﹣2,2)2(2,3)3f′(x)+0﹣0+极值﹣8﹣1f(x)17极值24可知M=24,m=﹣8,∴M﹣m=32.故答案为:3214.(5分)(2007•江苏)正三棱锥P﹣ABC高为2,侧棱与底面所成角为45°,则点A到侧面PBC的距离是.【分析】在立体几何中,求点到平面的距离是一个常见的题型,同时求直线到平面的距离、平行平面间的距离及多面体的体积也常转化为求点到平面的距离.本题采用的是“找垂面法”:即找(作)出一个过该点的平面与已知平面垂直,然后过该点作其交线的垂线,则得点到平面的垂线段.设P在底面ABC上的射影为O,则PO=2,且O是三角形ABC的中心,设底面边长为a,设侧棱为b,则斜高.由面积法求A到侧面PBC的距离.【解答】解:如图所示:设P在底面ABC上的射影为O,则PO⊥平面ABC,PO=2,且O是三角形ABC的中心,∴BC⊥AM,BC⊥PO,PO∩AM=0∴BC⊥平面APM又∵BC⊂平面ABC,∴平面ABC⊥平面APM,又∵平面ABC∩平面APM=PM,∴A到侧面PBC的距离即为△APM的高设底面边长为a,则设侧棱为b,则斜高.由面积法求A到侧面PBC的距离故答案为:15.(5分)(2007•江苏)在平面直角坐标系xOy中,已知△ABC顶点A(﹣4,0)和C(4,0),顶点B在椭圆上,则=.【分析】先利用椭圆的定义求得a+c,进而由正弦定理把原式转换成边的问题,进而求得答案.【解答】解:利用椭圆定义得a+c=2×5=10b=2×4=8由正弦定理得=故答案为16.(5分)(2007•江苏)某时钟的秒针端点A到中心点O的距离为5cm,秒针均匀地绕点O旋转,当时间t=0时,点A与钟面上标12的点B重合,将A,B 两点的距离d(cm)表示成t(s)的函数,则d=,其中t∈[0,60].【分析】由题意知可以先写出秒针转过的角度,整个圆周对应的圆心角是360°,可以算出一秒转过的角度,再乘以时间,连接AB,过圆心向它做垂线,把要求的线段分成两部分,用直角三角形得到结果.【解答】解:∵∴根据直角三角形的边长求法得到d=2×5×sin=10sin,故答案为:10sin.三、解答题(共5小题,满分70分)17.(12分)(2007•江苏)某气象站天气预报的准确率为80%,计算(结果保留到小数点后面第2位)(1)5次预报中恰有2次准确的概率;(2)5次预报中至少有2次准确的概率;(3)5次预报中恰有2次准确,且其中第3次预报准确的概率.【分析】(1)本题是一个独立重复试验,事件发生的概率是0.8,有5次恰好发生2次,根据独立重复试验概率公式写出结果.(2)本题是一个独立重复试验,事件发生的概率是0.8,5次预报中至少有2次准确的对立事件是5次预报中只有1次准确,根据对立事件的概率和独立重复试验的概率公式得到概率.(3)本题是一个独立重复试验,事件发生的概率是0.8,5次预报中恰有2次准确,且其中第3次预报准确,表示除第三次外另外四次恰有一次正确,根据独立重复试验的概率公式得到概率.【解答】解:(1)由题意知,本题是一个独立重复试验,事件发生的概率是0.8,5次预报中恰有2次准确的概率是(2)由题意知,本题是一个独立重复试验,事件发生的概率是0.8,5次预报中至少有2次准确的对立事件是5次预报中只有1次准确和都不准确,根据对立事件的概率和独立重复试验的概率公式得到(3)由题意知,本题是一个独立重复试验,事件发生的概率是0.85次预报中恰有2次准确,且其中第3次预报准确,根据独立重复试验的概率公式得到18.(12分)(2007•江苏)如图,已知ABCD﹣A1B1C1D1是棱长为3的正方体,点E在AA1上,点F在CC1上,且AE=FC1=1.(1)求证:E,B,F,D1四点共面;(2)若点G在BC上,BG=,点M在BB1上,GM⊥BF,垂足为H,求证:EM ⊥面BCC1B1;(3)用θ表示截面EBFD1和面BCC1B1所成锐二面角大小,求tanθ.【分析】(1)四点共面问题通常我们将它们变成两条直线,然后证明这两条直线平行或相交,根据公理3的推论2、3可知,它们共面.(2)在正方体中,易知AB⊥面BCC1B1,所以欲证EM⊥面BCC1B1,可以先证AB ∥EM;或者也可以从平面ABB1A1⊥平面BCC1B1入手去证明,那么我们一开始就需要算出BM的长度.(3)由第二问的证明可知,利用三垂线定理,∠MHE就是截面EBFD1和面BCC1B1所成锐二面角的平面角.【解答】解:(1)证明:在DD1上取一点N使得DN=1,连接CN,EN,显然四边形CFD1N是平行四边形,所以D1F∥CN,同理四边形DNEA是平行四边形,所以EN∥AD,且EN=AD,又BC∥AD,且AD=BC,所以EN∥BC,EN=BC,所以四边形CNEB是平行四边形,所以CN∥BE,所以D1F∥BE,所以E,B,F,D1四点共面;(2)因为GM⊥BF所以△BCF∽△MBG,所以,即,所以MB=1,因为AE=1,所以四边形ABME是矩形,所以EM⊥BB1又平面ABB1A1⊥平面BCC1B1,且EM在平面ABB1A1内,所以EM⊥面BCC1B1;(3)EM⊥面BCC1B1,所以EM⊥BF,EM⊥MH,GM⊥BF,所以∠MHE就是截面EBFD1和面BCC1B1所成锐二面角的平面角,∠EMH=90°,所以,ME=AB=3,△BCF∽△MHB,所以3:MH=BF:1,BF=,所以MH=,所以=.19.(14分)(2007•江苏)如图,在平面直角坐标系xOy中,过y轴正方向上一点C(0,c)任作一直线,与抛物线y=x2相交于AB两点,一条垂直于x轴的直线,分别与线段AB和直线l:y=﹣c交于P,Q,(1)若,求c的值;(2)若P为线段AB的中点,求证:QA为此抛物线的切线;(3)试问(2)的逆命题是否成立?说明理由.(1)设过C点的直线的方程,与抛物线方程联立设出A,B的坐标则【分析】可分别表示出来,根据求得﹣c﹣k2c+kc•k+c2=2,求得c.(2)设过Q的切线方程,通过对抛物线方程求导求得切线的斜率,进而可表示出切线方程求得与y=﹣c的交点为M的坐标进而根据P为线段AB的中点,求求得Q点的坐标,根据x1x2=﹣c,进而可表示出M的坐标,判断出以点M和点Q 重合,也就是QA为此抛物线的切线.(3)根据(2)可知点Q的坐标,根据PQ⊥x轴,推断出点P的坐标,进而求得,判断出P为AB的中点.【解答】解:(1)设过C点的直线为y=kx+c,所以x2=kx+c(c>0),即x2﹣kx﹣c=0,设A(x1,y1),B(x2,y2),=(x1,y1),,因为,所以x1x2+y1y2=2,即x1x2+(kx1+c)(kx2+c)=2,x1x2+k2x1x2﹣kc (x1+x2)+c2=2所以﹣c﹣k2c+kc•k+c2=2,即c2﹣c﹣2=0,所以c=2(舍去c=﹣1)(2)设过Q的切线为y﹣y1=k1(x﹣x1),y′=2x,所以k1=2x1,即y=2x1x﹣2x12+y1=2x1x ﹣x12,它与y=﹣c的交点为M,又,所以Q,因为x1x2=﹣c,所以,所以M,所以点M和点Q重合,也就是QA为此抛物线的切线.(3)(2)的逆命题是成立,由(2)可知Q,因为PQ⊥x轴,所以因为,所以P为AB的中点.20.(16分)(2007•江苏)已知{a n}是等差数列,{b n}是公比为q的等比数列,a1=b1,a2=b2≠a1,记S n为数列{b n}的前n项和,(1)若b k=a m(m,k是大于2的正整数),求证:S k﹣1=(m﹣1)a1;(2)若b3=a i(i是某一正整数),求证:q是整数,且数列{b n}中每一项都是数列{a n}中的项;(3)是否存在这样的正数q,使等比数列{b n}中有三项成等差数列?若存在,写出一个q的值,并加以说明;若不存在,请说明理由.【分析】(1)设{a n}的公差为d,由a1=b1,把b k=a m代入a1q k﹣1=a1,进而可表示,题设得证.出S k﹣1(2)利用)b3=a1q2,a i=a1+(i﹣1)a1(q﹣1),进而可得q2=1+(i﹣1)(q﹣1),q2﹣(i﹣1)q+(i﹣2)=0,整理即可求得q=i﹣2,进而可判定i﹣2是整数,即q是整数,设数列{b n}中任意一项为b n=a1q n﹣1(n∈N+),设数列{a n}中的某一项a m(m∈N+)=a1+(m﹣1)a1(q﹣1)只要证明存在正整数m,使得b n=a m,即在方程a1q n﹣1=a1+(m﹣1)a1(q﹣1)中m有正整数解即可.(3)设数列{b n}中有三项b m,b n,b p(m<n<p,m,n,p∈N+)成等差数列,利用等差中项的性质建立等式,设n﹣m=x,p﹣n=y,进而可得以2=,令x=1,y=2,求得q.【解答】解:设{a n}的公差为d,由a1=b1,a2=b2≠a1,知d≠0,q≠1,d=a1(q ﹣1)(a1≠0)(1)因为b k=a m,所以a1q k﹣1=a1+(m﹣1)a1(q﹣1),q k﹣1=1+(m﹣1)(q﹣1)=2﹣m+(m﹣1)q,所以(2)b3=a1q2,a i=a1+(i﹣1)a1(q﹣1),由b3=a i,所以q2=1+(i﹣1)(q﹣1),q2﹣(i﹣1)q+(i﹣2)=0,解得,q=1或q=i﹣2,但q≠1,所以q=i﹣2,因为i是正整数,所以i﹣2是整数,即q是整数,设数列{b n}中任意一项为b n=a1q n﹣1(n∈N+),设数列{a n}中的某一项a m(m∈N+)=a1+(m﹣1)a1(q﹣1)现在只要证明存在正整数m,使得b n=a m,即在方程a1q n﹣1=a1+(m﹣1)a1(q ﹣1)中m有正整数解即可,m﹣1==1+q+q2+…+q n﹣2,所以m=2+q+q2+q n ﹣2,若i=1,则q=﹣1,那么b2n=b1=a1,b2n=b2=a2,当i≥3时,因为a1=b1,a2=b2,﹣1只要考虑n≥3的情况,因为b3=a i,所以i≥3,因此q是正整数,所以m是正整数,因此数列{b n}中任意一项为b n=a1q n﹣1(n∈N+)与数列{a n}的第2+q+q2+q n﹣2项相等,从而结论成立.(3)设数列{b n}中有三项b m,b n,b p(m<n<p,m,n,p∈N+)成等差数列,则有2a1q n﹣1=a1q m﹣1+a1q p﹣1,设n﹣m=x,p﹣n=y,(x,y∈N+),所以2=,令x=1,y=2,则q3﹣2q+1=0,(q﹣1)(q2+q﹣1)=0,因为q≠1,所以q2+q﹣1=0,所以,即存在使得{b n}中有三项b m,b m+1,b m+3(m∈N+)成等差数列.21.(16分)(2007•江苏)已知a,b,c,d是不全为零的实数,函数f(x)=bx2+cx+d,g(x)=ax3+bx2+cx+d.方程f(x)=0有实数根,且f(x)=0的实数根都是g(f (x))=0的根;反之,g(f(x))=0的实数根都是f(x)=0的根.(1)求d的值;(2)若a=0,求c的取值范围;(3)若a=1,f(1)=0,求c的取值范围.【分析】(1)不妨设r为方程的一个根,即f(r)=0,则由题设得g(f(r))=0.进而有g(0)=g(f(r))=0,再由g(0)=d求解.(2)由(1)知f(x)=bx2+cx,g(x)=ax3+bx2+cx.所以有g(f(x))=x(bx+c)[bx(bx+c)+c]=x(bx+c)(b2x2+bcx+c).而方程f(x)=0即为x(bx+c)=0.①方程g(f(x))=0即为x(bx+c)(b2x2+bcx+c)=0.②最后按方程的类型,分(ⅰ)当c=0时,b≠0,(ⅱ)当c≠0,b=0(ⅲ)当c≠0,b≠0讨论.(3)由a=1,f(1)=0得b=﹣c,将函数的系数都用c表示:f(x)=bx2+cx=cx (﹣x+1),g(f(x))=f(x)[f2(x)﹣cf(x)+c].由f(x)=0可以推得g(f (x))=0,知方程f(x)=0的根一定是方程g(f(x))=0的根.然后,按照c=0和c≠0两种情况,用判别式判断求解.【解答】解:(1)设r为方程的一个根,即f(r)=0,则由题设得g(f(r))=0.于是,g(0)=g(f(r))=0,即g(0)=d=0.所以,d=0.(2)由题意及(1)知f(x)=bx2+cx,g(x)=ax3+bx2+cx.由a=0得b,c是不全为零的实数,且g(x)=bx2+cx=x(bx+c),则g(f(x))=x(bx+c)[bx(bx+c)+c]=x(bx+c)(b2x2+bcx+c).方程f(x)=0就是x(bx+c)=0.①方程g(f(x))=0就是x(bx+c)(b2x2+bcx+c)=0.②当b=0时,c≠0时,方程①、②的根都为x=0,符合题意.当b≠0,c=0时,方程①、②的根都为x=0,符合题意.当b≠0,c≠0时,方程①的根为x1=0,,它们也都是方程②的根,但它们不是方程b2x2+bcx+c=0的实数根.则方程b2x2+bcx+c=0无实数根时,符合题此时△=(bc)2﹣4b2c<0,得0<c<4,综上所述,b=0时,c≠0时,b≠0时,0≤c<4;(3)由a=1,f(1)=0得b=﹣c,f(x)=bx2+cx=cx(﹣x+1),g(f(x))=f(x)[f2(x)﹣cf(x)+c].③由f(x)=0可以推得g(f(x))=0,知方程f(x)=0的根一定是方程g(f(x))=0的根.当c=0时,符合题意.当c≠0时,b≠0,方程f(x)=0的根不是方程f2(x)﹣cf(x)+c=0④的根,因此,根据题意,方程④应无实数根.那么当(﹣c)2﹣4c<0,即0<c<4时,f2(x)﹣cf(x)+c>0,符合题意.当(﹣c)2﹣4c≥0,即c<0或c≥4时,由方程④得,即,⑤则方程⑤应无实数根,所以有且.当c<0时,只需,解得,矛盾,舍去.当c≥4时,只需,解得.因此,.综上所述,所求c的取值范围为.。

2007年高考数学卷(江苏卷)含答案

2007年高考数学卷(江苏卷)含答案

绝密★启用前2007年普通高等学校招生全国统一考试数学(江苏卷)参考公式:若事件A在一次试验中发生的概率是p,则它在n次独立重复试验中恰好发生k次的概率为()(1)k k n kn nP k C p p-=-一、选择题:本大题共10小题,每小题5分,共计50分.在每小题给出的四个选项中,恰有一项....是符合题目要求的.1.下列函数中,周期为π2的是()A.sin2xy=B.sin2y x=C.cos4xy=D.cos4y x=2.已知全集U=Z,{}1012A=-,,,,{}2B x x x==,则UA B为()A.{}12-,B.{}10-,C.{}01,D.{}12,3.在平面直角坐标系xOy中,双曲线的中心在坐标原点,焦点在y轴上,一条渐近线的方程为20x y-=,则它的离心率为()B.2D.24.已知两条直线m n,,两个平面αβ,.给出下面四个命题:①m n ∥,m n αα⇒⊥⊥;②αβ∥,m α⊂,n m n β⊂⇒∥; ③m n ∥,m n αα⇒∥∥;④αβ∥,m n ∥,m n αβ⇒⊥⊥. 其中正确命题的序号是( ) A.①、③ B.②、④C.①、④ D.②、③5.函数[]()sin (π0)f x x x x =∈-,的单调递增区间是( )A.5ππ6⎡⎤--⎢⎥⎣⎦,B.5ππ66⎡⎤--⎢⎥⎣⎦, C.π03⎡⎤-⎢⎥⎣⎦,D.π06⎡⎤-⎢⎥⎣⎦,6.设函数()f x 定义在实数集上,它的图像关于直线1x =对称,且当1x ≥时,()31x f x =-,则有( )A.132323f f f ⎛⎫⎛⎫⎛⎫<< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭B.231323f f f ⎛⎫⎛⎫⎛⎫<<⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ C.213332f f f ⎛⎫⎛⎫⎛⎫<<⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D.321233f f f ⎛⎫⎛⎫⎛⎫<<⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭7.若对于任意的实数x ,有3230123(2)(2)(2)x a a x a x a x =+-+-+-,则2a 的值为( )A.3 B.6 C.9 D.128.设2()lg 1f x a x ⎛⎫=+ ⎪-⎝⎭是奇函数,则使()0f x <的x 的取值范围是( ) A.(10)-,B.(01),C.(0)-∞,D.(0)(1)-∞+∞,,9.已知二次函数2()f x ax bx c =++的导数为()f x ',(0)0f '>,对于任意实数x ,有()0f x ≥,则(1)(0)f f '的最小值为( ) A.3B.52C.2D.3210.在平面直角坐标系xOy 中,已知平面区域{}()100A x y x y x y =+,≤,且≥,≥,则平面区域{}()()B x y x y x y A =+-∈,,的面积为( ) A.2B.1C.12D.14二、填空题:本大题共6小题,每小题5分,共计30分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上.11.若1cos()5αβ+=,3cos()5αβ-=,则tan tan αβ=_____. 12.某校开设9门课程供学生选修,其中A B C ,,三门由于上课时间相同,至多选一门,学校规定,每位同学选修4门,共有_____种不同的选修方案.(用数值作答)13.已知函数3()128f x x x =-+在区间[]33-,上的最大值与最小值分别为M ,m ,则M m -=_____.14.正三棱锥P ABC -的高为2,侧棱与底面ABC 成45角,则点A 到侧面PBC 的距离为_____.15.在平面直角坐标系xOy 中,已知ABC △的顶点(40)A -,和(40)C ,,顶点B 在椭圆221259x y +=上,则sin sin sin A C B+=_____. 16.某时钟的秒针端点A 到中心点O 的距离为5cm ,秒针均匀地绕点O 旋转,当时间0t =时,点A 与钟面上标12的点B 重合.将A B ,两点间的距离(cm)d 表示成(s)t 的函数,则d =_____,其中[]060t ∈,.三、解答题:本大题共5小题,共计70分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 17.(本题满分12分)某气象站天气预报的准确率为80%,计算(结果保留到小数点后第2位): (1)5次预报中恰有2次准确的概率;(4分) (2)5次预报中至少有2次准确的概率;(4分)(3)5次预报中恰有2次准确,且其中第3次预报准确的概率.(4分) 18.(本题满分12分)如图,已知1111ABCD A B C D -是棱长为3的正方体,点E 在1AA 上,点F 在1CC 上,且11AE FC ==. (1)求证:1E B F D ,,,四点共面;(4分)(2)若点G 在BC 上,23BG =,点M 在1BB 上,GM BF ⊥,垂足为H ,求证:EM ⊥平面11BCC B ;(4分)(3)用θ表示截面1EBFD 和侧面11BCC B 所成的锐二面角的大小,求tan θ.(4分) 19.(本题满分14分)如图,在平面直角坐标系xOy 中,过y 轴正方向上一点C BAG HMDEF1B1A1D1C(0)C c ,任作一直线,与抛物线2y x =相交于A B ,两点.一条垂直于x 轴的直线,分别与线段AB 和直线:l y c =-交于点P Q ,. (1)若2OA OB =,求c 的值;(5分)(2)若P 为线段AB 的中点,求证:QA 为此抛物线的切线;(5分) (3)试问(2)的逆命题是否成立?说明理由.(4分) 20.(本题满分16分)已知{}n a 是等差数列,{}n b 是公比为q 的等比数列,11a b =,221a b a =≠,记n S 为数列{}n b 的前n 项和.(1)若k m b a =(m k ,是大于2的正整数),求证:11(1)k S m a -=-;(4分) (2)若3i b a =(i 是某个正整数),求证:q 是整数,且数列{}n b 中的每一项都是数列{}n a 中的项;(8分)(3)是否存在这样的正数q ,使等比数列{}n b 中有三项成等差数列?若存在,写出一个q 的值,并加以说明;若不存在,请说明理由.(4分)21.(本题满分16分)已知a b c d ,,,是不全为零的实数,函数2()f x bx cx d =++,32()g x ax bx cx d =+++.方程()0f x =有实数根,且()0f x =的实数根都是(())0g f x =的根;反之,(())0g f x =的实数根都是()0f x =的根.(1)求d 的值;(3分)(2)若0a =,求c 的取值范围;(6分)(3)若1a =,(1)0f =,求c 的取值范围.(7分)2007年普通高等学校招生全国统一考试数 学(江苏卷)参考答案一、选择题:本题考查基本概念和基本运算.每小题5分,共计50分.1.D 2.A 3.A 4.C 5.D 6.B 7.B 8.A 9.C 10.B二、填空题:本题考查基础知识和基本运算.每小题5分,共计30分. 11.12 12.75 13.32 14.5 15.54 16.π10sin 60t三、解答题17.本小题主要考查概率的基本概念、互斥事件有一个发生及相互独立事件同时发生的概率的计算方法,考查运用概率知识解决实际问题的能力.满分12分. 解:(1)5次预报中恰有2次准确的概率为22522355(2)0.8(10.8)100.80.20.05P C -=⨯⨯-=⨯⨯≈.(2)5次预报中至少有2次准确的概率为551(0)(1)P P --005011515510.8(10.8)0.8(10.8)C C --=-⨯⨯--⨯⨯-10.000320.00640.99=--≈.(3)“5次预报中恰有2次准确,且其中第3次预报准确”的概率为1412340.80.8(10.8)40.80.20.02C -⨯⨯⨯-=⨯⨯≈.18.本小题主要考查平面的基本性质、线线平行、线面垂直、二面角等基础知识和基本运算,考查空间想象能力、逻辑推理能力和运算能力.满分12分. 解法一:(1)如图,在1DD 上取点N ,使1DN =,连结EN ,CN ,则1AE DN ==,12CF ND ==.因为AE DN ∥,1ND CF ∥,所以四边形ADNE ,1CFD N 都为平行四边形.从而EN AD ∥,1FD CN ∥. 又因为AD BC ∥,所以EN BC ∥,故四边形BCNE 是平行四边形,由此推知CN BE ∥,从而1FD BE ∥.因此,1E B F D ,,,四点共面.C BAG HMDEF 1B1A1D1CN(2)如图,GM BF ⊥,又BM BC ⊥,所以BGM CFB =∠∠,tan tan BM BG BGM BG CFB ==∠∠23132BC BGCF ==⨯=. 因为AE BM ∥,所以ABME 为平行四边形,从而AB EM ∥. 又AB ⊥平面11BCC B ,所以EM ⊥平面11BCC B .(3)如图,连结EH .因为MH BF ⊥,EM BF ⊥,所以BF ⊥平面EMH ,得EH BF ⊥. 于是EHM ∠是所求的二面角的平面角,即EHM θ=∠.因为MBH CFB =∠∠,所以sin sin MH BM MBH BM CFB ==∠∠21BMBC CF ===+, tan EMMHθ== 解法二:(1)建立如图所示的坐标系,则(301)BE =,,,(032)BF =,,,1(333)BD =,,,所以1BD BE BF =+,故1BD ,BE ,BF 共面. 又它们有公共点B ,所以1E B F D ,,,四点共面.(2)如图,设(00)M z ,,,则203GM z ⎛⎫=- ⎪⎝⎭,,, 而(032)BF =,,,由题设得23203GM BF z =-+=得1z =.因为(001)M ,,,(301)E ,,,有(300)ME =,,, 又1(003)BB =,,,(030)BC =,,,所以10ME BB =,0ME BC =,从而1ME BB ⊥,ME BC ⊥.故ME ⊥平面11BCC B .(3)设向量(3)BP x y =,,⊥截面1EBFD ,于是BP BE ⊥,BP BF ⊥. 而(301)BE =,,,(032)BF =,,,得330BP BE x =+=,360BP BF y =+=,解得1x =-,2y =-,所以(123)BP =--,,. 又(300)BA =,,⊥平面11BCC B ,所以BP 和BA 的夹角等于θ或πθ-(θ为锐角).于是cos 14BP BA BP BAθ==. 故tan θ=19.本小题主要考查抛物线的基本性质、直线与抛物线的位置关系、向量的数量积、导数的应用、简易逻辑等基础知识和基本运算,考查分析问题、探索问题的能力.满分14分. 解:(1)设直线AB 的方程为y kx c =+,将该方程代入2y x =得20x kx c --=.令2()A a a ,,2()B b b ,,则ab c =-.因为2222OA OB ab a b c c =+=-+=,解得2c =, 或1c =-(舍去).故2c =.(2)由题意知2a b Q c +⎛⎫-⎪⎝⎭,,直线AQ 的斜率为22222AQ a c a ab k a a b a b a +-===+--. 又2y x =的导数为2y x '=,所以点A 处切线的斜率为2a , 因此,AQ 为该抛物线的切线. (3)(2)的逆命题成立,证明如下:设0()Q x c -,. 若AQ 为该抛物线的切线,则2AQ k a =, 又直线AQ 的斜率为2200AQa c a ab k a x a x +-==--,所以202a aba a x -=-,得202ax a ab =+,因0a ≠,有02a bx +=. 故点P 的横坐标为2a b+,即P 点是线段AB 的中点. 20.本小题主要考查等差、等比数列的有关知识,考查运用方程、分类讨论等思想方法进行分析、探索及论证问题的能力.满分16分.解:(1)设等差数列的公差为d ,则由题设得11a d a q +=,1(1)d a q =-,且1q ≠. 由k m b a =得111(1)k b qa m d -=+-,所以11(1)(1)kb q m d --=-,11111(1)(1)(1)(1)(1)111k k b q m a q m d S m a q q q ------====----.故等式成立.(2)(ⅰ)证明q 为整数:由3i b a =得211(1)b q a i d =+-,即2111(1)(1)a q a i a q =+--,移项得11(1)(1)(1)(1)a q q a i q +-=--.因110a b =≠,1q ≠,得2q i =-,故q 为整数. (ⅱ)证明数列{}n b 中的每一项都是数列{}n a 中的项: 设n b 是数列{}n b 中的任一项,只要讨论3n >的情形. 令111(1)n b qa k d -=+-,即1111(1)(1)n a q a k a q --=--,得1221121n n q k q q q q ---=+=++++-.因2q i =-,当1i =时,1q =-,22n q q q -+++为1-或0,则k 为1或2;而2i ≠,否则0q =,矛盾.当3i ≥时,q 为正整数,所以k 为正整数,从而n k b a =. 故数列{}n b 中的每一项都是数列{}n a 中的项.(3)取12q =,21b b q =,341b b q =. 33141112(1)11)2b b b q b b b ⎡⎤⎢⎥+=+=+==⎢⎥⎝⎭⎣⎦. 所以1b ,2b ,4b 成等差数列.21.本小题主要考查函数、方程、不等式的基本知识,考查综合运用分类讨论、等价转化等思想方法分析问题及推理论证的能力.满分16分.解:(1)设r 为方程的一个根,即()0f r =,则由题设得(())0g f r =.于是,(0)(())0g g f r ==,即(0)0g d ==.所以,0d =.(2)由题意及(1)知2()f x bx cx =+,32()g x ax bx cx =++. 由0a =得b c ,是不全为零的实数,且2()()g x bx cx x bx c =+=+,则[]22(())()()()()g f x x bx c bx bx c c x bx c b x bcx c =+++=+++. 方程()0f x =就是()0x bx c +=.①方程(())0g f x =就是22()()0x bx c b x bcx c +++=.②(ⅰ)当0c =时,0b ≠,方程①、②的根都为0x =,符合题意. (ⅱ)当0c ≠,0b =时,方程①、②的根都为0x =,符合题意. (ⅲ)当0c ≠,0b ≠时,方程①的根为10x =,2cx b=-,它们也都是方程②的根,但它们不是方程220b x bcx c ++=的实数根.由题意,方程220b x bcx c ++=无实数根,此方程根的判别式22()40bc b c ∆=-<,得04c <<.综上所述,所求c 的取值范围为[)04,.(3)由1a =,(1)0f =得b c =-,2()(1)f x bx cx cx x =+=-+,2(())()()()g f x f x f x cf x c ⎡⎤=-+⎣⎦.③由()0f x =可以推得(())0g f x =,知方程()0f x =的根一定是方程(())0g f x =的根. 当0c =时,符合题意.当0c ≠时,0b ≠,方程()0f x =的根不是方程2()()0f x cf x c -+= ④ 的根,因此,根据题意,方程④应无实数根.那么当2()40c c --<,即04c <<时,2()()0f x cf x c -+>,符合题意.当2()40c c --≥,即0c <或4c ≥时,由方程④得2()2c f x cx cx ±=-+=,即202c cx cx ±-+=,⑤则方程⑤应无实数根,所以有2()40c c--<且2()40c --<.当0c <时,只需220c --<,解得1603c <<,矛盾,舍去.当4c ≥时,只需220c -+<,解得1603c <<.因此,1643c <≤.梦想不会辜负一个努力的人综上所述,所求c的取值范围为163⎡⎫⎪⎢⎣⎭,.。

2010年江苏省高考数学试卷答案与解析

2010年江苏省高考数学试卷答案与解析

2010年江苏省高考数学试卷参考答案与试题解析一、填空题(共14小题,每小题5分,满分70分)1.(5分)(2010•江苏)设集合A={﹣1,1,3},B={a+2,a2+4},A∩B={3},则实数a=1.【考点】交集及其运算.【专题】集合.【分析】根据交集的概念,知道元素3在集合B中,进而求a即可.【解答】解:∵A∩B={3}∴3∈B,又∵a2+4≠3∴a+2=3 即a=1故答案为1【点评】本题属于以集合的交集为载体,考查集合的运算推理,求集合中元素的基础题,也是高考常会考的题型.2.(5分)(2010•江苏)设复数z满足z(2﹣3i)=6+4i(其中i为虚数单位),则z的模为2.【考点】复数代数形式的乘除运算;复数求模.【专题】数系的扩充和复数.【分析】直接对复数方程两边求模,利用|2﹣3i|=|3+2i|,求出z的模.【解答】解:z(2﹣3i)=2(3+2i),|z||(2﹣3i)|=2|(3+2i)|,|2﹣3i|=|3+2i|,z的模为2.故答案为:2【点评】本题考查复数运算、模的性质,是基础题.3.(5分)(2010•江苏)盒子中有大小相同的3只白球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的概率是.【考点】古典概型及其概率计算公式.【专题】概率与统计.【分析】算出基本事件的总个数n=C42=6,再算出事件A中包含的基本事件的个数m=C31=3,算出事件A的概率,即P(A)=即可.【解答】解:考查古典概型知识.∵总个数n=C42=6,∵事件A中包含的基本事件的个数m=C31=3∴故填:.【点评】本题考查古典概型及其概率计算公式,其算法是:(1)算出基本事件的总个数n;(2)算出事件A中包含的基本事件的个数m;(3)算出事件A的概率,即P(A)=.4.(5分)(2010•江苏)某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图所示,则其抽样的100根中,有30根在棉花纤维的长度小于20mm.【考点】频率分布直方图.【专题】概率与统计.【分析】由图分析可得:易得棉花纤维的长度小于20mm段的频率,根据频率与频数的关系可得频数.【解答】解:由图可知,棉花纤维的长度小于20mm段的频率为0.01+0.01+0.04,则频数为100×(0.01+0.01+0.04)×5=30.故填:30.【点评】本题考查频率分布直方图的知识.考查读图的能力,读图时要全面细致,同时,解题方法要灵活多样,切忌死记硬背,要充分运用数形结合思想来解决由统计图形式给出的数学实际问题.5.(5分)(2010•江苏)设函数f(x)=x(e x+ae﹣x)(x∈R)是偶函数,则实数a=﹣1.【考点】函数奇偶性的性质.【专题】函数的性质及应用.【分析】由函数是偶函数,直接用特殊值求解即可【解答】解:因为函数f(x)=x(e x+ae﹣x)(x∈R)是偶函数,所以g(x)=e x+ae﹣x为奇函数由g(0)=0,得a=﹣1.故答案是﹣1【点评】考查函数的奇偶性的应用及填空题的解法.6.(5分)(2010•江苏)在平面直角坐标系xOy中,双曲线上一点M,点M的横坐标是3,则M到双曲线右焦点的距离是4.【考点】双曲线的定义.【专题】圆锥曲线的定义、性质与方程.【分析】d为点M到右准线x=1的距离,根据题意可求得d,进而先根据双曲线的第二定义可知=e,求得MF.答案可得.【解答】解:=e=2,d为点M到右准线x=1的距离,则d=2,∴MF=4.故答案为4【点评】本题主要考查双曲线的定义.属基础题.7.(5分)(2010•江苏)如图是一个算法的流程图,则输出S的值是63.【考点】设计程序框图解决实际问题.【专题】算法和程序框图.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环求满足条件S=1+2+22+…+2n≥33的最小的S值,并输出.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环求满足条件S=1+2+22+…+2n≥33的最小的S值∵S=1+2+22+23+24=31<33,不满足条件.S=1+2+22+23+24+25=63≥33,满足条件故输出的S值为:63.故答案为:63【点评】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是::①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.8.(5分)(2010•江苏)函数y=x2(x>0)的图象在点(a k,a k2)处的切线与x轴交点的横坐标为a k+1,k为正整数,a1=16,则a1+a3+a5=21.【考点】抛物线的简单性质.【专题】圆锥曲线的定义、性质与方程.【分析】先求出函数y=x2在点(a k,a k2)处的切线方程,然后令y=0代入求出x的值,再结合a1的值得到数列的通项公式,再得到a1+a3+a5的值.【解答】解:在点(a k,a k2)处的切线方程为:y﹣a k2=2a k(x﹣a k),当y=0时,解得,所以.故答案为:21.【点评】考查函数的切线方程、数列的通项.9.(5分)(2010•江苏)在平面直角坐标系xOy中,已知圆x2+y2=4上有且仅有四个点到直线12x﹣5y+c=0的距离为1,则实数c的取值范围是(﹣13,13).【考点】直线与圆的位置关系.【专题】直线与圆.【分析】求出圆心,求出半径,圆心到直线的距离小于1即可.【解答】解:圆半径为2,圆心(0,0)到直线12x﹣5y+c=0的距离小于1,即,c的取值范围是(﹣13,13).【点评】考查圆与直线的位置关系.(圆心到直线的距离小于1,此时4个,等于3个,等于1,大于1是2个.)是有难度的基础题.10.(5分)(2010•江苏)定义在区间上的函数y=6cosx的图象与y=5tanx的图象的交点为P,过点P作PP1⊥x轴于点P1,直线PP1与y=sinx的图象交于点P2,则线段P1P2的长为.【考点】余弦函数的图象;正切函数的图象.【专题】三角函数的图像与性质.【分析】先将求P1P2的长转化为求sinx的值,再由x满足6cosx=5tanx可求出sinx的值,从而得到答案.【解答】解:线段P1P2的长即为sinx的值,且其中的x满足6cosx=5tanx,即6cosx=,化为6sin2x+5sinx﹣6=0,解得sinx=.线段P1P2的长为故答案为.【点评】考查三角函数的图象、数形结合思想.11.(5分)(2010•江苏)已知函数,则满足不等式f(1﹣x2)>f(2x)的x的范围是(﹣1,﹣1).【考点】分段函数的解析式求法及其图象的作法;其他不等式的解法.【专题】函数的性质及应用;不等式的解法及应用.【分析】由题意f(x)在[0,+∞)上是增函数,而x<0时,f(x)=1,故满足不等式f(1﹣x2)>f(2x)的x需满足,解出x即可.【解答】解:由题意,可得故答案为:【点评】本题考查分段函数的单调性,利用单调性解不等式,考查利用所学知识分析问题解决问题的能力.12.(5分)(2010•江苏)设实数x,y满足3≤xy2≤8,4≤≤9,则的最大值是27.【考点】基本不等式在最值问题中的应用.【专题】不等式的解法及应用.【分析】首先分析题目由实数x,y满足条件3≤xy2≤8,4≤≤9.求的最大值的问题.根据不等式的等价转换思想可得到:,,代入求解最大值即可得到答案.【解答】解:因为实数x,y满足3≤xy2≤8,4≤≤9,则有:,,再根据,即当且仅当x=3,y=1取得等号,即有的最大值是27.故答案为:27.【点评】此题主要考查不等式的基本性质和等价转化思想,等价转换思想在考试中应用不是很广泛,但是对于特殊题目能使解答更简便,也需要注意,属于中档题.13.(5分)(2010•江苏)在锐角△ABC中,角A、B、C的对边分别为a、b、c,若+=6cosC,则+的值是4.【考点】正弦定理的应用;三角函数的恒等变换及化简求值.【专题】三角函数的求值;解三角形.【分析】由+=6cosC,结合余弦定理可得,,而化简+==,代入可求【解答】解:∵+=6cosC,由余弦定理可得,∴则+=======故答案为:4【点评】本题主要考查了三角形的正弦定理与余弦定理的综合应用求解三角函数值,属于基本公式的综合应用.14.(5分)(2010•江苏)将边长为1m正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记,则S的最小值是.【考点】利用导数求闭区间上函数的最值.【专题】函数的性质及应用;导数的概念及应用.【分析】先设剪成的小正三角形的边长为x表示出S的解析式,然后求S的最小值,方法一:对函数S进行求导,令导函数等于0求出x的值,根据导函数的正负判断函数的单调性进而确定最小值;方法二:令3﹣x=t,代入整理根据一元二次函数的性质得到最小值.【解答】解:设剪成的小正三角形的边长为x,则:(方法一)利用导数求函数最小值.,=,当时,S′(x)<0,递减;当时,S′(x)>0,递增;故当时,S的最小值是.(方法二)利用函数的方法求最小值.令,则:故当时,S的最小值是.【点评】考查函数中的建模应用,等价转化思想.一题多解.二、解答题(共9小题,满分110分)15.(14分)(2010•江苏)在平面直角坐标系xOy中,点A(﹣1,﹣2)、B(2,3)、C(﹣2,﹣1).(1)求以线段AB、AC为邻边的平行四边形两条对角线的长;(2)设实数t满足()•=0,求t的值.【考点】平面向量数量积的运算;向量在几何中的应用.【专题】平面向量及应用.【分析】(1)(方法一)由题设知,则.从而得:.(方法二)设该平行四边形的第四个顶点为D,两条对角线的交点为E,则:由E是AC,BD的中点,易得D(1,4)从而得:BC=、AD=;(2)由题设知:=(﹣2,﹣1),.由()•=0,得:(3+2t,5+t)•(﹣2,﹣1)=0,从而得:.或者由,,得:【解答】解:(1)(方法一)由题设知,则.所以.故所求的两条对角线的长分别为、.(方法二)设该平行四边形的第四个顶点为D,两条对角线的交点为E,则:E为B、C的中点,E(0,1)又E(0,1)为A、D的中点,所以D(1,4)故所求的两条对角线的长分别为BC=、AD=;(2)由题设知:=(﹣2,﹣1),.由()•=0,得:(3+2t,5+t)•(﹣2,﹣1)=0,从而5t=﹣11,所以.或者:,,【点评】本题考查平面向量的几何意义、线性运算、数量积,考查向量的坐标运算和基本的求解能力.16.(14分)(2010•江苏)如图,在四棱锥P﹣ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.(1)求证:PC⊥BC;(2)求点A到平面PBC的距离.【考点】点、线、面间的距离计算;空间中直线与平面之间的位置关系.【专题】空间位置关系与距离;立体几何.【分析】(1),要证明PC⊥BC,可以转化为证明BC垂直于PC所在的平面,由PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°,容易证明BC⊥平面PCD,从而得证;(2),有两种方法可以求点A到平面PBC的距离:方法一,注意到第一问证明的结论,取AB的中点E,容易证明DE∥平面PBC,点D、E 到平面PBC的距离相等,而A到平面PBC的距离等于E到平面PBC的距离的2倍,由第一问证明的结论知平面PBC⊥平面PCD,交线是PC,所以只求D到PC的距离即可,在等腰直角三角形PDC中易求;方法二,等体积法:连接AC,则三棱锥P﹣ACB与三棱锥A﹣PBC体积相等,而三棱锥P ﹣ACB体积易求,三棱锥A﹣PBC的地面PBC的面积易求,其高即为点A到平面PBC的距离,设为h,则利用体积相等即求.【解答】解:(1)证明:因为PD⊥平面ABCD,BC⊂平面ABCD,所以PD⊥BC.由∠BCD=90°,得CD⊥BC,又PD∩DC=D,PD、DC⊂平面PCD,所以BC⊥平面PCD.因为PC⊂平面PCD,故PC⊥BC.(2)(方法一)分别取AB、PC的中点E、F,连DE、DF,则:易证DE∥CB,DE∥平面PBC,点D、E到平面PBC的距离相等.又点A到平面PBC的距离等于E到平面PBC的距离的2倍.由(1)知:BC⊥平面PCD,所以平面PBC⊥平面PCD于PC,因为PD=DC,PF=FC,所以DF⊥PC,所以DF⊥平面PBC于F.易知DF=,故点A到平面PBC的距离等于.(方法二)等体积法:连接AC.设点A到平面PBC的距离为h.因为AB∥DC,∠BCD=90°,所以∠ABC=90°.从而AB=2,BC=1,得△ABC的面积S△ABC=1.由PD⊥平面ABCD及PD=1,得三棱锥P﹣ABC的体积.因为PD⊥平面ABCD,DC⊂平面ABCD,所以PD⊥DC.又PD=DC=1,所以.由PC⊥BC,BC=1,得△PBC的面积.由V A﹣PBC=V P﹣ABC,,得,故点A到平面PBC的距离等于.【点评】本小题主要考查直线与平面、平面与平面的位置关系,考查几何体的体积,考查空间想象能力、推理论证能力和运算能力.17.(14分)(2010•江苏)某兴趣小组测量电视塔AE的高度H(单位:m),如示意图,垂直放置的标杆BC的高度h=4m,仰角∠ABE=α,∠ADE=β.(1)该小组已经测得一组α、β的值,tanα=1.24,tanβ=1.20,请据此算出H的值;(2)该小组分析若干测得的数据后,认为适当调整标杆到电视塔的距离d(单位:m),使α与β之差较大,可以提高测量精确度.若电视塔的实际高度为125m,试问d为多少时,α﹣β最大?【考点】解三角形的实际应用.【专题】解三角形.【分析】(1)在Rt△ABE中可得AD=,在Rt△ADE中可得AB=,BD=,再根据AD﹣AB=DB即可得到H.(2)先用d分别表示出tanα和tanβ,再根据两角和公式,求得tan(α﹣β)=,再根据均值不等式可知当d===55时,tan(α﹣β)有最大值即α﹣β有最大值,得到答案.【解答】解:(1)=tanβ⇒AD=,同理:AB=,BD=.AD﹣AB=DB,故得﹣=,得:H===124.因此,算出的电视塔的高度H是124m.(2)由题设知d=AB,得tanα=,tanβ===,tan(α﹣β)====d+≥2,(当且仅当d===55时,取等号)故当d=55时,tan(α﹣β)最大.因为0<β<α<,则0<α﹣β<,所以当d=55时,α﹣β最大.故所求的d是55m.【点评】本题主要考查解三角形的知识、两角差的正切及不等式的应用.当涉及最值问题时,可考虑用不等式的性质来解决.18.(16分)(2010•江苏)在平面直角坐标系xoy中,如图,已知椭圆=1的左、右顶点为A、B,右焦点为F.设过点T(t,m)的直线TA、TB与椭圆分别交于点M(x1,y1)、N(x2,y2),其中m>0,y1>0,y2<0.(1)设动点P满足PF2﹣PB2=4,求点P的轨迹;(2)设x1=2,x2=,求点T的坐标;(3)设t=9,求证:直线MN必过x轴上的一定点(其坐标与m无关).【考点】轨迹方程;直线与圆锥曲线的综合问题.【专题】圆锥曲线的定义、性质与方程.【分析】(1)设点P(x,y),由两点距离公式将PF2﹣PB2=4,变成坐标表示式,整理即得点P的轨迹方程.(2)将分别代入椭圆方程,解出点M与点N的坐标由两点式写出直线AM与直线BN的方程联立解出交点T的坐标.(3)方法一求出直线方程的参数表达式,然后求出其与x的交点的坐标,得到其横坐标为一个常数,从而说明直线过x轴上的定点.方法二根据特殊情况即直线与x轴垂直时的情况求出定点,然后证明不垂直于x轴时两线DM与DN斜率相等,说明直线MN过该定点.【解答】解:(1)设点P(x,y),则:F(2,0)、B(3,0)、A(﹣3,0).由PF2﹣PB2=4,得(x﹣2)2+y2﹣[(x﹣3)2+y2]=4,化简得.故所求点P的轨迹为直线.(2)将分别代入椭圆方程,以及y1>0,y2<0,得M(2,)、N(,)直线MTA方程为:,即,直线NTB方程为:,即.联立方程组,解得:,所以点T的坐标为.(3)点T的坐标为(9,m)直线MTA方程为:,即,直线NTB方程为:,即.分别与椭圆联立方程组,同时考虑到x1≠﹣3,x2≠3,解得:、.(方法一)当x1≠x2时,直线MN方程为:令y=0,解得:x=1.此时必过点D(1,0);当x1=x2时,直线MN方程为:x=1,与x轴交点为D(1,0).所以直线MN必过x轴上的一定点D(1,0).(方法二)若x1=x2,则由及m>0,得,此时直线MN的方程为x=1,过点D(1,0).若x1≠x2,则,直线MD的斜率,直线ND的斜率,得k MD=k ND,所以直线MN过D点.因此,直线MN必过x轴上的点(1,0).【点评】本小题主要考查求简单曲线的方程,考查方直线与椭圆的方程等基础知识.考查运算求解能力和探究问题的能力19.(16分)(2010•江苏)设各项均为正数的数列{a n}的前n项和为S n,已知2a2=a1+a3,数列是公差为d的等差数列.(1)求数列{a n}的通项公式(用n,d表示);(2)设c为实数,对满足m+n=3k且m≠n的任意正整数m,n,k,不等式S m+S n>cS k都成立.求证:c的最大值为.【考点】等差数列的性质;归纳推理.【专题】等差数列与等比数列.【分析】(1)根据等差数列的通项公式,结合已知,列出关于a1、d的方程,求出a1,进而推出s n,再利用a n与s n的关系求出a n.(2)利用(1)的结论,对S m+S n>cS k进行化简,转化为基本不等式问题求解;或求出c 的最大值的范围,利用夹逼法求出a的值.【解答】解:(1)由题意知:d>0,=+(n﹣1)d=+(n﹣1)d,∵2a2=a1+a3,∴3a2=S3,即3(S2﹣S1)=S3,∴,化简,得:,当n≥2时,a n=S n﹣S n﹣1=n2d2﹣(n﹣1)2d2=(2n﹣1)d2,适合n=1情形.故所求a n=(2n﹣1)d2(2)(方法一)S m+S n>cS k⇒m2d2+n2d2>c•k2d2⇒m2+n2>c•k2,恒成立.又m+n=3k且m≠n,,故,即c的最大值为.(方法二)由及,得d>0,S n=n2d2.于是,对满足题设的m,n,k,m≠n,有.所以c的最大值.另一方面,任取实数.设k为偶数,令,则m,n,k符合条件,且.于是,只要9k2+4<2ak2,即当时,.所以满足条件的,从而.因此c的最大值为.【点评】本小题主要考查等差数列的通项、求和以及基本不等式等有关知识,考查探索、分析及论证的能力.20.(16分)(2010•江苏)设f(x)是定义在区间(1,+∞)上的函数,其导函数为f′(x).如果存在实数a和函数h(x),其中h(x)对任意的x∈(1,+∞)都有h(x)>0,使得f′(x)=h(x)(x2﹣ax+1),则称函数f(x)具有性质P(a),设函数f(x)=,其中b为实数.(1)①求证:函数f(x)具有性质P(b);②求函数f(x)的单调区间.(2)已知函数g(x)具有性质P(2),给定x1,x2∈(1,+∞),x1<x2,设m为实数,α=mx1+(1﹣m)x2,β=(1﹣m)x1+mx2,α>1,β>1,若|g(α)﹣g(β)|<|g(x1)﹣g(x2)|,求m的取值范围.【考点】利用导数研究函数的单调性.【专题】导数的综合应用.【分析】(1)①先求出函数f(x)的导函数f′(x),然后将其配凑成f′(x)=h(x)(x2﹣bx+1)这种形式,再说明h(x)对任意的x∈(1,+∞)都有h(x)>0,即可证明函数f (x)具有性质P(b);②根据第一问令φ(x)=x2﹣bx+1,讨论对称轴与2的大小,当b≤2时,对于x>1,φ(x)>0,所以f′(x)>0,可得f(x)在区间(1,+∞)上单调性,当b>2时,φ(x)图象开口向上,对称轴,可求出方程φ(x)=0的两根,判定两根的范围,从而确定φ(x)的符号,得到f′(x)的符号,最终求出单调区间.(2)先对函数g(x)求导,再m分m≤0,m≥1,0<m<1进行,同时运用函数的单调性即可得到.【解答】解:(1)①f′(x)=∵x>1时,恒成立,∴函数f(x)具有性质P(b);②当b≤2时,对于x>1,φ(x)=x2﹣bx+1≥x2﹣2x+1=(x﹣1)2>0所以f′(x)>0,故此时f(x)在区间(1,+∞)上递增;当b>2时,φ(x)图象开口向上,对称轴,方程φ(x)=0的两根为:,而当时,φ(x)<0,f′(x)<0,故此时f(x)在区间上递减;同理得:f(x)在区间上递增.综上所述,当b≤2时,f(x)的单调增区间为(1,+∞);当b>2时,f(x)的单调减区间为;f(x)的单调增区间为.(2)由题设知:g(x)的导函数g′(x)=h(x)(x2﹣2x+1),其中函数h(x)>0对于任意的x∈(1,+∞)都成立,所以,当x>1时,g′(x)=h(x)(x﹣1)2>0,从而g(x)在区间(1,+∞)上单调递增.①当m∈(0,1)时,有α=mx1+(1﹣m)x2>mx1+(1﹣m)x1=x1,α<mx2+(1﹣m)x2=x2,得α∈(x1,x2),同理可得β∈(x1,x2),所以由g(x)的单调性知g(α),g(β)∈(g(x1),g(x2)),从而有|g(α)﹣g(β)|<|g(x1)﹣g(x2)|,符合题设;②当m≤0时,α=mx1+(1﹣m)x2≥mx2+(1﹣m)x2=x2,β=mx2+(1﹣m)x1≤mx1+(1﹣m)x1=x1,于是由α>1,β>1及g(x)的单调性知g(β)≤g(x1)<g(x2)≤g(α),所以|g(α)﹣g(β)|≥|g(x1)﹣g(x2)|,与题设不符.③当m≥1时,同理可得α≤x1,β≥x2,进而得|g(α)﹣g(β)|≥|g(x1)﹣g(x2)|,与题设不符因此,综合①、②、③得所求的m的取值范围为(0,1).【点评】本题主要考查函数的概念、性质、图象及导数等基础知识,考查灵活运用数形结合、分类讨论的思想方法进行探索、分析与解决问题的综合能力.21.(10分)(2010•江苏)本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.A:AB是圆O的直径,D为圆O上一点,过D作圆O的切线交AB延长线于点C,若DA=DC,求证:AB=2BC.B:在平面直角坐标系xOy中,已知点A(0,0),B(﹣2,0),C(﹣2,1).设k为非零实数,矩阵M=,N=,点A、B、C在矩阵MN对应的变换下得到点分别为A1、B1、C1,△A1B1C1的面积是△ABC面积的2倍,求k的值.C:在极坐标系中,已知圆ρ=2cosθ与直线3ρcosθ+4ρsinθ+a=0相切,求实数a的值.D:设a、b是非负实数,求证:.【考点】参数方程化成普通方程;基本不等式;直线和圆的方程的应用.【专题】不等式的解法及应用;直线与圆;矩阵和变换;坐标系和参数方程.【分析】A、连接OD,则OD⊥DC,又OA=OD,DA=DC,所以∠DAO=∠ODA=∠DCO,再证明OB=BC=OD=OA,即可求解.B、由题设得,根据矩阵的运算法则进行求解.C、在极坐标系中,已知圆ρ=2cosθ与直线3ρcosθ+4ρsinθ+a=0相切,由题意将圆和直线先化为一般方程坐标,然后再计算a值.D、利用不等式的性质进行放缩证明,然后再进行讨论求证.【解答】解:A:(方法一)证明:连接OD,则:OD⊥DC,又OA=OD,DA=DC,所以∠DAO=∠ODA=∠DCO,∠DOC=∠DAO+∠ODA=2∠DCO,所以∠DCO=30°,∠DOC=60°,所以OC=2OD,即OB=BC=OD=OA,所以AB=2BC.(方法二)证明:连接OD、BD.因为AB是圆O的直径,所以∠ADB=90°,AB=2OB.因为DC是圆O的切线,所以∠CDO=90°.又因为DA=DC,所以∠DAC=∠DCA,于是△ADB≌△CDO,从而AB=CO.即2OB=OB+BC,得OB=BC.故AB=2BC.B满分(10分).由题设得由,可知A1(0,0)、B1(0,﹣2)、C1(k,﹣2).计算得△ABC面积的面积是1,△A1B1C1的面积是|k|,则由题设知:|k|=2×1=2.所以k的值为2或﹣2.C解:ρ2=2ρcosθ,圆ρ=2cosθ的普通方程为:x2+y2=2x,(x﹣1)2+y2=1,直线3ρcosθ+4ρsinθ+a=0的普通方程为:3x+4y+a=0,又圆与直线相切,所以,解得:a=2,或a=﹣8.D(方法一)证明:==因为实数a、b≥0,所以上式≥0.即有.(方法二)证明:由a、b是非负实数,作差得==当a≥b时,,从而,得;当a<b时,,从而,得;所以.【点评】本题主要考查三角形、圆的有关知识,考查推理论证能力,及图形在矩阵对应的变换下的变化特点,考查运算求解能力还考查曲线的极坐标方程等基本知识,考查转化问题的能力.另外此题也考查参数方程与普通方程的区别和联系,两者要会互相转化,根据实际情况选择不同的方程进行求解,这也是每年高考必考的热点问题.22.(2010•江苏)某工厂生产甲、乙两种产品,甲产品的一等品率为80%,二等品率为20%;乙产品的一等品率为90%,二等品率为10%.生产1件甲产品,若是一等品则获得利润4万元,若是二等品则亏损1万元;生产1件乙产品,若是一等品则获得利润6万元,若是二等品则亏损2万元.设生产各种产品相互独立.(1)记X(单位:万元)为生产1件甲产品和1件乙产品可获得的总利润,求X的分布列;(2)求生产4件甲产品所获得的利润不少于10万元的概率.【考点】离散型随机变量及其分布列;相互独立事件的概率乘法公式.【专题】概率与统计.【分析】(1)根据题意做出变量的可能取值是10,5,2,﹣3,结合变量对应的事件和相互独立事件同时发生的概率,写出变量的概率和分布列.(2)设出生产的4件甲产品中一等品有n件,则二等品有4﹣n件,根据生产4件甲产品所获得的利润不少于10万元,列出关于n的不等式,解不等式,根据这个数字属于整数,得到结果,根据独立重复试验写出概率.【解答】解:(1)由题设知,X的可能取值为10,5,2,﹣3,且P(X=10)=0.8×0.9=0.72,P(X=5)=0.2×0.9=0.18,P(X=2)=0.8×0.1=0.08,P(X=﹣3)=0.2×0.1=0.02.4﹣n件.由题设知4n﹣(4﹣n)≥10,解得,又n∈N,得n=3,或n=4.所求概率为P=C43×0.83×0.2+0.84=0.8192答:生产4件甲产品所获得的利润不少于10万元的概率为0.8192.【点评】本题考查离散型随机变量的分布列和期望,考查相互独立事件同时发生的概率,考查独立重复试验的概率公式,考查互斥事件的概率,是一个基础题,这种题目可以作为高考题的解答题目出现.23.(10分)(2010•江苏)已知△ABC的三边长都是有理数.(1)求证cosA是有理数;(2)求证:对任意正整数n,cosnA是有理数.【考点】余弦定理的应用;数学归纳法.【专题】解三角形.【分析】(1)设出三边为a,b,c,根据三者为有理数可推断出b2+c2﹣a2是有理数,b2+c2﹣a2是有理数,进而根据有理数集对于除法的具有封闭性推断出也为有理数,根据余弦定理可知=cosA,进而可知cosA是有理数.(2)先看当n=1时,根据(1)中的结论可知cosA是有理数,当n=2时,根据余弦的二倍角推断出cos2A也是有理数,再假设n≥k(k≥2)时,结论成立,进而可知coskA、cos(k ﹣1)A均是有理数,用余弦的两角和公式分别求得cos(k+1)A,根据cosA,coskA,cos (k﹣1)A均是有理数推断出cosA,coskA,cos(k﹣1)A,即n=k+1时成立.最后综合原式得证.【解答】解:(1)证明:设三边长分别为a,b,c,,∵a,b,c是有理数,b2+c2﹣a2是有理数,分母2bc为正有理数,又有理数集对于除法的具有封闭性,∴必为有理数,∴cosA是有理数.(2)①当n=1时,显然cosA是有理数;当n=2时,∵cos2A=2cos2A﹣1,因为cosA是有理数,∴cos2A也是有理数;②假设当n=k(k≥2)时,结论成立,即coskA、cos(k﹣1)A均是有理数.当n=k+1时,cos(k+1)A=coskAcosA﹣sinkAsinA,,,解得:cos(k+1)A=2coskAcosA﹣cos(k﹣1)A∵cosA,coskA,cos(k﹣1)A均是有理数,∴2coskAcosA﹣cos(k﹣1)A是有理数,∴cosA,coskA,cos(k﹣1)A均是有理数.即当n=k+1时,结论成立.综上所述,对于任意正整数n,cosnA是有理数.【点评】本题主要考查余弦定理、数学归纳法等基础知识,考查推理论证的能力与分析问题、解决问题的能力.。

2010年江苏高考数学试题(含答案详解

2010年江苏高考数学试题(含答案详解

2010年普通高等学校招生全国统一考试江苏卷数学全解全析数学Ⅰ试题注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,包含填空题(第1题——第14题)、解答题(第15题——第20题)。

本卷满分160分,考试时间为120分钟。

考试结束后,请将本卷和答题卡一并交回。

2.答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。

3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符。

4.请在答题卡上按照晤顺序在对应的答题区域内作答,在其他位置作答一律无效。

作答必须用0.5毫米黑色墨水的签字笔。

请注意字体工整,笔迹清楚。

5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗。

6.请保持答题卡卡面清洁,不要折叠、破损。

参考公式:1锥体的体积公式:V 锥体=Sh,其中S是锥体的底面积,h是高。

3一、填空题:本大题共14小题,每小题5分,共70分。

请把答案填写在答题.卡.相.应.的.位..置.上..1、设集合A={-1,1,3},B={a+2,a 2+4},A∩B={3},则实数a=______▲_____.[解析]考查集合的运算推理。

3B,a+2=3,a=1.2、设复数z满足z(2-3i)=6+4i(其中i为虚数单位),则z的模为______▲_____.[解析]考查复数运算、模的性质。

z(2-3i)=2(3+2i),2-3i与3+2i的模相等,z的模为2。

3、盒子中有大小相同的3只白球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的概率是_▲__.[解析]考查古典概型知识。

31p624、某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图所示,则其抽样的100根中,有_▲___根在棉花纤维的长度小于20mm。

2007年江苏高考数学试卷及答案[1]

2007年江苏高考数学试卷及答案[1]

2 2x y15. 在平面直角坐标系 xOY 中,△ ABC 顶点A (-4,0)和C (4, 0),顶点B 在椭圆 125 165兀 兀 B .[ ,] 6 6 6. 设函数f (x )定义在实数集上,它的图像关于直线1 3 223 1A . f (一) :::f (一) :::f (一)B . f (一):::f f(—)3 2 33 2321332 1 C . f (一) :::f (一) :::f (_) D .f (一):::f f(—)3 3 223 37. 假设对于任意实数x ,有 x 3=a °+a 1 (x — 2)+a 2 (x —2)2+a 3(x — 2) 3,贝U a 2的值为 16. 某时钟的秒针端点 A 到中心点O 的距离为5cm ,秒针均匀地绕点 O 旋转,当时间t=0时,点A 与钟面上标12的点B 重合,将A , B 两点的距离d (cm )表示成t (s )的函数,那么d _______________ 其中 t € [0 , 60]。

三、解答题:本大题共 5小题,共70分。

请在答题卡指定区域.内作答,解答时应写出文字说明、 证明过程或演算步骤。

17. (本小题总分值12分) 某气象站天气预报的准确率为 80%,计算(结果保存到小数点后面第 2位) (1) 5次预报中恰有2次准确的概率;(4分) (2) 5次预报中至少有 2次准确的概率;(4分)参考公式: 2007年普通高等学校招生全国统一考试(江苏卷)数学n 次独立重复试验恰有 k 次发生的概率为: k k P n (k)二 C n P (1 - P)n Jk2&设f (x) = lg(a)是奇函数,那么使f (x ) <0的x 的取值范围是 1 _ x A . (-1 , 0) B . ( 0, 1) C . (-a, 0) D . (-s, 0)U( 1 , + s)2 9.二次函数f (x ) =ax +bx+c 的导数为f '( x ), f '( 0) >0,对于任意实数 x 都有f (x )> 0,那么丄®的最小值为 f '(0) 、选择题:本大题共 10小题,每题 5分,共 50分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2008年普通高校招生全国统一考试(江苏卷数学1. (cos(6f x wx π=-的最小正周期为5π,其中0w >,则w = ▲ 。

【解析】本小题考查三角函数的周期公式。

2105T w w ππ==⇒=。

答案102.一个骰子连续投2次,点数和为4的概率为▲ 。

【解析】本小题考查古典概型。

基本事件共66⨯个,点数和为4的有(1,3、(2,2、(3,1共3个,故316612P ==⨯。

答案112 3.11i i-+表示为a bi +(,a b R ∈,则a b += ▲ 。

【解析】本小题考查复数的除法运算, 1,0,11ii a b i-=∴==+ ,因此a b +=1。

答案14. {}2(137,A x x x =-<-则A Z 的元素个数为▲ 。

【解析】本小题考查集合的运算和解一元二次不等式。

由2 (137x x -<-得2580x x -+<因为0∆<,所以A φ=,因此A Z φ= ,元素的个数为0。

答案0 5.,a b 的夹角为0120,1,3a b == ,则5a b -= ▲ 。

【解析】本小题考查向量的线形运算。

因为1313(22a b ⋅=⨯⨯-=-,所以22225(52510a b a b a b a b -=-=+-⋅ =49。

因此5a b -=7。

答案76.在平面直角坐标系xoy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随意投一点,则落入E 中的概率为▲ 。

【解析】本小题考查古典概型。

如图:区域D表示边长为4的正方形ABCD的内部(含边界,区域E表示单位圆及其内部,因此214416Pππ⨯==⨯。

答案16π7.某地区为了解70~80岁老人的日平均睡眠时间(单位:h,随机选择了50位老人进行调查。

下表是这50位老人日睡眠时间的频率分布表。

序号(i分组(睡眠时间组中值(iG频数(人数频率(iF1 [4,5 4.5 6 0.122 [5,6 5.5 10 0.203 [6,7 6.5 20 0.404 [7,8 7.5 10 0.205 [8,9 8.5 4 0.08在上述统计数据的分析中,一部分计算算法流程图,则输出的S的值是▲。

【解析】本小题考查统计与算法知识。

答案6.428.直线12y x b=+是曲线ln(0y x x=>的一条切线,则实数b=▲。

【解析】本小题考查导数的几何意义、切线的求法。

1yx'=,令112x=得2x=,故切点为(2,ln2,代入直线方程,得1ln222b=⨯+,所以ln21b=-。

答案ln21b=-9.在平面直角坐标系中,设三角形ABC的顶点坐标分别为(0,,(,0,(,0A aB bC c,点(0,P p在线段OA上(异于端点,设,,,a b c p均为非零实数,直线,BP CP分别交,AC AB于点E,F,一同学已正确算出OE的方程:1111x yb c p a⎛⎫⎛⎫-+-=⎪⎪⎝⎭⎝⎭,请你求OF的方程:▲。

【解析】本小题考查直线方程的求法。

画草图,由对称性可猜想1111 ((0x y c b p a-+-=。

事实上,由截距式可得直线:1x yAB a b +=,直线:1x y CD c p+=,两式相减得1111((0x y c b p a-+-=,显然直线AB 与CP 的交点F 满足此方程,又原点O 也满足此方程,故为所求的直线OF 的方程。

答案1111((0x y c b p a-+-=。

10.将全体正整数排成一个三角形数阵:12345678910按照以上排列的规律,第n 行(3n ≥从左向右的第3个数为▲ 。

【解析】本小题考查归纳推理和等差数列求和公式。

前1n -行共用了123(1n +++-(12n n -个数,因此第n 行(3n ≥从左向右的第3个数是全体正整数中的第(132n n-+个,即为262n n -+。

答案262n n -+11.2,,,230,y x y z R x y z xz*∈-+=的最小值为▲ 。

【解析】本小题考查二元基本不等式的运用。

由230x y z -+=得32x z y +=,代入2y xz 得229666344x z xz xz xzxz xz+++≥=,当且仅当3x z =时取“=”。

答案3。

12.在平面直角坐标系中,椭圆22221(0x y a b a b+=>>的焦距为2,以O 为圆心,a 为半径的圆,过点2(,0a c作圆的两切线互相垂直,则离心率e =▲ 。

【解析】本小题考查椭圆的基本量和直线与圆相切的位置关系。

如图,切线,PA PB 互相垂直,又OA PA ⊥,所以OAP ∆是等腰直角三角形,故22a a c =,解得22c e a ==。

答案2213.若2,2AB AC BC ==,则ABC S ∆的最大值▲ 。

【解析】本小题考查三角形面积公式及函数思想。

因为AB=2(定长,可以以AB 所在的直线为x 轴,其中垂线为y 轴建立直角坐标系,则(1,0,(1,0A B -,设(,C x y ,由2AC BC =可得2222(12(1x y x y ++=-+,化简得22(38x y -+=,即C 在以(3,0为圆心,22为半径的圆上运动。

又1222ABC c c S AB y y ∆=⋅⋅=≤。

答案2214.3(31f x ax x =-+对于[]1,1x ∈-总有(0f x ≥成立,则a = ▲ 。

【解析】本小题考查函数单调性及恒成立问题的综合运用,体现了分类讨论的数学思想。

要使(0f x ≥恒成立,只要min (0f x ≥在[]1,1x ∈-上恒成立。

22(333(1f x ax ax '=-=-01 当0a =时,(31f x x =-+,所以min (20f x =-<,不符合题意,舍去。

02当0a <时22(333(10f x ax ax '=-=-<,即(f x 单调递减,min ((1202f x f a a ==-≥⇒≥,舍去。

03当0a >时1(0f x x a'=⇒=±①若111a a ≤⇒≥时(f x 在11,a ⎡⎤--⎢⎥⎣⎦和 1,1a ⎡⎤⎢⎥⎣⎦上单调递增, 在11,a a ⎛⎫- ⎪⎪⎝⎭上单调递减。

所以min1(min (1,(f x f f a ⎧⎫⎪⎪=-⎨⎬⎪⎪⎩⎭(1400411(120f a a f a a -=-+≥⎧⎪≥⇒⇒=⎨=-≥⎪⎩②当111a a>⇒<时(f x 在[]1,1x ∈-上单调递减, min ((1202f x f a a ==-≥⇒≥,不符合题意,舍去。

综上可知a=4.答案4。

15.如图,在平面直角坐标系xoy 中,以ox 轴为始边做两个锐角,αβ,它们的终边分别与单位圆相交于A ,B 两点,已知A ,B 的横坐标分别为225,105。

(1 求tan(αβ+的值; (2 求2αβ+的值。

【解析】本小题考查三角函数的定义、两角和的正切、二倍角的正切公式。

由条件得225cos ,cos 105αβ==, α 为锐角, 故72sin 0sin 10αα>=且。

同理可得5sin 5β=, 因此1tan 7,tan 2αβ==。

(117tan tan 2tan(11tan tan 172αβαβαβ+++==--⨯=-3。

(2132tan(2tan[(]11(32αβαββ-++=++=--⨯=-1,0,0,22ππαβ<<<<3022παβ∴<+<,从而324παβ+=。

16.在四面体ABCD 中,CB=CD ,AD BD ⊥,且E ,F 分别是AB ,BD 的中点, 求证(I 直线EF D 面AC ;(II EFC D ⊥面面BC 。

证明:(I E ,F 分别为AB ,BD 的中点EF AD ⇒EF AD AD ACD EF ACD EF ACD ⎫⎪⇒⊂⇒⎬⎪⊄⎭面面面。

(II EF AD EF BDAD BD CD CB CF BD BD EFC F BD EF CF F⎫⎫⇒⊥⎬⎪⊥⎭⎪⎪=⎫⎪⇒⊥⇒⊥⎬⎬⎭⎪⎪=⎪⎪⎭面为的中点又BD BCD ⊂面,所以EFC D ⊥面面BC17.某地有三家工厂,分别位于矩形ABCD 的顶点A ,B ,及CD 的中点P 处,已知20AB =km,10CD km =,为了处理三家工厂的污水,现要在矩形ABCD 的区域上(含边界,且A ,B与等距离的一点O 处建造一个污水处理厂,并铺设排污管道AO ,BO ,OP ,设排污管道的总长为ykm 。

(I 按下列要求写出函数关系式:①设(BAO rad θ∠=,将y 表示成θ的函数关系式; ②设(OP x km =,将y 表示成x 的函数关系式。

(II 请你选用(I 中的一个函数关系式,确定污水处理厂的位置,使三条排水管道总长度最短。

【解析】本小题考查函数最值的应用。

(I ①由条件可知PQ 垂直平分AB ,(BAO rad θ∠=,则10AQ OA COS BAO COS θ==∠DEFCAB故10OB COS θ=,又1010tan OP θ=-,所以10101010tan y OA OB OP COS COS θθθ=++=++-2010sin 10(0cos 4θπθθ-=+<<。

②(OP x km =,则10OQ x =-,所以222(101020200OA OB x x x == -+=-+,所以所求的函数关系式为2220200(010y x x x x =+-+<<。

(I选择函数模型①。

22210cos (2010sin (sin 10(2sin 1cos cos y θθθθθθ-----'==。

令0y '=得1sin 2θ=,又04πθ<<,所以6πθ=。

当06πθ<<时,0y '<,y 是θ的减函数;64ππθ<<时,0y '>,y 是θ的增函数。

所以当6πθ=时min 10310y =+。

当P 位于线段AB 的中垂线上且距离AB 边1033km 处。

18.设平面直角坐标系xoy 中,设二次函数2(2(f x x x b x R =++∈的图象与坐标轴有三个交点,经过这三个交点的圆记为C 。

(1 求实数b 的取值范围; (2 求圆C 的方程;(3 问圆C 是否经过某定点(其坐标与b 无关?请证明你的结论。

【解析】本小题考查二次函数图象与性质、圆的方程的求法。

(1010(00b b f ∆>⎧⇒<≠⎨≠⎩且(2 设所求圆的方程为220x y Dx Ey F ++++=。

相关文档
最新文档