集合之间的关系含答案
集合间的基本关系练习题含答案
集合间的基本关系练习题(1)1. 如图,已知全集U=Z,集合A={−2, −1, 0, 1, 2},B={1, 2, 3, 4},则图中阴影部分所表示的集合是()A.{3, 4}B.{−2, −1, 0}C.{1, 2}D.{2, 3, 4}2. 已知集合A={−1, 0, 1},则含有元素0的A的子集的个数为()A.2B.4C.6D.83. 设集合A={−1, 1, 2},集合B={x|x∈A 且2−x∉A},则B=()A.{−1}B.{2}C.{−1, 2}D.{1, 2}4. 已知A={−2, 2011, x2−1},B={0, 2011, x2+3x},且A=B,则x的值为()A.1或−1B.0C.−2D.−15. 定义:设A,B是非空的数集,a∈A,b∈B,若a是b的函数且b也是a的函数,则称a与b是“和谐关系”.如等式b=a2,a∈[0, +∞)中a与b是“和谐关系”,则下列等中a与b是“和谐关系”的是()A.b=sin aa ,a∈(0,π2) B.b=a3+52a2+2a+1,a∈(−2,−23)C.(a−2)2+b2=1,a∈[1, 2]D.|a|+|b|=1,a∈[−1, 1]6. 已知集合:①{0};②{⌀};③{x|3m<x<m};④{x|a+2<x<a};⑤{x|x2+ 2x+5=0, x∈R}.其中,一定表示空集的是________(填序号).7. 当a满足________时,集合A={x|3x−a<0, x∈N+}表示集合{1}.8. 已知集合M={1, 2, 3, ..., n}(n>1, n∈N∗),则M的所有非空子集的元素和为________(只需写出数学表达式)=a+2},B={(x,y)|(a2−4)x+(a−2)y=7},若A∩9. 已知集合A={(x,y)|y−2x−1B=⌀,则实数a=________.10. 集合A={1, 2}共有________子集.11. 已知集合A={1,2,3,4}.(1)若M⊆A,且M中至少有一个偶数,则这样的集合M有多少个?(2)若B={x|ax−3=0},且B⊆A,求实数a的取值集合.12. 已知集合A={x|2m−10<x<m−1},B={x|2<x<6}.(1)若m=4,求A∩B;(2)若A⊆B,求m的取值范围.参考答案与试题解析集合间的基本关系练习题(1)一、选择题(本题共计 5 小题,每题 5 分,共计25分)1.【答案】A【考点】Venn图表达集合的关系及运算【解析】由阴影部分可知对应的集合为B∩∁U A,即可得到结论.【解答】解:阴影部分可知对应的集合为B∩(∁U A),∵全集U=Z,集合A={−2, −1, 0, 1, 2},B={1, 2, 3, 4},∴B∩(∁U A)={3, 4},故选A.2.【答案】B【考点】元素与集合关系的判断【解析】由集合子集的定义找出集合A的所有子集可得答案,【解答】已知集合A={−1, 0, 3},则由集合的子集定义可得A集合的所有子集为:⌀,{−1},{1},8},1},1},4,1},则含有元素0的A的子集为{6},{−1,{0,{−2,0,个数为4个,3.【答案】C【考点】集合的包含关系判断及应用【解析】本题的关键是认清集合B的研究对象,利用列举法写出集合B的元素即可.【解答】解:∵集合A={−1, 1, 2},集合B={x|x∈A 且2−x∉A},−1∈A,且2−(−1)=3∉A,故1∈B;1∈A,但2−1=1∈A,不满足题意;2∈A,且2−2=0∉A,故2∈B;故B={−1, 2}.故选C.4.【答案】D【考点】集合的相等【解析】直接应用集合相等则集合中的元素完全相同来解决问题.【解答】解:∵A=B,即A和B中的元素完全相同,∴有{x2−1=0x2+3x=−2,解得:x=−1.故选D.5.【答案】A【考点】元素与集合关系的判断【解析】只要判断所给出的函数单调即可.【解答】解:A.∵a∈(0,π2),则a>sin a,∴b′=a cos a−sin aa2=cos a(a−sin a)a2>0,因此函数b在a∈(0,π2)上单调递增,正确;B.∵a∈(−2,−23),b′=3a2+5a+2=(3a+2)(a+1),∴a∈(−2, −1)时单调递增;a∈(−1, −23)时单调递减,因此不符合题意;C.∵(a−2)2+b2=1,a∈[1, 2],∴b=±√1−(a−2)2,b不是a的函数,舍去;D.∵|a|+|b|=1,a∈[−1, 1],∴b=±(1−|a|),b不是a的函数,舍去.故选:A.二、填空题(本题共计 5 小题,每题 5 分,共计25分)6.【答案】④⑤【考点】空集的定义、性质及运算【解析】利用单元素集、空集的定义直接求解.【解答】①{0}是单元素集;②{⌀}是单元素集;③当m<0时,{x|8m<x<m}不是空集;④{x|a+2<x<a}是空集;⑤{x|x2+7x+5=0, x∈R}是空集.∴一定表示空集的是④⑤.7.【答案】【考点】集合的含义与表示【解析】先解不等式3x−a<0,得,根据已知条件需限制a为:1<≤2,解不等式即得a满足的条件.【解答】解3x−a<0得.根据已知条件知:x=1,∴1<.解得3<a≤6.8.【答案】(n2+n)⋅2n−2【考点】子集与真子集【解析】由题意可知,集合中的元素出现的次数都是相等的,从而确定每个元素出现的次数,从而利用等差数列求和公式求和.【解答】若M={1, 2, 3, ...n},则集合M的所有非空子集中,集合M中的任何一个元素出现的次数都是相等的;考查1出现的次数,可看成集合{2, 3, 4, ...n}的子集个数,故共有2n−1个1,故M的所有非空子集的元素和为2n−1(1+2+3+4+...+n)=(n2+n)⋅2n−29.【答案】【考点】集合关系中的参数取值问题【解析】此题暂无解析【解答】此题暂无解答10.【答案】4【考点】子集与真子集【解析】对于有限集合,我们有以下结论:若一个集合中有n个元素,则它有2n个子集.【解答】解:集合A有2个元素,故有22=4个子集.故答案为:4.三、 解答题 (本题共计 2 小题 ,每题 5 分 ,共计10分 )11.【答案】解:(1)由M ⊆A ,且M 中至少有一个偶数,得满足条件的集合M 为:{2},{1,2},{2,3},{1,2,3},{4},{1,4},{3,4},{1,3,4},{2,4},{1,2,4},{2,3,4},{1,2,3,4},共12个.(2)因为B ⊆A ,所以集合B 有两种可能:B =⌀,B ≠⌀.当B =⌀时,显然a =0,当B ≠⌀时,则a ≠0,得x =3a ,则有3a =1或3a =2或3a =3或3a =4, 解得a =3或a =32或a =1或a =34.综上,实数a 的取值集合是{0,34,1,32,3}.【考点】集合的包含关系判断及应用【解析】此题暂无解析【解答】解:(1)由M ⊆A ,且M 中至少有一个偶数,得满足条件的集合M 为:{2},{1,2},{2,3},{1,2,3},{4},{1,4},{3,4},{1,3,4},{2,4},{1,2,4},{2,3,4},{1,2,3,4},共12个.12.【答案】解:(1)当m =4时,A ={x|2×4−10<x <4−1}={x|−2<x <3},B ={x|2<x <6},则A ∩B ={x|2<x <3}.(2)∵ A ⊆B ,当A ≠⌀时,{2m −10<m −12m −10≥2m −1≤6;解得,6≤m ≤7;当A =⌀时,由2m −10≥m −1得,m ≥9;故m 的取值范围为{m|m ≥9或6≤m ≤7}.【考点】交集及其运算集合的包含关系判断及应用【解析】(1)当m =3时,化简A ={x 2−3x −10≤0}=[−2, 5],B =(2, 7);从而求交集.(2)讨论当B ≠⌀时,{m −1<2m +1m −1≥−22m +1≤5;当B =⌀时,m −1≥2m +1,从而解得.【解答】解:(1)当m =4时,A ={x|2×4−10<x <4−1}={x|−2<x <3},B ={x|2<x <6},则A ∩B ={x|2<x <3}.(2)∵ A ⊆B ,当A ≠⌀时,{2m −10<m −12m −10≥2m −1≤6;解得,6≤m ≤7;当A =⌀时,由2m −10≥m −1得,m ≥9;故m 的取值范围为{m|m ≥9或6≤m ≤7}.。
集合之间的关系含答案
集合之间的关系 课堂例题例1.设,,A B C 是三个集合,若A B ⊆且B C ⊆,试证A C ⊆.例2.试判定下列两个集合的包含关系或相等关系并简述理由.1∅ {|23}x x -<<-;2{|5}x x > {|6}x x >;3{|n n 是12的正约数} {1,2,3,4,6,8,12};4{|n n 是4的正整数倍} {|2,}n n k k Z +=∈.例3.求出所有符合条件的集合C1{1,2,3}C ⊆;2{,}C a b ;3{1,2,3}{1,2,3,4,5}C ⊆. 选用例4.已知{|21,},{|A x x k k Z B x x ==+∈=是被4除余3的整数},判断,A B 之间的关系并证明之..集合之间的关系知识再现1.对于两个集合A 与B ,1如果 ,那么集合A 叫做集合B 的子集,记作________或________,读作 或者_________________;2如果A 是B 的子集并且___________________________________,那么集合A 与集合B 相等,记作 ;3如果A 是B 的子集并且___________________________________,那么集合A 叫做集合B 的真子集,记作____________或______________.2.空集∅是__________________的子集;空集∅是__________________的真子集.基础训练1.1下列写法正确的是A {0}∅B 0∅C {0}∅∈D 0∈∅2下列四个关于空集的命题中:①空集没有子集;②任何集合至少有两个子集;③空集是任何集合的真子集;④若A ⊂∅≠,则.A ≠∅ 其中正确的个数是A0 B1 C2 D32.用恰当的符号填空,,=⊆⊇1{1,3,5} {5,1,3}; 2{|(3)(2)0}x x x -+= 3{|0}3x x x -=+; 3{|2}x x > {|2}x x ≥; 4{|,}2n x x n Z =∈ 1{|,}2x x n n Z =+∈. 3.1已知2{,}{2,2}x y x x =,则x = ,y = .22{1,3,}{1,}x x ⊇,则实数x ∈ . 4.指出下列各集合之间的关系,并用文氏图表示:{|A x x =是平行四边形},{|B x x =是菱形},{|C x x =是矩形},{|D x x =是正方形}5.类比“⊆”、“⊂≠”的定义,请给出符号“⊆”的定义:如果 ,则称集合A 不是集合B 的子集,用符号“A B ⊆”表示,读作“A 不包含于B ”.6.已知集合M 满足{0,1,2,3,4}M ⊆且{0,2,4,8}M ⊆,写出所有符合条件的集合M .7.已知2{1},{|30}A B x x x a ==-+=,①若A B ,求实数a 的值;②是否存在实数a 使得A B =巩固提高8.已知2{0,,}{,,1}b a a b a a+=,求实数,a b . 9.已知集合2{|60}M x x x =+-=,关于y 的方程20ay +=的解集为N ,且N M ⊆,求实数a 的值.选做10. 已知集合1{|,},6P p p n n Z ==+∈ 11{|,},{|,}2326m s Q q q m Z R r r s Z ==-∈==+∈, 判断集合,,P Q R 之间的关系并证明. 温故知新11.用列举法表示“mathematics ”中字母构成的集合;用描述法表示集合{2,2,6,10,14,18,}-.课堂例题答案例1.证:任取x A ∈,因为A B ⊆,所以x B ∈,因为x B ∈且B C ⊆,所以x C ∈,因此A C ⊆ 证毕.例2.,,,=⊇⊆⊆例3.1,{1},{2},{3},{1,2},{2,3},{1,3},{1,2,3}∅2,{},{}a b ∅3{1,2,3,4},{1,2,3,5},{1,2,3,4,5}知识再现答案1.1若集合A 中的任意元素都属于集合B ,,A B B A ⊆⊆,A 包含于B ,B 包含于A2B 是A 的子集,A B =3B 中至少有一个集合不属于A ,AB B A ,2.任何集合;任何非空集合.习题答案1.,A B2.,,,=⊇⊆⊇3.11,12;2{ 4.,D C A D B A 5.集合A 中至少有一个元素不属于集合B6.,{0},{2},{4},{0,2},{0,4},{2,4},{0,2,4}∅7.2a =,不存在8.1,0a b =-= 9.2{0,1,}3a ∈-10.P Q R =证明: 613231{|,},{|,},{|,}666n m s P p p n Z Q q q m Z R r r s Z +-+==∈==∈==∈ 任取x P ∈,613(21)266n n x ++-==,所以x Q ∈,因此P Q ⊆;任取x Q ∈,323(1)166m m x --+==,所以x R ∈,因此Q R ⊆; 任取x R ∈,313(1)266s s x ++-==,所以x Q ∈,因此R Q ⊆; 因此P Q R ⊆=在集合Q 中取2m =得23q =,因此23Q ∈,但是26136n +=无整数解,所以23P ∉ 因此P Q R = 证毕 11.{,,,,,,,},{|22,}m a t h e i c s x x k k N =-+∈。
1.2 集合之间的关系
1.子集对于两个集合A和B,如果集合A中任何一个元素都属于集合B,那么集合A叫做集合B的子集,记作A⊆B或(B⊇A),读作“A包含于B”或“B包含A”.我们规定,空集包含于任何一个集合,空集是任何集合的子集.2.相等的集合对于两个集合A和B,如果A⊆B且B⊆A,那么叫做集合A与集合B相等,记作A=B,读作“集合A等于集合B”.因此,如果两个集合所含的元素完全相同,那么这两个集合相等.3.真子集对于两个集合A、B,如果A⊆B,并且B中至少有一个元素不属于A,那么集合A叫做集合B的真子集,记作A⫋B,读作“A真包含于B”.4.子集的个数5.韦恩图(文氏图)【例题】判断下列说法是否正确,并说明理由.(1)A⊆A;(2)若A⊆B,B⊆C,则A⊆C;(3)∅⊆A;(4)A⫋B,B⫋C,则A⫋C.【例题】在下面写法中,错误写法的个数是()①{0}∈{0,1};②∅⫋{0};③{0,-1,1}={1,-1,0};④0∈∅;⑤{(0,0)}={0}.A.2B.3C.4D.5【判别】a与{a},{0}与∅之间有何区别?【例题】已知a为给定的实数,那么集合M={x|x2-3x-a2+2=0}的子集个数为 . 【例题】设集合A={1,2,3},B={x|x⊆A},求集合B.【例题】设集合A={1,2,3},B={x|x∈A},求集合B.【例题】已知A={x|x2-2x-3=0},B={x|ax-1=0},若B⫋A,试求a的值.【例题】已知集合A={x|x2-3x+2=0},B={x|0<x<5,x∈N},则满足A⫋C⫋B的集合的个数是()A.1B.2C.3D.4【例题】已知集合A={x|-2≤x≤5},B={x|a+1≤x≤2a-1}.(1)若B⊆A,求实数a的取值范围;(2)若A⫋B,求a的范围.。
集合间基本关系及运算(习题及答案)
≠ 1. 已知 A = {a + 2,(a +1)2,a 2 + 3a + 3} ,1∈ A ,则a 的所有可能取值构成的集合为() A .{ -1,0}B .{ - 2,-1,0}集合间基本关系及运算(习题)C .{0}D .{ - 2,0}2. 已知集合M = {2,a + 2,a 2 - 4} ,N = {a + 3,a 2 + 2,a 2 - 4a + 6},且M N = {2},则实数 a 的值是 .3. 已知集合 A ={2,3},B ={x |mx -6=0},若 B ⊆A ,则实数 m 的值是 .4. 集合 A ={x |x 2-ax +a 2-19=0},B ={x |x 2-5x +6=0},C ={x |x 2+2x -8=0},若 A ∩B ≠∅ ,A ∩C =∅ ,则实数 a 的值是 .5. 设集合 A = {x | x -1 ≥ 2},B ={x | x < a },且满足 A ⊂ B ,若实 x - 2数 a 的取值范围是{a | a > c } ,则 c = .6. 已知集合 A ={x ∈ R || x + 2 |< 3} ,集合B ={x ∈ R | (x - m )(x - 2) < 0},且 A ∩B ={x ∈ R | -1 < x < n }, 则 m =,n = .7. 集合M = {x | x = kπ+π,k ∈Z} ,N ={x | x =kπ+π,k ∈Z},2 4 4 2则()A.M=N B.M ⊇NC.M ⊆N D.M N=∅8. 集合P ={x | x = 2k ,k∈Z},M = {x | x = 2k +1,k ∈Z},S ={x | x = 4k +1,k ∈Z},a∈P,b∈M,设c=a+b,则有()A.c∈P B.c∈MC.c∈S D.以上都不对9. 已知集合A ={x | x =k +1,k ∈Z},4B = {y | y =k-1,k ∈Z},则A B.2 410. 设集合U={(x,y) | y=3x-1},A={(x,y) | y - 2=3},则x -1U A= .11. 已知集合A = {x | a(x -1) +4 + 2 3= 2 3} ,若集合A 有且仅x +1有两个子集,求实数 a 的值以及 A 的两个子集.12. 已知集合A={x||x-a|=4},集合B={1,2,b}.(1)是否存在实数a,使得对于任意实数b 都有A ⊆B?若存在,求出相应的a 值;若不存在,请说明理由.(2)若A ⊆B 成立,求出相应的实数对(a,b).13. 已知集合A = {(x ,y) | x2 -y 2 -y = 4} ,B = {(x ,y) | x 2 -xy - 2 y 2 = 0} ,C ={(x ,y) | x - 2 y = 0},D ={(x ,y) | x +y = 0}.(1)判断B,C,D 之间的关系;(2)求A B .14. 若A={x|x=2n+1,n∈Z},B={y|y=4k±1,k∈Z},求证:A=B.15. 已知集合P = {x | x =m 2 -n 2 ,m∈Z ,n∈Z} ,A ={x | x = 4k - 2 ,k ∈Z},求证:A P =∅., , 【参考答案】1. C2. -1 或 23. 0,2,34. -25. 36. -1,17. C8. B9. ⊂≠10. {(1,2)}11. a =0 时,子集为{2 3},∅ ; 3a =1 时,子集为{ 3},∅ ; 3 a =3 时,子集为{ } ,∅ ; 312. (1)不存在;(2)(-3,-7),(-2,-6),(5,9),(6,10)13. (1)B=C ∪D(2){(-2,-1),(4,- 4) (8 4)} 3 314. 略15. 略。
【人教版】必修一数学:04-集合的基本关系及运算:知识讲解和巩固练习_集合基本关系运算(提高版,含答案)
集合的基本关系及运算【学习目标】1.理解集合之间包含与相等的含义,能识别一些给定集合的子集.在具体情境中,了解空集和全集的含义.2.理解两个集合的交集和并集的含义,会求两个简单集合的交集与并集.理解在给定集合中一个子集的补集的含义,会求给定子集的补集. 【要点梳理】要点一、集合之间的关系1.集合与集合之间的“包含”关系集合A 是集合B 的部分元素构成的集合,我们说集合B 包含集合A ;子集:如果集合A 的任何一个元素都是集合B 的元素,我们说这两个集合有包含关系,称集合A 是集合B 的子集(subset).记作:A B(B A)⊆⊇或,当集合A 不包含于集合B 时,记作A B ,用Venn 图表示两个集合间的“包含”关系:A B(B A)⊆⊇或要点诠释: (1)“A 是B 的子集”的含义是:A 的任何一个元素都是B 的元素,即由任意的x A ∈,能推出x B ∈. (2)当A 不是B 的子集时,我们记作“A ⊆B (或B ⊇A )”,读作:“A 不包含于B ”(或“B 不包含A ”).真子集:若集合A B ⊆,存在元素x ∈B 且x A ∉,则称集合A 是集合B 的真子集(proper subset).记作:A B(或B A)规定:空集是任何集合的子集,是任何非空集合的真子集. 2.集合与集合之间的“相等”关系A B B A ⊆⊆且,则A 与B 中的元素是一样的,因此A=B要点诠释:任何一个集合是它本身的子集,记作A A ⊆.要点二、集合的运算 1.并集一般地,由所有属于集合A 或属于集合B 的元素所组成的集合,称为集合A 与B 的并集,记作:A ∪B 读作:“A 并B ”,即:A ∪B={x|x ∈A ,或x ∈B}Venn 图表示:要点诠释:(1)“x ∈A ,或x ∈B ”包含三种情况:“,x A x B ∈∉但”;“,x B x A ∈∉但”;“,x A x B ∈∈且”.(2)两个集合求并集,结果还是一个集合,是由集合A 与B 的所有元素组成的集合(重复元素只出现一次).2.交集一般地,由属于集合A 且属于集合B 的元素所组成的集合,叫做集合A 与B 的交集;记作:A ∩B ,读作:“A 交B ”,即A ∩B={x|x ∈A ,且x ∈B};交集的Venn 图表示:要点诠释:(1)并不是任何两个集合都有公共元素,当集合A 与B 没有公共元素时,不能说A 与B 没有交集,而是A B =∅.(2)概念中的“所有”两字的含义是,不仅“A ∩B 中的任意元素都是A 与B 的公共元素”,同时“A 与B 的公共元素都属于A ∩B ”.(3)两个集合求交集,结果还是一个集合,是由集合A 与B 的所有公共元素组成的集合. 3.补集全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集,通常记作U.补集:对于全集U 的一个子集A ,由全集U 中所有不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集(complementary set),简称为集合A 的补集,记作:U U A A={x|x U x A}∈∉;即且;痧补集的Venn 图表示:要点诠释:(1)理解补集概念时,应注意补集U A ð是对给定的集合A 和()U A U ⊆相对而言的一个概念,一个确定的集合A ,对于不同的集合U ,补集不同.(2)全集是相对于研究的问题而言的,如我们只在整数范围内研究问题,则Z 为全集;而当问题扩展到实数集时,则R 为全集,这时Z 就不是全集.(3)U A ð表示U 为全集时A 的补集,如果全集换成其他集合(如R )时,则记号中“U ”也必须换成相应的集合(即R A ð).4.集合基本运算的一些结论A B A A B B A A=A A =A B=B A ⋂⊆⋂⊆⋂⋂∅∅⋂⋂,,,,A AB B A B A A=A A =A A B=B A ⊆⋃⊆⋃⋃⋃∅⋃⋃,,,,U U (A)A=U (A)A=⋃⋂∅,痧 若A ∩B=A ,则A B ⊆,反之也成立 若A ∪B=B ,则A B ⊆,反之也成立若x ∈(A ∩B),则x ∈A 且x ∈B 若x ∈(A ∪B),则x ∈A ,或x ∈B求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn 图或数轴进而用集合语言表达,增强数形结合的思想方法. 【典型例题】类型一、集合间的关系例1. 集合{}|2,A a a k k N ==∈,集合21|1(1)(1),8n B b b n n N ⎧⎫⎡⎤==--⋅-∈⎨⎬⎣⎦⎩⎭,那么,A B 间的关系是( ).A.A B B.B A C. A =B D.以上都不对 【答案】B【解析】先用列举法表示集合A 、B ,再判断它们之间的关系.由题意可知,集合A 是非负偶数集,即{}0,2,4,6,8,A =⋅⋅⋅.集合B 中的元素211(1)(1)8n b n ⎡⎤=--⋅-⎣⎦0()1(1)(1)()4n n n n ⎧⎪=⎨+-⎪⎩为非负偶数时,为正奇数时.而1(1)(1)4n n +-(n 为正奇数时)表示0或正偶数,但不是表示所有的正偶数,即1,3,5,7,n =⋅⋅⋅.由1(1)(1)4n n +-依次得0,2,6,12,⋅⋅⋅,即{}0261220B =⋅⋅⋅,,,,,. 综上知,B A ,应选B .【总结升华】判断两个集合间的关系的关键在于:弄清两个集合的元素的构成,也就是弄清楚集合是由哪些元素组成的.这就需要把较为抽象的集合具体化(如用列举法来表示集合)、形象化(用Venn 图,或数形集合表示).举一反三:【变式1】若集合{}{}|21,,|41,A x x k k z B x x l l z ==-∈==±∈,则( ). A.A B B.B A C. A =B D.A B Z =【答案】C例2. 写出集合{a ,b ,c}的所有不同的子集.【解析】不含任何元素子集为∅,只含1个元素的子集为{a},{b},{c},含有2个元素的子集有{a ,b},{a ,c},{b ,c},含有3个元素的子集为{a ,b ,c},即含有3个元素的集合共有23=8个不同的子集.如果集合增加第4个元素d ,则以上8个子集仍是新集合的子集,再将第4个元素d 放入这8个子集中,会得到新的8个子集,即含有4个元素的集合共有24=16个不同子集,由此可推测,含有n 个元素的集合共有2n个不同的子集.【总结升华】要写出一个集合的所有子集,我们可以按子集的元素个数的多少来分别写出.当元素个数相同时,应依次将每个元素考虑完后,再写剩下的子集.如本例中要写出2个元素的子集时,先从a 起,a 与每个元素搭配有{a ,b},{a ,c},然后不看a ,再看b 可与哪些元素搭配即可.同时还要注意两个特殊的子集:∅和它本身.举一反三:【变式1】已知{},a b A ⊆{},,,,a b c d e ,则这样的集合A 有 个.【答案】7个【变式2】同时满足:①{}1,2,3,4,5M ⊆;②a M ∈,则6a M -∈的非空集合M 有( ) A. 16个 B. 15个 C. 7个 D. 6个 【答案】C【解析】3a =时,63a -=;1a =时,65a -=;2a =时,64a -=;4a =时,62a -=;5a =时,61a -=;∴非空集合M 可能是:{}{}{}{}{}{}3,1,5,2,4,1,3,5,2,3,4,1,2,4,5,{}1,2,3,4,5共7个.故选C.例3.集合A={x|y=x 2+1},B={y|y=x 2+1},C={(x,y)|y=x 2+1},D={y=x 2+1}是否表示同一集合? 【答案】以上四个集合都不相同【解析】集合A={x|y=x 2+1}的代表元素为x ,故集合A 表示的是函数y=x 2+1中自变量x 的取值范围,即函数的定义域A=(,)-∞+∞;集合B={y|y=x 2+1}的代表元素为y ,故集合B 表示的是函数y=x 2+1中函数值y 的取值范围,即函数的值域B=[1,)+∞;集合C={(x,y)|y=x 2+1}的代表元素为点(x ,y ),故集合C 表示的是抛物线y=x 2+1上的所有点组成的集合;集合D={y=x 2+1}是用列举法表示的集合,该集合中只有一个元素:方程y=x 2+1.【总结升华】认清集合的属性,是突破此类题的关键.首先应当弄清楚集合的表示方法,是列举法还是描述法;其次对于用描述法表示的集合一定要认准代表元素,准确理解对代表元素的限制条件.举一反三:【变式1】 设集合{(,)|34}M x y y x ==+,{(,)|32}N x y y x ==--,则M N =( )A. {1,1}-B. {1,1}x y =-=C.(1,1)-D. {(1,1)}- 【答案】D【解析】排除法:集合M 、N 都是点集,因此MN 只能是点集,而选项A 表示二元数集合,选项B表示二元等式集合,选项C 表示区间(1,1)-(无穷数集合)或单独的一个点的坐标(不是集合),因此可以判断选D .【变式2】 设集合{|21,}M x y x x Z ==+∈,{|21,}N y y x x Z ==+∈,则M 与N 的关系是( ) A. N M Ü B. M N Ü C. N M = D. N M =∅【答案】A【解析】集合M 表示函数21,y x x Z =+∈的定义域,有{}M =整数;集合N 表示函数21,y x x Z =+∈的值域,有{}N =奇数,故选A.【高清课堂:集合的概念、表示及关系 377430 例2】【变式3】 设M={x|x=a 2+1,a ∈N +},N={x|x=b 2-4b+5,b ∈N +},则M 与N 满足( ) A. M=N B. M N C. N M D. M ∩N=∅【答案】B【解析】 当a ∈N +时,元素x=a 2+1,表示正整数的平方加1对应的整数,而当b ∈N +时,元素x=b 2-4b+5=(b-2)2+1,其中b-2可以是0,所以集合N 中元素是自然数的平方加1对应的整数,即M 中元素都在N 中,但N 中至少有一个元素x=1不在M 中,即M N ,故选B.【高清课堂:集合的概念、表示及关系 377430 例3】 例4.已知},,,0{},,,{y x N y x xy x M =-=若M =N ,则+++2()(x y x )()1001002y x y +++ = .A .-200B .200C .-100D .0【思路点拨】解答本题应从集合元素的三大特征入手,本题应侧重考虑集合中元素的互异性. 【答案】D【解析】由M=N ,知M ,N 所含元素相同.由O ∈{0,|x|,y}可知O ∈若x=0,则xy=0,即x 与xy 是相同元素,破坏了M 中元素互异性,所以x ≠0.若x ·y=0,则x=0或y=0,其中x=0以上讨论不成立,所以y=0,即N 中元素0,y 是相同元素,破坏了N 中元素的互异性,故xy ≠00,则x=y ,M ,N 可写为M={x ,x 2,0},N={0,|x|,x}由M=N 可知必有x 2=|x|,即|x|2=|x| ∴|x|=0或|x|=1若|x|=0即x=0,以上讨论知不成立 若|x|=1即x=±1当x=1时,M 中元素|x|与x 相同,破坏了M 中元素互异性,故 x ≠1 当x=-1时,M={-1,1,0},N={0,1,-1}符合题意,综上可知,x=y=-1∴+++2()(x y x )()1001002y x y +++ =-2+2-2+2+…+2=0【总结升华】解答本题易忽视集合的元素具有的“互异性”这一特征,而找不到题目的突破口.因此,集合元素的特征是分析解决某些集合问题的切入点.举一反三:【变式1】设a ,b ∈R ,集合b{1,a+b,a}={0,,b}a,则b-a=( ) 【答案】2【解析】由元素的三要素及两集合相等的特征:b1{0,,b},0{1,a+b,a}a 0a b=0a∈∈≠∴+,又,∴当b=1时,a=-1,b{0,b}={0,-1,1}a∴,当b=1a时,∴b=a 且a+b=0,∴a=b=0(舍) ∴综上:a=-1,b=1,∴b-a=2. 类型二、集合的运算例 5. 设集合{}{}|3,,|31,A x x k k Z B y y k k Z ==∈==+∈,{}|32,C z z k k Z ==+∈,{}|61,D w w k k Z ==+∈,求,,,A B A C B C B D .【答案】AB AC B C ===∅,BD D =【解析】先将集合A 、B 、C 、D 转化为文字语言叙述,以便弄清楚它们的构成,再求其交集即可.集合{}|3,A x x k k Z ==∈表示3的倍数所组成的集合;集合{}|31,B x x k k Z ==+∈表示除以3余1的整数所组成的集合; 集合{}|32,C x x k k Z ==+∈表示除以3余2的整数所组成的集合; 集合{}|61,D x x k k Z ==+∈表示除以6余1的整数所组成的集合;A B A C B C ∴===∅,B D D =.【总结升华】求两个集合的交集或并集,关键在于弄清两个集合由哪些元素所构成的,因而有时需要对集合进行转化,或具体化、形象化.如本例中转化为用自然语言来描述这些集合,有利于弄清集合的元素的构成.类似地,若一个集合元素的特征由不等式给出时,利用数轴就能使问题直观形象起来.举一反三:【变式1】已知集合M={y|y=x 2-4x+3,x ∈R },N={y|y=-x 2-2x+8,x ∈R },则M ∩N 等于( ) A. ∅ B. R C. {-1,9} D. [-1,9] 【答案】D【解析】集合M 、N 均表示构成相关函数的因变量取值范围,故可知:M={y|y ≥-1},N={y|y ≤9},所以M ∩N={y|-1≤y ≤9},选D.例6. 设集合M={3,a},N={x|x 2-2x<0,x ∈Z},M ∩N={1},则M ∪N 为( ) A. {1,3,a} B. {1,2,3,a} C. {1,2,3} D. {1,3} 【思路点拨】先把集合N 化简,然后再利用集合中元素的互异性解题. 【答案】D【解析】由N={x|x 2-2x<0,x ∈Z}可得:N={x|0<x<2,x ∈Z}={1},又由M ∩N={1},可知1∈M ,即a=1,故选D.举一反三:【变式1】(1)已知:M={x|x ≥2},P={x|x 2-x-2=0},求M ∪P 和M ∩P ;(2)已知:A={y|y=3x 2}, B={y|y=-x 2+4}, 求:A ∩B ,A ∪B ;(3)已知集合A={-3, a 2 ,1+a}, B={a-3, a 2+1, 2a-1}, 其中a ∈R ,若A ∩B={-3},求A ∪B. 【答案】(1){x|x ≥2或x=-1},{2};(2){y|0≤y ≤4},R ;(3){-4,-3,0,1,2}. 【解析】(1)P={2,-1},M ∪P={x|x ≥2或x=-1},M ∩P={2}.(2)∵A={y|y ≥0}, B={y|y ≤4}, A ∩B={y|0≤y ≤4}, A ∪B=R . (3)∵A ∩B={-3},-3∈B ,则有:①a-3=-3⇒a=0, A={-3,0,1}, B={-3,1,-1}⇒A ∩B={-3,1},与已知不符,∴a ≠0;②2a-1=-3⇒a=-1, ∴ A={-3,1,0}, B={-4,2,-3}, 符合题设条件,∴A ∪B={-4,-3,0,1,2}.【总结升华】此例题既练习集合的运算,又考察了集合元素的互异性.其中(1)易错点为求并集时,是否意识到要补上孤立点-1;而(2)中结合了二次函数的值域问题;(3)中根据集合元素的互异性,需要进行分类讨论,当求出a 的一个值时,又要检验是否符合题设条件.【高清课堂:集合的运算 377474 例5】【变式2】设集合A={2,a 2-2a ,6},B={2,2a 2,3a-6},若A ∩B={2,3},求A ∪B. 【答案】{2,3,6,18}【解析】由A ∩B={2,3},知元素2,3是A ,B 两个集合中所有的公共元素,所以3∈{2,a 2-2a ,6},则必有a 2-2a=3,解方程a 2-2a-3=0得a=3或a=-1当a=3时,A={2,3,6},B={2,18,3}∴A ∪B={2,3,6}∪{2,18,3}={2,3,6,18} 当a=-1时,A={2,3,6},B={2,2,-9}这既不满足条件A ∩B={2,3},也不满足B 中元素具有互异性,故a=-1不合题意,应舍去. 综上A ∪B={2,3,6,18}例7.已知全集{}{}21,2,3,4,5,|40U A x x px ==++=,求C u A.【思路点拨】C u A 隐含了A U ⊆,对于A U ⊆,注意不要忘记A =∅的情形.【答案】 当44p -<<时,C u A={}1,2,3,4,5;当4p =-时,C u A={}1,3,4,5;当5p =-时,C u A={}2,3,5. 【解析】当A =∅时,方程240x px ++=无实数解. 此时2160,44p p ∆=-<-<<.C u A=U当A ≠∅时,二次方程240x px ++=的两个根12,x x ,必须属于U . 因为124x x =,所以只可能有下述情形:当122x x ==时,4p =-,此时{}2,A = C u A={}1,3,4,5; 当121,4x x ==时,5p =-,此时{}1,4,A = C u A={}2,3,5. 综上所述,当44p -<<时,C u A={}1,2,3,4,5;当4p =-时,C u A={}1,3,4,5; 当5p =-时,C u A={}2,3,5.【总结升华】求集合A 的补集,只需在全集中剔除集合A 的元素后组成一个集合即可.由于本题中集合A 的元素不确定,因此必须分类讨论才行.举一反三:【变式1】 设全集U={x ∈N +|x ≤8},若A ∩(C u B)={1,8},(C u A)∩B={2,6},(C u A)∩(C u B)={4,7},求集合A ,B.【答案】{1,3,5,8},{2,3,5,6}. 【解析】全集U={1,2,3,4,5,6,7,8}由A ∩(C u B)={1,8}知,在A 中且不在B 中的元素有1,8;由(C u A)∩B={2,6},知不在A 中且在B 中的元素有2,6;由(C u A)∩(C u B)={4,7},知不在A 中且不在B 中的元素有4,7,则元素3,5必在A ∩B 中.由集合的图示可得A={1,3,5,8},B={2,3,5,6}. 类型三、集合运算综合应用例8.已知全集A={x|-2≤x ≤4}, B={x|x>a}. (1)若A ∩B ≠∅,求实数 a 的取值范围; (2)若A ∩B ≠A ,求实数a 的取值范围;(3)若A ∩B ≠∅且A ∩B ≠A ,求实数a 的取值范围. 【思路点拨】(1)画数轴;(2)注意是否包含端点. 【答案】(1)a<4;(2)a ≥-2;(3)-2≤a<4. 【解析】(1)∵A={x|-2≤x ≤4}, B={x|x>a},又A ∩B ≠∅,如图,a<4; (2)画数轴同理可得:a ≥-2;(3)画数轴同理可得:如图,-2≤a<4. 【总结升华】此问题从题面上看是集合的运算,但其本质是一个定区间,和一个动区间的问题.思路是,使动区间沿定区间滑动,数形结合解决问题.举一反三:【变式1】已知集合P={x ︱x 2≤1},M={a }.若P ∪M=P,则a 的取值范围是( ) A .(-∞, -1] B .[1, +∞) C .[-1,1] D .(-∞,-1] ∪[1,+∞) 【答案】C【解析】P ={x ︱11x -≤≤}又 P M P =, ∴M P ⊆,∴ 11a -≤≤ 故选C .例9. 设集合{}{}222|40,|2(1)10,A x x x B x x a x a a R =+==+++-=∈.(1)若A B B =,求a 的值; (2)若A B B =,求a 的值. 【思路点拨】明确A B B =、A B B =的含义,根据问题的需要,将其转化为等价的关系式B A ⊆和A B ⊆,是解决本题的关键.同时,在包含关系式B A ⊆中,不要漏掉B =∅的情况.【答案】(1)1a =或1a ≤-;(1)2. 【解析】首先化简集合A ,得{}4,0A =-.(1)由AB B =,则有B A ⊆,可知集合B 为∅,或为{}0、{}4-,或为{}0,4-.①若B =∅时,224(1)4(1)0a a ∆=+--<,解得1a <-. ②若0B ∈,代入得21011a a a -=⇒==-或.当1a =时,{}{}2|400,4,B x x x A =+==-=符合题意; 当1a =-时,{}{}2|00,B x x A ===⊆也符合题意. ③若4B -∈,代入得2870a a -+=,解得7a =或1a =. 当1a =时,已讨论,符合题意;当7a =时,{}{}2|1648012,4B x x x =++==--,不符合题意. 由①②③,得1a =或1a ≤-. (2),AB B A B =∴⊆.又{}4,0A =-,而B 至多只有两个根,因此应有A B =,由(1)知1a =. 【总结升华】两个等价转化:,A B B A B A B B B A =⇔⊆=⇔⊆非常重要,注意应用.另外,在解决有条件A B ⊆的集合问题时,不要忽视A ≠∅的情况.举一反三:【变式1】已知集合{}{}222,|120A B x x ax a =-=++-=,若A B B =,求实数a 的取值范围.【答案】4,a ≥或4a <- 【解析】A B B =,B A ∴⊆.①当B =∅时,此时方程22120x ax a ++-=无解,由0∆<,解得4,a >或4a <-. ②当B ≠∅时,此时方程22120x ax a ++-=有且仅有一个实数解-2,0∴∆=,且22(2)2120a a --+-=,解得4a =.综上,实数a 的取值范围是4,a ≥或4a <-.【变式2】设全集U R =,集合{}{}|12,|40A x x B x x p =-≤≤=+<,若B C u A ,求实数p 的取值范围.【答案】4p ≥【解析】 C u A={}|1,2x x x <->或,|4p B x x ⎧⎫=<-⎨⎬⎩⎭.B C u A ,∴14p-≤-,即4p ≥.∴实数p 的取值范围是4p ≥. 【巩固练习】1.1. 设A={(x, y)| |x+1|+(y-2)2=0},B={-1, 2},则必有( ) A 、B A Ü B 、A B Ü C 、A=B D 、A ∩B=∅ 2. 集合M={y| y=x 2-1, x ∈R}, N={x| y=23x -},则M ∩N 等于( )A 、{(-2, 1), (2, 1)}B 、{|0x x ≤≤C 、{|1x x -≤≤D 、∅3.已知全集U R =,则正确表示集合{1,0,1}M =-和{}2|0N x x x =+=关系的韦恩(Venn )图是 ( )4.已知集合,A B 满足AB A =,那么下列各式中一定成立的是( )A . AB B . B AC . AB B = D . A B A =5.若集合}1,1{-=A ,}1|{==mx x B ,且A B A =⋃,则m 的值为( ) A .1 B .-1 C .1或-1 D .1或-1或06.设集合},412|{Z k k x x M ∈+==,},214|{Z k k x x N ∈+==,则( )A .N M =B .MN C .N M D .M N =∅7.设{}{}34|,|,<>=≤≤==x x x A C b x a x A R U U 或,则___________,__________==b a .8.某班有学生55人,其中体育爱好者43人,音乐爱好者34人,还有4人既不爱好体育也不爱好音乐,则该班既爱好体育又爱好音乐的人数为 人.9.若{}{}21,4,,1,A x B x==且AB B =,则x = .10.若{}|1,I x x x Z =≥-∈,则N C I = . 11.设全集{}(,),U x y x y R =∈,集合2(,)12y M x y x ⎧+⎫==⎨⎬-⎩⎭,{}(,)4N x y y x =≠-,那么()()U U C M C N 等于________________.12.设集合{}1,2,3,4,5,6M =,12,,,k S S S ⋅⋅⋅都是M 的含两个元素的子集,且满足:对任意的{},i i i S a b =,{},j j j S a b =({},,1,2,3,,i j i j k ≠∈⋅⋅⋅),都有min ,min ,j j i i i i j j a b a b b a b a ⎧⎫⎧⎫⎪⎪≠⎨⎬⎨⎬⎪⎪⎩⎭⎩⎭({}min ,x y 表示两个数,x y 中的较小者)则k 的最大值是 .13.设222{|40},{|2(1)10}A x x x B x x a x a =+==+++-=,其中x R ∈,如果A B B =,求实数a 的取值范围.14.设U R =,集合{}2|320A x x x =++=,{}2|(1)0B x x m x m =+++=;若()U C A B =∅,求m 的值.15.设1234,,,a a a a N +∈,集合{}{}222212341234,,,,,,,A a a a a B a a a a ==.满足以下两个条件: (1){}1414,,10;AB a a a a =+=(2)集合AB 中的所有元素的和为124,其中1234a a a a <<<.求1234,,,a a a a 的值.【答案与解析】1.【答案】D【解析】.学生易错选C 。
集合之间的关系习题解答(三)
7、集合A={x|(a﹣1)x2+3x﹣2=0}有且仅有两个子 集,则a的取值为 . 解:由题意可知,集合A中的方程且只有一个根。 当a=1时,方程变为3x-2=0,符合题意。 当a≠1时,有△=9+8(a-1)=0, 解得:a=-1/8.
8、已知集合A={x/x2+2x+a=0,a∈R},若集合A有且仅 有2个子集,则a的取值?
A⊆B,是指集合A的解集都在集合B的解集 里面,由此可得结论. 【解析】 ∵集合A={a|a<x<5},B={x|x≥2}, 且满足A⊆B, ∴集合A的解集都在集合B的解集里面, ∴a≥2
5、已知集合A={x/x<-1或x>4},B={x/2a≤x≤a+3}若 B⊆A,求实数a 的取值。
分析:要分B等于空集和不等于空集两种情况.再根据 B⊆A求出a 的取值范围. 解:根据题意得: 当B=∅时,2a>a+3,∴a>3; 当B≠∅时,若2a=a+3,则a=3,B={6},∴B⊆A,故a=3符合题意; 若a≠3,则, a+3>2a a+3>2a a+3<-1或 2a>4; ∴解得,a<-4,或2<a<3. 综上可得,实数a的取值范围为{a|a<-4,或a>2}. 点评:注意B=∅的情况,及2a=a+3的情况.要理解子集的定义.
集合之间的关系(三)
学案P14/习题解答
1、已知集 若B⊊A,则实数a的取值范围。
解:∵A={x|x<-1或x>5},B={x|a≤x<a+4},若A⊋B ∴a+4≤-1或a>5 解得a≤-5或a>5 故答案为:a≤-5或a>5
2、已知集合A={-1,3,2m-1},B={3,m2},若B⊆A,求实数m的值及 集合A,B。 解:∵B⊆A,∴m2∈A,∴m2=-1,或2m-1. ①当m2=-1时,m在实数范围内无解. ②当m2=2m-1时,m=1 则A={-1,3,1},B={3,1} 综上所述,m=1,A={-1,3,1},B={3,1} 。 3、已知集合A={1,3,2m-1},B={3,m2},若B⊆A,求实数m的值 及集合A,B。 解:∵B⊆A,∴m2∈A,∴m2=1,或2m-1. ①当m2=1时,m=1或-1. 若m=1,则A={1,3,1},不符合元素的互异性; 若m=-1,则A={1,3,-3},B={3,1 },符合题意. ②当m2=2m-1时,m=1,同上,不符题意. 综上所述,m=-1. A={1,3,-3},B={3,1 }
集合间的基本关系经典练习及答案详解
[基础巩固]1.已知集合A={1,2,3,4,5,6},B={3,4,5,x},若B⊆A,则x可以取的值为()A.1,2,3,4,5,6B.1,2,3,4,6C.1,2,3,6 D.1,2,6解析由B⊆A和集合元素的互异性可知,x可以取的值为1,2,6.答案 D2.下列集合与集合A={1,3}相等的是()A.(1,3)B.{(1,3)}C.{x|x2-4x+3=0}D.{(x,y)|x=1,y=3}解析A项不是集合,B项与D项中的集合是由点坐标组成,C项:x2-4x+3=0,即(x-3)(x-1)=0,解得x=3或x=1,集合{x|x2-4x+3=0},即集合{1,3},因为若两个集合相等,则这两个集合中的元素相同,所以与集合A={1,3}相等的是集合{x|x2-4x+3=0},故选C.答案 C3.(多选)下列表述不正确的有()A.空集没有子集B.任何集合都有至少两个子集C.空集是任何集合的真子集D.若∅A,则A≠∅.解析∅⊆∅,故A错;∅只有一个子集,即它本身.所以B错;空集是任何集合的子集,是任何非空集合的真子集,所以C错;而D正确,故选A、B、C.答案ABC4.已知集合A={-1,0,1},则A的子集中,含有元素0的子集共有________个.解析由题意得,含有元素0的集合A的子集有:{0},{0,-1},{0,1},{0,-1,1}共4个.答案 45.已知{0,1}A⊆{-1,0,1},则集合A=________.解析由题意知集合A中一定含有元素0,1,并且A中至少含三个元素,又因为A⊆{-1,0,1},所以A={-1,0,1}.答案{-1,0,1}6.已知A ={x |x 2-3x +2=0},B ={x |ax -2=0},且B ⊆A ,求实数a 组成的集合C . 解析 由x 2-3x +2=0,得x =1,或x =2.∴A ={1,2}.∵B ⊆A ,∴对B 分类讨论如下:①若B =∅,即方程ax -2=0无解,此时a =0.②若B ≠∅,则B ={1}或B ={2}.当B ={1}时,有a -2=0,即a =2;当B ={2}时,有2a -2=0,即a =1.综上可知,符合题意的实数a 所组成的集合C ={0,1,2}.[能力提升]7.(2022·长春模拟)已知集合A ={}x ∈Z | x 2<4,B ={}1,a ,B ⊆A ,则实数a 的取值集合为( )A .{}-2,-1,0B .{}-2,-1C .{-1,0}D .{}-1解析 由题意得,A ={x ∈Z |-2<x <2}={}-1,0,1,∵B ={}1,a ,B ⊆A , ∴实数a 的取值集合为{}-1,0,故选C.答案 C8.已知集合P ={x |x 2=1},集合Q ={x |ax =1},若Q ⊆P ,那么a 的值是________. 解析 P ={-1,1},Q ⊆P ,所以(1)当Q =∅时,a =0.(2)当Q ≠∅时,Q =⎩⎨⎧⎭⎬⎫1a , 所以1a =1或1a=-1, 解之得a =±1.综上知a 的值为0,±1.答案 0,±19.设集合M ={(x ,y )|x +y <0,xy >0}和P ={(x ,y )|x <0,y <0},那么M 与P 的关系为____________ .解析 ∵xy >0,∴x ,y 同号,又x +y <0,∴x <0,y <0,即集合M 表示第三象限内的点,而集合P 表示第三象限内的点,故M =P .答案 M =P10.(2022·怀仁模拟)已知集合A ={} |x -3≤x ≤4,B ={} |x 2m -1<x <m +1.(1)若m =-3,求A ∩B ;(2)若A ∪B =A ,求实数m 的取值范围.解析 (1)m =-3时B ={}x |-7<x <-2,故A ∩B ={} |x -3≤x <-2.(2)因为A ∪B =A ,故B ⊆A ,若2m -1≥m +1即m ≥2时,B =∅,符合;若m <2,则⎩⎪⎨⎪⎧ 2m -1≥-3,m +1≤4,m <2,解得-1≤m <2,综上,m ≥-1.[探索创新]11.若集合A ={x |ax 2+2x +1=0,x ∈R }至多有一个真子集,求a 的取值范围. 解析 ①当A 无真子集时,A =∅,即方程ax 2+2x +1=0无实根,所以⎩⎪⎨⎪⎧a ≠0,Δ=4-4a <0,所以a >1. ②当A 只有一个真子集时,A 为单元素集,这时有两种情况:当a =0时,方程化为2x +1=0,解得x =-12; 当a ≠0时,由Δ=4-4a =0,解得a =1.综上,当集合A 至多有一个真子集时,a 的取值范围是a =0或a ≥1.。
集合间的基本关系(经典练习及答案详解)
集合间的基本关系1.(2020年福建高一期中)现有四个判断:2⊆{1,2};∅∈{0};{ 5 }⊆Q ;∅{0}.其中正确的个数是( )A .2B .1C .4D .3 【答案】B 【解析】元素与集合之间不能用包含关系,故2⊆{1,2}错误;∅与{0}是集合之间的关系,不能用“∈”,故∅∈{0}错误;因为 5 ∉Q ,所以{5}⊆Q 错误;空集是任何非空集合的真子集,故∅{0}正确.故选B .2.已知集合A ={x |a -1≤x ≤a +2},B ={x |3<x <5},则能使A ⊇B 成立的实数a 的取值范围是( )A .{a |3<a ≤4}B .{a |3≤a ≤4}C .{a |3<a <4}D .∅【答案】B 【解析】因为A ⊇B ,所以⎩⎪⎨⎪⎧ a -1≤3,a +2≥5.所以3≤a ≤4. 3.(2021年北京期末)下列正确表示集合M ={x |x 2-x =0}和N ={-1,0,1}关系的Venn 图是( )A BC D 【答案】D 【解析】由x 2-x =0,解得x =0或1,所以M N .故选D .4.(2020年铜仁高一期中)设集合B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈Z ⎪⎪ 62+x ∈N ,则集合B 的子集个数为( ) A .3B .4C .8D .16【答案】D 【解析】根据题意,集合B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈Z ⎪⎪ 62+x ∈N ={-1,0,1,4},有4个元素,其子集有24=16个.故选D .5.(2021年昆明期中)下列各式中,正确的个数是( )①{0}∈{0,2,4};②{0,2,4}⊆{4,2,0};③∅⊆{0,2,4};④∅={0};⑤{0,2}={(0,2)};⑥0={0}.A.1 B.2C.3 D.4【答案】B【解析】对于①,是集合与集合的关系,应为{0}{0,2,4};对于②,实际为同一集合,任何一个集合是它本身的子集;对于③,空集是任何集合的子集;对于④,{0}是含有单元素0的集合,空集不含任何元素,并且空集是任何非空集合的真子集,所以∅{0};对于⑤,{0,2}是含有两个元素0与2的集合,而{(0,2)}是以有序数组(0,2)为元素的单元素集合,所以{0,2}与{(0,2)}不相等;对于⑥,0与{0}是“属于与否”的关系,所以0∈{0}.故②③正确.6.用符号“∈”或“⊆”填空:若A={2,4,6},则4______A,{2,6}______A.【答案】∈⊆【解析】因为集合A中有4这个元素,所以4∈A,因为2∈A,6∈A,所以{2,6}⊆A.故答案为∈,⊆.7.已知集合A⊆{0,1,2},且集合A中至少含有一个偶数,则这样的集合A的个数为________.【答案】6【解析】集合{0,1,2}的子集为:∅,{0},{1},{2},{0,1},{0,2},{1,2},{0,1,2},其中含有偶数的集合有6个.8.已知集合A={x|x<3},集合B={x|x<m},且A⊆B,则实数m满足的条件是________.【答案】m≥3【解析】将数集A在数轴上表示出来,如图所示,要满足A⊆B,表示数m的点必须在表示3的点处或在其右边,故m≥3.9.设集合A={1,3,a},B={1,a2-a+1},且B⊆A,求a的值.解:因为B⊆A,所以a2-a+1=3或a2-a+1=a.当a2-a+1=3时,解得a=-1或a=2.经检验,满足题意.当a2-a+1=a时,解得a=1,此时集合A中的元素1重复,故a=1不合题意.综上所述,a=-1或a=2.B级——能力提升练10.(多选)图中反映的是“文学作品”“散文”“小说”“叙事散文”这四个文学概念之间的关系,则()A.A为小说B.B为文学作品C .C 为散文D .D 为叙事散文【答案】AB 【解析】由Venn 图可得A B ,C D B ,A 与D 之间无包含关系,A 与C 之间无包含关系.由“文学作品”“散文”“小说”“叙事散文”四个文学概念之间的关系,可得A 为小说,B 为文学作品,C 为叙事散文,D 为散文.11.已知集合A ={x |x =3k ,k ∈Z },B ={x |x =6k ,k ∈Z },则A 与B 之间的关系是( )A .A ⊆BB .A =BC .A BD .A B【答案】D 【解析】对于x =3k (k ∈Z ),当k =2m (m ∈Z )时,x =6m (m ∈Z );当k =2m -1(m ∈Z )时,x =6m -3(m ∈Z ).由此可知A B .12.(2020年太原高一期中)设集合A ={a ,b },B ={0,a 2,-b 2},若A ⊆B ,则a -b =( )A .-2B .2C .-2或2D .0【答案】C 【解析】因为集合A ={a ,b },B ={0,a 2,-b 2},且A ⊆B ,易知a ≠0且b ≠0.当 ⎩⎪⎨⎪⎧ a =a 2,b =-b 2时,因为a ≠0且b ≠0,所以⎩⎪⎨⎪⎧ a =1,b =-1,此时集合A ={1,-1},集合B ={0,1,-1},符合题意,所以a -b =2;当⎩⎪⎨⎪⎧ a =-b 2,b =a 2时,因为a ≠0且b ≠0,所以⎩⎪⎨⎪⎧a =-1,b =1,此时集合A ={1,-1},集合B ={0,1,-1},符合题意,所以a -b =-2.综上所求,a -b =2或-2.故选C .13.(2020年宁波高一期中)已知集合A =⎩⎨⎧⎭⎬⎫x ∈N |y =12x +3∈Z ,则列举法表示集合A =________,集合A 的真子集有________个.【答案】{0,1,3,9} 15 【解析】因为集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈N ⎪⎪ y =12x +3∈Z ,所以列举法表示集合A ={0,1,3,9},集合A 的真子集有24-1=15个.故答案为{0,1,3,9},15.14.(2020年安康高一期中)定义集合运算:A ⊗B ={z |z =x +y ,x ∈A ,y ∈B },设A ={0,1},B ={2,3},则集合A ⊗B 的真子集的个数为________.【答案】7 【解析】因为A ⊗B ={z |z =x +y ,x ∈A ,y ∈B },A ={0,1},B ={2,3},所以集合A ⊗B ={2,3,4},所以集合A ⊗B 的真子集的个数为23-1=7.15.已知集合A ={x |1≤x ≤2},B ={x |1≤x ≤a ,a ≥1}.(1)若A B ,求a 的取值范围;(2)若B ⊆A ,求a 的取值范围.解:(1)若A B ,由图可知a >2.故a 的取值范围为{a |a >2}.(2)若B ⊆A ,由图可知1≤a ≤2.故a 的取值范围为{a |1≤a ≤2}.C 级——探究创新练16.已知集合P ={x |x 2-3x +b =0},Q ={x |(x +1)(x 2+3x -4)=0}.(1)若b =4,是否存在集合M 使得PM ⊆Q ?若存在,求出所有符合题意的集合M ,若不存在,请说明理由;(2)P 能否成为Q 的一个子集?若能,求出b 的值或取值范围,若不能,请说明理由. 解:(1)因为集合Q ={x |(x +1)(x 2+3x -4)=0}={x |(x +1)(x +4)(x -1)=0}={-1,1,-4}, 当b =4时,集合P =∅,再由 P M ⊆Q 可得,M 是Q 的非空子集,共有 23-1=7 个,分别为{-1},{1},{-4},{-1,1},{-1,4},{1,4},{-1,1,-4}.(2)因为P ⊆Q ,对于方程x 2-3x +b =0,当P =∅,Δ=9-4b <0时,有b >94. 当P ≠∅,Δ=9-4b ≥0时,方程x 2-3x +b =0有实数根,且实数根是-1,1,-4中的数, 若-1是方程x 2-3x +b =0的实数根,则有b =-4,此时P ={-1,4},不满足P ⊆Q ,故舍去;若1是方程x 2-3x +b =0的实数根,则有b =2,此时P ={1,2},不满足P ⊆Q ,故舍去; 若-4是方程x 2-3x +b =0的实数根,则有b =-28,此时P ={-4,7},不满足P ⊆Q ,故舍去.综上可得,实数b 的取值范围为⎩⎨⎧⎭⎬⎫b ⎪⎪b >94.。
集合的基本关系
集合之间的基本关系知识点:1.“包含”关系—子集(1)定义:如果集合A的任何一个元素都是集合B的元素,我们说这两个A⊆(或B⊇A)集合有包含关系,称集合A是集合B的子集。
记作:BA⊆有两种可能(1)A是B的一部分;注意:B(2)A与B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊆/B或B⊇/A 2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”①任何一个集合是它本身的子集。
A⊆A②真子集:如果A⊆B,且A≠B那就说集合A是集合B的真子集,记作A B(或B A)或若集合A⊆B,存在x∈B且x A,则称集合A是集合B的真子集。
③如果A⊆B, B⊆C ,那么A⊆C④如果A⊆B 同时B⊆A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。
有n个元素的集合,含有2n个子集,2n -1个真子集,2n -1个非空子集,2n -2个非空真子集.一、子集与真子集①包含关系的判断1.对于集合A,B,“A⊆B”不成立的含义是()A.B是A的子集B.A中的元素都不是B的元素C.A中至少有一个元素不属于BD.B中至少有一个元素不属于A解:“A⊆B”成立的含义是集合A中的任何一个元素都是B的元素.不成立的含义是A中至少有一个元素不属于B,故选C.3.设集合A={x|x2=1},B={x|x是不大于3的自然数},A⊆C,B⊆C,则集合C 中元素最少有()A.2个B.4个C.5个D.6个解:A={-1,1},B={0,1,2,3},∵A⊆C,B⊆C,∴集合C中必含有A与B的所有元素-1,0,1,2,3,故C中至少有5个元素.11.设A={正方形},B={平行四边形},C={四边形},D={矩形},E={多边形},则A、B、C、D、E之间的关系是________.2.(一星)用适当的符号填空:⑴{1}___2-+={|320}x x x⑵{1,2}___2-+={|320}x x x⑶ {|2,}x x k k =∈N ___{|6,}x x ττ=∈N ⑷ ∅___2{R |20}x x ∈+=答案:(1)⊂;(2)=;(3)⊃;(4)=5.(一星)用适当的符号填空:{}()(){}|2,1,2____,|1x x x y y x =+≤ {|2x x ≤,⑶{}31|,_______|0x x x x x x x⎧⎫=∈-=⎨⎬⎩⎭R3.(一星)用适当的符号填空: ⑴ ___{0}∅ ⑵ 2___{(1,2)}⑶ 0___2{|250}x x x -+= ⑷ {3,5}____2{|8150}x x x -+= ⑸ {3,5}___N⑹ {|21,}___{|41,}x x n n x x k k =+∈=±∈Z Z ⑺ {(2,3)}___{(3,2)}23.,___________.(1)3{3};(2)2{3};(3){1}{1,2,3}(4){1}{{1},{2},{1,2}}=≠∈∈(一星)以下表述中正确的有;答案:(2)(4)6.(二星)下列说法中,正确的是( ) A .任何一个集合必有两个子集; B .若,A B =∅则,A B 中至少有一个为∅ C .任何集合必有一个真子集; D .若S 为全集,且,A B S =则A B S == 备注:空集、子集概念辨析1.判断下列两个集合之间的关系: (1)=A {}6,3,2,=B {}的约数是12x x ;(2)=A {}1,0,=B {}N y y x x ∈=+,122;(3)=A {}21<<-x x ,=B {}22<<-x x ; (4)=A (){}0,<xy y x ,=B (){}0,0,<>y x y x .2.指出下列各组集合之间的关系:(1)=A {}1,1-,=B ()()()(){}1,1,1,1,1,1,1,1----; (2)=A {}是等边三角形x x ,=B {}是等腰三角形x x ; (3)=M {}*,12N n n x x ∈-=,{}*,12N n n x x N ∈+==.7.{(,)||1||1|0}{(,)|10}_____.A x y x y B x y xy x y (三星)=-+-==--+=集合与集合的包含关系为答案:A B ⊂28.{|12,}{|_________.A x x a a a RB x y ==+-∈==(三星)设集合与集合的包含关系为答案:B A ⊂②空集的概念1.下列四个集合中,是空集的是( )A .{0}B .{x |x >8且x <5}C .{x ∈N |x 2-1=0}D .{x |x >4}4.下列集合中是空集的是( )A .{}332=+x x B .(){}R y x x y y x ∈-=,,,2C .{}02≥-xx D .{}R x x xx ∈=+-,0123.给出下列命题:(1)空集没有子集;(2)任何集合至少有两个子集;(3)空集是任何集合的真子集;(4)若∅ÜA ,则≠A ∅.其中正确的个数是 个.1.(一星)下列四个命题:①Φ={0};②空集没有子集;③任何一个集合必有两个或两个以上的子集;④空集是任何一个集合的子集,其中正确的有( )B A .0个B .1个C .2个D .3个4.(二星)若集合{|1}X x x =>-,下列关系式中成立的为( ) A .0X ⊆ B .{}0X ∈ C .X ∅∈ D .{}0X ⊆φφφ∈∈==22.(一星)下列关系中正确的是().0.0{0}.0.{0}A B C D答案:B③找规律判断关系1111.|,,|,,6231|,.26n M x x m m Z N x x n Z p P x x p Z ⎧⎫⎧⎫==+∈==-∈⎨⎬⎨⎬⎩⎭⎩⎭⎧⎫==+∈⎨⎬⎩⎭(三星)指出下列集合之间的关系:答案:M N P ⊂=7.设集合M ={x |x =k 2+14,k ∈Z },N ={x |x =k 4+12,k ∈Z },求M 和N 关系.二、韦恩图9.已知全集U =R ,则正确表示集合M ={-1,0,1}和N ={x |x 2+x =0}关系的韦恩(Venn)图是( )解:由N ={x |x 2+x =0}={-1,0}得,N M ,选B.12.(二星)设集合1,,}22{|,{|n n x n n A x x B x =∈=+∈==Z}Z ,则下列图形能表示A 与B 关系的是( )A BBA AB A BA .B .C .D .三、已知包含关系求参数范围 ①列举法相关6.集合B ={a ,b ,c },C ={a ,b ,d };集合A 满足A ⊆B ,A ⊆C .则满足条件的集合A 的个数是( )A .8B .2C .4D .1解: ∵A ⊆B ,A ⊆C ,∴集合A 中的元素只能由a 或b 构成.∴这样的集合共有22=4个.即:A =∅,或A ={a },或A ={b }或A ={a ,b }.4.已知=A {}0822=--∈x x R x ,=B {}08222=--+-∈a a ax x R x ,B A ⊆,求实数a 的取值集合.5.已知集合A ={x |ax 2+2x +a =0,a ∈R},若集合A 有且只有2个子集,则a 的取值是( )A .1B .-1C .0,1D .-1,0,14.若集合A ={1,3,x },B ={x 2,1}且B ⊆A ,则满足条件的实数x 的个数是( )A .1B .2C .3D .4解:∵B ⊆A ,∴x 2∈A ,又x 2≠1∴x 2=3或x 2=x ,∴x =±3或x =0.故选C.6.已知集合{}m A ,1,4--=,集合{}5,4-=B ,若A B ⊆,则实数m = .②描述法相关9.(二星)设{|13},{|}A x x B x x a =-<<=>,若A B ,则a 的取值范围是______.17.已知A ={x |x <-1或x >2},B ={x |4x +a <0},当B ⊆A 时,求实数a 的取值范围.解:∵A ={x |x <-1或x >2},B ={x |4x +a <0}={x |x <-a4}, ∵A ⊇B ,∴-a4≤-1,即a ≥4, 所以a 的取值范围是a ≥4.2110.{|||2},{|1},.2x A x x a B x A B a x -=-<=<⊆+(三星)设若,求实数的取值范围 答案:01a ≤≤1.已知集合M={x|﹣1<x <2},N={x|x <a},若M ⊆N ,则实数a 的取值范围是( )BA .(2,+∞)B .[2,+∞)C .(﹣∞,﹣1)D .(﹣∞,﹣1]2.已知集合=A {}21≤≤x x ,=B {}a x x ≤≤1 (1)若A 是B 的真子集,求a 的取值范围; (2)若B 是A 的子集,求a 的取值范围; (3)若A =B ,求a 的取值范围.③端点的单独验证1.设集合{2135},{322}A x a x a B x x =+≤≤-=≤≤,若集合A 是集合B 的真子集,求实数a 的取值范围。
集合间的关系练习题及答案
【补充练习】1.判断正误:(1)空集没有子集. ( )(2)空集是任何一个集合的真子集. ( )(3)任一集合必有两个或两个以上子集. ( )(4)若B⊆A,那么凡不属于集合A的元素,则必不属于B. ( )分析:关于判断题应确实把握好概念的实质.解:该题的5个命题,只有(4)是正确的,其余全错.对于(1)、(2)来讲,由规定:空集是任何一个集合的子集,且是任一非空集合的真子集.对于(3)来讲,可举反例,空集这一个集合就只有自身一个子集.对于(4)来讲,当x∈B时必有x∈A,则x∉A时也必有x∉B.2.集合A={x|-1<x<3,x∈Z},写出A的真子集.分析:区分子集与真子集的概念,空集是任一非空集合的真子集,一个含有n个元素的子集有2n个,真子集有2n-1个,则该题先找该集合元素,后找真子集.解:因-1<x<3,x∈Z,故x=0,1,2,即a={x|-1<x<3,x∈Z}={0,1,2}.真子集:∅、{1}、{2}、{0}、{0,1}、{0,2}、{1,2},共7个.3.(1)下列命题正确的是 ( )A.无限集的真子集是有限集B.任何一个集合必定有两个子集C.自然数集是整数集的真子集D.{1}是质数集的真子集(2)以下五个式子中,错误的个数为 ( )①{1}∈{0,1,2} ②{1,-3}={-3,1} ③{0,1,2}⊆{1,0,2}④∅∈{0,1,2} ⑤∅∈{0}.2 C(3)M={x|3<x<4},a=π,则下列关系正确的是 ( )∉ C.{a}∈M D.{a}M分析:(1)该题要在四个选择肢中找到符合条件的选择肢,必须对概念把握准确,无限集的真子集有可能是无限集,如N是R的真子集,排除A;由于∅只有一个子集,即它本身,排除B;由于1不是质数,排除D.(2)该题涉及到的是元素与集合,集合与集合的关系.①应是{1}⊆{0,1,2},④应是∅⊆{0,1,2},⑤应是∅⊆{0}.故错误的有①④⑤.(3)M={x|3<x<4},a=π.因3<a<4,故a是M的一个元素.{a}是{x|3<x<4}的子集,那么{a}M.答案:(1)C (2)C (3)D4.判断如下集合A与B之间有怎样的包含或相等关系:(1)A={x|x=2k-1,k∈Z},B={x|x=2m+1,m∈Z};(2)A={x|x=2m,m∈Z},B={x|x=4n,n∈Z}.解:(1)因A={x|x=2k-1,k∈Z},B={x|x=2m+1,m∈Z},故A、B都是由奇数构成的,即A=B. (2)因A={x|x=2m,m∈Z},B={x|x=4n,n∈Z},又x=4n=2·2n,在x=2m 中,m 可以取奇数,也可以取偶数;而在x=4n 中,2n 只能是偶数.故集合A 、B 的元素都是偶数.但B 中元素是由A 中部分元素构成,则有B A.点评:此题是集合中较抽象的题目.要注意其元素的合理寻求.5.已知集合P={x|x 2+x-6=0},Q ={x|ax+1=0}满足QP,求a 所取的一切值. 解:因P={x|x 2+x-6=0}={2,-3},当a=0时,Q ={x|ax+1=0}=∅,QP 成立. 又当a≠0时,Q ={x|ax+1=0}={a 1-},要Q P 成立,则有a 1-=2或a 1-=-3,a=21-或a=31. 综上所述,a=0或a=21-或a=31. 点评:这类题目给的条件中含有字母,一般需分类讨论.本题易漏掉a=0,ax+1=0无解,即Q 为空集的情况,而当Q =∅时,满足Q P.6.已知集合A={x ∈R |x 2-3x+4=0},B={x ∈R |(x+1)(x 2+3x-4)=0},要使A P ⊆B,求满足条件的集合P.解:由A={x ∈R|x 2-3x+4=0}=∅,B={x ∈R |(x+1)(x 2+3x-4)=0}={-1,1,-4},由A P ⊆B 知集合P 非空,且其元素全属于B,即有满足条件的集合P 为 {1}或{-1}或{-4}或{-1,1}或{-1,-4}或{1,-4}或{-1,1,-4}.点评:要解决该题,必须确定满足条件的集合P 的元素,而做到这点,必须明确A 、B,充分把握子集、真子集的概念,准确化简集合是解决问题的首要条件.7.设A={0,1},B={x|x ⊆A},则A 与B 应具有何种关系解:因A={0,1},B={x|x ⊆A},故x 为∅,{0},{1},{0,1},即{0,1}是B 中一元素.故A ∈B.点评:注意该题的特殊性,一集合是另一集合的元素.8.集合A={x|-2≤x≤5},B={x|m+1≤x≤2m -1},(1)若B ⊆A,求实数m 的取值范围;(2)当x ∈Z 时,求A 的非空真子集个数;(3)当x ∈R 时,没有元素x 使x ∈A 与x ∈B 同时成立,求实数m 的取值范围.解:(1)当m+1>2m-1即m<2时,B=∅满足B ⊆A.当m+1≤2m -1即m≥2时,要使B ⊆A 成立,需⎩⎨⎧>+-≥+51,121m m m 可得2≤m≤3.综上所得实数m 的取值范围m≤3. (2)当x ∈Z 时,A={-2,-1,0,1,2,3,4,5},所以,A 的非空真子集个数为2上标8-2=254.(3)∵x ∈R ,且A={x|-2≤x≤5},B={x|m+1≤x≤2m -1},又没有元素x 使x ∈A 与x ∈B 同时成立.则①若B≠∅即m+1>2m-1,得m<2时满足条件;②若B≠∅,则要满足条件有:⎩⎨⎧>+-≤+51,121m m m 或⎩⎨⎧-<--≤+212,121m m m 解之,得m>4. 综上有m<2或m>4.点评:此问题解决要注意:不应忽略∅;找A 中的元素;分类讨论思想的运用.。
集合间的基本关系试题(含答案)
集合间的基本关系试题(含答案)1.“A⊆B”不成立的含义是A中至少有一个元素不属于B,因此选C。
2.根据xy>0知x与y同号,又x+y<0,因此x与y同为负数,等价于M=P,因此选C。
3.A={-1,1},B={0,1,2,3},A⊆C,B⊆C,因此集合C中必含有A与B的所有元素-1,0,1,2,3,故C中至少有5个元素,因此选C。
4.由于B⊆A,因此x2∈A,又x2≠1,因此x2=3或x2=x,因此x=±3或x=0,因此满足条件的实数x的个数是3,因此选C。
5.由于两集合代表元素不同,因此M与P互不包含,因此选D。
6.由于A⊆B,A⊆C,因此集合A中的元素只能由a或b构成,因此这样的集合共有22=4个,即A=∅,或A={a},或A={b}或A={a,b},因此选C。
7.M={x|x=2k+4,k∈Z},N={x|x=4k+2,k∈Z},因为2k+4=2(k+2)和4k+2=2(2k+1)都是偶数,因此M和N都是偶数的集合,但M和N不相等,因为M中的元素都比N中的元素大2,因此选B。
1b,b∈Z},则A与B的交集为________.答案]空集或∅解析]A的元素形如x=a+6a∈Z,而B的元素形如x=231b,b∈Z,所以A与B的交集为空集或∅.15.集合A={x|2x+1<5},B={x|x2-3x+2≥0},则A∩B=________.答案][1,2)解析]2x+1<5得x<2,x2-3x+2≥0得x≤1或x≥2,故A∩B=[1,2).16.集合A={x|x2-5x+6<0},B={x|2x-1≥0},则A∩B=________.答案][1,2)∪(3,+∞)解析]x2-5x+6<0得x∈(2,3),2x-1≥0得x≥12故A∩B=[1,2)∪(3,+∞).17.集合A={x|2x+1<5},B={x|x2-3x+2≥0},则A∪B=________.答案](-∞,1]∪[2,+∞)解析]2x+1<5得x<2,x2-3x+2≥0得x≤1或x≥2,故A∪B=(-∞,1]∪[2,+∞).18.集合A={x|x<2},B={x|x>1},则A×B=________.答案]{(x,y)|x<2,y>1}解析]A×B={(x,y)|x∈A,y∈B}={(x,y)|x<2,y>1}.16.已知 $A=\{x\in R|x5\}$,$B=\{x\in R|a\leq x<a+4\}$,求 $A,B$ 的关系并求实数 $a$ 的取值范围。
集合间的基本关系试题(含答案)
一、选择题1.对于集合A ,B ,“A ⊆B ”不成立的含义是( )A .B 是A 的子集B .A 中的元素都不是B 的元素C .A 中至少有一个元素不属于BD .B 中至少有一个元素不属于A[答案] C[解析] “A ⊆B ”成立的含义是集合A 中的任何一个元素都是B 的元素.不成立的含义是A 中至少有一个元素不属于B ,故选C.2.集合M ={(x ,y )|x +y <0,xy >0},P ={(x ,y )|x <0,y <0}那么( )A .P MB .M PC .M =PD .M P [答案] C[解析] 由xy >0知x 与y 同号,又x +y <0∴x 与y 同为负数∴⎩⎨⎧ x +y <0xy >0等价于⎩⎪⎨⎪⎧x <0y <0∴M =P . 3.设集合A ={x |x 2=1},B ={x |x 是不大于3的自然数},A ⊆C ,B ⊆C ,则集合C 中元素最少有( )A .2个B .4个C .5个D .6个[答案] C[解析] A ={-1,1},B ={0,1,2,3},∵A ⊆C ,B ⊆C ,∴集合C 中必含有A 与B 的全部元素-1,0,1,2,3,故C 中至少有5个元素.4.若集合A ={1,3,x },B ={x 2,1}且B ⊆A ,则满意条件的实数x 的个数是( )A .1B .2C .3D .4[答案] C[解析]∵B⊆A,∴x2∈A,又x2≠1∴x2=3或x2=x,∴x=±3或x=0.故选C.5.已知集合M={x|y2=2x,y∈R}和集合P={(x,y)|y2=2x,y∈R},则两个集合间的关系是()A.M P B.P MC.M=P D.M、P互不包含[答案] D[解析]由于两集合代表元素不同,因此M与P互不包含,故选D.6.集合B={a,b,c},C={a,b,d};集合A满意A⊆B,A⊆C.则满意条件的集合A的个数是()A.8 B.2C.4 D.1[答案] C[解析]∵A⊆B,A⊆C,∴集合A中的元素只能由a或b构成.∴这样的集合共有22=4个.即:A=∅,或A={a},或A={b}或A={a,b}.7.设集合M={x|x=k2+14,k∈Z},N={x|x=k4+12,k∈Z},则()A.M=N B.M NC.M N D.M与N的关系不确定[答案] B[解析]解法1:用列举法,令k=-2,-1,0,1,2…可得M={…-34,-14,14,34,54…},N={…0,14,12,34,1…},∴M N,故选B.解法2:集合M的元素为:x=k2+14=2k+14(k∈Z),集合N的元素为:x=k4+12=k+24(k∈Z),而2k+1为奇数,k+2为整数,∴M N,故选B.[点评]本题解法从分式的结构动身,运用整数的性质便利地获解.留意若k是随意整数,则k+m(m是一个整数)也是随意整数,而2k+1,2k-1均为随意奇数,2k 为随意偶数.8.集合A={x|0≤x<3且x∈N}的真子集的个数是()A.16 B.8C.7 D.4[答案] C[解析]因为0≤x<3,x∈N,∴x=0,1,2,即A={0,1,2},所以A的真子集个数为23-1=7.9.(09·广东文)已知全集U=R,则正确表示集合M={-1,0,1}和N={x|x2+x=0}关系的韦恩(Venn)图是()[答案] B[解析]由N={x|x2+x=0}={-1,0}得,N M,选B.10.假如集合A满意{0,2}A⊆{-1,0,1,2},则这样的集合A个数为()A.5 B.4C.3 D.2[答案] C[解析]集合A里必含有元素0和2,且至少含有-1和1中的一个元素,故A={0,2,1},{0,2,-1}或{0,2,1,-1}.二、填空题11.设A={正方形},B={平行四边形},C={四边形},D={矩形},E={多边形},则A 、B 、C 、D 、E 之间的关系是________.[答案] A D B C E[解析] 由各种图形的定义可得.12.集合M ={x |x =1+a 2,a ∈N *},P ={x |x =a 2-4a +5,a ∈N *},则集合M 与集合P 的关系为________.[答案] M P[解析] P ={x |x =a 2-4a +5,a ∈N *}={x |x =(a -2)2+1,a ∈N *}∵a ∈N * ∴a -2≥-1,且a -2∈Z ,即a -2∈{-1,0,1,2,…},而M ={x |x =a 2+1,a ∈N *},∴M P .13.用适当的符号填空.(∈,∉,⊆,⊇,,,=) a ________{b ,a };a ________{(a ,b )};{a ,b ,c }________{a ,b };{2,4}________{2,3,4};∅________{a }.[答案] ∈,∉,,, *14.已知集合A =⎩⎨⎧⎭⎬⎫x |x =a +16,a ∈Z , B ={x |x =b 2-13,b ∈Z },C ={x |x =c 2+16,c ∈Z }.则集合A ,B ,C 满意的关系是________(用⊆,,=,∈,∉,⃘中的符号连接A ,B ,C ).[答案] A B =C[解析] 由b 2-13=c 2+16得b =c +1,∴对随意c ∈Z 有b =c +1∈Z .对随意b ∈Z ,有c =b -1∈Z ,∴B =C ,又当c =2a 时,有c 2+16=a +16,a ∈Z .∴A C .也可以用列举法视察它们之间的关系.15.(09·北京文)设A是整数集的一个非空子集,对于k∈A,假如k-1∉A,那么k 是A的一个“孤立元”.给定S={1,2,3,4,5,6,7,8},由S的3个元素构成的全部集合中,不含“孤立元”的集合共有______个.[答案] 6[解析]由题意,要使k为非“孤立元”,则对k∈A有k-1∈A.∴k最小取2.k-1∈A,k∈A,又A中共有三个元素,要使另一元素非“孤立元”,则其必为k +1.所以这三个元素为相邻的三个数.∴共有6个这样的集合.三、解答题16.已知A={x∈R|x<-1或x>5},B={x∈R|a≤x<a+4},若A B,求实数a的取值范围.[解析]如图∵A B,∴a+4≤-1或者a>5.即a≤-5或a>5.17.已知A={x|x<-1或x>2},B={x|4x+a<0},当B⊆A时,求实数a的取值范围.[解析]∵A={x|x<-1或x>2},B={x|4x+a<0}={x|x<-a 4},∵A⊇B,∴-a4≤-1,即a≥4,所以a的取值范围是a≥4.18.A={2,4,x2-5x+9},B={3,x2+ax+a},C={x2+(a+1)x-3,1},a、x∈R,求:(1)使A={2,3,4}的x的值;(2)使2∈B,B A成立的a、x的值;(3)使B=C成立的a、x的值.[解析](1)∵A={2,3,4} ∴x2-5x+9=3解得x =2或3(2)若2∈B ,则x 2+ax +a =2又B A ,所以x 2-5x +9=3得x =2或3,将x =2或3分别代入x 2+ax +a =2中得a =-23或-74(3)若B =C ,则⎩⎪⎨⎪⎧x 2+ax +a =1①x 2+(a +1)x -3=3② ①-②得:x =a +5 代入①解得a =-2或-6此时x =3或-1.*19.已知集合A ={2,4,6,8,9},B ={1,2,3,5,8},又知非空集合C 是这样一个集合:其各元素都加2后,就变为A 的一个子集,若各元素都减2后,则变为B 的一个子集,求集合C .[解析] 由题设条件知C ⊆{0,2,4,6,7},C ⊆{3,4,5,7,10},∴C ⊆{4,7},∵C ≠∅,∴C ={4},{7}或{4,7}.。
集合关系练习题及答案
集合关系练习题及答案集合关系是数学中的一个重要概念,它涉及到集合之间的包含、相等、子集等关系。
以下是一些集合关系的练习题及答案,供同学们学习和练习。
# 练习题1:判断下列集合之间的关系设集合 A = {1, 2, 3},B = {3, 4, 5},C = {1, 2, 3, 4}。
1. A 是否是 B 的子集?2. B 是否是 A 的子集?3. C 是否是 A 的子集?4. A 和 B 是否相等?# 答案1:1. A 不是 B 的子集,因为 A 中的元素 1 和 2 不在 B 中。
2. B 不是 A 的子集,因为 B 中的元素 4 和 5 不在 A 中。
3. C 是 A 的子集,因为 A 中的所有元素都在 C 中。
4. A 和 B 不相等,因为它们包含不同的元素。
# 练习题2:求集合的交集和并集设集合 D = {1, 2, 5},E = {2, 3, 5, 7}。
1. 求 D 和 E 的交集。
2. 求 D 和 E 的并集。
# 答案2:1. D 和 E 的交集是 {2, 5},因为这两个元素同时出现在 D 和 E 中。
2. D 和 E 的并集是 {1, 2, 3, 5, 7},包含了 D 和 E 中的所有元素。
# 练习题3:使用韦恩图表示集合关系使用韦恩图表示以下集合的关系:集合 F = {1, 3, 5, 7},G = {2, 4, 6, 8},H = {3, 4, 5, 6}。
# 答案3:韦恩图是一种图形化表示集合之间关系的工具。
在这个例子中,F、G和 H 没有共同元素,因此它们的韦恩图将显示三个不相交的集合。
# 练习题4:求集合的补集设全集 U = {1, 2, 3, 4, 5, 6, 7, 8, 9},I = {2, 4, 6, 8}。
1. 求 I 在 U 中的补集。
2. 如果 J = {1, 3, 5, 7, 9},求 J 在 U 中的补集。
# 答案4:1. I 在 U 中的补集是 {1, 3, 5, 7, 9},因为这些元素在 U 中但不在 I 中。
数学人教B必修1第一章121 集合之间的关系
1、2、1 集合之间的关系1。
子集一般地,如果集合A中的任意一个元素都是集合B的元素,那么集合A叫做集合B的子集,记作A⊆B或B⊇A、读作“A包含于B",或“B包含A".理解子集的定义要注意以下七点:(1)“A是B的子集”的含义:集合A中的任意一个元素都是集合B中的元素,即由任意x∈A,能推出x∈B、例如:{1,2,3}⊆N,N⊆R,{x|x为山东人}⊆{x|x为中国人}等.(2)当集合A中存在着不是集合B的元素,我们就说A不是B的子集,记作“A B”(或B A),读作“A不包含于B”(或“B不包含A”)。
例如:A={1,2,3}不是B={2,3,4,5,6}的子集,因为集合A中的元素1不是集合B中的元素。
(3)任意一个集合是它本身的子集.因为对于任意一个集合A,它的任意一个元素都属于集合A本身,记作A⊆A、例如:{1,5}⊆{1,5}等。
(4)空集是任意一个集合的子集,即对于任意一个集合A,都有∅⊆A、(5)在子集的定义中,不能理解为子集A是B中的“部分元素"所组成的集合.因为若A =∅,则A中不含任何元素;若A=B,则A中含有B中的所有元素。
但在这两种情况下集合A都是集合B的子集.(6)包含关系具有传递性:对于集合A,B,C,若A⊆B,B⊆C,则A⊆C、(7)写集合的所有子集时,注意按一定顺序写出,避免遗漏和重复.【例1】已知集合M={0,1},集合N={0,2,1-m},若M⊆N,则实数m=__________、解析:∵M⊆N,M={0,1},∴1∈N、∴1-m=1,即m=0、答案:0点技巧有限集合子集的确定技巧(1)确定所求的集合;(2)合理分类,按照子集所含元素的个数依次写出;(3)注意两个特殊的集合,即空集和集合自身,看它们是否能取到。
2。
真子集如果集合A是集合B的子集,并且B中至少有一个元素不属于A,那么集合A叫做集合B 的真子集,记作A B或B A,读作“A真包含于B”,或“B真包含A”.例如:{1}{1,2,3}.关于真子集注意以下四点:(1)空集是任何非空集合的真子集。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
集合之间的关系
【课堂例题】
例1.设,,A B C 是三个集合,若A B ⊆且B C ⊆,试证A C ⊆.
例2.试判定下列两个集合的包含关系或相等关系并简述理由.
(1)∅ {|23}x x -<<-;
(2){|5}x x > {|6}x x >;
(3){|n n 是12的正约数} {1,2,3,4,6,8,12};
(4){|n n 是4的正整数倍} {|2,}n n k k Z +
=∈.
例3.求出所有符合条件的集合C
(1){1,2,3}C ⊆;
(2){,}C a b Ü;
(3){1,2,3}{1,2,3,4,5}C ⊆Ü.
(选用)例4.已知{|21,},{|A x x k k Z B x x ==+∈=是被4除余3的整数},判断,A B 之间的关系并证明之.
. 集合之间的关系
【知识再现】
1.对于两个集合A 与B ,
(1)如果 ,那么集合A 叫做集合B 的子集,记作________或________,读作 或者_________________;
(2)如果A 是B 的子集并且___________________________________,那么集合A 与集合B 相等,记作 ;
(3)如果A 是B 的子集并且___________________________________,那么集合A 叫做集合B 的真子集,记作____________或______________.
2.空集∅是__________________的子集;空集∅是__________________的真子集.
【基础训练】
1.(1)下列写法正确的是( )
(A ){0}∅Ü (B )0∅Ü (C ){0}∅∈ (D )0∈∅
(2)下列四个关于空集的命题中:①空集没有子集;②任何集合至少有两个子集;③空集是任何集合的真子集;④若A ⊂∅≠,则.A ≠∅ 其中正确的个数是( )
(A )0 (B )1 (C )2 (D )3
2.用恰当的符号填空(,,=⊆⊇)
(1){1,3,5} {5,1,3}; (2){|(3)(2)0}x x x -+= 3{|
0}3
x x x -=+; (3){|2}x x > {|2}x x ≥; (4){|,}2n x x n Z =∈ 1{|,}2
x x n n Z =+∈. 3.(1)已知2{,}{2,2}x y x x =,则x = ,y = .
(2)2{1,3,}{1,}x x ⊇,则实数x ∈ . 4.指出下列各集合之间的关系,并用文氏图表示:
{|A x x =是平行四边形},{|B x x =是菱形},
{|C x x =是矩形},{|D x x =是正方形}
5.类比“⊆”、“⊂≠”的定义,请给出符号“⊆”的定义:
如果 ,则称集合A 不是集合B 的子集,用符号“A B ⊆”表示,读作“A 不包含于B ”.
6.已知集合M 满足{0,1,2,3,4}M ⊆且{0,2,4,8}M ⊆,
写出所有符合条件的集合M .
7.已知2
{1},{|30}A B x x x a ==-+=,
①若A B Ü,求实数a 的值;②是否存在实数a 使得A B =?
【巩固提高】 8.已知2
{0,,}{,,1}b a a b a a
+=,求实数,a b . 9.已知集合2{|60}M x x x =+-=,关于y 的方程20ay +=的
解集为N ,且N M ⊆,求实数a 的值.
(选做)10. 已知集合1{|,},6
P p p n n Z ==+∈ 11{|,},{|,}2326
m s Q q q m Z R r r s Z ==-∈==+∈, 判断集合,,P Q R 之间的关系并证明. 【温故知新】
11.用列举法表示“mathematics ”中字母构成的集合;
用描述法表示集合{2,2,6,10,14,18,}-L .
【课堂例题答案】
例1.证:任取x A ∈,因为A B ⊆,所以x B ∈,因为x B ∈且B C ⊆,所以x C ∈,因此A C ⊆ 证毕.
例2.,,,=⊇⊆⊆
例3.(1),{1},{2},{3},{1,2},{2,3},{1,3},{1,2,3}∅
(2),{},{}a b ∅
(3){1,2,3,4},{1,2,3,5},{1,2,3,4,5}
【知识再现答案】
1.(1)若集合A 中的任意元素都属于集合B ,,A B B A ⊆⊆,A 包含于B ,B 包含于A
(2)B 是A 的子集,A B =
(3)B 中至少有一个集合不属于A ,A B B
A ,茌
2.任何集合;任何非空集合.
【习题答案】
1.,A B
2.,,,=⊇⊆⊇
3.(1)
1,12
;(2){ 4.,D C A D B A 苘苘 5.集合A 中至少有一个元素不属于集合B
6.,{0},{2},{4},{0,2},{0,4},{2,4},{0,2,4}∅
7.2a =,不存在
8.1,0a b =-= 9.2
{0,1,}3
a ∈-
10.P Q R =Ü 证明: 613231{|,},{|,},{|,}666
n m s P p p n Z Q q q m Z R r r s Z +-+==
∈==∈==∈ 任取x P ∈,613(21)266n n x ++-==,所以x Q ∈,因此P Q ⊆;
任取x Q ∈,323(1)166
m m x --+=
=,所以x R ∈,因此Q R ⊆; 任取x R ∈,313(1)266
s s x ++-==,所以x Q ∈,因此R Q ⊆; 因此P Q R ⊆=
在集合Q 中取2m =得23q =,因此23Q ∈,但是26136n +=无整数解,所以23
P ∉ 因此P Q R =Ü 证毕 11.{,,,,,,,},{|22,}m a t h e i c s x x k k N =-+∈。