第10章结构动力学

合集下载

第十章结构动力学

第十章结构动力学

度 法
m m11
yቤተ መጻሕፍቲ ባይዱ(t) 2 y(t) 0
Fm=y(1t) m 11
l EI
二阶线性齐次常微分方程
y(t) 11 F y(t) 11[my(t)]
11

1 k11
柔 度 法
其通解为
y(t) c1 cost c2 sin t
由初始条件 y(0) y0 y(0) y0
第二,结构在动荷载作用下,产生抵抗结构加速度的 惯性力。动力计算必须考虑惯性力。
4、结构动力计算中体系的自由度
自由度的定义
确定体系中所有质量位置所需的独立几何参数,称 作体系的动力自由度数。
自由度的简化
实际结构都是无限自由度体系,这不仅导致分析困难, 而且从工程角度也没必要。常用简化方法有:
结构动力学的研究内容 结构动力学是研究工程结构的动力特性及其在动荷载
作用下的动力反应分析原理和方法的一门理论和技术学科。
结构动力学的任务 讨论结构在动力荷载作用下反应的分析的方法。
寻找结构固有动力特性、动力荷载和结构反应三者间 的相互关系,即结构在动力荷载作用下的反应规律,为结 构动力可靠性设计、保证结构的经济与安全以及结构健康 诊断提供科学依据。
或者
y
ky
F P(t)
y 2 y FP (t)
m
上式就是单自由度体系强迫振动的微分方程
1、简谐振动作用时的强迫振动
运动方程及其解
F(t)
F(t) F sin t
l
F --荷载幅值 --荷载频率
运动方程
my(t) k11y(t) F sin t

y(t) 2 y(t) F sin t m

结构动力学:Chapter_10(结构动力学)

结构动力学:Chapter_10(结构动力学)

= =
C1 sin ωt + C1ω cosωt
C2 cos
− C2ω
ωt
sin
ωt
得:⎧⎪C2 = y0
⎨ ⎪⎩C1
=
y0
ω
于是:
y=
y0
ω
sin ωt +
y0
cos ωt
进一步可确定式 y = C sin(ωt + φ) 中的C和φ
⎧ ⎪C = ⎪
C12 +C22 =
y02
+(
y0
ω
)2

⎪⎪⎩φ
第10章 结构动力学
本章内容的基本要求
本章课程的任务是使学生了解和掌握结构的动力特性和动力响应 的计算分析方法 ,具体为:
(1)掌握结构动力分析的基本方法,掌握单自由度及两自由度体 系的自由振动及其在简谐荷载作用下的强迫振动的计算方法 ;
(2)了解阻尼的作用,了解频率的近似计算方法。
1/109
10-1 动力计算概述
φ
C2
C1
y

ω

C
φ
ωt
31/109
3、几个术语
(1)周期:振动一次所需的时间。
(2)工程频率
T = 2π ω
单位时间内的振动次数(与周期互为倒数)。
f=1= ω T 2π
(3)频率(圆频率)
旋转向量的角速度,即体系在2π秒内的振动 次数。自由振动时的圆频率称为“自振频率”。
32/109
自振频率是体系本身的固有属性,与体系的 刚度、质量有关,与激发振动的外部因素无关。
P(t)
固端弯矩 M = PL
自由端位移 w = Pδ1 δ1: 单位荷载下的位移

第10章 结构动力学

第10章  结构动力学

第10章 结构动力学习 题10-5 试确定图示各体系的动力自由度,忽略弹性杆自身的质量。

(a) (b)EI 1=∞EImyϕ分布质量的刚度为无穷大,由广义坐标法可知,体系仅有两个振动自由度y ,ϕ。

(c)(d)在集中质量处施加刚性链杆以限制质量运动体系。

有四个自由度。

10-8 图示结构横梁具有无限刚性和均布质量m ,B 处有一弹性支座(刚度系数为k ),C 处有一阻尼器(阻尼系数为c ),梁上受三角形分布动力荷载作用,试用不同的方法建立体系的运动方程。

解:1)刚度法该体系仅有一个自由度。

可设A 截面转角a 为坐标顺时针为正,此时作用于分布质量m 上的惯性力呈三角形分布。

其端部集度为..ml a 。

取A 点隔离体,A 结点力矩为: (3)121233I M ml a l l mal =⨯⨯⨯=由动力荷载引起的力矩为:()()2121233t t q l l q l ⋅⋅= 由弹性恢复力所引起的弯矩为:.2133la k l c al ⋅⋅+ 根据A 结点力矩平衡条件0I p s M M M ++=可得:()3 (322)1393t q l ka m al l c al ++=整理得:()...33t q ka c a m a l l l++= 2)力法.cα解:取AC 杆转角为坐标,设在平衡位置附近发生虚位移α。

根据几何关系,虚功方程为:() (20111)0333l t q l l k l l l c m x xdx ααααααα-⋅-⋅-⋅=⎰则同样有:()...33t q ka c a m a ll l++=。

10-9 图示结构AD 和DF 杆具有无限刚性和均布质量m ,A 处转动弹簧铰的刚度系数为k θ,C 、E 处弹簧的刚度系数为k ,B 处阻尼器的阻尼系数为c ,试建立体系自由振动时的运动方程。

解:取DF 隔离体,0FM=∑:..2220.2322324a R a mx dx ka R ma ka αααα⋅=+⇒=+⎰取AE 隔离体:0A M =∑...32220430ak mx dx ca ka Ra θαααα++++=⎰将R 代入,整理得: ..32251504R ma ka k θααα=++= 10-10 试建立图示各体系的运动方程。

在线测试题试题库及解答(第十章)结构动力学(word文档良心出品)

在线测试题试题库及解答(第十章)结构动力学(word文档良心出品)

在线测试题试题库及解答第十章结构动力学基础一、单项选择题1、结构的主振型与什么有关?A、质量和刚度B、荷载C、初始位移D、初始速度标准答案 A2、结构的自振频率与什么有关?A、质量和刚度B、荷载C、初始位移D、初始速度标准答案 A3、单自由度体系在简谐荷载作用下,下列哪种情况内力与位移的动力系数相同?A、均布荷载作用B、荷载作用在质点上与质点运动方向垂直C、荷载不作用在质点上D、惯性力与运动方向共线标准答案 D4、具有集中质量的体系,其动力计算自由度A、等于其集中质量数B、小于其集中质量数C、大于其集中质量数D、以上都有可能标准答案 D5、具有集中质量的体系,其动力计算自由度A、等于其集中质量数B、小于其集中质量数C、大于其集中质量数D、以上都有可能标准答案 D6、当简谐荷载作用于有阻尼的单自由度体系质点上时,若荷载频率远远大于体系的自振频率时,则此时与动荷载相平衡的主要是A、弹性恢复力B、重力C、阻尼力D、惯性力标准答案 D7、设ω为结构的自振频率,θ为荷载频率,β为动力系数下列论述正确的是A、ω越大β也越大B、θ/ω越大β也越大C、θ越大β也越大D、θ/ω越接近1,β绝对值越大标准答案 D8、如果体系的阻尼增大,下列论述错误的是A、自由振动的振幅衰减速度加快B、自振周期减小C、动力系数减小D、位移和简谐荷载的相位差变大标准答案 B9、无阻尼单自由度体系在简谐荷载作用下,共振时与动荷载相平衡的是A、弹性恢复力B、惯性力C、惯性力与弹性力的合力D、没有力标准答案 D10、有阻尼单自由度体系在简谐荷载作用下,共振时与动荷载相平衡的是A、弹性恢复力B、惯性力与弹性力的合力C、惯性力D、阻尼力标准答案 D11、当简谐荷载作用于无阻尼的单自由度体系质点上时,若荷载频率远远小于体系的自振频率时,则此时与动荷载相平衡的主要是A、弹性恢复力B、阻尼力C、惯性力D、重力标准答案 A12、一单自由度振动体系,其阻尼比为ξ,动力系数β,共振时下列结果正确的是A、ξ=0.05,β=10B、ξ=0.1,β=15C、ξ=0.15,β=20D、ξ=0.2,β=25标准答案 A13、一单自由度振动体系,由初始位移0.685cm,初始速度为零产生自由振动,振动一个周期后最大位移为0.50cm,体系的阻尼比为A、ξ=0.05B、ξ=0.10C、ξ=0.15D、ξ=0.20标准答案 A14、在低阻尼体系中不能忽略阻尼对什么的影响?A、频率B、主振型C、周期D、振幅标准答案 D15、单自由度体系受简谐荷载作用,ω为体系自振频率,θ为荷载频率,动位移 y(t)与荷载 P(t) 的关系是A、当θ/ω>1时,y(t)与P(t)同向,当θ/ω<1时,y(t)与P(t)反向。

第10章 结构动力学基础1

第10章 结构动力学基础1

(1)重力 W 为静力荷载
(2)弹性恢复力 S(t) k[ y jw y(t)] 与位移成正比,方向与位移指向相
反的。在k质为点刚上度R所(系t加)数的,c力其y• (意t) 义是使质点沿位移方向产生的单位位移时所需
(3)阻尼力
•• 与质点的速度成正比,方向与速度相反。c为
粘滞阻尼系I (数t) 。 m y(t)
my(t) cy(t) ky(t) 0
当动力位移由质点的静力平衡位置算起时,可不考虑质点的重力。
(二)柔度法:取振动体系为研究对象。
I (t) R(t)
FP 1
m y(t)
δ(柔度 系数)
按动静法,体系的动力位移可看为是由于惯性力和阻尼力静力作 用所引起的可得方程:
y(t) [I(t) R(t)]
10.1 一般概念
一、结构的动力荷载及分类
动力荷载:是指荷载的大小、方向、位置随时间迅速变化的 荷载;它使结构质量产生不容忽视的加速度,使结构发生明 显的振动,即在平衡位置附近往返运动。
静力荷载:是指荷载的大小、方向、位置不随时间变化的荷 载;同时考虑其对结构的影响来看,如果荷载变化极其缓慢, 使结构质量产生的加速度可以忽略不计时,仍属于静力荷载
T
T
T
(二)自振周期与频率
自振频率(圆频率)
自振周期
T 2
k 1 g g m m W st
T 2π m 2π mδ 2π Wδ 2π Δst
动静法 根据达朗贝尔(d’Alembert)原理,设想将惯性力I(t)加
于振动体系的质点上,则任一瞬时体系中的实际各力与惯 性力处于平衡状态。
三、 动力计算简图和动力自由度
动力计算中要引入惯性力,因此计算简图要考虑质量的 分布。

结构力学课后答案第10章结构动力学

结构力学课后答案第10章结构动力学
题10-39图题10-40图
10-40用有限单元法计算图示具有分布质量刚架的第一和第二自振频率及其相应的主振型。已知弹性模量E=2500kN/cm2,材料密度 =0.0025kg/cm3;柱子的横截面面积A1=100cm2,惯性矩I1=833.33cm4;梁的横截面面积A2=150cm2,惯性矩I2=2812.50cm4。
解:
若 为静力荷载,弹簧中反力为 。
已知图示体系为静定结构,具有一个自由度。设为B点处顺时针方向转角 为坐标。建立动力方程:
则弹簧支座的最大动反力为 。
10-21设图a所示排架在横梁处受图b所示水平脉冲荷载作用,试求各柱所受的最大动剪力。已知EI=6×106N·m2,t1=0.1s,FP0=8×104N。
则同样有: 。
10-9图示结构AD和DF杆具有无限刚性和均布质量 ,A处转动弹簧铰的刚度系数为kθ,C、E处弹簧的刚度系数为k,B处阻尼器的阻尼系数为c,试建立体系自由振动时的运动方程。
解:
取DF隔离体, :
取AE隔离体:
将R代入,整理得:
10-10试建立图示各体系的运动方程。
(a)
解:(1)以支座B处转角作为坐标,绘出梁的位移和受力图如下所示。图中惯性力为三角形分布,方向与运动方向相反。
解:
图 图
(1)求结构运动方程
如所示弯矩图,图乘后,
其中 ,稳态解:
所示结构的运动方程为 ,C点最大动位移幅值为
(2)求B点的动位移反应

B点的动位移幅值为
(3)绘制最大动力弯矩图
图 图
最大动力弯矩图
10-20试求图示集中质量体系在均布简谐荷载作用下弹簧支座的最大动反力。设杆件为无限刚性,弹簧的刚度系数为k。
解:

在线测试题试题库及解答(第十章)结构动力学

在线测试题试题库及解答(第十章)结构动力学

在线测试题试题库及解答第十章结构动力学基础一、单项选择题1、结构的主振型与什么有关?A、质量和刚度B、荷载C、初始位移D、初始速度标准答案 A2、结构的自振频率与什么有关?A、质量和刚度B、荷载C、初始位移D、初始速度标准答案 A3、单自由度体系在简谐荷载作用下,下列哪种情况内力与位移的动力系数相同?A、均布荷载作用B、荷载作用在质点上与质点运动方向垂直C、荷载不作用在质点上D、惯性力与运动方向共线标准答案 D4、具有集中质量的体系,其动力计算自由度A、等于其集中质量数B、小于其集中质量数C、大于其集中质量数D、以上都有可能标准答案 D5、具有集中质量的体系,其动力计算自由度A、等于其集中质量数B、小于其集中质量数C、大于其集中质量数D、以上都有可能标准答案 D6、当简谐荷载作用于有阻尼的单自由度体系质点上时,若荷载频率远远大于体系的自振频率时,则此时与动荷载相平衡的主要是A、弹性恢复力B、重力C、阻尼力D、惯性力标准答案 D7、设ω为结构的自振频率,θ为荷载频率,β为动力系数下列论述正确的是A、ω越大β也越大B、θ/ω越大β也越大C、θ越大β也越大D、θ/ω越接近1,β绝对值越大标准答案 D8、如果体系的阻尼增大,下列论述错误的是A、自由振动的振幅衰减速度加快B、自振周期减小C、动力系数减小D、位移和简谐荷载的相位差变大标准答案 B9、无阻尼单自由度体系在简谐荷载作用下,共振时与动荷载相平衡的是A、弹性恢复力B、惯性力C、惯性力与弹性力的合力D、没有力标准答案 D10、有阻尼单自由度体系在简谐荷载作用下,共振时与动荷载相平衡的是A、弹性恢复力B、惯性力与弹性力的合力C、惯性力D、阻尼力标准答案 D11、当简谐荷载作用于无阻尼的单自由度体系质点上时,若荷载频率远远小于体系的自振频率时,则此时与动荷载相平衡的主要是A、弹性恢复力B、阻尼力C、惯性力D、重力标准答案 A12、一单自由度振动体系,其阻尼比为ξ,动力系数β,共振时下列结果正确的是A、ξ=0.05,β=10B、ξ=0.1,β=15C、ξ=0.15,β=20D、ξ=0.2,β=25标准答案 A13、一单自由度振动体系,由初始位移0.685cm,初始速度为零产生自由振动,振动一个周期后最大位移为0.50cm,体系的阻尼比为A、ξ=0.05B、ξ=0.10C、ξ=0.15D、ξ=0.20标准答案 A14、在低阻尼体系中不能忽略阻尼对什么的影响?A、频率B、主振型C、周期D、振幅标准答案 D15、单自由度体系受简谐荷载作用,ω为体系自振频率,θ为荷载频率,动位移 y(t)与荷载 P(t) 的关系是A、当θ/ω>1时,y(t)与P(t)同向,当θ/ω<1时,y(t)与P(t)反向。

【结构动力学】第10章 多自由度体系2020

【结构动力学】第10章 多自由度体系2020

0
0
N
其中,ωn— 第n阶自振频率,{φ}n—第 n阶振型。
[Φ]和[Ω]也分别称为振型矩阵和谱矩阵。
13
5 DOF with uniform mass and stiffness
5 DOF Base Isolated 14
15
5 DOF with uniform mass and stiffness
k22 2m22 k2N 2m2n 0
k N1 2mN1 k N 2 2mN 2 k NN 2mNN
10
对于N个自由度的稳定结构体系,频率方程是关于ω2的 N次方程,
a N ( 2 ) N a N 1 ( 2 ) N 1 a1 2 a 0 0
由此可以解得N个正实根(ω12<ω22<ω32…<ωN2)。 ωn(n=1, 2, …, N)即为体系的自振频率。其中量值最小的 频率ω1叫基本频率(相应的周期T1=2π/ω1叫基本周期)。 从以上分析可知,多自由度体系只能按一些特定的频 率即按自振频率做自由振动。按某一自振频率振动时,结 构将保持一固定的形状,称为自振振型,或简称振型。
上述齐次方程组有非零解条件为:系数行列式为零
A [I ] 0
N×N矩阵[A]一般将有N个特征值,对应N个特征向量
6
§10-2 多自由度体系的自由振动
多自由度体系无阻尼自由振动的方程为:
M u K u 0
其中:[M]、[K]为N×N阶的质量和刚度矩阵 {u}和{ü}是N阶位移和加速度向量 {0}是N阶零向量
11
把相应的自振频率ωn代入运动方程的特征方程得到振型
K n 2 M n 0
{φ}n={φ1n, φ2n , …, φNn }T—体系的第n阶振型 。 ➢ 由于特征方程的齐次性(线性方程组是线性相关的),振型向量 是不定的,只有人为给定向量中的某一值,例如令φ1n=1,才能确 定其余的值。 ➢ 实际求解时就是令振型向量中的某一分量取定值后才能求解。 虽然令不同的分量等于不同的量,得到的振型在量值上会不一样, 但其比例关系是不变的。

第10章 结构动力学

第10章 结构动力学

5.与其它课程之间的关系
结构动力学以和数学为基础。 要求熟练掌握已学过的知识和数学知识(微分方程的求解)。 结构动力学作为结构抗震、抗风设计计算的基础。
2014-1-10
第10章
10.2体系的动力自由度
1.动力自由度的定义
动力问题的基本特征是需要考虑惯性力,根据达朗贝尔(D‘Alembert Jean Le Rond)原理,惯性力与质量和加速度有关,这就要求分析质量分布和质量位 移,所以,动力学一般将质量位移作为基本未知量。 确定体系中全部质量位置所需要的独立几何参数数目,成为体系的动力自由 度。
4 ( x) sin
2014-1-10

广义坐标法是一种数学简化方法
第10章
10.2体系的动力自由度
有限单元法:
可以看作是分区的广义坐标法,其要点与静力问题一样,是先把结构划分 成适当数量的区域(称为单元),然后对每一单元施行广义坐标法。详见 有限单元法参考资料,这里不再赘述。 一般地说,有限元法是最灵活有效的离散化方法,它提供了既方便又可靠 的理想化模型,并特别适合于用电子计算机进行分析,是目前最为流行的 方法,已有不少专用的或通用的程序可供结构动力学分析之用。 有限单元法也是一种数学简化方法
2014-1-10
第10章
10.1 概述
2.动力荷载及其分类
动力荷载分类方法有很多种,常见的是按动力作用随时间的变化规律来分。 周期性荷载:其特点是在多次循环中荷载相继呈现相同的时间历程。如旋 转机械装置因质量偏心而引起的离心力。 周期性荷载又可分为简谐荷载和非简谐周期荷载,所有非简谐周期荷载均 可借助Fourier级数分解成一系列简谐荷载之和。 冲击和突加载荷: 其特点是荷载的大小在极短的时间内有较大的变化。冲 击波或爆炸是冲击载荷的典型来源;吊车制动力对厂房的水平作用是典型 的突加荷载。 随机载荷:其时间历程不能用确定的时间函数而只能用统计信息描述。风 荷载和荷载均属此类。对于随机荷载,需要根据大量的统计资料制定出相 应的荷载时间历程(荷载谱)。 前两种荷载属于确定性荷载,可以从运动方程解出位移的时间历程并进一 步求出应力的时间历程。 随机荷载属于非确定性荷载,只能求出位移响应的统计信息而不能得到确 定的时间历程,因而~92层之间有一颗巨 大的‘金色大球’,由实 心钢板堆焊而成,直径约 5.4米,重达680吨,价值 400W美元。其实质是调质 阻尼器TMD(Tuned Mass Damper),作用是减轻飓 风、地震给大楼带来的震 动。

结构动力学-课件(全10章+总结)(刘晶波,杜修力主编.机械工业出版社出版)

结构动力学-课件(全10章+总结)(刘晶波,杜修力主编.机械工业出版社出版)
独立参数也称为体系的广义坐标,可以是位移、转角或 其它广义量。
质量块mg 无质量弹簧k
(a) 弹簧-质点
2ust
动力反应
u
(b) 静力和动力反应
静力问题和动力问题位移反应的区别
1.4 结构离散化方法
离散化:把无限自由度问题转化为有限自由 度的过程
三种常用的离散化方法: 1、集中质量法、 2、广义坐标法、 3、有限元法。
F (t) = Asinωt F (t) = Acosωt F (t) = Asin(ωt − φ)
可以是机器转动引起的不平衡力等。
p(t)
t
(a) 简谐荷载
1.2 动力荷载的类型
(2)非简谐周期荷载
荷载随时间作周期性变化,是时间t的周期函数,但不
能简单地用简谐函数来表示。 例如:平稳情况下波浪对堤坝的动水压力;轮船螺旋 桨产生的推力等。
n =1
nπx
L
sin(.)— 形函数(形状函数),给定函数,满足边界条件;
bn(t)— 广义坐标,一组待定参数,对动力问题是作为时间的函数。
∑ u( x, t )
=
N n =1
bn
(t)
sin
nπx
L
2、广义坐标法
悬臂梁:
x
(b) 悬臂梁
用幂级数展开:

∑ u(x) = b0 + b1x + b2 x2 + L = bn xn n=0
结构动力学和静力学的本质区别:考虑惯性力的影响
结构产生动力反应的内因(本质因素):惯性力
惯性力的产生是由结构的质量引起的,对结构中质量位 置及其运动的描述是结构动力分析中的关键,这导致 了结构动力学和结构静力学中对结构体系自由度定义 的不同。

结构动力学-第十章-随机振动激励响应关系

结构动力学-第十章-随机振动激励响应关系

ch
0 0
0
kh(t)dt
0
0
(t)dt
0
或: m h(0 ) h(0 ) c h(0 ) h(0 ) kh( )(0 0 ) 1
即: mh(0) ch(0) 1 (1)
积分两次:
0
dt
t mhdt
0
dt
t chdt
0
dt
t
kh(t)dt
0
t
dt (t)dt
t
x(t) h(t )y( )d y(t) * h(t)
卷积积分
此式也可以由上页的(*)式推出:
y(t)
y( )
t
t
此式也可以由上页的(*)式推出:
x(t) 1
2
H
(
)
y(t)eit dteit d
1
2
H
(
)
y( )ei d eit d
1
2
y( )
H
(
)e
当t 0时, (t)=0,故有
mh ch kh 0 或 h 2nh n2h 0
其通解为: h(t) en t ( A cosd t B sin d t)
积分常数A和B由初始条件确定
则: mh ch kh (t) (*)
对(*)式两边从0-到0+积分两次
积分一次:mh 0 0
2
或: 1 e-itdt 2 ()
故: 1
2
() 或:1
2 ()
同样: 1 ei0 t
2
( 0 )
1 ei0 t
2
( 0 )
(3)脉冲响应函数
实际上,在第四章瞬态振动一章已经求过h(t)。 求h(t)的步骤如下: ①建立系统运动微分方程

第十章 结构动力学解答

第十章 结构动力学解答

为:
72������������
9
���̅���������̈ + ������4 ������ = 2������2 ������������(������)
10.6 求如图所示体系的自振频率。
m
EI1 EI1 m
l/2
l/2
EI
l/2 l/2
l
图 10-6
解:此体系为单自由度体系 (1) 将上图所示的体系转化为下图 10-6-1 所示的体系:
(4) 对位移项系数比较得:
4 ������̈ + 5������ ������1������ = 0
ω
=
√4������1 5������
=
√12������������ 5������������3
10.7 单 自 由 体 系 上 作 用 简 谐 动 荷 载 , 力 的 幅 值 F0 500N , 先 后 以 1 10rad / s 和2 17.32rad / s 两种频率分别作用,测得各相应的位移幅值和相 位角为 A1 4.995105 m , 1 2.55 ; A2 9.823105 m , 2 10.8 。试求该 体系的质量 m、刚度 k、自振频率 和阻尼比 。
将������1、������������、������������代入(c=0),得:
������������̈ + ������������ = ������������(������) 4) 求系数 k。在质点处作用单位力所得弯矩图如下图 10-4-5
3
16 ������
1
5 32 ������
3) 将������11、������1������带入,则体系运动方程为

结构动力学教学课件(共10章)第10章 结构动力学专题

结构动力学教学课件(共10章)第10章 结构动力学专题


··
∑ () + ∑
··
·
+2ζnωn + qn=-=


=
=+

··
()
()
(10-19)
上式可简记为
··
·
··
··
+2ζnωn + qn=- + (10-20)
力位移。
由于[Kg]表示因支承单位位移在自由节点上产生的力,而[K]表示自由节点单位位移所产生的
力,因此{us}和{ug}满足条件
[K]{us}+[Kg]{ug}={0}(10-4)
由此可得到{us}和{ug}的关系为
{us}=-[K]-1[Kg]{ug}(10-5)
10.1
10.1.1
结构地震反应分析中的多点输入问题
点地震动输入下结构总的反应为
{ua}={us
}+{u}=-[K]-1[K
g]{ug}+

∑ {ϕ}nqn(t)
=

= ∑ [Egl]ugl+∑{ϕ}nqn(t)(10-15)
=

10.2
10.2.1
结构地震反应分析中的多维输入问题
非对称结构在多维地震输入时的振型叠加法
计算非对称结构在多维地震动作用下的反应时,在刚性楼板假定前提下通常每层考虑三个自
式(10-7)右端第二项表示结构与支座的阻尼耦联,由于比较小,通常可忽略。同时,根据式(10-4)和
式(10-5),则式(10-7)可简化为
··
{Peff(t)}=([M][K]-1[Kg]-[Mg]){ }(10-8)

10结构动力学概论

10结构动力学概论

当 FP (t)为简谐荷载时,其解的形式为
第十章 结构动力学简介
y(t)
y0
cos ωt
ν0 ω
sin ωt
F
θ sin ωt
F
sin θt
m(ω2 θ 2 ) ω
m(ω2 θ 2 )
前两项为初始条件引起的自由振动;第三项为荷载(干扰力)引起的自由振 动,称为伴生自由振动。实际上,由于阻尼的存在,自由振动部分都很快 衰减掉。自由振动消失前的振动阶段称为过渡阶段。第四项为按荷载频率 进行的振动,此阶段为振动的平稳阶段,称为纯受迫振动或稳态振动。
2、平衡方程的建立
平衡方程的建立有两种方法:一是刚度法;一是柔度法。
my
y k
k
m
刚度法:根据达兰贝尔原理,沿位移正向,在质点上加上惯性力,列动态平 衡方程
ky my
k y ——总是与位移方向相反,指向平衡位置
平m衡y 方—程—与加速m度y方向相k反y 0
第十章 结构动力学简介
柔度法:在惯性力作用下,质点的位移等于实际位移
结构力学
STRUCTURAL MECHANICS
第十章 结构动力学简介
§10-1 概述
一、动力计算的内容
动力计算的内容:研究结构在动荷载作用下的动力反应的计算原理和方法。 涉及到内外两方面的因素: 1)确定动力荷载(外部因素,即干扰力); 2)确定结构的动力特性(内部因素,如结构的自振频率、周期、振型和 阻尼等等),类似静力学中的I、S等; 计算动位移及其幅值;计算动内力及其幅值。
纯受迫振动解的讨论请同学们课下自学完成!
第十章 结构动力学简介
三、阻尼对振动的影响
§10-3 单自由度体系的振动分析

第10章-动力学分析介绍

第10章-动力学分析介绍

第10章动力学分析介绍在实际工程结构的设计工作中,动力学设计和分析是必不可少的一部分。

几乎现代的所有工程结构都面临着动力问题。

在航空航天、船舶、汽车等行业,动力学问题更加突出,在这些行业中将会接触大量的旋转结构例如:轴、轮盘等等结构。

这些结构一般来说在整个机械中占有及其重要的地位,它们的损坏大部分都是由于共振引起较大振动应力而引起的。

同时由于处于旋转状态,它们所受外界激振力比较复杂,更要求对这些关键部件进行完整的动力设计和分析。

10.1 动力分析简介通常动力分析的工作主要有系统的动力特性分析(即求解结构的固有频率和振型),和系统在受到一定载荷时的动力响应分析两部分构成。

根据系统的特性可分为线性动力分析和非线性动力分析两类。

根据载荷随时间变化的关系可以分为稳态动力分析和瞬态动力分析。

谐响应分析是用于确定线性结构在承受随时间按正弦(简谐)规律变化的载荷时稳态响应的一种技术。

可以用瞬态动力学分析确定结构在静载荷,瞬态载荷,和简谐载荷的随意组合作用下的随时间变化的位移,应变,应力及力。

而谱分析主要用于确定结构对随机载荷或随时间变化载荷的动力响应情况。

ANSYS6.1提供了强大的动力分析工具,可以很方便地进行各类动力分析问题:模态分析、谐响应分析、瞬态动力分析和谱分析。

10.2 动力学分析分类动力学分析根据载荷形式的不同和所有求解的内容的不同我们可以将其分为:模态分析、谐响应分析、瞬态动力分析和谱分析。

下面将逐个给予介绍。

10.2.1 模态分析模态分析在动力学分析过程中是必不可少的一个步骤。

在谐响应分析、瞬态动力分析动分析过程中均要求先进行模态分析才能进行其他步骤。

10.2.1.1 模态分析的定义模态分析用于确定设计机构或机器部件的振动特性(固有频率和振型),即结构的固有频率和振型,它们是承受动态载荷结构设计中的重要参数。

同时,也可以作为其他动力学分析问题的起点,例如瞬态动力学分析、谐响应分析和谱分析。

其中模态分析也是进行谱分析或模态叠加法谱响应分析或瞬态动力学分析所必需的前期分析过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

由此可知,体系的自由振动由两部分组成:一部分由初位移 y 0 引
0 引起,变现为正弦规律 起,表现为余弦规律;另一部分由初速度 y
[图10-13(a)、(b)],两者叠加为简谐振动[图10-13(c)]。
目录
上页
下页
图10-13

y0 A sin
(d)
目录

则有
0 y
A cos
下页
图10-8 简支梁的广义位移
3. 有限单元法 有限元法是将实际结构离散成有限个单元,对每个单元给定插
目录
值函数,然后叠加单元在各个相应结点的贡献建立系统求解方程。 有限单元法根据基本未知量选取的不同,分为位移有限元法、应力
有限元法和混合有限元法。其中,位移有限元方法应用最广。
上页
在确定结构震动自由度时,应注意不能根据结构有几个集中 质量就判定它有几个自由度,而应该由确定集中质量位置所需的独
小,如图10-2。例如打桩机的桩锤对桩的冲击、各种爆炸荷载等。
目录
上页
下页
图10-2 冲击荷载
(3)突加荷载。在一瞬间施加于结构上并继续留在结构上的荷载, 如图10-3。例如吊重物的起重机突然启动时施加于钢丝绳的荷载就 是这种突加荷载。
目录
上页
下页
图10-3 突加荷载
(4)快速移动荷载。例如高速通过桥梁的列车、汽车等。
普通高等学校土木工程专业精编系列规划教材
结构力学
主编 丁克伟
目录
上页
10 结构动力学
下页
目录
目录
上页
10.1 结构动力学计算基本概念 10.2 自由度结构自由振动 10.3 简谐荷载作用下的单自由度体系受迫振动 10.4 一般荷载作用下的单自由度体系受迫振动
下页
§10.1 结构动力计算基本概念
下页
目录
上页
下页
图10-17 位移时间曲线 (a)钢结构;(b)钢筋混凝土楼板
振动中的阻尼来自各个不同方面,主要分为两种:一种是外部介 质的阻力;另一种则来源于物体内部的作用。这些力统称为阻尼力。
目录
由于阻尼力的来源不同,且与材料特性有着密切关系,因而计算很复
杂。为了简化计算,人们提出了许多理论来近似模拟阻尼力,最为常
用的是采用福格第假定,即假定阻力与振动速度成正比,且方向与质
上页
点速度方向相反,这也就是我们常说的粘滞阻尼力,即
下页
R(t ) cy
式中
(10-13)
c称为阻尼常数,负号表示阻尼力与速度方向相反。
图10-19(a)所示为一具有阻尼的单自由度振动模型。体系的 质量为
m ,体系的弹性性质用弹簧表示,弹簧刚度为 k
10-10所示,至少需添加三个附加链杆才能使结构变为几何不变体系,
上页
因此,其自由度数为3。
下页
目录
上页
下页
图10-10 复杂情况下自由度的确定 (a)三个集中质量体系;(b)加链杆确定自由度
§10.2 单自由度结构自由振动
自由振动是指结构在振动过程中不受外部干扰力作用的振动。产
目录
生自由振动是由于初始时刻的干扰,即通过对质量施加初位移或初速
目录
正弦(或余弦)规律改变大小则称为简谐周期荷载,通常也称为震动 荷载,如图10-1所示。例如具有旋转部件的机器在等速运转时其偏心 质量产生的离心力对结构的影响就是这种荷载。
上页
下页
图10-1 周期荷载
(2)冲击荷载。这是指很快地把全部量值加于结构而作用时间很短
即行消失荷载,这种荷载在很短的时间内,荷载值急剧增大或急剧减
目录
(t ) F1 m y m 的位移为:
y(t ) F1
上页

下页
(t ) y (t ) m y
式中: ——立柱的柔度系数,即单位水平力 的水平位移
(10-4)

F 1 作用在柱顶
10.2.2 自由震动微分方程的解答
单自由度体系自由振动微分方程式(10- 3)可以写成
目录
2 y 0 y
式中:
(10-5)
上页
k m
2
(10-6)
式10-5为常系数线性齐次微分方程,其通解为
下页
y(t ) C1 cost C2 sin t
任一时刻的加速度 代入初始条件
(b)
(t ) C1 sin t C2 cost (c) y 0 y y (t ) y0 cos t sin t (10-7)

1 m
48EI m l3
例10-2 如图10-15(a)所示为一等截面竖直悬臂杆,长度为 l , 截面积为 A ,截面抗弯刚度为 EI ,杆顶有一质量为 W 的重物。 设杆件本身质量不计,试分别求水平振动和竖直振动时的自振周期。
目录
上页
下页
图10-15
解:(1)水平振动
在柱顶处加一单位水平力如图10-15(b),由图乘法可求得
目录
力),如图10-16(b)所示。由等截面直杆的转角位移方程可得柱顶
EI 12 剪为 h3

以横梁为隔离体如图10-16(c)所示,由平衡条件可得
上页
12EI EI k 2 3 24 3 h h
( 2)钢架的自振频率为
下页
k 24EI m m h3
10.2.3有阻尼自由振动
下页
t
时刻
x 点的位移将它用一组位
移函数的线性和表示
ix y( x, t ) qi (t ) sin l i 1

(10-1) 如取前三项叠加,
ix y ( x, t ) qi (t ) sin l i 1
3
(10-2)
这样就将无限自由度系统简化为三个自由度的系统。
目录
上页
质量集中于楼层的两个自由度体系,计算简图如图10-7(b),在 振动过程中,只要用
目录
y1和 y2 两个独立坐标就可以确定各质点所处
的位置,这样就把原来具有无限自由度的两层刚架简化为两个自由
度。
上页
2.广义位移法
对于具有连续分布质量,且比较简单的结构可采用广义位移法。
如图10-8(a)所示简支梁,设在
度而激发产生。自由振动时规律反映了体系的动力特性,而体系在动
上页
荷载作用下的响应情况又是与其动力特性相关的。体系的自由振动分 为有阻尼和无阻尼两种情况。
单自由度体系的振动是工程中经常遇到的实际问题之一。有时也
下页
可把复杂的工程问题简化为单自由度体系进行估算。因此,单自由度 体系的振动虽然比较简单,却十分重要,它是研究多自由度体系振动 的基础。
前面讨论的自由振动都是无阻尼情况下的自由振动。由于没有阻
尼,振动也就不消耗系统的振动能量,那么,振动将按照周期函数的
目录
规律无休止的延续下去。这是一种理想的状态,实际结构的振动总是
有阻尼的。现以一钢结构模型和一钢筋混凝土楼板在自由振动实验中
上页
所得位移—时间曲线的大致形状来说明阻尼,如图10-17所示。由于 阻尼的存在,使得振动过程的能量逐渐耗散,最终衰减为零。现在讨 论阻尼对结构自由振动的影响。
下页
立参数数目来判定。
目录
上页
下页
图10-9 两自由度体系
对于较为复杂的结构体系,可以采用集中质量处附加刚性链杆以
限制集中质量运动的办法来确定体系的自由度。首先将结构各个刚结
目录
点包括刚接基础改为铰接,然后添加刚性链杆使结构体系变成几何不
变体系,则所需添加的刚性链杆的最少数目就是结构的自由度。如图
。在梁的跨中处有一个集中质量块 m 。忽略梁本身的质量,
上页
下页
图10-14
解:用柔度法,该梁只有竖向的一个自由度,在简支梁跨中处作用 一竖向单位力
目录
P 1
,作
M
图如图10-14(b)所示,由图乘法可
求出其柔度系数为:
l3 48EI
因此,由式10-12可得
上页
下页
m l3 T 2 m 2 48EI
10.1.1 概述
目录
前面各章讨论的是结构的静力计算问题,即结构在静力荷载作用 下的内力和计算问题;现在我们进一步研究动力荷载对结构的影响。
上页
由于动力荷载作用产生的内力和位移,称为动内力和动位移,它
们不仅是位移的函数,也是时间的函数。动内力与动位移统称为动力 反应。学习结构动力学,就是为了确定结构的动力反应在动荷载作用
Wl st EA
所以
下页
st Wl T 2 2 g EIg
例10-3 图10-16(a)所示为一单层钢架,横梁抗弯刚 度 EIb ,柱的截面抗弯刚度为EI 。横梁上总质量为 柱的质量可以忽略不计。求钢架的水
图10-16
解:用刚度法。 (1)求钢架水平侧移刚度系数 k(柱顶产生单位水平位移所需的
目录
l 3EI
当柱顶作用水平力 W 时,柱顶的水平位移为
3
上页
st
下页
Wl 3 3EI
所以
st Wl 3 T 2 2 g 3EIg
(2)竖向振动 在柱顶
目录
W 处,加一竖向单位力如图10-15(c),求得
l3 EA
当柱顶作用竖向力 W 时,柱顶的竖向位移为
上页
(5)随机荷载。例如风力的脉动作用、波浪对码头的拍击、地震对
目录
建筑物的激振等。
上页
下页
图10-4 随机荷载
10.1.3动力计算的自由度
在动力荷载作用下,结构体系的质量获得加速度就产生了运动,
目录
如果我们能够确定各质量在任意瞬时的位置,则该结构体系的变形形 状就完全被确定了。我们把确定结构体系全部质点的位置所需要的独
相关文档
最新文档