应力应变关系
2-第二章-各向异性材料的应力-应变关系
![2-第二章-各向异性材料的应力-应变关系](https://img.taocdn.com/s3/m/02ff4b61302b3169a45177232f60ddccda38e639.png)
三、正交各向异性材料的应力-应变关系
具有3个相互正交的弹性对称面的材料称为正交各向异性材料。当图2.2中的
1O2,1O3和2O3平面均为弹性对称面时,按单对称材料的分析方法可以得到式
1 C11 C12 C13 0
2
C12
C22
C23
0
0 C16 1
0
C26
2
233
C013
C23 0
C34 C44
C35 C45
C36 C46
233
31
C51
C52
C53
C54
C55
C56
31
12 C61 C62 C63 C64 C65 C66 12
即刚度矩阵或柔度矩阵具有对称性。因此,一般各向异性材料中独立的 性常数为21个。
二、单对称材料的应力-应变关系
事实上,材料往往具有不同程度的弹性对称性。 单对称性材料是指具有一个弹性对称面的各向异性材 料(即沿两个相反方向,应力应变关系相同)。
应力,即 3 0 ,其他应力分量均为零,得到
1 S11 S12 S13 0
2
S12
S22
S23
0
0 S16 0
0
S26
0
3 3
2
233
S031
S32 0
S33 0
0 S44
0 S45
S36 0
03
(2.20)
1
31
0
0
0
S45 S55
0 0
12 S16 S26 S36 0 0 S66 0
应变—应力关系为:
11 S1111
22
S2211
33 23
应力应变关系及材料力学性能研究
![应力应变关系及材料力学性能研究](https://img.taocdn.com/s3/m/18c1122fa55177232f60ddccda38376bae1fe061.png)
应力应变关系及材料力学性能研究引言:应力应变关系是材料力学性能研究的基础,关乎着材料在外力作用下的变形与破坏。
本文将探讨应力应变关系的基本概念,并分析其对材料力学性能的影响。
一、应力与应变的定义:应力是指材料在外力作用下受到的内部力,为单位面积上的力。
常见的应力类型有拉应力、压应力、剪应力等。
应变是材料在受力作用下发生的变形程度,为单位长度上的变化量。
常见的应变类型有线性应变、剪应变等。
二、线弹性材料的应力应变关系:对于线弹性材料而言,应力应变关系可以通过胡克定律来描述。
胡克定律表明应力与应变之间呈线性关系,且比例系数为弹性模量。
应力=弹性模量 ×应变这意味着线弹性材料在弹性区内总是遵循胡克定律,即应力的增加与相应的应变呈线性关系。
三、非线性材料的应力应变关系:然而,并非所有材料都遵循胡克定律。
在超出线弹性范围的情况下,材料可能表现出非线性应力应变关系。
例如,在塑性变形时,材料产生塑性畸变,应力与应变之间的关系失去了线性性。
此时,材料的应力应变关系可由应力应变曲线来描述。
四、应力应变关系对材料强度和韧度的影响:应力应变关系直接决定了材料的力学性能,其中强度和韧度是两个重要的指标。
强度是指材料在外力作用下承受的最大应力,可以通过应力应变曲线中的极限强度来衡量。
强度高的材料能够承受更大的外力,具有较好的抗压能力。
韧度是指材料在断裂前能够吸收的能量,可以通过应力应变曲线下的面积来衡量。
韧度高的材料具有较好的抗拉伸能力和耐冲击性。
应力应变关系的形状和斜率都会对材料的强度和韧度产生影响。
通过调整材料的成分、结构和加工方式,可以改变应力应变关系,从而改善材料的力学性能。
五、应力应变关系的实验测定:测量材料的应力应变关系是材料力学性能研究的重要手段。
常见的实验方法包括拉伸试验、压缩试验和剪切试验等。
在实验中,使用应变计和力传感器等设备来测量应变和应力的变化。
通过绘制应力应变曲线,可以获取材料的弹性模量、屈服强度、极限强度、延伸率等参数。
4.应力应变关系
![4.应力应变关系](https://img.taocdn.com/s3/m/c8afa82b0722192e4536f6c0.png)
Levy-von Mises 增量理论 Prandtl-Reuss 全量理论
Stress-strain relations
4.2.1 Levy-Mises 增量理论
该理论认为应变增量与相应的偏应力分量成正比
2
(d x d y ) ( x y ) d (d y dz )2 ( y z )2 d2 (d z d x )2 ( z x )2 d2
2 2 2
9 2 2 2 2 2 2 2 d x y y z z x 6 xy yz zx 2
(4-6)
从方程式 (4-3),(4-4)中得,应力可以用应变表示:
ij 2G ij ij
式中,
(4-7)
1 1 2
E
x y z
1 [( x y )2 ( y z )2 ( z x )2 6( xy 2 yz 2 zx 2 )] 2 ( x y ) 2 4G 2 ( x y ) 2
1 2 2 2 ( x y ) 2 ( y z ) 2 ( z x ) 2 6( xy yz zx ) 2
2 2 2
Байду номын сангаас
6d yz 6 yz d2 2 2 6d zx 6 zx d2 2 2 6d zx 6 zx d2
(4-15)
平衡方程式:
x yx 0 y x xy y 0 y x
(4-16)
应力与应变间的关系
![应力与应变间的关系](https://img.taocdn.com/s3/m/e845c1b50b4c2e3f572763d8.png)
22
例题7-7 边长 a = 0.1m 的铜立方块, 无间隙地放入体积较
大, 变形可略去不计的钢凹槽中, 如图 所示。 已知铜的弹 性模量 E=100GPa, 泊松比 =0.34, 当受到P=300kN 的均布 压力作用时, 求该铜块的主应力. 体积应变以及最大剪应力。
P a
y
z
x
23
y
解:铜块上截面上的压应力为
9
3、 特例
(1)平面应力状态下(假设 Z = 0 )
x
1 E
(
x
y)
y
1 E
(
y
x)
z E ( x y)
xy
xy
G
10
(2) 广义胡克定律用主应力和主应变表示时 三向应力状态下:
1
1
E [ 1
(
2
3)]
2
1 E
[
2
(
3
1)]
3
1 E
[
3
( 1
2)]
(7-7-6)
11
平面应力状态下 设 3 = 0, 则
x y z x y y z z x
y
σy
上面
x y z x y y z z x
1、各向同性材料的广义胡克定律 (1)符号规定
τ yx
τ τ yz
xy
τ τ zy xz
τ zx
右侧面
σx
(a)三个正应力分量:拉应力为正
σz
x
o
压应力为负。 z
前面
3
(b)三个剪应力分量: 若正面(外法线与坐标轴
dxdydz
dxdydz(1 1 2 3) dxdydz
dxdydz
弹性体力学中的应变与应力关系
![弹性体力学中的应变与应力关系](https://img.taocdn.com/s3/m/14785ed06aec0975f46527d3240c844769eaa0d1.png)
弹性体力学中的应变与应力关系弹性体力学是研究物体在力的作用下变形和恢复原状的力学分支学科,研究的对象主要是固体物质。
在弹性体力学中,应变与应力是两个重要的概念,它们描述了物体的变形和受力状态。
应变和应力之间的关系在弹性体力学中具有重要意义,它们可以通过材料力学模型来描述。
应变是物体在受力作用下发生形变的程度。
一般来说,我们可以将应变分为线性应变和非线性应变。
线性应变是指物体的形变与受力成正比。
例如,当我们拉伸一根弹簧时,弹簧的长度会发生变化,而这种形变与拉力之间是线性相关的。
用数学的语言来表达,线性应变可以用应变量ε表示,其与外力F之间存在着关系ε=ΔL/L,其中ΔL为物体长度的增量,L为物体的原始长度。
非线性应变则是指物体的形变与受力不成比例。
在高强度材料的情况下,非线性应变是不可忽视的。
非线性应变与材料的本构关系有关,常用的本构关系模型包括背应变率本构关系、黏弹性本构关系等。
这些模型可以更准确地描述材料的力学行为,使得我们能够更准确地计算应变。
与应变相对应的是应力。
应力可以看作是物体单位面积的受力情况。
一般来说,应力可以分为正应力和剪应力。
正应力是指垂直于物体内部某一面的力的作用情况。
例如,当我们用一把剪刀剪断一根木棍时,剪刀的受力情况可以被描述为正应力。
剪应力则是指平行于物体内部某一面的力的作用情况。
例如,当我们剪断一个绳索时,绳索的受力情况可以被描述为剪应力。
应变与应力之间的关系又可以通过应力-应变曲线来描述。
应力-应变曲线是弹性体力学研究中的一个重要工具,它可以体现材料的力学性质。
一般来说,应力-应变曲线可以分为弹性阶段、屈服阶段、塑性阶段和断裂阶段。
在弹性阶段,应力与应变成正比。
这个阶段的曲线是一个直线,斜率即为弹性模量,用来描述材料的刚度。
当应力超过一定值时,物体进入屈服阶段。
在屈服阶段,物体的应变不再与应力成正比,而是呈现出非线性关系。
此时物体会发生塑性变形,形成剩余应变。
当应力进一步增加时,物体可能发生断裂。
我所认识的应力应变关系
![我所认识的应力应变关系](https://img.taocdn.com/s3/m/efca59f816fc700aba68fcef.png)
我所认识的应力应变关系应力应变都是物体受到外界载荷产生的响应。
物体由于受到外界载荷后,在物体内部各部分之间要产生互相之间的力的作用,由于受到力的作用就会产生相应的变形;或者由于变形引起相应的力的作用。
则一定材料的物体其产生的应力和应变也必然存在一定的关系。
一 应力-应变关系影响本构关系的因素有很多,例如材料、环境、加载类型(载荷、温度)、加载速度(动载荷、静载荷)等,当然,本构关系有很多类型,包括弹性、塑性、粘弹性、粘塑性、各向同性、各向异性本构关系,那么首先来叙述一下简单情况本构关系,所谓简单情况就是六个应力分量x y xy yz zx σσστττ、、z 、、、只有一个不为零,六个应变分量x y xy yz zx εεεγγγ、、z 、、、只有一个自由变化,应力应变关系图1-1。
图1-1 应力应变关系图图中O A为线弹性阶段,AB 为非线弹性阶段,故OB 为初始弹性阶段,C 点位初始屈服点,()s σ+为初始屈服应力,CBA 为弹性阶段卸载,这一阶段中E σε=,初始弹性阶段结束之后,应力继续增大,进入塑性阶段,CDE 为强化阶段,应变强化硬化,EF 为颈缩阶段,应变弱化软化。
如果在进入塑性阶段卸载后再加载,例如在D 点卸载至零,应力应变关系自D 点沿'DO 到达'O 点,且'DO ∥O A,其中'O O 为塑性应变p ε,DG 为弹性应变e ε,总应变为它们之和。
此后再继续加载,应力应变关系沿ODE F变化,D 点为后继屈服点,OD 为后继弹性阶段,()'s σ+为后继屈服应力,值得一提的是初始屈服点只有一个,而后继屈服点有无数个(由加载历史决定)。
若在卸除全部载荷后反向加载,弹性阶段'COC ,()()s s σσ+-=,而在强化阶段'DOD ,()()s s σσ+->,称为Bau schin ger 效应。
从上述分析得出材料弹塑性行为有一定的特殊性,主要表现在:弹性应力应变关系是线性,且是单值对应关系,而塑性应力应变关系是非线性的非单值对应。
应变和应力关系
![应变和应力关系](https://img.taocdn.com/s3/m/616c6c0cc950ad02de80d4d8d15abe23492f0342.png)
新能源技术:利用应变和应力原理,优化风力发电机叶片设计,提高风能 利用率和发电效率。
机器人技术:通过研究应变和应力与机器人关节运动的关系,提高机器人 的灵活性和稳定性,拓展机器人的应用领域。
应变和应力对未来科技发展的影响
增强材料性能:通过深入研究应变和应力,可以开发出性能更强的新型材 料,为未来的科技发展提供物质基础。
智能制造:利用应变和应力的知识,可以优化制造过程中的材料性能,提 高生产效率和产品质量,推动智能制造的发展。
生物医学应用:在生物医学领域,应变和应力的研究有助于更好地理解和 控制人体生理机制,为未来的生物医学应用提供支持。
压痕法:利用压痕仪在物体表面压出一定形状的压痕,通过测量压痕的尺寸来计算应力
应变和应力的相互影响
应变和应力之间的关系:应变是应力作用下的物体形状变化,应力是抵抗变形的力。
应变和应力的测量方法:通过应变计和应力计进行测量,应变计测量物体变形,应力计测量物 体受到的力。
应变和应力的相互影响:应变和应力之间存在相互影响,例如在材料屈服点附近,应变和应力 之间会发生突变。
应力的概念
分类:正应力、剪应力、弯 曲应力等
定义:物体受到外力作用时, 内部产生的反作用力
单位:帕斯卡(Pa) 作用效果:使物体产生形变
应变和应力的关系
应变是物体形状 的改变,应力是 物体内部抵抗变
形的力
应变和应力之间 存在线性关系, 即应变正比于应
力
应变和应力之间 的关系可以用胡 克定律表示,即 应力=弹性模量
应变和应力关系
汇报人:XX
应变和应力的定义 应变和应力的测量方法 应变和应力的应用领域 应变和应力的研究进展 应变和应力的未来展望
第四章应力与应变关系
![第四章应力与应变关系](https://img.taocdn.com/s3/m/0418a1e7580216fc710afd72.png)
(4-3a)
广义虎克定律
在小变形条件下,应变分量都是微量,(a)式在应变 为零附近做Taylor展开后,忽略2阶以上的微量,例如
对 , 可x 得:
x (f1)0(f1x)0x (f1y)0y (f1z)0z
( f1
yz
)0yz
(f1zx)0zx
(f1xy)0xy
广义虎克定律 展开系数表示函数在其对应变分量一阶导数在应变分 量等于零时的值,而 实( f 1 际) 0 上代表初应力,由于无初应 力假设 等于( f 1零) 0 。 其它分量类推,那么在小变形情况下应力与应变关系 式简化为:
3 t 2 3
和 称 为拉梅(Lame)弹性常数,简称拉梅常数
各向同性体的广义虎克定律
(三)最后通过坐标变换,进一步建立任意正交坐标系应 力与应变关系
在各向同性弹性体中,设 o为x y任z 意正交坐标系,它
的三个轴与坐标系 应O力12主3 轴的方向余弦分别为 、 (l1 ',m1和',n1 ') (l2,',m因2 ',n为2 ')1,(2l3,',m33 ',轴n3是') 主轴,主轴方向的 剪应变和剪应力等于零。 根据转轴时应力分量变换公式得
系O123各轴的方向余弦,知:
l1 n3 cos180 1 m2 cos0 1 l2 l3 m1 m3 n1 n2 cos90 0
各向同性体的广义虎克定律
因此新坐标轴也指向应变主轴方向,剪应变也应该等
于零,且因各向同性时,弹性系数C41,C42和C43应
该不随方向面改变,故取 x, y分, z别为1′,2′和3′轴,同
上式作为虎克定律在复杂受力情况下的一个推广, 因此称为广义虎克定律。式中系数Cm n(m ,n1,是2, ,6) 物质弹性性质的表征,由均匀性假设可知这些弹性性 质与点的位置无关,称为弹性常数。上式也可以写成 矩阵形式
应力与应变间的关系
![应力与应变间的关系](https://img.taocdn.com/s3/m/62e2280d4a7302768e993910.png)
τ xy
右侧面
σx τ xz
x
γ xy
γ yz
γ zx
O
∠ xOy ∠ yOz
∠zox 。
z
σz
前面
2、各向同性材料的广义胡克定 、 律
(1)线应变的推导 线应变的推导 分别单独存在时, 在σx σy σz 分别单独存在时 x 方 依次为: 向的线应变 εx 依次为
x σ
z
x
x σ
εx ' =
σx
τ = Gγ
或
γ=
τ
G
τ γ γ τ
为剪切弹性模量,单位为N/m G 为剪切弹性模量,单位为N/m2.
三、复杂应力状态下应力与应变的关系 σx σy σz τ x y τ y z τ z x εx ε y ε z γ x y γ y z γ z x
1、各向同性材料的广义胡克定律 (1)符号规定 ) (a)三个正应力分量 拉应力为正 (a)三个正应力分量 三个正应力分量:拉应力为正
因此, 该圆筒变形后的厚度并无变化, 因此 该圆筒变形后的厚度并无变化 仍然为 t =10mm .
G G G
在线弹性范围内, 小变形条件下, 在线弹性范围内 小变形条件下 各向同性材料。 各向同性材料。
1 εx = σx ν (σ y +σz ) E 1 E
[
]
公式的适用范围 : 在线弹性范围内,小 在线弹性范围内 小 变形条件下, 变形条件下 各向同性材 料。
ε y = [σ y ν (σz +σx )]
ν ν ε z = (σ x + σ y ) = (τmax + τmax ) = 0 E E
同理可得,圆筒中任一点 该点到圆筒横截面中心的距离为 该点到圆筒横截面中心的距离为ρ 同理可得 圆筒中任一点 (该点到圆筒横截面中心的距离为ρ) 处 的径向应变为
第四章应力应变关系
![第四章应力应变关系](https://img.taocdn.com/s3/m/9de3d4cecf2f0066f5335a8102d276a2002960a9.png)
4 应力应变关系4.1弹性变形时应力和应变的关系当材料所受应力小于其线弹性极限时,材料应力应变间的关系服从广义Hooke 定律,即1()1()1()111222x x y z y yx zz z x yxy xy yz yz zx zxE E E G G G εσνσνσεσνσνσεσνσνσετετετ⎧=--⎪⎪⎪=--⎪⎨⎪=--⎪⎪⎪===⎩,, (4.1) 式中,E 为拉压弹性模量,G 为剪切模量,ν为泊松比,对于各向同性材料,三个常数之间满足()21E G ν=+关系。
由上式可得11212()()33m x y z x y z m E E ννεεεεσσσσ--=++=++= (4.2) 于是11()'2x m x m x E G νεεσσσ+-=-= 或1112''22x m x x m G G Eνεεσσσ-=+=+ 类似地可以得到1112''22y m y y m G G E νεεσσσ-=+=+ 1112''22z m z z m G G Eνεεσσσ-=+=+于是,方程(4.1)可写成如下形式1212'00'0000'x xy xz x xy xz m v yx y yz yx y yz m G E m zx zy z zx zy z εγγσττσγεγτστσσγγεττσ-⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭即'1122ij ij m ij ij m G Eνεεεσδσ-'=+=+ (4.3)显然,弹性变形包括体积改变的变形和形状改变的变形。
前者与球应力分量成正比,即12m m E νεσ-= (4.4)后者与偏差应力分量成正比,即''12''12''12111222x x m x G y y m y G z z m z G xy xy yz yz zx zxG G G εεεσεεεσεεεσετετετ⎧=-=⎪=-=⎪⎨=-=⎪⎪===⎩,,或简写为2ij ij G σε''= (4.5)此即为广义Hooke 定律。
应力-应变
![应力-应变](https://img.taocdn.com/s3/m/fa30684cba68a98271fe910ef12d2af90342a842.png)
应力-应变
应力-应变关系是材料力学中的重要概念,用于描述材料在受到外力作用下的变形行为。
应力(stress)指单位面积上的力,通常用力(force)除以面积(area)来计算。
应变(strain)则指材料单位长度的变化量,通常用长度变化(change in length)除以初始长度(original length)来计算。
应力和应变之间的关系可以通过材料的应力-应变曲线表示。
在弹性阶段,应力与应变成正比,即呈线性关系,这称为胡克定律。
当超过弹性极限后,材料可能发生塑性变形,应力-应变曲线非线性上升。
最终,在断裂点达到时,材料会发生破坏。
值得注意的是,不同材料具有不同的应力-应变特性,因此需要使用适当的试验方法来确定每种材料的特定应力-应变曲线。
这些实验通常在材料力学测试机上进行,例如拉伸试验、压缩试验或剪切试验等。
总而言之,应力-应变关系是描述材料变形行为的重要概念,可以通过应力-应变曲线来了解材料的力学特性。
应力与应变间的关系
![应力与应变间的关系](https://img.taocdn.com/s3/m/848969482e3f5727a5e962c6.png)
210 × 10 9 = ( − 160 + 0 .3 × 240 ) × 10 − 6 = − 20 .3MPa 1 − 0 .3 2 6
∴σ 1 =44 .3 MPa ;σ 2 =0;σ 3 = − 20 .3MPa ;
0.3 ε 3 = − (σ 3 + σ 1 ) = − ( − 22.3 + 44.3) × 10 6 = − 34.3 × 10 − 6 E 210 × 10 9 实 际上 从排 序的 角度 来 看是 求得 ε 2
µ
注意:主应力和主应变的方向是相同的 注意 主应力和主应变的方向是相同的. 主应力和主应变的方向是相同的
2011-11-30
7
§7-4 应力与应变间的关系
一、单拉下的应力--应变关系 单拉下的应力--应变关系 -y
σx
εx=
σx
E
ε y =− σ x
E
γ ij ≈ 0 (i,j = x,y,z )
µ
ε z =− σ x
E
µ
z
x
y
二、纯剪的应力--应变关系 纯剪的应力--应变关系 --
γ xy =
2011-11-30
τ xy
1 − 2µ θ = (σ 1 + σ 2 + σ 3 ) E 1 − 2µ = (σ x + σ y + σ z ) E
2011-11-30
3(1 − 2 µ ) (σ 1 + σ 2 + σ 3 ) σ m θ = = E 3 k 体积胡克定律, k 为体积弹性模量,
σ m 是三个主应力的平均值
所以, 所以,该点处为平面应力状态
′ σ2
E [ε 1 + µε 2 ] ∴σ 1 = 2 1− µ 210 × 10 9 = ( 240 − 0 .3 × 160 ) × 10 − 6 = 44 .3MPa 1 − 0 .3 2
第2章 应力-应变关系
![第2章 应力-应变关系](https://img.taocdn.com/s3/m/96ec386baf1ffc4ffe47acd1.png)
P
n F
P
θ
n
P F 2 P cos n F P sin s cos F
σn称为正应力,σs称为剪应力。
x P P
NUDT 12.6
第二章 应力-应变关系
Chap. 02
2.1 符号规定
应力 弹性体 微元体
yx
z
zz
zy
xx
yz
正应力:
外法线 方向
i, j 1,2,3,4,5,6
0 1 0 0 0 2 0 0 0 3 C44 0 0 4 0 C55 0 5 0 0 C66 6 0 0
1
1 C11 C12 C13 C 2 21 C22 C23 3 C31 C32 C33 0 0 4 0 5 0 0 0 6 0 0 0
u w r z x
NUDT 12.6
第二章 应力-应变关系
Chap. 02
2.1 符号规定
正轴与偏轴
正轴(on-axis)应力应变: 偏轴(off-axis)应力应变:
xx xx
yy yy
ij i, j
zz yz zz yz
zx zx
xx , yy , zz
应力分 量指向
zx xy
o
yy yz
xz
yy
xz
y
正负号
xy
zx
zy
yx
剪应力:
xx
xy , xz , yx
zz
x
yz , zx , zy
应力和应变之间的关系
![应力和应变之间的关系](https://img.taocdn.com/s3/m/a7c8226a2bf90242a8956bec0975f46526d3a75f.png)
应力和应变的关系曲线
描述
应力和应变的关系曲线是描述应力与应变之间关系的图形表示。
形状
在弹性范围内,曲线呈直线上升;超过弹性极限后,曲线出现弯曲。
应用
通过应力和应变的关系曲线,可以确定材料的弹性模量、屈服点和 极限强度等机械性能参数。
04
应力和应变的应用
弹性力学
弹性力学是研究弹性物体在外力作用下 变形和内力的规律的科学。在弹性力学 中,应力和应变是描述物体变形和受力 状态的基本物理量。
公式
σ=Eεsigma = E varepsilonσ=Eε
解释
σ为应力,E为弹性模量,ε为应变。 当应力增加时,应变也相应增加, 且两者成正比关系。
非线性关系
描述
当材料受到超过其弹性极限的应力时 ,应力与应变之间的关系不再是线性 的,而是呈现非线性关系。
特征
在非线性阶段,应变随应力的增加而 急剧增加,可能导致材料发生屈服或 断裂。
设计优化
优化结构设计
通过对应力和应变的分析,优化结构设计,提高结构的承载能力 和稳定性。
考虑材料特性
在设计过程中,充分考虑材料的力学特性和性能,合理选择和使 用材料,以降低应力和应变对结构的影响。
引入减震和隔震措施
通过引入减震和隔震措施,降低地震等外部载荷对结构产生的应 力和应变,提高结构的抗震性能。
时间
蠕变
在长期恒定应力作用下,材料会发生 缓慢的塑性变形,即蠕变。蠕变会影 响材料的应力和应变关系,特别是在 高温和长期载荷作用下。
时间依赖性
某些材料的力学性能会随时间发生变 化,对应力和应变的关系产生影响。 例如,疲劳和时效等现象会导致材料 性能随时间发生变化。
07
应力和应变在工程实践中的 注意事项
应力与应变间的关系
![应力与应变间的关系](https://img.taocdn.com/s3/m/a4e2f28d81eb6294dd88d0d233d4b14e84243e1e.png)
一、单向应力状态下应力与应变旳关系
1
1
E
σ1
σ1
E 为材料旳弹性模量,单位为N/m2.
横向线应变2,3与纵向线应变 1 成
正比,比值为泊松比γ,而符号相反。
2
3
1
二、纯剪切应力状态下应力与应变旳关系
G 或
G
τ γ γτ
G 为剪切弹性模量,单位为N/m2.
三、复杂应力状态下应力与应变旳关系
x y z x y y z z x
y
σy
上面
x y z x y y z z x
1、各向同性材料旳广义胡克定律 (1)符号要求
τ yx
τ τ yz
xy
τ τ zy xz
τ zx
右侧面
σx
(a)三个正应力分量:拉应力为正
σz
x
o
压应力为负。 z
前面
(b)三个剪应力分量: 若正面(外法线与坐标轴
P a
y
z
x
y 解:铜块上截面上旳压应力为
y
P A
300 103 0.12
y x
30MPa
x
(b) Z z
1 [ ( )] 0
xE x
y
z
由
1 [ ( )] 0
zE z
x
y
解得
x
z
(1 1 2
)
y
0.34(1 0.34) 1- 0.342
(30)
-15.5MPa
特例
在平面纯剪切应力状态下:σ 1 σ 3 τ xy
代入得
1 2
E
(1
2
3)
1 2
应力与应变间的关系
![应力与应变间的关系](https://img.taocdn.com/s3/m/d074c95802020740be1e9bb5.png)
压应力为负。 z
前面
(b)三个剪应力分量: 若正面(外法线与坐标轴
正向一致的平面)上剪应力矢 的指向与坐标轴正向一致, 或 负面(外法线与坐标轴负向一 致的平面)上剪应力矢的指向 与坐标轴负向一致,则该剪 应力为正, 反之为负。
y
o
z σz
σy
τ yx τ yz τ zy τ zx
上面
τ xy
右侧面
)
y
0.34(1 0.34) 1- 0.342
(30)
-15.5MPa
铜块的主应力为
σ1 σ2 15.5MPa , σ3 30MPa
体积应变和最大剪应力分别为
1 2
E
(1
2
3)
1.95 104
max
1 2
(1
3
)
7.25MPa
(1)概念:构件每单位体积的体积变化, 称为 体积应变用θ表示。
(2)各向同性材料在空间应力状态下的 体积应变
公式推导
2
设单元体的三对平面为主平面, 其 三个边长为d x, d y, d z 变形后的边 长分别为 d x(1+ , d y(1+2 , d z(1+3 , 因此变形后单元体的体 积为:
y
1 E
[ y
( z
x )]
z
1 E
[ z
( x
y )]
(2)剪应变的推导
剪应变 xy , yz ,zx与剪应力xy ,yz ,zx之间的关系为
xy
xy
G
yz
流体力学中应力应变关系
![流体力学中应力应变关系](https://img.taocdn.com/s3/m/a1a51d45a517866fb84ae45c3b3567ec102ddce9.png)
流体力学中应力应变关系流体力学是力学的一个分支,研究的是流体的运动、应力和应变。
在流体力学中,应力和应变之间的关系是一个基础性问题,本文将对流体力学中应力应变关系进行讲解。
一、应力和应变的概念应力是指在物体内部的任意一个点处,单位面积受到的力的大小。
在流体力学中,应力分为正应力和剪应力两种。
正应力是指垂直于物体表面的应力,它的方向和大小与物体表面的法线方向相同。
剪应力是指平行于物体表面的应力,它的方向和大小与物体表面的切线方向相同。
应变是指物体受到应力作用后,形态发生改变的程度。
在流体力学中,应变分为体积应变和剪应变两种。
体积应变是指流体的体积在受到压力作用后发生的变化,它是指流体体积的变化与初始体积的比值。
剪应变是指物体受到剪应力作用后,产生的形变的强度,它是指变形的尺寸与原始尺寸的比值。
流体在受到应力作用时,会发生形变,而应力和应变之间的关系便是描述形变程度的应变和导致形变的应力之间的关系。
在流体力学中,应力和应变之间的关系有两种:1. 线性应力应变关系在一些情况下,流体的应变与应力之间具有线性关系。
这种关系表示为:ε = K σ其中,ε是流体的应变,K是常数,σ是流体的应力。
这种关系在流体受到小应力时是适用的,通常称为胡克定律。
当流体所受到的应力超过一定的范围时,线性应力应变关系不再成立,流体的应变不再是应力的线性函数。
这时,应力和应变的关系可以用更复杂的非线性关系进行描述。
液滴的表面张力、黏度和压缩强度是非线性的。
流变学是研究物质的变形和流动行为的学科,它探究物体在不同的应力作用下,应变的变化规律。
在流体力学的领域中,流体的应力应变关系可以被分成三类:粘弹性流体是一种介于固体和液体之间的物质,它的应变不仅与应力有关,而且与应变历史有关。
它们的应力应变关系可以用弹性模量、黏度和时间来描述。
塑性流体是指流体在受到一定应力作用后会发生永久变形的流体。
在塑性流体中,应变随着应力的增大,在一定的应力范围内也是线性的,但超过一定的范围后便不再线性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.应力
物体由于外因(受力、湿度、温度场变化等)而变形时,在物体内各部分之间产生相互作用的内力,以抵抗这种外因的作用,并试图使物体从变形后的位置恢复到变形前的位置。
在所考察的截面某一点单位面积上的内力称为应力。
同截面垂直的称为正应力或法向应力,同截面相切的称为剪应力或切应力。
应力仪或者应变仪是来测定物体由于内应力的仪器。
一般通过采集应变片的信号,而转化为电信号进行分析和测量。
方法是:将应变片贴在被测定物上,使其随着被测定物的应变一起伸缩,这样里面的金属箔材就随着应变伸长或缩短。
很多金属在机械性地伸长或缩短时其电阻会随之变化。
应变片就是应用这个原理,通过测量电阻的变化而对应变进行测定。
一般应变片的敏感栅使用的是铜铬合金,其电阻变化率为常数,与应变成正比例关系。
通过惠斯通电桥,便可以将这种电阻的比例关系转化为电压。
然后不同的仪器,可以将这种电压的变化转化成可以测量的数据。
对于应力仪或者应变仪,关键的指标有:测试精度,采样速度,测试可以支持的通道数,动态范围,支持的应变片型号等。
并且,应力仪所配套的软件也至关重要,需要能够实时显示,实时分析,实时记录等各种功能,高端的软件还具有各种信号处理能力。
另外,有一些仪器是通过光谱,膜片等原理设计的。
应力的单位:应力的单位是Pa,简称帕(这是为了纪念法国科学家帕斯卡Blaise· pascal而命名的),即牛顿/平方米(N/ ㎡)。
2.应变
物体在受到外力作用下会产生一定的变形,变形的程度称应变。
应变有正应变(线应变),切应变(角应变)及体应变。
正应变公式为
,式中l是变形的前长度,Δl是其变形后的伸长量。
应变单位:应变是形变量与原来尺寸的比值,用ε表示,即ε=ΔL/L,无量纲,常用百分数表示。
3.弹性模量
一般地讲,对弹性体施加一个外界作用,弹性体会发生形状的改变(称为“应变”),“弹性模量”的一般定义是:应力除以应变。
材料在弹性变形阶段,其应力和应变成正比例关系(即符合胡克定律),其比例系数称为弹性模量。
又称杨氏模量,弹性材料的一种最重要、最具特征的力学性质,是物体弹性变形难易程度的表征,用E表示。
定义为理想材料有小
形变时应力与相应的应变之比。
E以σ单位面积上承受的力表示,单位为N/m^2。
拉伸试验中得到的屈服极限σs和强度极限σb,反映了材料对力的作用的承受能力,而延伸率δ或截面收缩率ψ,反映了材料塑性变形的能力。
为了表示材料在弹性范围内抵抗变形的难易程度,在实际工程结构中,材料弹性模量E 的意义通常是以零件的刚度体现出来的,这是因为一旦零件按应力设计定型,在弹性变形范围内的服役过程中,是以其所受负荷而产生的变形量来判断其刚度的。
刚度的重要性在于它决定了零件服役时稳定性,对细长杆件和薄壁构件尤为重要。
因此,构件的理论分析和设计计算来说,弹性模量E是经常要用到的一个重要力学性能指标。
弹性模量单位:应力和应变成正比,比例系数称为弹性模量。
ε=ΔL/L*100%(单位为常数1);应力σ=F/S,单位为Pa;E=σ/ε,单位是Pa
4.应力应变关系
根据胡克定律在一定的比例极限范围内应力与应变成线性比例关系。
对应的最大应力称为比例极限。
应力与应变的比例常数E 被称为弹性系数或扬氏模量,不同的材料有其固定的扬氏模量。
虽然无法对应力进行直接的测量但是通过测量由外力影响产生的应变可以计算出应力的大小。
(专业文档资料素材和资料部分来自网络,供参考。
可复制、编制,期待你的好评与关注)。