线性代数向量空间自测题
第六章线性空间自测练习及答案
第六章 线性空间—自测答案一.判断题1.两个线性子空间的和(交)仍是子空间。
2.两个线性子空间的并仍是子空间。
3.n 维线性空间中任意n 个线性无关的向量可以作为此空间的一组基。
4.线性空间中两组基之间的过渡阵是可逆的。
5.两个线性子空间的和的维数等于两个子空间的维数之和。
6.同构映射的逆映射仍是同构映射。
7.两个同构映射的乘积仍是同构映射。
8.同构的线性空间有相同的维数。
9.数域P 上任意两个n 维线性空间都同构。
10.每个n 维线性空间都可以表示成n 个一维子空间的和。
答案:错:2.5.8 对:1.3.4.6.7.9.10 二.计算与证明1. 求[]n P t 的子空间1011{()|(1)0,()[]}n n n W f t a a t a t f f t P t --==++=∈……+的基与维数。
解:(1)0f =0110n a a a -∴++=……+ 0121n a a a a -∴=----……设11a k =,22a k =,…,11n n ak --=,故0121n a k k k -=----……,21121121()n n n f t k k k k t k t k t ---∴=---+++ 21121(1)(1)(1)n n t k t k tk --=-+-++-因此,W 中任一多项式可写成211,1,,1n t t t ---- 的线性组合,易知211,1,,1n t t t---- 线性无关,故为W 的一组基,且W 的维数为n -1. 2. 求22P ⨯中由矩阵12113A ⎛⎫= ⎪-⎝⎭,21020A ⎛⎫= ⎪⎝⎭,33113A ⎛⎫= ⎪⎝⎭,41133A ⎛⎫= ⎪-⎝⎭生成的子空间的基与维数。
解:取22P ⨯的一组基11122122,,,E E E E ,则有 12341112212221311011,,,)(,,,)12133033A A A A E E E E ⎡⎤⎢⎥⎢⎥=⎢⎥-⎢⎥⎣⎦( 设213110111213333A ⎡⎤⎢⎥⎢⎥=⎢⎥-⎢⎥⎣⎦,即为1234,,,A A A A 在11122122,,,E E E E 下的坐标矩阵,对其作初等行变换得矩阵1011011-1000000B ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦1234dim (,,,)2L A A A A rankB ∴==,12,A A 为一组基。
自考线性代数试题及答案
自考线性代数试题及答案一、选择题(每题2分,共20分)1. 在线性代数中,向量空间的基具有什么性质?A. 唯一性B. 线性无关性C. 任意性D. 可数性答案:B2. 矩阵的秩是指什么?A. 矩阵的行数B. 矩阵的列数C. 矩阵中线性无关行的最大数目D. 矩阵中线性无关列的最大数目答案:D3. 线性变换的核是指什么?A. 变换后的向量集合B. 变换前的向量集合C. 变换后为零向量的向量集合D. 变换前为零向量的向量集合答案:C4. 线性方程组有唯一解的条件是什么?A. 方程的个数等于未知数的个数B. 方程组是齐次的C. 方程组的系数矩阵是可逆的D. 方程组的系数矩阵的秩等于增广矩阵的秩答案:D5. 特征值和特征向量在矩阵理论中具有什么意义?A. 矩阵的对角化B. 矩阵的转置C. 矩阵的行列式D. 矩阵的迹答案:A6. 以下哪个矩阵是正交矩阵?A. 对角矩阵B. 单位矩阵C. 任意矩阵D. 零矩阵答案:B7. 矩阵的迹是矩阵对角线上元素的什么?A. 和B. 差C. 积D. 比答案:A8. 线性代数中的线性组合是什么?A. 向量的加法B. 向量的数乘C. 向量的加法和数乘的组合D. 向量的点积答案:C9. 矩阵的行列式可以用于判断矩阵的什么性质?A. 可逆性B. 秩C. 正交性D. 特征值答案:A10. 线性变换的值域是指什么?A. 变换前的向量集合B. 变换后的向量集合C. 变换前的向量空间D. 变换后的向量空间答案:B二、填空题(每空1分,共10分)11. 矩阵的转置是将矩阵的______交换。
答案:行与列12. 方程组 \( Ax = 0 \) 是一个______方程组。
答案:齐次13. 矩阵 \( A \) 和矩阵 \( B \) 相乘,记作 \( AB \),其中\( A \) 的列数必须等于______的行数。
答案:B14. 向量 \( \mathbf{v} \) 的长度(或范数)通常表示为\( \left\| \mathbf{v} \right\| \),它是一个______。
线性代数向量空间自测题(附答案)
《第四章 向量空间》 自测题 (75分钟)一、选择、填空(20分,每小题4分)1. 下列向量集合按向量的加法和数乘运算构成R 上一个向量空间的是( )。
(A )R n 中,分量满足x 1+x 2+…+x n =0的所有向量; (B )R n 中,分量是整数的所有向量;(C )R n 中,分量满足x 1+x 2+…+x n =1的所有向量;(D )R n 中,分量满足x 1=1,x 2,…,x n 可取任意实数的所有向量。
2.设R 4 的一组基为,,,,4321αααα令414433322211,,,ααβααβααβααβ+=+=+=+=,则子空间}4,3,2,1,|{44332211=∈+++=i F k k k k k W i ββββ的维数为 ,它的一组基为 。
3. 向量空间R n 的子空间 },0|)0,,,,{(1121121R x x x x x x x W n n ∈=+=-- 的维数为 , 它的一组基为 。
4. 设W 是所有二阶实对称矩阵构成的线性空间,即⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧∈⎪⎪⎭⎫ ⎝⎛=R a a aa a W ij 22121211,则它的维数为 ,一组基为 。
5.若A=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-100021021b a 为正交矩阵,且|A|=-1,则a = ,b = 。
二、计算题(60分) 1.(15分)设R 3的两组基为:T T T )1,1,0(,)0,1,1(,)1,0,1(321===ααα和T T T )1,2,1(,)2,1,1(,)1,1,1(321===βββ,向量α=(2,3,3)T(1)求由基321,,ααα到基321,,βββ的过渡矩阵。
(2)求α关于这两组基的坐标。
(3)将321,,βββ化为一组标准正交基。
2. (15分)在R 4 中,求下述齐次线性方程组的解空间的维数和基,⎪⎩⎪⎨⎧=+-+=-+-=+-+0111353033304523432143214321x x x x x x x x x x x x 3.(20分)已知321,,ααα是3维向量空间R 3的一组基,向量组321,,βββ满足3132322132131,,ααββααββαααββ+=++=+++=+(1)证明:321,,βββ是一组基。
线性空间部分测试题
线性空间部分自测题一、判断题1.若向量组12,,,s ααα"与向量组12,,,t βββ"都线性无关,则12,,,s ααα",12,,,tβββ"也线性无关;2.n 维线性空间V 中任何n 个线性无关的向量都是V 的一组基;3.对n 维线性空间V 中任何非零向量α,在V 中一定存在1n −个向量121,,,n βββ−",使得1121,,,,n αβββ−"作成V 的一组基;4.三个子空间123,,V V V 的和123V V V ++为直和的充要条件是{}1230V V V ∩∩=;5.把复数域看成实数域R 上的线性空间,它与2R 是同构的;6.线性空间V 的两组基12,,,n ααα"到12,,,n βββ"的过渡矩阵是可逆的; 7.V 的任意两个子空间的交12V V ∩与并12V V ∪都是V 的子空间; 8.集合{},0n n W A A P A ×=∈=作成n n P ×的子空间。
二、填空题1.如果11dim V m =,22dim V m =,123dim()V V m +=,则12dim()V V ∩= . 2.两个有限维线性空间1V 、2V 同构的充分必要条件是 .3.设基12,,,n ααα"到基12,,,n βββ"的过渡矩阵是A ,而基12,,,n βββ"到基12,,,n γγγ"的过渡矩阵是B ,则12,,,n γγγ"到12,,,n ααα"的过渡矩阵是 .4.已知,,αβγ为线性空间V 的三个线性无关的向量,则子空间(,)(,)L L αββγ+的维数为 .5.若1212dim()dim dim V V V V +=+,则12V V ∩= .6.设三维线性空间V 的基123,,ααα到123,,βββ的过渡矩阵为111111111A ⎛⎞⎜⎟=⎜⎟⎜⎟⎝⎠,向量η在基123,,βββ下的坐标为(1,2,3),在η在基123,,ααα下的坐标为 .三、简述下列定义1.子空间的和12V V += 2.生成子空间123(,,)L ααα= 3.子空间的直和:四、设β可由12,,,r ααα"线性表出,但不能由121,,,r ααα−"线性表出,证明:121121(,,,,)(,,,,)r r r L L αααααααβ−−="".五、设A 、B 是两个固定的n 级矩阵,证明:(1){},n n W X X P AX XB ×=∈=是n n P ×的一个子空间;(2)当A B =是主对角元两两互异的对角矩阵时,W 是什么样的子空间,并求W 的维数及一组基(可以只写结果,不必说明理由).(六、设1(1,1,3,7)α=−,2(2,1,0,1)α=−,3(1,1,1,1)α=−,4(1,2,1,0)α= (1)分别写出生成子空间12(,)L αα与34(,)L αα的基和维数; (2)求1234(,,,)L αααα的一组基和维数; (3)求1234(,)(,)L L αααα∩的维数.(4)求1234(,)(,)L L αααα∩的一组基(选做).七、补充题设[]n P x 表示数域P 上次数小于n 的多项式及零多项式作成的线性空间,a P ∈. (1)验证{}1()()0,()[]n V f x f a f x P x ==∈是[]n P x 的一个子空间; (2)求1V 的一组基及维数;(3)记2V P =,则2V 也是数域P 上的一个子空间,试证明:12[]n P x V V =⊕.。
线性代数考试题及答案
线性代数考试题及答案一、选择题(每题2分,共20分)1. 向量空间中,线性无关的向量集合的最小维度是:A. 1B. 2C. 3D. 向量的数量答案:D2. 矩阵A的行列式为0,这意味着:A. A是可逆矩阵B. A不是可逆矩阵C. A的所有行向量线性相关D. A的所有列向量线性无关答案:B3. 线性变换T: R^3 → R^3,由矩阵[1 2 3; 4 5 6; 7 8 9]表示,其特征值是:A. 1, 2, 3B. 0, 1, 2C. -1, 1, 2D. 0, 3, 6答案:D4. 矩阵A与矩阵B相乘,结果矩阵的秩最多是:A. A的秩B. B的秩C. A和B的秩之和D. A的秩和B的列数中较小的一个答案:D5. 给定两个向量v1和v2,它们的点积v1·v2 > 0,这意味着:A. v1和v2垂直B. v1和v2平行或共线C. v1和v2的夹角小于90度D. v1和v2的夹角大于90度答案:C6. 对于任意矩阵A,下列哪个矩阵总是存在的:A. 伴随矩阵B. 逆矩阵C. 转置矩阵D. 特征矩阵答案:C7. 线性方程组AX=B有唯一解的充分必要条件是:A. A是方阵B. A的行列式不为0C. B是零向量D. A是可逆矩阵答案:D8. 矩阵的特征值和特征向量之间的关系是:A. 特征向量对应于特征值B. 特征值对应于特征向量C. 特征向量是矩阵的行向量D. 特征值是矩阵的对角元素答案:A9. 一个矩阵的迹(trace)是:A. 所有元素的和B. 主对角线上元素的和C. 所有行的和D. 所有列的和答案:B10. 矩阵的范数有很多种,其中最常见的是:A. L1范数B. L2范数C. 无穷范数D. 所有上述范数答案:D二、简答题(每题10分,共20分)1. 请解释什么是基(Basis)以及它在向量空间中的作用是什么?答:基是向量空间中的一组线性无关的向量,它们通过线性组合可以表示空间中的任何向量。
线性代数第三章向量试题及答案
第三章 向量1、基本概念定义1:由n 个数构成的一个有序数组[]n a a ,,a 21 称为一个n 维向量,称这些数为它的分量。
分量依次是a 1,a 2,⋯ ,a n 的向量可表示成:=α[]n a a ,,a 21 ,称为行向量,或=T α[]T n a a ,,a 21 称为列向量。
请注意,作为向量它们并没有区别,但是作为矩阵,它们不一样(左边是1⨯n 矩阵,右边是n ⨯1矩阵)。
习惯上把它们分别(请注意与下面规定的矩阵的行向量和列向量概念的区别)。
一个m ⨯n 的矩阵的每一行是一个n 维向量,称为它的行向量;每一列是一个m 维向量,称为它的列向量,常常用矩阵的列向量组来写出矩阵,例如当矩阵A 的列向量组为m ααα,,21 时(它们都是表示为列的形式!)可记A =(m ααα,,21 )。
矩阵的许多概念也可对向量来规定,如元素全为0的向量称为零向量,通常也记作0。
两个向量和相等(记作=),是指它的维数相等,并且对应的分量都相等.2、向量的线形运算3、向量组的线形相关性定义2:向量组的线性组合:设m ααα,,21 是一组n 维量,m k k k 21,是一组数,则m m k k k ααα ++2211为m ααα,,21 的线性组合。
n 维向量组的线性组合也是n 维向量。
定义3:线形表出:如果n 维向量β能表示成m ααα,,21 的一个线性组合,即=βm m k k k ααα ++2211,则称β可以用量组m ααα,,21 线性表示。
判别β是否可以用m ααα,,21 线性表示? 表示方式是否唯一?就是问:向量方程βααα=++m m x x x 2211是否有解?解是否唯一?用分量写出这个向量方程,就是以()βααα m 21,为增广矩阵的线性方程组。
反之,判别“以()β A 为增广矩阵的线性方程组是否有解?解是否唯一?的问题又可转化为β是否可以用A 的列向量组线性表示? 表示方式是否唯一?”的问题。
2016-2017(2)线性代数检测题
天津科技大学线性代数检测题§1.1专业、班级_______________学号_______________姓名_______________一.填空题1. 行列式1221=______________,111123149=______________. 2. 行列式111n D ==_____________,2100032100430005=______________. 二.选择题1. 线性方程组238521x y x y +=⎧⎨-=⎩的解为( ).(A) 1, 2x y ==; (B) 1, 2x y =-=; (C) 1, 2x y ==-; (D) 1, 2x y =-=-.三.计算题1. 利用对角线法则计算行列式112150205x x x ---.天津科技大学线性代数检测题§1.2~1.3专业、班级_______________学号_______________姓名_______________一.填空题1. 设三阶行列式111213212223313233a a a a a a D a a a =,则行列式111213313233212223a a a a a a a a a =___________. 2. 已知11123033x x=,则实数x =____________________.3. 设三阶行列式1230450D λλ=-,则元素2的代数余子式12A 的值为________.4. 设,a b 均为实数,则当_________________时,行列式000101a b b a -=--.5. 4阶行列式的221111220000000a b a b c d c d 值为_________________________. 二.选择题1. 下列关于行列式的计算过程,正确的是( ).(A) 利用对角线法则,有15261234567873840000000a a a a a a a a a a a a a a a a =-; (B) 2112 2 123021032r r r r ----; (C) 12 2 11012121r r -;(D)34342323001001100 000100100000000000100000000aa a r r c c a a a a a a r r c c a a a↔↔↔↔.三.计算题计算下列行列式的值:(1)120201174724101820-;(2)1111123413610141020.(3)2321010230130101;(4)1234234134124123;(5)3521110513132413------;(6)11111111231401323201320121212121---+.专业、班级_______________学号_______________姓名_______________一.填空题1. 线性方程组0()0ax y a x ay +=⎧∈⎨-+=⎩R 的解为x =___________,y =___________. 二.选择题1. 设齐次线性方程组10 (1,2,,)nij j j a x i n ===∑的系数行列式为D ,则0D ≠是该方程组仅有零解的( ).(A) 充分条件; (B) 必要条件; (C) 充分必要条件; (D) 既非充分也非必要条件.三.计算题1. 问a 、b 满足何条件时,齐次线性方程组1231231230020ax x x x bx x x bx x ++=⎧⎪++=⎨⎪++=⎩有非零解?2. 利用克莱姆法则求解线性方程组230201x y z y z z ++=⎧⎪+=⎨⎪=⎩.专业、班级_______________学号_______________姓名_______________一.填空题1. 当x 满足条件__________________时,行列式3140010xx x≠.2. 行列式的123423413412123234341412++++++++值为__________________.3. 设行列式102141022101521xD -=--,则元素x 的代数余子式的值是____________. 4. 已知三阶行列式D 的第2行元素依次为1, 1, 1-,它们的余子式依次是2, 8, 5-,则D =_________.5. 设行列式1112131421222324313233344244a a a a a a a a D a a a a a a =,ij A 为元素ij a 的代数余子式,则42224424a A a A += __________.6. 4阶行列式5200210000120011=-____________. 7. 行列式=ab acaebd cdde bf cf ef---______________________.二.计算题1.计算三阶行列式:2213 51313xx x -+;2.计算四阶行列式:(1) 1111111111111111------;(2)1234134114211123;(3) 3112513420111533------;(4)10010101010a aaaa.天津科技大学线性代数检测题§2.1~2.2专业、班级_______________学号_______________姓名_______________一.填空题1. 设112110x y ⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭,则矩阵x y ⎛⎫= ⎪⎝⎭________. 2. 设2142⎛⎫= ⎪--⎝⎭A ,3162-⎛⎫= ⎪-⎝⎭B ,则=AB _______,=BA ________,2=A ________. 3. 设200010003⎛⎫⎪= ⎪⎪⎝⎭A ,n 为正整数,则n =A _____________. 4. 设()324235A -⎛⎫ ⎪=- ⎪ ⎪⎝⎭,则5A =.5. 设A 、B 为n 阶方阵,则22()()-=+-A B A B A B 的充分必要条件是____________.二.选择题1. 设矩阵012121⎛⎫= ⎪⎝⎭A ,则 ( ).(A) 0242121⎛⎫= ⎪⎝⎭A ; (B)012111⎛⎫= ⎪-⎝⎭A ; (C) 0242(2)242--⎛⎫-= ⎪---⎝⎭A A ; (D) 1110210021-⎛⎫⎛⎫+= ⎪ ⎪-⎝⎭⎝⎭A .2. 设A 、B 为两个矩阵,则下列说法正确的是( ).(A) 若=AB O ,则=A O 或=B O ; (B) 若A 、B 为同型矩阵,则=AB BA ; (C) 若=AB O ,=BA O ,则=AB BA ; (D) 若k =A O ,则0k =或=A O . 3. 设A 、B 、C 均为n 阶方阵,下列说法不正确的是( ). (A) ()()++=++A B C A B C ; (B) ()()=AB C A BC ; (C) ()+=+A B C AC BC ;(D) =AB AC ,≠A O ,则=B C .4. 设1243⎛⎫= ⎪⎝⎭A ,12x y ⎛⎫=⎪⎝⎭B ,则A 、B 相乘可交换的充要条件是( ).(A) 1x y =+; (B) 1x y =-; (C) x y =; (D) 2x y =.三.计算题1. 计算矩阵的乘积:100223101414010⎛⎫-⎛⎫ ⎪ ⎪ ⎪⎝⎭ ⎪⎝⎭.2. 设2()37f x x x =--,1121⎛⎫= ⎪-⎝⎭A ,求()f A .四.证明题若2=A A ,则称A 为幂等矩阵.证明:若A 、B 为幂等矩阵,则+A B 为幂等矩阵的充要条件是=-AB BA .天津科技大学线性代数检测题§2.3专业、班级_______________学号_______________姓名_______________一.填空题1. 设矩阵101210-⎛⎫= ⎪⎝⎭A ,101112-⎛⎫⎪= ⎪ ⎪⎝⎭B ,则2T+=A B ______________.2. 设方阵100210021⎛⎫⎪= ⎪ ⎪⎝⎭A ,则行列式2=-A ________.二.选择题1. 设A 、B 为两个n 阶方阵,则( ).(A) =AB BA ;(B) T T T T +=+A B B A ; (C) T T T T =A B B A ; (D) ()T T T =A B AB . 2. 设A 、B 为两个n 阶反对称矩阵,则下列说法错误的是( ). (A) +A B 是反对称矩阵; (B) k A 是反对称矩阵;(C) T A 是反对称矩阵; (D) AB 是反对称矩阵的充分必要条件是=AB BA .三.计算题已知101214325-⎛⎫ ⎪= ⎪ ⎪-⎝⎭A ,123130052-⎛⎫ ⎪=- ⎪ ⎪⎝⎭B ,求:(1) T AB ;(2) 3-A .天津科技大学线性代数检测题§2.4~2.5一.填空题1. 设三阶方阵≠A O ,13024351t ⎛⎫ ⎪= ⎪ ⎪⎝⎭B 且=AB O ,则常数t =______________. 2. 设*A 是三阶矩阵A 的伴随矩阵,已知4=A ,则12*=A ____________. 3. 设1=A ,A 的伴随矩阵为*A ,则()1T -=A _____________.二.选择题1. 设A 为二阶方阵,且2=A ,则1(3)-=A ( ). (A)118; (B) 92; (C) 32; (D) 16. 2. 设A 、B 为两个n 阶方阵,其中A 为可逆矩阵,则=B O 是=AB O 的( ). (A) 充分条件; (B) 必要条件; (C) 充要条件; (D) 既非充分也非必要条件.三.计算题1. 求下列方阵的逆矩阵:(1) cos sin sin cos αααα⎛⎫⎪-⎝⎭;(2) 001423110⎛⎫ ⎪ ⎪ ⎪-⎝⎭;(3) 121342541-⎛⎫ ⎪- ⎪ ⎪-⎝⎭.2. 求解矩阵方程=AXB C ,其中1111-⎛⎫= ⎪⎝⎭A ,100401230⎛⎫⎪=- ⎪ ⎪⎝⎭B ,012123⎛⎫= ⎪⎝⎭C .四.证明题设方阵A 满足223+-=A A E O ,证明4+A E 可逆,并求其逆矩阵.天津科技大学线性代数检测题§2.6专业、班级_______________学号_______________姓名_______________一.填空题1. 设A 为n 阶奇异矩阵,→A B ,则行列式=B _____________.2. 设A 为n 阶方阵,det()D =A ,(,)i j E 为n 阶交换矩阵,则det((,))i j =AE _________.二.选择题1. 矩阵150102520062⎛⎫⎪ ⎪⎪⎝⎭的标准形为( ). (A) 100002000060⎛⎫⎪ ⎪ ⎪⎝⎭; (B)100002000002⎛⎫⎪ ⎪ ⎪⎝⎭; (C) 100001000001⎛⎫⎪ ⎪ ⎪⎝⎭; (D) 100001000010⎛⎫⎪ ⎪ ⎪⎝⎭. 三.计算题1. 用初等变换方法求下列矩阵的逆矩阵(先判断是否可逆,若可逆,求出其逆矩阵):(1) 121342541-⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A ; (2) 2311351511⎛⎫⎪=--- ⎪ ⎪⎝⎭B ;(3) 102020103⎛⎫ ⎪= ⎪ ⎪-⎝⎭C .2. 用初等变换方法求解矩阵方程=AX B ,其中121342541-⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A ,012123T⎛⎫= ⎪⎝⎭B .天津科技大学线性代数检测题§2.7专业、班级_______________学号_______________姓名_______________一.填空题1. 设A 为n 阶满秩矩阵,则A 的标准形矩阵为____________.2. 设矩阵131********t --⎛⎫⎪=⎪ ⎪--⎝⎭A 的秩为2,则t =____________. 二.选择题1. 设A 为m s ⨯阶矩阵,α为s 维非零列向量,0为s 维零列向量,()=B α0,则()r AB ( ).(A) 0=; (B) 1=; (C) 2=; (D) 2<. 2. 设4阶矩阵A 的秩为2,则*()r =A ( ). (A) 0; (B) 1; (C) 2; (D) 3. 3. 设A 是任意矩阵,则( ).(A) 若A 的所有1r +阶子式全为零,则()r r =A ; (B) 若()m n r n ⨯=A ,则m n ≥;(C) 若A 是n 阶满秩方阵,则22()(())r r =A A ; (D) 若()r r =A ,则没有等于0的1r -阶子式.4. 设A 、B 均为n 阶非零方阵,且=AB O ,则A 、B 的秩( ). (A) 必有一个等于零;(B) 都小于n ;(C) 有一个小于n ;(D) 都等于n .三.计算题1. 用初等变换方法求矩阵121363242-⎛⎫⎪=- ⎪ ⎪--⎝⎭A 的秩.2.求矩阵12321436322101450327--⎛⎫⎪-⎪=⎪-⎪⎝⎭A的秩.3.讨论λ的取值范围,确定矩阵11221511061λλ-⎛⎫⎪=-⎪⎪-⎝⎭A的秩.天津科技大学线性代数第二章自测题专业、班级_______________学号_______________姓名_______________一.填空题1. 设矩阵151011-⎛⎫= ⎪-⎝⎭A ,120150-⎛⎫⎪= ⎪ ⎪-⎝⎭B ,则2T-=A B ______________.2. 设A 、B 、C 均为n 阶方阵,且=ABC E ,则2()T T -=E BC A ________.3. 设α、β为n 维列向量,则n 阶矩阵T =A αβ的秩为()r =A ____________.二.选择题1. 关于方阵A 、B ,下列说法错误的是( ).(A) 方程组=Ax 0有非零解的充分必要条件是0=A ; (B) 若=A B ,则=A B ; (C) 若=AB E ,则A 可逆; (D) 若2-=A A E ,则-A E 可逆. 2. 设A 为n 阶方阵,2=A A ,则下列结论正确的是( ).(A) =A O ; (B) =A E ; (C) 若A 不可逆,则=A O ; (D) 若A 可逆,则=A E .3. 设矩阵111213212223313233a a a a a a a a a ⎛⎫ ⎪= ⎪ ⎪⎝⎭A ,010100001⎛⎫ ⎪= ⎪ ⎪⎝⎭P ,100010101⎛⎫ ⎪= ⎪ ⎪⎝⎭Q ,则=PAQ ( ).(A) 212322231113121331333233a a a a a a a a a a a a +⎛⎫⎪+ ⎪ ⎪+⎝⎭; (B) 121113222123321231113313a a a a a a a a a a a a ⎛⎫⎪⎪ ⎪+++⎝⎭; (C) 212223111213312132223323a a a a a a a aa a a a ⎛⎫⎪⎪ ⎪+++⎝⎭; (D) 212221231112111331323133a a a a a a a a a a a a +⎛⎫⎪+ ⎪ ⎪+⎝⎭. 4. 设A 是43⨯矩阵,且()2r =A 而102020103⎛⎫⎪= ⎪ ⎪-⎝⎭B ,则AB 的秩为( ). (A) 0; (B) 1; (C) 2; (D) 3.三.计算题1. 求矩阵021112111-⎛⎫⎪= ⎪ ⎪---⎝⎭A 的逆矩阵.2. 设矩阵301110014⎛⎫⎪= ⎪ ⎪⎝⎭A ,矩阵X 满足2=+AX A X ,求X .四.证明题1. 设A 为n 阶非奇异矩阵,证明:(1) 1n -*=A A ;(2) ()2 (2)n n *-*=≥A A A .2. 证明m n ⨯矩阵A 的秩()1r ≤A 的充分必要条件是存在矩阵()12,,,Tm b b b =B 和()12,,,n c c c =C ,使得=A BC .天津科技大学线性代数检测题§3.1专业、班级_______________学号_______________姓名_______________一.填空题1. n 元线性方程组=Ax b 无解的充分必要条件是______________________.2. n 元线性方程组=Ax b 有无穷多组解的充分必要条件是______________________.3. n 元齐次线性方程组=Ax 0仅有零解的充分必要条件是______________________.4. 若方程组12312112323120x x a x a ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭无解,则a =_________.二.选择题1. 线性方程组 0420 0ax y z w x ay z w ax y z w +-+=⎧⎪+-+=⎨⎪+--=⎩( ).(A) 无解; (B) 仅有零解; (C) 有无穷多组解; (D) 解的情况依a 的值而定. 2. 设线性方程组=Ax b 的增广矩阵为()=A A b ,若A 在初等行变换的过程中有一行变为()001,则该方程组( ).(A) 可能有唯一解; (B) 可能有无穷多组解; (C) 无解; (D) 解的情况不能确定.三.计算题1. 求解非齐次线性方程组1232312312330 202 2x x x x x x x x x x x ++=⎧⎪-=⎪⎨--+=⎪⎪-+=⎩;2. 求解非齐次线性方程组132341234 4 82510 2x x x x x x x x x +=⎧⎪-+=-⎨⎪+-+=-⎩.3. 求解齐次线性方程组123123202470x x x x x x +-=⎧⎨++=⎩.4. 讨论λ满足什么条件时,方程组12312312300x x x x x x x x x λλ++=⎧⎪++=⎨⎪++=⎩只有零解.天津科技大学线性代数检测题§3.2专业、班级_______________学号_______________姓名_______________一.填空题1. 设n 维列向量()1100T=ε,()2010T=ε,…,()001Tn =ε,则向量()12Tn a a a =α可由向量组12,,,n εεε线性表示为=α________________.二.选择题1. 向量b 可由矩阵A 的列向量组线性表示的充要条件是线性方程组=Ax b ( ). (A) 有解; (B) 有唯一解; (C) 有无穷多解; (D) 无解.2. 设α、β为n 维列向量,k 是常数,则下列说法不正确的是( ).(A) +=+ααββ; (B)()k k k +=+αβαβ; (C)T T =αββα; (D) T T =αββα.三.计算题下列各题中,向量β能否由向量组123,,ααα线性表示?若能表示,则写出其线性表示式. 1. ()675T=-β,()1111T=-α,()2101T=-α,()3132T=-α.2. ()0,4,2,5=β,()11,2,3,1=α,()22,3,1,2=α,()33,1,2,2=-α.天津科技大学线性代数检测题§3.3专业、班级_______________学号_______________姓名_______________一.填空题1. 若矩阵A 的列向量组线性相关,则齐次线性方程组=Ax 0解的情况是___________.2. 设12,,,m ααα线性无关,则齐次线性方程组1122m m x x x +++=ααα0的通解为=x______________. 3. 设3阶矩阵()123=A ααα,且0≠A ,则向量组123, , 110101⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ααα线性______.4. 若向量组(1, 1, 2), (3, 2, 0), (1, 4, )λ-线性相关,则λ=________________.5. 设向量组12,αα线性无关,11=βα,212=+βαα,且1122k k +=0ββ,则12, k k 应满足____________________.二.选择题1. 关于向量组的线性相关性,下列说法正确的是( ). (A) 如果12,,,m ααα线性相关,则向量组中每一个向量都可以用其余1m -个向量线性表示;(B) 如果n 个n 维向量线性相关,那么它们所构成的方阵行列式等于零; (C) 如果12,,,m ααα线性相关,则存在一组全不为零的数12,,,m k k k ,使得1122m m k k k +++=ααα0;(D) 如果n 维向量12,,,m ααα线性无关,则必存在n 维向量β,使得12,,,,m αααβ线性无关.2. 下列向量组中,线性无关的是( ).(A) 104203, , 302401⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (B) 121, , 135-⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (C)111011, , 00111a ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (D) ()()(), , 1,0,1,22,0,2,41,1,1,1.三.计算题判断向量组()11,3,1,4=-α,()22,1,2,5=-α,()34,9,8,7=-α的线性相关性.四.证明题1. 设向量组123, , ααα线性无关,证明向量组123++ααα,1232++ααα,23+αα也线性无关.2. 设n 维列向量组12,,,s ααα线性无关,A 为n 阶可逆矩阵,证明向量组12,,,s A αA αA α也线性无关.天津科技大学线性代数检测题§3.4~3.5专业、班级_______________学号_______________姓名_______________一.填空题1. 设列向量组12,,,m ααα的秩为3,矩阵()121m -=A ααα,则矩阵A 的秩()r A 为 ______________. 2. 设向量m α能由121,,,m -ααα线性表示,且表示法唯一,则向量组12,,,m ααα的秩为___________.3. 向量空间2323{(0,,,,)|,,,}n n x x x x x x ==∈V R x ,则dim()=V ___________.4. 设非零向量,αβ线性相关,向量空间{},λμλμ==+∈V R x αβ,则dim()=V ___________.二.选择题1. 设V 是向量空间,,∈V x y ,则( ). (A) {|}k k =+∈W R x y 必构成V 的一个子空间; (B) {()|}k k =+∈W R x y 必构成V 的一个子空间; (C) 2{|}k k =+∈W R x y 必构成V 的一个子空间; (D) 2{|}k k =∈W R x 必构成V 的一个子空间.三.计算题1. 求向量组1(1,1,2,4)=-α,2(0,3,1,2)=α,3(3,0,7,14)=α, 4(1,1,2,0)=-α,5(2,1,5,6)=α的秩和一个极大无关组,并把其余向量用该极大无关组线性表示.2. 求向量组1142⎛⎫ ⎪= ⎪ ⎪-⎝⎭α,2124⎛⎫ ⎪=- ⎪ ⎪⎝⎭α,3251⎛⎫ ⎪= ⎪ ⎪-⎝⎭α,4452⎛⎫ ⎪= ⎪ ⎪-⎝⎭α,5544⎛⎫ ⎪= ⎪ ⎪-⎝⎭α的秩和一个极大无关组,并把其余向量用该极大无关组线性表示.3. 已知向量组1(1,1,1,3)T =α,2(1,3,5,1)T =--α,3(2,6,10,)T a =--α,4(4,1,6,10)T a =+α线性相关,求常数a .4. 判断向量组()11,3,5,1=-α,()22,1,3,4=--α,()35,1,1,7=-α,()43,3,1,1=--α的线性相关性,求它的秩和一个极大无关组,并把其余向量表示为该极大无关组的线性组合.天津科技大学线性代数检测题§3.6专业、班级_______________学号_______________姓名_______________一.填空题1. 设n 元齐次线性方程组=Ax 0的解空间的维数是d ,则()r =A ___________.2. 设n 阶矩阵A 的各行元素之和均为零,且()1r n =-A ,则齐次线性方程组=Ax 0的通解为___________________________________.3. 若三阶方阵A 的秩为2,, ξη是非齐次线性方程组=Ax b 的两个不同的解,则该方程组的通解为_________________________________.二.选择题1. 齐次线性方程组1323545 2 0 2 0 0x x x x x x x +=⎧⎪-+=⎨⎪+=⎩的基础解系是( ).(A) ()(), 2,2,1,0,00,1,0,1,1TT---; (B) ()()122,2,1,0,00,1,0,1,1TTk k +---; (C) ()(), 2,2,1,0,00,1,0,1,1TT-; (D) ()(), 2,2,0,0,00,1,0,1,0TT---.2. 设齐次线性方程组=Ax 0的解空间是零空间,则对应的非齐次线性方程组( ). (A) 无解或有唯一解; (B) 必有解; (C) 无解或有无穷多解; (D) 必有唯一解.三.计算题1. 求齐次线性方程组12341234123432 5 403 4 503514130x x x x x x x x x x x x +-+=⎧⎪-+-=⎨⎪+-+=⎩的一个基础解系及通解.2. 应用线性方程组解的结构理论,求线性方程组12341234 24522454x x x x x x x x -++=⎧⎨-+--=-⎩的通解.3. 求非齐次线性方程组132******** 43 133x x x x x x x x x x x +=⎧⎪-+=-⎪⎨++=⎪⎪-++=-⎩的通解.四.证明题设12, αα是某个齐次线性方程组的基础解系,证明12+αα,122-αα也是该齐次线性方程组的基础解系.天津科技大学线性代数检测题§3.7专业、班级_______________学号_______________姓名_______________一.填空题1. 设非零向量12,,,s ααα两两正交,则齐次线性方程组1122s s x x x +++=ααα0的解为=x __________.2. 设,αβ为两个n 维单位向量,则它们的夹角余弦cos θ=______________.3. n 维向量组12,,,n ααα为n R 的标准正交基的充分必要条件是对于,1,2,,i j n ∀=,有(),i j =αα_____________________.4. 设向量空间{(,0,)},a b a b ==∈V R x ,写出V 的一个标准正交基:____________________________.5. 设向量(2,5,4)-与向量(1,1,)t t -正交,则t =___________.二.选择题1. 设()12n =A ααα为n 阶正交矩阵,则 ( ).(A) 0 (,1,2,,)T i j i j s ==αα;(B) (,1,2,,)T j i i j s ==ααO ;(C) det()1=A ;(D) 1T -=A A .2. 设x 为n 维单位列向量,矩阵2T =-H E xx ,则下列说法错误的是( ). (A) 1-=H H ; (B) T =H H ; (C) 2=H H ; (D) 1T -=H H .3. 下列所给矩阵中为正交矩阵的是( ).(A) 111231112211132⎛⎫-⎪ ⎪⎪-⎪ ⎪ ⎪- ⎪⎝⎭;(B) 100010001-⎛⎫ ⎪- ⎪ ⎪⎝⎭;(C) 0211⎫-⎪⎪⎪⎪-⎭;(D)111011001-⎛⎫⎪- ⎪ ⎪⎝⎭.三.计算题1. 用Schmidt 正交化方法将向量组()10,1,1=α,()21,0,1=α,()31,1,0=α规范正交化.2. 设1210-⎛⎫ ⎪= ⎪ ⎪⎝⎭p ,2201⎛⎫ ⎪= ⎪ ⎪⎝⎭p ,用Schmidt 正交化方法求一个与12, p p 等价的标准正交向量组.3. 已知1T⎫=⎪⎭α,2T⎫=⎪⎭α,3T⎛= ⎝α,4T⎛= ⎝α是4R 的一组标准正交基,试将向量()1,2,3,4T =β表示为这组基的线性组合.天津科技大学线性代数第三章自测题专业、班级_______________学号_______________姓名_______________一.填空题1. 设向量1(1,2,1)=-α,2(2,5,3)=α,3(1,3,4)=α,312(32)=+-βααα,则=β ____________.2. 设方程组=Ax β有解,12,,,n ααα为A 的列向量组,则向量组12,,,,n αααβ线性________.(填“相关”或“无关”,3、4题同)3. 设方程组=Ax β有唯一解,则A 的列向量组线性________.4. 设由m 个方程组成的方程组=Ax 0有非零解,12,,,n ααα为A 的列向量组,β为任意m 维向量,则向量组12,,,,n αααβ线性___________.5. 已知向量组(1,2,)c =α,(2,,1)c =β,(7,4,1)=-γ线性无关,则数c 的取值范围是_______________.二.选择题1. n 维向量组12,,,(3)s s n ≤≤ααα线性无关的充要条件是 ( ).(A) 12,,,s ααα中任何两个向量都线性无关;(B) 存在不全为零的s 个数12,,,s k k k ,使得1122s s k k k +++≠ααα0;(C) 12,,,s ααα中任何一个向量都不能用其余向量线性表示; (D) 12,,,s ααα中存在一个向量不能用其余向量线性表示.2. 向量组12,,,s ααα线性相关的充要条件是 ( ).(A) 12,,,s ααα中有一个零向量;(B) 12,,,s ααα中任意两个向量的分量对应成比例; (C) 12,,,s ααα中至少有一个向量是其余向量的线性组合; (D) 12,,,s ααα中任意一个向量都是其余向量的线性组合.3. 若向量组,,αβγ线性无关,向量组,,αβδ线性相关,则( ).(A) α必可由向量组,,βγδ线性表示; (B) β必不可由向量组,,αγδ线性表示; (C) δ必可由向量组,,αβγ线性表示; (D) δ必不可由向量组,,αβγ线性表示.三.计算题1. 求线性方程组12341234220220x x x x x x x x +++=⎧⎨++-=⎩的基础解系,并将该基础解系标准正交化.2. 设()11,2,1T=-α,()22,2,1T=α,()31,1,3T=-α,验证123,,ααα是3R 的一个基,并求向量(1,0,1)T =β关于这个基的表达式.四.证明题设η是非齐次线性方程组=Ax b 的一个解,12,,,n r -ξξξ是对应的齐次线性方程组的一个基础解系. 证明:12,,,,n r -ηξξξ线性无关.天津科技大学线性代数检测题§4.1专业、班级_______________学号_______________姓名_______________一.填空题1. 矩阵135022003-⎛⎫⎪=- ⎪ ⎪⎝⎭A 的特征值为_____________. 2. 设n 阶方阵A 满足2=A E ,则A 的所有可能的特征值是______________.3. 设3阶矩阵A 的特征值为0、1、2,则矩阵2(2)-A E 的特征值为_______________.二.选择题1. 设A 为n 阶方阵,则 ( ).(A) A 的全部特征向量构成向量空间; (B) A 有n 个线性无关的特征向量;(C) A 的全部特征值的和为tr()A ; (D) A 的全部特征值的积为tr()A .2. 矩阵11113111b ⎛⎫ ⎪= ⎪ ⎪⎝⎭A 的特征值可能是( ). (A) 1,4,0; (B) 1,3,0; (C) 2,4,0; (D) 2,4,1-.三.计算题1. 求矩阵001010100⎛⎫ ⎪= ⎪ ⎪⎝⎭A 的特征值与特征向量.2.求矩阵211020413-⎛⎫⎪= ⎪⎪-⎝⎭A的特征值和特征向量.3.设A是n阶方阵,111,,,242nλ=是A的n个特征值,求行列式13--A E的值.天津科技大学线性代数检测题§4.2专业、班级_______________学号_______________姓名_______________一.填空题1. 设n 阶方阵A 有个特征值0,1,2,…,1n -,且方阵B 相似于A ,则=+E B _______. 2. 设方阵A 相似于数量矩阵k E ,则=A _______________.3. 对于n 阶矩阵A ,具有n 个不同的特征值是A 可以对角化的___________条件,具有n 个线性无关的特征向量是A 可以对角化的___________条件.4. 设矩阵11124233a -⎛⎫ ⎪=- ⎪ ⎪--⎝⎭A 与20002000b ⎛⎫ ⎪= ⎪ ⎪⎝⎭B 相似,则a =_______,b =_______.二.选择题1. 与矩阵1203⎛⎫= ⎪⎝⎭A 不相似的矩阵是( ). (A) 1023⎛⎫ ⎪⎝⎭; (B) 3501⎛⎫ ⎪⎝⎭; (C) 1133⎛⎫ ⎪⎝⎭; (D) 2112⎛⎫ ⎪⎝⎭. 2. 设A 、B 、C 为n 阶方阵,~A B ,~B C ,则A 、C 的关系不正确的是( ).(A) ~A C ; (B) →A C ; (C) =C A ; (D) =A C .三.证明题1. 设A 为3阶方阵,如果矩阵-E A 、3-E A 、+E A 均不可逆,证明A 可以对角化.2. 设A 、B 为方阵,A 可逆,证明~AB BA .四.计算题1.设121000000-⎛⎫⎪= ⎪⎪⎝⎭A,求可逆矩阵P,使得1-P AP成为对角矩阵.2.设3113-⎛⎫= ⎪-⎝⎭A,求可逆矩阵P,使得1-P AP成为对角矩阵.天津科技大学线性代数检测题§4.3专业、班级_______________学号_______________姓名_______________一.填空题1. 设λ为n 阶实对称矩阵A 的k 重特征值,则()r λ-=E A __________.2. n 阶实对称矩阵的线性无关的特征向量的个数为_______________.3. 设A 为n 阶实对称矩阵,12, p p 分别是矩阵A 属于不同特征值12, λλ的特征向量,则内积12(, )=p p __________.二.选择题1. 设A 为n 阶实对称正交矩阵,且1为A 的2重特征值,则与A 相似的一个对角矩阵为( ).(A) 1111⎛⎫ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪-⎝⎭; (B) 1100⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭; (C) 1111⎛⎫ ⎪ ⎪ ⎪- ⎪-⎝⎭; (D) 条件不足,不能确定上述矩阵是否与A 相似.三.计算题1. 设矩阵1331⎛⎫= ⎪⎝⎭A ,求正交矩阵P ,使得1-P AP 为对角矩阵.2.设1111-⎛⎫= ⎪-⎝⎭A,求矩阵2012()ϕ=A A.天津科技大学线性代数第四章自测题专业、班级_______________学号_______________姓名_______________一.填空题1. 若方阵A 有一个特征值是1,则=-E A ___________.2. 已知4阶矩阵~A B ,A 的特征值为2、3、4、5,E 为4阶单位矩阵,则=-B E ________.二.选择题1. 设2λ=是非奇异矩阵A 的一个特征值,则矩阵1213-⎛⎫ ⎪⎝⎭A 有一个特征值等于 ( ). (A) 43; (B) 34; (C) 12; (D) 14. 2. 设001010100⎛⎫ ⎪= ⎪ ⎪⎝⎭B ,~A B ,则()r -=A E ( ).(A) 3; (B) 2; (C) 1; (D) 0.三.证明题1. 设x 、y 是矩阵A 属于不同特征值1λ、2λ的特征向量,证明a b +x y (a 、b 为常数,且0ab ≠)必不是A 的特征向量.2. 设A 是n 阶方阵,证明:(1) 若k =A O (k 是正整数),则A 的特征值全为0;(2) 若k =A O (k 是正整数),但≠A O ,则A 不能相似于对角矩阵.四.计算题1. 设矩阵2125312a b -⎛⎫ ⎪= ⎪ ⎪--⎝⎭A 有一个特征向量111⎛⎫ ⎪= ⎪ ⎪-⎝⎭η,求a 、b 和η对应的特征值λ.2. 设204060402⎛⎫ ⎪= ⎪ ⎪⎝⎭A ,求正交矩阵P ,使得1-P AP 成为对角矩阵.。
自考线性代数试题
全国2010年10月高等教育自学考试线性代数(经管类)试题课程代码:04184说明:在本卷中,A T 表示矩阵A 的转置矩阵,A *表示矩阵A 的伴随矩阵,E 是单位矩阵,|A|表示方阵A 的行列式,r(A)表示矩A 的秩.一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设A 为3阶矩阵,|A|=1,则|-2A T |=( )A.-8B.-2C.2D.82.设矩阵A=⎪⎪⎭⎫ ⎝⎛-11,B=(1,1),则AB=( ) A.0B.(1,-1)C. ⎪⎪⎭⎫ ⎝⎛-11D. ⎪⎪⎭⎫ ⎝⎛--1111 3.设A 为n 阶对称矩阵,B 为n 阶反对称矩阵,则下列矩阵中为反对称矩阵的是( )A.AB-BAB.AB+BAC.ABD.BA4.设矩阵A 的伴随矩阵A *=⎪⎪⎭⎫ ⎝⎛4321,则A -1= ( ) A.21- ⎪⎪⎭⎫ ⎝⎛--1234 B. 21- ⎪⎪⎭⎫ ⎝⎛--4321 C. 21- ⎪⎪⎭⎫ ⎝⎛4321 D. 21-⎪⎪⎭⎫ ⎝⎛13245.下列矩阵中不是..初等矩阵的是( ) A.⎪⎪⎪⎭⎫ ⎝⎛000010101B. ⎪⎪⎪⎭⎫ ⎝⎛001010100C. ⎪⎪⎪⎭⎫ ⎝⎛100030001D. ⎪⎪⎪⎭⎫ ⎝⎛102010001 6.设A,B 均为n 阶可逆矩阵,则必有( )A.A+B 可逆B.AB 可逆C.A-B 可逆D.AB+BA 可逆7.设向量组α1=(1,2), α2=(0,2),β=(4,2),则 ( )A. α1, α2,β线性无关B. β不能由α1, α2线性表示C. β可由α1, α2线性表示,但表示法不惟一D. β可由α1, α2线性表示,且表示法惟一8.设A 为3阶实对称矩阵,A 的全部特征值为0,1,1,则齐次线性方程组(E-A)x=0的基础解系所含解向量的个数为( )A.0B.1C.2D.39.设齐次线性方程组⎪⎩⎪⎨⎧=++λ=--=+-0x x x 0x x x 0x x x 2321321321有非零解,则λ为( )A.-1B.0C.1D.210.设二次型f(x)=x T Ax 正定,则下列结论中正确的是( )A.对任意n 维列向量x,x T Ax 都大于零B.f 的标准形的系数都大于或等于零C.A 的特征值都大于零D.A 的所有子式都大于零二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
(完整)自考线性代数第三章向量空间习题
第三章 向量空间一、单项选择题1.设A ,B 分别为m ×n 和m ×k 矩阵,向量组(I )是由A 的列向量构成的向量组,向量组(Ⅱ)是由(A ,B )的列向量构成的向量组,则必有( )A .若(I )线性无关,则(Ⅱ)线性无关B .若(I)线性无关,则(Ⅱ)线性相关C .若(Ⅱ)线性无关,则(I )线性无关D .若(Ⅱ)线性无关,则(I )线性相关2.设4321,,,αααα是一个4维向量组,若已知4α可以表为321,,ααα的线性组合,且表示法惟一,则向量组4321,,,αααα的秩为( )A .1B .2C .3D .43.设向量组4321,,,αααα线性相关,则向量组中( )A .必有一个向量可以表为其余向量的线性组合B .必有两个向量可以表为其余向量的线性组合C .必有三个向量可以表为其余向量的线性组合D .每一个向量都可以表为其余向量的线性组合4.设有向量组A :α1,α2,α3,α4,其中α1,α2,α3线性无关,则( )A 。
α1,α3线性无关 B.α1,α2,α3,α4线性无关C.α1,α2,α3,α4线性相关D.α2,α3,α4线性相关5.向量组)2(,,,21≥s s ααα 的秩不为零的充分必要条件是( )A .s ααα,,,21 中没有线性相关的部分组B .s ααα,,,21 中至少有一个非零向量C .s ααα,,,21 全是非零向量D .s ααα,,,21 全是零向量6.设α1,α2,α3,α4是4维列向量,矩阵A =(α1,α2,α3,α4)。
如果|A |=2,则|—2A |=()A.-32B.-4C 。
4 D.327。
设α1,α2,α3,α4 是三维实向量,则( )A. α1,α2,α3,α4一定线性无关B. α1一定可由α2,α3,α4线性表出C. α1,α2,α3,α4一定线性相关 D 。
α1,α2,α3一定线性无关8.向量组α1=(1,0,0),α2=(1,1,0),α3=(1,1,1)的秩为( )A.1 B 。
线性空间测试题及答案
线性空间测试题及答案一、选择题1. 线性空间中的向量加法满足以下哪个性质?A. 交换律B. 结合律C. 分配律D. 所有选项都正确2. 以下哪个不是线性空间的定义条件?A. 向量加法的封闭性B. 标量乘法的封闭性C. 存在零向量D. 向量加法的逆元存在二、填空题1. 线性空间中的向量加法满足_________,即对于任意向量u, v ∈ V,存在一个向量w ∈ V,使得u + w = v。
2. 线性空间中的标量乘法满足_________,即对于任意向量v ∈ V和标量a, b,有(a + b)v = av + bv。
三、简答题1. 请简述线性空间的定义。
2. 线性空间中的向量加法和标量乘法需要满足哪些条件?四、计算题1. 给定线性空间V中的向量u = (1, 2)和v = (3, 4),计算u + v。
2. 若标量a = 2,计算2u。
五、证明题1. 证明线性空间中的向量加法满足结合律。
2. 证明线性空间中的标量乘法满足分配律。
答案:一、选择题1. 答案:D2. 答案:D二、填空题1. 答案:逆元存在2. 答案:分配律三、简答题1. 答案:线性空间是一个集合V,配合两个二元运算:向量加法和标量乘法,满足以下条件:向量加法的封闭性、结合律、存在零向量、向量加法的逆元存在,以及标量乘法的封闭性、分配律、结合律。
2. 答案:向量加法需要满足封闭性、结合律、存在零向量、逆元存在,而标量乘法需要满足封闭性、分配律、结合律。
四、计算题1. 答案:u + v = (1+3, 2+4) = (4, 6)2. 答案:2u = 2 * (1, 2) = (2, 4)五、证明题1. 证明:设u, v, w ∈ V,则(u + v) + w = u + (v + w),由向量加法的结合律得证。
2. 证明:设u ∈ V,a, b为标量,则a(bu) = (ab)u,由标量乘法的分配律得证。
线性代数自测习题及答案
自测复习题21填空题 (1) 向量组[][][]1232,2,7,3,1,2,1,5,12a a a T T T ==-=线性 关。
(2) 4维向量组[]11,4,0,2a T =-,[]25,11,3,0a T =-,[]33,2,4,1a T =--,[]42,9,5,0a T =--, []50,3,1,4a T=-的秩是 ,且一个极大无关组为 。
的秩为,则向量组的秩为)已知向量组(321321,3,,4a a a a a a - 。
=⨯m A A n m 则的行向量组线形无关,,且的秩为矩阵)已知(35 ,m n 。
(6)已知秩为3的向量组1234,,,a a a a 可由向量组123,,βββ线性表示,则向量组123,,βββ必线性 。
(7)设20,,k k βT ⎡⎤=⎣⎦能由[]11,1,1a k T =+,[]21,1,1a k T =+,[]31,1,1a k T =+唯一线性表出,则k 满足 。
(8)设A 为4阶方阵,且()2r A =,则*0A x =的基础解系所含解向量的个数为 。
2选择题(1)设向量组()I 123,,a a a ;1234(),,,a a a a II ;1235(),,,a a a a III ;()V I 12345,,,a a a a a +,且()()3r r I =II =,()4,r III =则()r V I =( )。
(A)2 (B)3 (C)4 (D)5(2)设向量β可由向量组12,,....m a a a 线性表示,但不能由向量组121(),,....m a a a -I 线性表示,若向量组121(),,...,m a a a β-II ,则m a ( )。
(A )既不能由(I )线性表示,也不能由(II )线性表示(B )不能由(I )线性表示,但可由(II )线性表示(C )可由(I )线性表示,也可由(II )线性表示(D )可由(I )线性表示,但不可由(II )线性表示(3)n 维向量组12,,.....(3)s a a a s n ≤≤线性无关的充要条件是( )。
线性代数考试题及答案
线性代数考试题及答案一、选择题(每题2分,共20分)1. 向量空间中,向量组的线性相关性指的是:A. 向量组中的向量可以相互表示B. 向量组中存在非零向量可以表示为其他向量的线性组合C. 向量组中的向量线性无关D. 向量组中的向量可以线性独立答案:B2. 矩阵A的秩是指:A. A的行向量组的极大线性无关组所含向量个数B. A的列向量组的极大线性无关组所含向量个数C. A的行数D. A的列数答案:B3. 对于矩阵A,若存在矩阵B,使得AB=BA=I,则B是A的:A. 逆矩阵B. 伴随矩阵C. 转置矩阵D. 正交矩阵答案:A4. 线性变换的特征值是指:A. 变换后向量的长度B. 变换后向量的方向C. 变换后向量与原向量的比值D. 变换后向量与原向量的夹角答案:C5. 一个矩阵的特征多项式是:A. 矩阵的行列式B. 矩阵的逆矩阵C. 矩阵的伴随矩阵D. 矩阵的迹答案:A6. 线性方程组有唯一解的条件是:A. 系数矩阵的秩等于增广矩阵的秩B. 系数矩阵的秩小于增广矩阵的秩C. 系数矩阵的秩大于增广矩阵的秩D. 系数矩阵的行列式不为零答案:D7. 矩阵的迹是:A. 矩阵的对角线元素之和B. 矩阵的行列式C. 矩阵的逆矩阵D. 矩阵的伴随矩阵答案:A8. 矩阵的伴随矩阵是:A. 矩阵的转置矩阵B. 矩阵的逆矩阵C. 矩阵的对角线元素的乘积D. 矩阵的行列式答案:B9. 向量空间的基是指:A. 向量空间中的一组向量B. 向量空间中线性无关的一组向量C. 向量空间中线性相关的一组向量D. 向量空间中任意一组向量答案:B10. 矩阵的转置是:A. 矩阵的行列互换B. 矩阵的行列互换C. 矩阵的行向量变成列向量D. 矩阵的列向量变成行向量答案:A二、填空题(每空2分,共20分)1. 一个向量空间的维数是指该空间的_________。
答案:基的向量个数2. 矩阵A的行列式表示为_________。
答案:det(A)3. 线性变换的矩阵表示是_________。
线性代数自测题
第一章 行列式(√)1.若111213212223313233a a a a a a d a a a =,则131211232221333231a a a a a a d a a a =. 2.互换行列式的任意两行,行列式值不变. ( ) 3.排列631254的逆序数是6. ( )4.对角行列式的值等于其所有对角元素的乘积. ( )5.分块对角阵的行列式等于对角线上各方块行列式之积.( )6.设A 为3阶方阵,2A =,则12TA A =__________. 7.逆序数()21n τ=L _____________. 8.排列32514的逆序数是: . 9.排列631254的逆序(631254)t = 8 .10.设四阶行列式1112224333444pa b c p a b c D p a b c p a b c =,则第四列的代数余子式之和 = 0 .11.设3312243,0311A tB ⨯-⎛⎫ ⎪=≠ ⎪ ⎪-⎝⎭且AB=0,则t = 3 . 12.设a 、b 为实数,则当a =___且b =___时,010000=--a b ba13.==343332312423222143211111x x x x x x x x x x x x D __________________________. 14.设D 为一个三阶行列式,第三行元素分别为-1,2,3,其余子式分别为1,2,1,则D ____________=.15.设211111401D-=-,ijA为D中元素ija的代数余子式,则313233A A A++=_______.16.sin coscos sinαααα-=_____________.17.00102000n=LLM N M ML_____________.18.设211111401D-=-,ijA为D中元素ija的代数余子式,则313233A A A++=_______.19.若D是n阶行列式,下列说法中错误的是()..A D与T D相等;.B若D中有两行元素成比例,则D等于零;.C若D中第i行除()j i,元外都为零,则D等于()j i,元与它的代数余子式的乘积;.D D的某一行元素与另一行的对应元素的余子式乘积之和为零.20.行列式349571214-的元素23a的代数余子式23A为()A. 3B.3-C.5D.5-21.方程111012λλλλ-=的实根个数为()A. 0B. 1 .C 2 .D 3 22.23.计算行列式2111121111211112D=;1311131113D=;21111351925D=;1411141114D=;21111241416D =;0100421523132131---;1000313333133331;3112513420111533D ---=---;=aa a a 111111111111 24.设3351110243152113------=D D 的()j i ,元的代数余子式记作ijA ,求 34333231223A A A A +-+25.设 3142313150111235------=D .D 的()j i ,元的余子式记作ij M ,求14131211M M M M -+-.26.设 4001030100214321=D ,D 的()j i ,元的代数余子式记作ij A ,求14131211A A A A +++.第二章(×)1.若A 与B 都是n 阶对称矩阵,则AB 也是对称矩阵. (×)2.已知同阶方阵,,A B C 满足AB AC =,则B C =. (√)3.设A 和B 都是n 阶可逆矩阵,则111()AB B A ---=. (×)4.对n 阶方阵A ,若2A A =,则0A A E ==或. (×)5.设A 是n 阶方阵,则33A A =(√)6.设A 和B 都是n 阶可逆矩阵,则111()AB B A ---=.(√)7. 设A 是57⨯矩阵,则()5R A ≤. (√)8. 设A 是n 阶方阵,则22n A A =. 9.设阶n 矩阵A 的伴随矩阵为*A ,则1*-=n A A . ( )10.设A 为n 阶方阵,满足o E A A =--22,则A 不可逆. ( )11.设A 为可逆方阵,则()()11--=T TA A( )12.对n 阶方阵B A ,,若0=AB ,则0=A 或0=B . ( ) 13.设A 为n 阶方阵,则kA k A =.14.矩阵A 、B 、C 满足AB AC =,则B C =. ( ) 15.设A 、B 均为n 阶方阵,且0=AB ,则0=A 或0=B .( ) 16.设阶n 矩阵A 的伴随矩阵为*A ,则A A =* ( ) 17.如果矩阵A 的秩为r ,则A 没有等于0的r-1阶子式. 18.设A 和B 都是n 阶可逆矩阵,则T T T B A AB =)(. ( ) 19.()()()R A B R A R B +≤+( )20.设A 为3阶方阵,则 |kA |=k |A |. ( ) 21.设A 为n 阶方阵,满足22A A E O --=,则A 可逆. ( ) 22.*A 为n A ()2≥n 的伴随阵,若()2-=n A R ,则()2*=A R . ( ) 23.设A 、B 、C 均为n 阶方阵,且BA AB =,CA AC =,则=ABC ( ).A ACB ; .B CBA ; .C BCA ; .D CAB .24.设矩阵A 的秩为r ,则A 中 ( ).A 所有1-r 阶子式都不为零; .B 所有1-r 阶子式全为零; .C 至少有1个r 阶子式不为零; .D 所有r 阶子式都不为零.25.设4阶方阵A 的行列式为2,则A 的伴随矩阵*A 的行列式为 ( ) A. 8 B. 4 C.2 D.126.A 、B 为同阶方阵,22()()A B A B A B +-=-成立的充要条件是( ) A.A E = B.B O = C.A B = D. AB BA = 27.设,A B 均为n 阶方阵,则必有( )成立 A. A B A B +=+ B. AB BA =C. 111()A B A B ---+=+D. ()TT T AB A B =28. 设A 是n 阶矩阵(3)n >,*A 为A 的伴随矩阵,且*0A ≠,则必有( D )()A **1()A A A=()B 2**()n A A A -= ()C **()0A = ()D 1**()n A AA -=29.若A 是阶n 可逆矩阵,则下列命题中错误的是( A ).A A E +必可逆 2.B A 必可逆.C A - 必可逆 1.D A -必可逆30.设矩阵n m A ⨯,l k B ⨯且AB 有意义,则 ( ) A.n k = B.l m = C.m k = D.n l = 31.下列选项正确的是 ( ) A.()111AB A B ---= B.kA k A = C.AB BA = D.()TT T AB B A = 32. 设n 阶方阵,,A B C 满足关系式ABC E =,则必有(D ) .A ACB E = .B CBA E = .C BAC E = .D BCA E =33.设矩阵1412123,,25,3464536A B C ⎛⎫⎛⎫⎛⎫ ⎪=== ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪⎝⎭则下列矩阵运算有意义的是( B )....A ACBB ABCC BACD CBA34. 设,A B 均为n 阶方阵,且22()()A B A B A B +-=-,则必有(D ) .A A B = .B A E = .C B E = .D AB BA = 35. 设A 为n 阶方阵,则下列方阵哪一个是对称矩阵(C ) .TA A A - .,TB CAC C 为任意n 阶方阵.T C AA .(),T D AA B B 为n 阶对称阵36.设A 、B 、C 都是n 阶方阵且ABC=E ,则下列等式:(1)BCA=E ;(2)BAC=E ;(3)CAB=E ;(4)CBA=E 正确的有( )..A 1个; .B 2个; .C 3个; .D 4个.37.设⎪⎪⎭⎫⎝⎛----=32321321k k k A ,若()2=A R ,则k 的取值情况为( )..A 2-=k ; .B 1=k ; .C 21-≠≠k k 且;.D 无法确定.38.设A 是n 阶方阵,B 是A 经过有限次矩阵的初等变换后所得到的矩阵,则有( )..A A B = .B A B ≠.C 若0A =,则一定有0B = .D 若0A >,则一定有0B >39.下列选项正确的是 ( ) A.()111AB A B ---= B.kA k A = C.AB BA = D.()TT T AB B A =40.设矩阵n m A ⨯,l k B ⨯且AB 有意义,则 ( ) A.n k = B.l m = C.m k = D.n l = 41.若A 是阶n 可逆矩阵,则下列命题中错误的是( ).A A E +必可逆 2.B A 必可逆.C A - 必可逆 1.D A -必可逆42.设矩阵1412123,,25,3464536A B C ⎛⎫⎛⎫⎛⎫ ⎪=== ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪⎝⎭则下列矩阵运算有意义的是( )....A ACBB ABCC BACD CBA43.设4阶矩阵A 的行列式为5,则行列式2A 的值是( )A .10B . 20 .C 80 .D 160 44.设A 、B 均为n 阶矩阵,则必有( )A .AB +=A +B B . AB =BA.C AB =BA .D ()1A B -+=1A -+1B -45.设1235A ⎛⎫= ⎪⎝⎭,则1A -=_______ ______.46.设方阵A 满足222A A E O ++=,则()12A E -+=_________.47.设A 是34⨯矩阵,秩()2R A =,103020103B ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦,则秩()R BA =_____ 48.设A 为三阶方阵,且其行列式3A =-,若记()123,,A ααα=, 则1232,2,2αααα-= .49设B A ,均为n 阶方阵,那么使2222)(B AB A B A ++=+成立的充分必要条件是 .50.设A 为4阶矩阵, A =13, 则134A A *--=_____.51.设A ,B 是两个可逆矩阵,则 =⎪⎪⎭⎫⎝⎛-100B A .52.设A 为3阶矩阵,21=A ,则()*152A A --为:_____________. 53.设A 为三阶矩阵,1=A ,则()*132A A +-为:_____________. 54.*A 是3阶矩阵A 的伴随矩阵,2=A ,则__________*=A .55. 设312252100001A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则*1()A -= 4000260410-⎛⎫ ⎪-- ⎪ ⎪--⎝⎭.56.设1235A ⎛⎫= ⎪⎝⎭,则1A -=_______ ______. 57.设方阵A 满足222A A E O ++=,则()12A E -+=_________.58.()31,2,321⎛⎫ ⎪ ⎪ ⎪⎝⎭; ()321,2,31⎛⎫ ⎪ ⎪ ⎪⎝⎭; 121100512341-⎛⎫⎛⎫ ⎪⎪ ⎪--⎝⎭ ⎪-⎝⎭=59.设033110123A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,2AX X A =+,求X ;60.设⎪⎪⎪⎭⎫ ⎝⎛-=321011330A ,B A AB 2+=,求.B61.已知112131,1125B C ---⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,且A 满足11()B A E C B ---=-,求1A -;62.设矩阵A=⎪⎭⎫ ⎝⎛-311012,⎪⎪⎭⎫ ⎝⎛--=131210131B 求AB . 63.已知⎪⎪⎪⎭⎫ ⎝⎛--=101111011A ,⎪⎪⎪⎭⎫⎝⎛--=350211B ,满足矩阵方程B AX =,求矩阵X .64.已知矩阵2012A -⎛⎫= ⎪⎝⎭与2113B -⎛⎫= ⎪⎝⎭,计算TAB ;65.解矩阵方程24461321X -⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;66.求方阵⎪⎪⎪⎭⎫ ⎝⎛---=145243121A 的逆矩阵.67设x 为n 维列向量,1T x x =,令2T H E xx =-,证明:H 是对称矩阵第三章1.初等变换不改变矩阵的秩.( )2.若向量组B 能由向量组A 线性表示,则()(,)R B R A B =.( ) 3.()()()R A B R A R B +≤+( )4.如果线性方程组b x A n n =⨯无解或有两个不同的解,则它的系数行列式必为零.5.初等变换不改变矩阵的秩. ( )6.若0A ≠,则齐次线性方程组0Ax =只有零解. ( )7.若A ~B ,则()()R A R B =. ( )8.若0A =,则齐次线性方程组0Ax =必有非零解.9.若m n <,则0m n A x ⨯=有非零解. ( ) 10.(√)2.若m n <,则0m n A x ⨯=有非零解. 11.若m n <,则0m n A x ⨯=有非零解.( )12.已知12,a a ,3a 是四元非齐次线性方程组Ax b =的三个解向量,且()3R A =,1(1,2,3,4)T a =,23(0,1,2,3)T a a +=,c 是任意的常数,则Ax b =的通解是x =( )A. 11213141c ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭B. 10213243c ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭C. 12233445c ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭D. 13243546c ⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 13.设A 是m n ⨯矩阵,且秩()R A m n =<,则( )A.A 的任意m 个列向量必定线性无关B.A 的任意一个m 阶子式不等于零C.齐次线性方程组0Ax =只有零解D.非齐次线性方程组Ax b =必有无穷多解14.设A 是4×5矩阵,A 的秩等于3,则齐次线性方程组0Ax =的基础解系中所含解向量的个数为( )A. 4B.5C.2D.315.设A 是n 阶方阵,B 是A 经过有限次矩阵的初等变换后所得到的矩阵,则有(C ).A A B = .B A B ≠.C 若0A =,则一定有0B = .D 若0A >,则一定有0B >16.设A 是4×5矩阵,A 的秩等于3,则齐次线性方程组0Ax =的基础解系中所含解向量的个数为 ( )A. 4;B.5 ;C.2 ;D.3.17.行列式0=A 时,线性方程组0ρ=AX( ).A 只有零解; .B 只有非零解; .C 无解; .D 有非零解.18.设A 是n 阶方阵,B 是A 经过有限次矩阵的初等变换后所得到的矩阵,则一定有 ( ).A A B = .B A B ≠ .C )()(B R A R = .D )()(B R A R ≠19.设n 阶方阵不可逆,则必有 ( ).A n A R <)(; .B 1)(-=n A R ;.C 0=A ; .D 方程组0ρ=AX 只有零解.20.n 个方程n 个未知数构成的线性方程组,如果它的系数行列式0≠D ,那么他一定有___________解. 21.线性方程组Ax b =有解的充分必要条件是()(,)R A R A b =.22.设A 为一个三阶矩阵,且2=A ,若将A 按列分块为),,(321ααα=A ,令),,(21312αααα+=B ,则=B ________.23.三元齐次线性方程组0ρ=AX 的基础解系只含一个向量,则=)(A R _________.24.设A 为三阶方阵,且其行列式3A =-,若记()123,,A ααα=, 则1232,2,2αααα-= .25.已知100100147001010258010101369A ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则A =647669658-⎛⎫⎪- ⎪ ⎪-⎝⎭26.线性方程组Ax b =有解的充分必要条件是()(,)R A R A b =.27. 解线性方程组:211121011113X -⎛⎫⎛⎫ ⎪ ⎪=- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭.28. 求齐次线性方程组1234123412342202220430x x x x x x x x x x x x +++=⎧⎪+--=⎨⎪---=⎩ 的基础解系.29.求齐次线性方程组⎪⎩⎪⎨⎧=---=+-+-=-+-0490243032542143214321x x x x x x x x x x x 的基础解系.30.k 为何值时,方程组12312312312202x x x x kx x kx x x k+-=⎧⎪+-=⎨⎪++=⎩(1)有唯一解;(2)无解;(3)有无穷多解?并求它的通解。
线性代数考试题及答案
线性代数考试题及答案一、选择题(共10小题,每题2分,共20分)1. 在线性空间R^3中,向量的维数是()。
A. 1B. 2C. 3D. 无穷大2. 已知向量组{v1, v2, v3}线性无关,向量v4可以由向量组{v1, v2,v3}线性表示,那么向量组{v1, v2, v3, v4}()。
A. 线性无关B. 线性相关C. 只存在部分线性相关D. 无法确定3. 若A是一个n×n矩阵,且满足A^2 = -I,其中I为n阶单位矩阵,则矩阵A的特征值为()。
A. -1B. 1C. iD. -i4. 设A为n×n矩阵,若A^2=0,则()。
A. A非奇异B. A是零矩阵C. A的特征值全为0D. A的特征向量全为05. 设A为3×3矩阵,若A的秩为2且|A|=0,则()。
A. A的特征值必为0B. A的特征值至少有2个为0C. A的特征值可能全为非零数D. A的特征值全为非零数6. 设A为m×n矩阵,若齐次线性方程组Ax = 0有非零解,则()。
A. A的列向量组线性无关B. A的行向量组线性无关C. A的列向量组线性相关D. A的行向量组线性相关7. 设A、B为m×n矩阵,若AB=0,则()。
A. A=0或B=0B. A和B至少有一方为0C. AB为零矩阵D. AB不一定为零矩阵8. 若二次型f(x) = x^T Ax恒大于等于零,其中x为非零向量且A为n×n对称矩阵,则A()。
A. 不一定是正定矩阵B. 一定是正定矩阵C. 一定是半正定矩阵D. 不一定是半正定矩阵9. 若矩阵A=(a1,a2,a3,...,an)为方阵,并且满足AtA=In,其中In为n阶单位矩阵,则()。
A. A非奇异B. A为对角阵C. A为正交阵D. A为对称阵10. 对于线性方程组Ax = b,若方程组有解,则()。
A. A的行向量数等于b的个数B. A的列向量数等于b的个数C. A的秩等于b的个数D. A的秩小于等于b的个数二、简答题(共4题,每题15分,共60分)1. 请证明:若n×n矩阵A与B的秩相等,即rank(A)=rank(B),则AB与BA的秩也相等。
空间向量的模拟试题
空间向量的模拟试题题目一:向量运算已知向量a= −2a + 3a + 4a和向量a = 5a− 2a + a,计算以下向量运算:1. a + a2. a− a3. a ·a(内积)4. a ×a(叉积)解答:1. a + a:(−2a + 3a + 4a) + (5a− 2a + a)= (−2 + 5)a+ (3 − 2)a + (4 + 1)a= 3a + a + 5a2. a− a:(−2a + 3a + 4a) − (5a− 2a + a)= (−2 − 5)a + (3 + 2)a+ (4 − 1)a= −7a + 5a + 3a3. a ·a:(−2a + 3a + 4a) · (5a− 2a + a)= −10 − 6 + 4= −124. a ×a:使用右手定则,得到:a ×a = (3a)(a) − (4a)(−2a) + (−2a)(−2a)= 3a + 11a + 8a题目二:向量投影已知向量a = 2a + a + 3a和向量a = 3a− a + 2a,求向量a在向量a上的投影。
解答:向量a在向量a上的投影记为 proj a(a)。
根据向量投影的公式,可以计算出投影向量:proj a(a) = a ·a / |a|² * a其中,|a| 表示向量a的模长。
首先计算 |a| 的值:|a| = √(3²+ (−1)² + 2²) = √14然后计算a ·a的值:a ·a = (2a + a + 3a) · (3a− a + 2a)= 6 − 1 + 6= 11最后,代入公式计算投影向量:proj a(a) = 11 / (14) * (3a− a + 2a)= (33/14)a− (11/14)a + (22/14)a= (33/14)a− (11/14)a + (11/7)a题目三:向量夹角已知向量a = 2a− a和向量a = 3a + 4a,求向量a和向量a的夹角的余弦值。
试题:线性代数基础概念:向量与向量空间
1.若向量空间V中任意向量都可以由向量集合{v1,v2,...,v n}线性表示,则该集合称为什么?o A. 基向量集o B. 线性无关集o C. 线性相关集o D. 正交集参考答案: A解析: 基向量集表示向量空间中任何向量都可以由该集合中的向量线性表示,且这些向量本身是线性无关的。
2.在三维空间中,向量a=(1,2,3)与向量b=(2,4,6)的关系是?o A. 正交o B. 平行o C. 相交o D. 既不平行也不正交参考答案: B解析: 向量b是向量a的两倍,意味着它们方向相同,因此平行。
3.向量(1,0,0), (0,1,0), (0,0,1)在任何三维向量空间中构成?o A. 一个子空间o B. 一个线性无关集o C. 一个线性相关集o D. 一个正交补空间参考答案: B解析: 这三个向量是三维空间的标准基向量,它们线性无关。
4.线性空间V的子空间W必须满足的条件不包括?o A. 包含V的零向量o B. 对向量的加法封闭o C. 对向量的数乘封闭o D. 必须包含所有V中的向量参考答案: D解析: 子空间W只需满足自身向量的加法和数乘封闭,以及包含V的零向量,并不一定要包含V中的所有向量。
5.若向量集合{v1,v2,v3}在向量空间V中线性无关,则下列哪项一定为真?o A. 向量v1可以由{v2,v3}线性表示o B. 向量v1,v2,v3形成的矩阵一定是可逆的o C. 向量{v1,v2,v3}的线性组合可以表示V中的任何向量o D. 向量{v1,v2,v3}的线性组合只能表示V中部分向量参考答案: B解析: 若三个向量线性无关,它们构成的矩阵行列式不为零,因此矩阵一定是可逆的。
6.向量(1,2)和(3,4)是否构成ℝ2的一个基?o A. 可以,只要它们线性无关o B. 不能,它们维度不匹配o C. 可以,只要它们的线性组合能表示ℝ2中所有向量o D. 不能,因为它们不够正交参考答案: A解析: 在ℝ2中,两个线性无关的向量就可以构成一个基。
《线性代数》单元自测题
《线性代数》基础习题第一章 行列式一、 填空题:1.设12335445i j a a a a a 是五阶行列式中带有负号的项,则i = ,j = 。
2. 在四阶行列式中,带正号且同时包含因子23a 和31a 的项为__ ___。
3. 在五阶行列式中,项2543543112a a a a a 的符号应取 。
4.已知xx x x x x f 42124011123313)(--=,则)(x f 中4x 的系数为 。
5. 行列式=600300301395200199204100103__ __。
二、 计算下列各题:1.计算63123112115234231----=D 。
2.设4321630211118751=D ,求44434241A A A A +++的值。
3.计算ab b a b a b a D n 000000000000=4.计算nD n 222232222222221=5.计算ab b b b a b bb b a bb b b a D n = 6.计算4443332225432543254325432=D 7.设齐次线性方程组⎪⎩⎪⎨⎧=+++=+++=+++0)12(02)12(02)1(3213213221x k kx kx x x k x x x k x 有非零解,求k 的值。
第二章 矩阵一、填空题:1.设A ⎪⎪⎪⎭⎫ ⎝⎛-----=341122121221,则R(A)= 。
2.设A 是3阶方阵,且m A =,则1--mA = 。
3.=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡20092010100001010534432121001010100 。
4.设A 为33⨯矩阵,2-=A ,把A 按列分块为),,(321A A A A =,其中)3,2,1(=j A j 为A 的第j 列,则=-1213,3,2A A A A 。
5.设A 为3阶方阵,1A =-,A 按列分块为()321A A A A =,()32122A A A B =,则*B = 。
高中数学第三章3.1.1空间向量的线性运算自我小测新人教B版选修2_
所以 A→G= (x+ y)A→B+ (x+ z)A→D + (y+z)A→E, 所以 x+ y= x+ z=y+ z= 1,
3
所以
x+
y+
z=
. 2
马鸣风萧萧整理
》》》》》》》》》积一时之跬步 臻千里之遥程《 《《《《《《《《《《《
3 答案: 2
9.证明:左边= (A→B +A→D )+ (C→B+ C→D) = 2A→F + 2C→F=2(A→F+ C→F)= 4E→F=右边,得证.
34B→C′
=
12(D→A
+
A→B)+
34(B→C+
C→C′
)=
1 2(-
A→D
+
A→B
)+
3 4(
A→D
+
AA→′ )= 12A→B + 14A→D +34A→A′ ,
1
1
3
因此 α= 2, β= 4, γ= 4.
马鸣风萧萧整理
所以
|
A→M |
=
1 | 2
A→B+
A→C|
= 2.
答案: C 6. 答案: 0
597 7. 答案: a+ b- c
626
8. 解析: 因为 A→G = A→B+ A→D +A→E ,
所以 A→G= A→B+A→D + A→E = x(A→B+ A→D )+ y(A→B+ A→E)+ z(A→E+ A→D ),
10.解: (1)由 AA ′的中点为 E,得 1AA→′ =EA→′, 2
又
B→C=
A
′→D
′
,D
′
F=
2 D
′
C′,
3
因此
23A→B=
2 3D
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《第四章 向量空间》 自测题 (75
分钟)
一、选择、填空(20分,每小题4分) 1. 下列向量集合按向量的加法和数乘运算构成R 上一个向量空间的是( )。
(A )R n
中,分量满足x 1+x 2+…+x n =0的所有向量;
(B )R n 中,分量是整数的所有向量;
(C )R n 中,分量满足x 1+x 2+…+x n =1的所有向量;
(D )R n 中,分量满足x 1=1,x 2,…,x n 可取任意实数的所有向量。
2.设R 4 的一组基为,,,,4321αααα令 414433322211,,,ααβααβααβααβ+=+=+=+=,
则子空间}4,3,2,1,|{44332211=∈+++=i F k k k k k W i ββββ的维数为 ,它的一组基为 。
3. 向量空间R n
的子空间 },0|)0,,,,{(1121121R x x x x x x x W n n ∈=+=--ΛΛ的维数为 , 它的一组基为 。
4. 设W 是所有二阶实对称矩阵构成的线性空间,即⎪⎭
⎪⎬⎫⎪⎩⎪⎨⎧∈⎪⎪⎭⎫ ⎝⎛=R a a a a a W ij 2212
1211,则它的维数为 ,一组基为 。
5.若A=⎥⎥⎥⎥⎥⎥⎦
⎤⎢⎢⎢⎢⎢⎢⎣⎡-100021021b a 为正交矩阵,且|A|=-1,则a = ,b = 。
二、计算题(60分)
1.(15分)设R 3
的两组基为: T T T )1,1,0(,)0,1,1(,)1,0,1(321===ααα和T T T )1,2,1(,)2,1,1(,)1,1,1(321===βββ, 向量α=(2,3,3)T
(1)求由基321,,ααα到基321,,βββ的过渡矩阵。
(2)求α关于这两组基的坐标。
(3)将321,,βββ化为一组标准正交基。
2. (15分)在R 4 中,求下述齐次线性方程组的解空间的维数和基,
⎪⎩⎪⎨⎧=+-+=-+-=+-+01113530333045234321
43214321x x x x x x x x x x x x
3.(20分)已知321,,ααα是3维向量空间R 3
的一组基,向量组321,,βββ满足 3132322132131,,ααββααββαααββ+=++=+++=+
(1)证明:321,,βββ是一组基。
(2)求由基321,,βββ到基321,,ααα的过渡矩阵。
(3)求向量3212αααα-+=关于基321,,βββ的坐标。
4.(10分)已知A 是2k+1阶正交矩阵,且|A|=1,求|A -E|。
三、证明题(20分)
1. (5分)设0321=++γβαk k k ,且。
证明:),(),(γββαL L =。
2. (5分)设A 为正交矩阵,证明:A *
为正交矩阵。
3.(10分)设A 、B 为n 阶正交矩阵,且|A||B|。
证明:A+B 为不可逆矩阵。
参考答案
一、选择、填空
1. A
2. dimW=3,一组基为.,,321βββ
3. dimW=n-2,一组基为T n T T )0,1,0,,0,0(,)0,0,,1,0,0(,)0,0,,0,1,1(221ΛΛΛ==-=-ααα
4. dimW =3,一组基为⎪⎪⎭
⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛0110,1000,0001。
5. a =21,b =2
1
二、计算题
1.(1)基321,,ααα到基321,,βββ的过渡矩阵:⎥⎥⎥⎥⎥⎥⎦
⎤⎢⎢⎢⎢⎢⎢⎣⎡112110210121
(2) α关于321,,ααα的坐标是(0,1,1)
α关于321,,βββ的坐标是(1,1,2)
(3)⎪⎪⎪⎪⎪⎪⎪⎭
⎫ ⎝⎛--⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛02121,626161,313131。
2.解空间的维数是2,一组基为T T )1,0,3
7,92(,)0,1,38,91(21-=-=αα。
3.(1)提示:证明321,,βββ与321,,ααα等价,从而r(321,,βββ)=3,线性无关。
(2)基321,,βββ到基321,,ααα的过渡矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--001211010。
(3)向量α关于基321,,βββ的坐标为(2,-5,1)。
4. ()
()0)1(121=-⇒--=--=--=-=-=-+-E A E A E A E A A E A E A E A T k T T 。
三、证明题
1. 提示:证明两个向量组等价,即},{},{γββα≅,则生成子空间),(),(γββαL L =。
2. 证明: ()()E AA A A A A A A A A A T T T T ====----11211*)(*。
3.提示:0111=+⇒+-=+=+=+---B A B A B A B A B A E A B A。