高三物理碰撞与动量守恒练习题(带答案)
2020高考物理专题10碰撞与动量守恒定律(高考押题)(解析版)
高考押题专练1.如图所示,两木块A、B 用轻质弹簧连在一起,置于光滑的水平面上.一颗子弹水平射入木块A ,并留在其中.在子弹打中木块 A 及弹簧被压缩的整个过程中,对子弹、两木块和弹簧组成的系统,列说法中正确的是( )B.动量守恒、机械能不守恒C.动量不守恒、机械能守恒D.动量、机械能都不守恒【答案】B【解析】子弹击中木块 A 及弹簧被压缩的整个过程,系统不受外力作用,外力冲量为0,系统动量守恒.但是子弹击中木块A过程,有摩擦做功,部分机械能转化为内能,所以机械能不守恒, B 正确.2.如果一个系统不受外力,或者所受外力的矢量和为零,这个系统的总动量保持不变,这就是动量守恒定律.若一个系统动量守恒时,则( )A.此系统内每个物体所受的合力一定都为零B.此系统内每个物体的动量大小不可能都增加C.此系统的机械能一定守恒D.此系统的机械能可能增加【答案】D【解析】若一个系统动量守恒,则整个系统所受的合力为零,但是此系统内每个物体所受的合力不一定都为零, A 错误.此系统内每个物体的动量大小可能会都增加,但是方向变化,总动量不变这是有可能的, B 错误.因系统合外力为零,但是除重力以外的其他力做功不一定为零,故机械能不一定守恒,系统的机械能可能增加,也可能减小,C错误,D 正确.3.在光滑水平面上,质量为m 的小球 A 正以速度v0匀速运动.某时刻小球 A 与质量为3m的静止小球 B 发生正碰,两球相碰后, A 球的动能恰好变为原来的14.则碰后 B 球的速度大小是( ) v0 v0 v0 v0A.2B.6C.2或6D.无法确定【答案】A解析】两球相碰后 A 球的速度大小变为原来的21,相碰过程中满足动量守恒,若碰后 A 速度方向不变,则mv0=1mv0+3mv1,可得 B 球的速度v1=v,而 B 在前,A 在后,碰后 A 球的速度大于 B 球的速度,26不符合实际情况,因此A球一定反向运动,即mv0=-21mv0+3mv1,可得v1=v20,A 正确,B、C、D错误.4.A、B 两物体在光滑水平面上沿同一直线运动,如图表示发生碰撞前后的v-t 图线,由图线可以判断( )A.A、B 的质量比为3∶2B.A、B 作用前后总动量守恒C.A、B 作用前后总动量不守恒D.A、B 作用前后总动能不变【答案】ABD【解析】设 A 的质量为m1,B 的质量为m2,碰撞前后两物体组成的系统所受合外力为零,系统动量守恒,从图象上可得碰撞前后两者的速度,故有m1×6+m2×1=m1×2+m2×7,解得m1∶m2=3∶2, A 、 B 正1 1 55 1 1 55 确,C 错误.碰撞前系统的总动能E k1=2m1×62+2m2×12=3 m1,碰撞后总动能为 E k2=2m1×22+2m2 ×72=3 m1=E k1,动能不变, D 正确.5.在光滑水平面上动能为E0、动量大小为p 的小钢球 1 与静止小钢球 2 发生碰撞,碰撞前后球 1 的运动方向相反,将碰撞后球 1 的动能和动量大小分别记为E1、p1,球 2 的动能和动量大小分别记为E2、p2,则必有( )A.E1<E0 B.p2>p0 C.E2> E0 D.p1>p0【答案】AB【解析】因为碰撞前后动能不增加,故有E1<E0,E2<E0,p1<p0,A 正确,C、D 错误.根据动量守恒定律得p0=p2-p1,得到p2=p0+p1,可见,p2>p0,B 正确.6.矩形滑块由不同材料的上、下两层粘合在一起组成,将其放在光滑的水平面上,质量为m 的子弹以速度v 水平射向滑块.若射击下层,子弹刚好不射出;若射击上层,则子弹刚好能射穿一半厚度,如图所示.则上述两种情况相比较 ( )A .子弹的末速度大小相等B .系统产生的热量一样多C .子弹对滑块做的功不相同D .子弹和滑块间的水平作用力一样大【答案】 AB解析】根据动量守恒,两次最终子弹与滑块的速度相等, A 正确.根据能量守恒可知,初状态子弹的动能相同, 末状态两滑块与子弹的动能也相同, 因此损失的动能转化成的热量相等, B 正确.子 弹对滑块做的功等于滑块末状态的动能,两次相等,因此做功相等, C 错误.产生的热量 Q =f ×Δs ,由t =0 时刻,以初速度 v 0从足够长的粗糙斜面底端向上滑行,物块速度B .物块所受摩擦力大小C .斜面倾角 θD .3t 0 时间内物块克服摩擦力所做的功【答案】 AC解析】上滑过程中做初速度为 v 0 的匀减速直线运动,下滑过程中做初速度为零、末速度为v 的匀加速直线运动,上滑和下滑的位移大小相等,所以有v 20t 0= v 2·2t 0,解得 v = v 20,A 正确.上滑过程中有-(mgsin θ+ μmgcos θ) ·t 0= 0- mv 0,下滑过程中有 (mgsin θ- μ mcgos θ) ·2t 0=m 2v ,解得 F f = μ mcgos θ=3mv0,sin θ= 5v0 ,由于不知道质量,所以不能求出摩擦力,可以求出斜面倾角,B 错误,C 正确.由8t 08gt 0于不知道物体的质量,所以不能求解克服摩擦力所做的功, D 错误.9.如图甲所示,物块 A 、B 间拴接一个压缩后被锁定的轻弹簧,整个系统静止放在光滑水平地面 上,其中于产生的热量相等,而相对位移 Δs 不同,因此子弹和滑块间的水平作用力大小不同, D 错误.3t 0 时刻物块又返回底端.由此可以确定7.如图甲所示,一物块在A .物块返回底端时的速度A 物块最初与左侧固定的挡板相接触,B物块质量为 4 kg。
高中物理动量守恒定律题20套(带答案)
1 2
2mv02
1 (m 2
2m
m)v22
u(2mg)2(L
x)
解得 x v02 L 32g
对 P1、P2、P 系统从 P1、P2 碰撞结束到弹簧压缩量最大,用能量守恒定律
1 2
2mv12
1 2
2mv02
1 2
(m
2m
m)v22
u(2mg)(L
x)
Ep
最大弹性势能 EP
mv
2 0
解得:vn=
=
m/s(其中 n=1、2、3、…、44)
【考点定位】动能定理(机械能守恒定律)、牛顿第二定律、匀变速直线运动速度-位移式 关系、向心力公式、动量守恒定律的应用,以及运用数学知识分析物理问题的能力。 【规律总结】牛顿定律、动能定理、功能关系、动量守恒定律等往往是求解综合大题的必 备知识,因此遇到此类问题,要能习惯性地从以上几个方面进行思考,并正确结合运用相 关数学知识辅助分析、求解。
6.如图的水平轨道中,AC 段的中点 B 的正上方有一探测器,C 处有一竖直挡板,物体 P1 沿轨道向右以速度 v1 与静止在 A 点的物体 P2 碰撞,并接合成复合体 P,以此碰撞时刻为计 时零点,探测器只在 t1=2 s 至 t2=4 s 内工作,已知 P1、P2 的质量都为 m=1 kg,P 与 AC 间的 动摩擦因数为 μ=0.1,AB 段长 L=4 m,g 取 10 m/s2,P1、P2 和 P 均视为质点,P 与挡板的 碰撞为弹性碰撞。
(1)求 A 滑过 Q 点时的速度大小 v 和受到的弹力大小 F; (2)若碰后 AB 最终停止在第 k 个粗糙段上,求 k 的数值; (3)求碰后 AB 滑至第 n 个(n<k)光滑段上的速度 vn 与 n 的关系式.
物理动量守恒定律题20套(带答案)
考点:考查了动量守恒定律的应用 【名师点睛】要使两车不相撞,甲车以最小的水平速度将小球发射到乙车上的临界条件是 两车速度相同,以甲车、球与乙车为系统,由系统动量守恒列出等式,再以球与乙车为系 统,由系统动量守恒列出等式,联立求解
2.一质量为 的子弹以某一初速度水平射入置于光滑水平面上的木块 并留在其中, 与木块 用一根弹性良好的轻质弹簧连在一起,开始弹簧处于原长,如图所示.已知弹簧
代入数据解得:E 损=0.25J 答:①碰后 A 球的速度为 1.0m/s; ②碰撞过程中 A、B 系统损失的机械能为 0.25J. 【点评】小球碰撞过程中动量守恒、机械能不守恒,由动量守恒定律与能量守恒定律可以 正确解题,应用动量守恒定律解题时要注意正方向的选择.
9.如图所示,光滑平行金属导轨的水平部分处于竖直向下的 B=4T 的匀磁场中,两导轨间 距 L=0.5m,导轨足够长金属棒 a 和 b 的质量都为 m=1kg,电阻 Ra Rb 1 .b 棒静止于轨 道水平部分,现将 a 棒从 h=80cm 高处自静止沿弧形轨道下滑,通过 C 点进入轨道的水平 部分,已知两棒在运动过程中始终保持与导轨垂直,且两棒始终不相碰.求 a、b 两棒的最 终速度大小以及整个过程中 b 棒中产生的焦耳热(已知重力加速度 g 取 10m/s2)
根据题意: m1 : m2 2
有以上四式解得: v2 2 2gR
接下来男演员做平抛运动:由 4R 1 gt2 ,得 t 8R
2
g
因而: s v2t 8R ; 【点睛】
两演员一起从从 A 点摆到 B 点,只有重力做功,根据械能守恒定律求出最低点速度;女 演员在极短时间内将男演员沿水平方向推出,两演员系统动量守恒,由于女演员刚好能回
Q
高考物理动量守恒定律试题(有答案和解析)
高考物理动量守恒定律试题(有答案和解析)一、高考物理精讲专题动量守恒定律1.如图所示,小明站在静止在光滑水平面上的小车上用力向右推静止的木箱,木箱最终以速度v 向右匀速运动.已知木箱的质量为m ,人与车的总质量为2m ,木箱运动一段时间后与竖直墙壁发生无机械能损失的碰撞,反弹回来后被小明接住.求:(1)推出木箱后小明和小车一起运动的速度v 1的大小; (2)小明接住木箱后三者一起运动的速度v 2的大小. 【答案】①2v;②23v 【解析】试题分析:①取向左为正方向,由动量守恒定律有:0=2mv 1-mv 得12v v =②小明接木箱的过程中动量守恒,有mv+2mv 1=(m+2m )v 2 解得223v v =考点:动量守恒定律2.水平放置长为L=4.5m 的传送带顺时针转动,速度为v =3m/s ,质量为m 2=3kg 的小球被长为1l m =的轻质细线悬挂在O 点,球的左边缘恰于传送带右端B 对齐;质量为m 1=1kg 的物块自传送带上的左端A 点以初速度v 0=5m/s 的速度水平向右运动,运动至B 点与球m 2发生碰撞,在极短的时间内以碰撞前速率的12反弹,小球向右摆动一个小角度即被取走。
已知物块与传送带间的滑动摩擦因数为μ=0.1,取重力加速度210m/s g =。
求:(1)碰撞后瞬间,小球受到的拉力是多大?(2)物块在传送带上运动的整个过程中,与传送带间摩擦而产生的内能是多少? 【答案】(1)42N (2)13.5J 【解析】 【详解】解:设滑块m1与小球碰撞前一直做匀减速运动,根据动能定理:221111011=22m gL m v m v μ--解之可得:1=4m/s v 因为1v v <,说明假设合理滑块与小球碰撞,由动量守恒定律:21111221=+2m v m v m v - 解之得:2=2m/s v碰后,对小球,根据牛顿第二定律:2222m v F m g l-=小球受到的拉力:42N F =(2)设滑块与小球碰撞前的运动时间为1t ,则()01112L v v t =+ 解之得:11s t =在这过程中,传送带运行距离为:113S vt m == 滑块与传送带的相对路程为:11 1.5X L X m ∆=-=设滑块与小球碰撞后不能回到传送带左端,向左运动最大时间为2t 则根据动量定理:121112m gt m v μ⎛⎫-=-⋅ ⎪⎝⎭解之得:22s t =滑块向左运动最大位移:121122m x v t ⎛⎫=⋅⋅ ⎪⎝⎭=2m 因为m x L <,说明假设成立,即滑块最终从传送带的右端离开传送带 再考虑到滑块与小球碰后的速度112v <v , 说明滑块与小球碰后在传送带上的总时间为22t在滑块与传送带碰撞后的时间内,传送带与滑块间的相对路程22212X vt m ∆==因此,整个过程中,因摩擦而产生的内能是()112Q m g x x μ=∆+∆=13.5J3.运载火箭是人类进行太空探索的重要工具,一般采用多级发射的设计结构来提高其运载能力。
高考物理动量守恒定律试题(有答案和解析)
高考物理动量守恒定律试题(有答案和解析)一、高考物理精讲专题动量守恒定律1.如图所示,在倾角30°的斜面上放置一个凹撸B,B 与斜面间的动摩擦因数36μ=;槽内靠近右侧壁处有一小物块A(可视为质点),它到凹槽左侧壁的距离d =0.1m ,A 、B 的质量都为m=2kg ,B 与斜面间的最大静摩擦力可认为等于滑动摩摞力,不计A 、B 之间的摩擦,斜面足够长.现同时由静止释放A 、B,经过一段时间,A 与B 的侧壁发生碰撞,碰撞过程不计机械能损失,碰撞时间极短,g 取210/m s .求:(1)释放后物块A 和凹槽B 的加速度分别是多大?(2)物块A 与凹槽B 的左侧壁第一次碰撞后瞬间A 、B 的速度大小;(3)从初始位置到物块A 与凹糟B 的左侧壁发生第三次碰撞时B 的位移大小. 【答案】(1)(2)v An =(n-1)m∙s -1,v Bn ="n" m∙s -1(3)x n 总=0.2n 2m 【解析】 【分析】 【详解】(1)设物块A 的加速度为a 1,则有m A gsin θ=ma 1, 解得a 1=5m/s 2凹槽B 运动时受到的摩擦力f=μ×3mgcos θ=mg 方向沿斜面向上; 凹槽B 所受重力沿斜面的分力G 1=2mgsin θ=mg 方向沿斜面向下; 因为G 1=f ,则凹槽B 受力平衡,保持静止,凹槽B 的加速度为a 2=0 (2)设A 与B 的左壁第一次碰撞前的速度为v A0,根据运动公式:v 2A0=2a 1d 解得v A0=3m/s ;AB 发生弹性碰撞,设A 与B 第一次碰撞后瞬间A 的速度大小为v A1,B 的速度为v B1,则由动量守恒定律:0112A A B mv mv mv =+ ;由能量关系:2220111112222A AB mv mv mv =+⨯ 解得v A1=-1m/s(负号表示方向),v B1=2m/s2.一质量为的子弹以某一初速度水平射入置于光滑水平面上的木块并留在其中,与木块用一根弹性良好的轻质弹簧连在一起,开始弹簧处于原长,如图所示.已知弹簧被压缩瞬间的速度,木块、的质量均为.求:•子弹射入木块时的速度;‚弹簧被压缩到最短时弹簧的弹性势能.【答案】22()(2)Mm aM m M m++b【解析】试题分析:(1)普朗克为了对于当时经典物理无法解释的“紫外灾难”进行解释,第一次提出了能量量子化理论,A正确;爱因斯坦通过光电效应现象,提出了光子说,B正确;卢瑟福通过对粒子散射实验的研究,提出了原子的核式结构模型,故正确;贝克勒尔通过对天然放射性的研究,发现原子核有复杂的结构,但没有发现质子和中子,D错;德布罗意大胆提出假设,认为实物粒子也具有波动性,E错.(2)1以子弹与木块A组成的系统为研究对象,以子弹的初速度方向为正方向,由动量守恒定律得:解得:.2弹簧压缩最短时,两木块速度相等,以两木块与子弹组成的系统为研究对象,以木块的初速度方向为正方向,由动量守恒定律得:解得:由机械能守恒定律可知:.考点:本题考查了物理学史和动量守恒定律3.如图所示,在光滑的水平面上放置一个质量为2m的木板B,B的左端放置一个质量为m的物块A,已知A、B之间的动摩擦因数为μ,现有质量为m的小球以水平速度0υ飞来与A物块碰撞后立即粘住,在整个运动过程中物块A始终未滑离木板B,且物块A和小球均可视为质点(重力加速度g).求:①物块A相对B静止后的速度大小;②木板B至少多长.【答案】①0.25v0.②216v Lgμ=【解析】试题分析:(1)设小球和物体A碰撞后二者的速度为v1,三者相对静止后速度为v2,规定向右为正方向,根据动量守恒得,mv0=2mv1,① (2分)2mv1=4mv2② (2分)联立①②得,v2=0.25v0.(1分)(2)当A在木板B上滑动时,系统的动能转化为摩擦热,设木板B的长度为L,假设A刚好滑到B的右端时共速,则由能量守恒得,③ (2分)联立①②③得,L=考点:动量守恒,能量守恒.【名师点睛】小球与 A碰撞过程中动量守恒,三者组成的系统动量也守恒,结合动量守恒定律求出物块A相对B静止后的速度大小;对子弹和A共速后到三种共速的过程,运用能量守恒定律求出木板的至少长度.4.装甲车和战舰采用多层钢板比采用同样质量的单层钢板更能抵御穿甲弹的射击.通过对一下简化模型的计算可以粗略说明其原因.质量为2m、厚度为2d的钢板静止在水平光滑桌面上.质量为m的子弹以某一速度垂直射向该钢板,刚好能将钢板射穿.现把钢板分成厚度均为d、质量均为m的相同两块,间隔一段距离水平放置,如图所示.若子弹以相同的速度垂直射向第一块钢板,穿出后再射向第二块钢板,求子弹射入第二块钢板的深度.设子弹在钢板中受到的阻力为恒力,且两块钢板不会发生碰撞不计重力影响.【答案】【解析】设子弹初速度为v0,射入厚度为2d的钢板后,由动量守恒得:mv0=(2m+m)V(2分)此过程中动能损失为:ΔE损=f·2d=12mv20-12×3mV2(2分)解得ΔE=13mv20分成两块钢板后,设子弹穿过第一块钢板时两者的速度分别为v1和V1:mv1+mV1=mv0(2分)因为子弹在射穿第一块钢板的动能损失为ΔE损1=f·d=mv2(1分),由能量守恒得:1 2mv21+12mV21=12mv20-ΔE损1(2分)且考虑到v1必须大于V1,解得:v1=13(26v0设子弹射入第二块钢板并留在其中后两者的共同速度为V2,由动量守恒得:2mV 2=mv 1(1分) 损失的动能为:ΔE′=12mv 21-12×2mV 22(2分) 联立解得:ΔE′=13(1)22+×mv 2因为ΔE′=f·x (1分), 可解得射入第二钢板的深度x 为:(2分)子弹打木块系统能量损失完全转化为了热量,相互作用力乘以相对位移为产生的热量,以系统为研究对象由能量守恒列式求解5.(1)恒星向外辐射的能量来自于其内部发生的各种热核反应,当温度达到108K 时,可以发生“氦燃烧”。
动量守恒定律大题专练(含答案)
动量守恒定律大题专练(含答案)1.在图中,地面被竖直线MN分隔成两部分。
M点左侧地面粗糙,动摩擦因数为μ=0.5,右侧光滑。
MN右侧空间有一范围足够大的匀强电场。
在O点用长为R-4=5m的轻质绝缘细绳,拴一个质量为mA=0.04kg,带电量为q=+2×10的小球A,在竖直平面内以v=10m/s的速度做顺时针匀速圆周运动,运动到最低点时与地面刚好不接触。
处于原长的弹簧左端连在墙上,右端与不带电的小球B接触但不粘连,B球的质量为mB=0.02kg,此时B球刚好位于M点。
现用水平向左的推力将B球缓慢推至P点(弹簧仍在弹性限度内),MP之间的距离为L=10cm,推力所做的功是W=0.27J,当撤去推力后,B球沿地面右滑恰好能和A球在最低点处发生正碰,并瞬间成为一个整体C(A、3B、C均可视为质点),碰后瞬间立即把匀强电场的场强大小变为E=6×10N/C,电场方向不变。
(取g=10m/s)求:1)A、B两球在碰前匀强电场的大小和方向。
2)碰撞后整体C的速度。
3)整体C运动到最高点时绳的拉力大小。
2.在图中,EF为水平地面,O点左侧是粗糙的、右侧是光滑的。
一轻质弹簧右端与墙壁固定,左端与静止在O点质量为m的小物块A连结,弹簧处于原长状态。
质量为m的物块B在大小为F的水平恒力的作用下由C处从静止开始向左运动,已知物块B与地面EO段间的滑动摩擦力大小为F,物块B运动到O点与物块A相碰并一起向右运动(设碰撞时间极短),运动到D点时撤去外力F。
已知CO=4S,OD=S。
求撤去外力后:1)弹簧的最大弹性势能。
2)物块B最终离O点的距离。
3.在图中,矩形盒B的质量为M,底部长度为L,放在水平面上,盒内有一质量为m的物体A,A与B、B与地面的动摩擦因数均为μ,开始时二者均静止,A在B的左端。
现瞬间使物体A获得一向右的水平初速度v,以后物体A与盒B的左右壁碰撞时,B始终向右运动。
当A与B的左壁最后一次碰撞后,B立刻停止运动,A继续向右滑行s(s<L)后也停止运动。
高中物理练习题动量守恒与碰撞
高中物理练习题动量守恒与碰撞高中物理练习题:动量守恒与碰撞动量守恒与碰撞是高中物理课程中非常重要的内容之一。
在力学领域,动量守恒定律是一个基本原理,描述了在没有外力作用下,一个系统的总动量保持不变。
本文将通过一些练习题来帮助读者更好地理解动量守恒和碰撞的概念。
1. 弹簧振子的碰撞假设有两个相同质量的弹簧振子,如图所示。
一个振子从左侧以速度v1向右运动,另一个振子从右侧以速度v2向左运动。
两个振子在中间发生完全弹性碰撞后,各自的速度如何?(插入图示)解析:根据动量守恒定律,两个振子的总动量在碰撞前后保持不变。
由于两个振子质量相同,可以得到以下方程:m * v1 + m * v2 = m * v1' + m * v2'由于碰撞是完全弹性碰撞,动能守恒定律也适用。
可得以下方程:1/2 * m * v1^2 + 1/2 * m * v2^2 = 1/2 * m * v1'^2 + 1/2 * m * v2'^2通过解这组方程,可以求出两个振子碰撞后的速度v1'和v2'。
2. 粒子的非完全弹性碰撞现在考虑另一种情况,两个质量不同的粒子发生非完全弹性碰撞。
一个质量为m1,速度为v1的粒子与另一个质量为m2,速度为v2的粒子碰撞后,它们的速度如何?解析:在非完全弹性碰撞中,碰撞过程中会有能量损失。
因此,动能守恒定律不再适用,而动量仍然守恒。
可以得到以下方程:m1 * v1 + m2 * v2 = m1 * v1' + m2 * v2'其中v1'和v2'是碰撞后粒子的速度。
由于能量损失,我们无法通过简单的方程求解得到v1'和v2'。
通常情况下,我们需要通过实验或者更复杂的模型来计算非完全弹性碰撞的结果。
3. 碰撞中的力学能量在一维碰撞中,有时候我们需要计算碰撞中的力学能量。
例如,两个物体在碰撞前有不同的高度,我们想要知道碰撞后是否有机械能转化。
高考物理《动量守恒定律》真题练习含答案
高考物理《动量守恒定律》真题练习含答案1.[2024·全国甲卷](多选)蹦床运动中,体重为60 kg的运动员在t=0时刚好落到蹦床上,对蹦床作用力大小F与时间t的关系如图所示.假设运动过程中运动员身体始终保持竖直,在其不与蹦床接触时蹦床水平.忽略空气阻力,重力加速度大小取10 m/s2.下列说法正确的是()A.t=0.15 s时,运动员的重力势能最大B.t=0.30 s时,运动员的速度大小为10 m/sC.t=1.00 s时,运动员恰好运动到最大高度处D.运动员每次与蹦床接触到离开过程中对蹦床的平均作用力大小为4 600 N答案:BD解析:根据牛顿第三定律结合题图可知,t=0.15 s时,蹦床对运动员的弹力最大,蹦床的形变量最大,此时运动员处于最低点,运动员的重力势能最小,故A错误;根据题图可知运动员从t=0.30 s离开蹦床到t=2.3 s再次落到蹦床上经历的时间为2 s,根据竖直上抛运动的对称性可知,运动员上升时间为1 s,则在t=1.3 s时,运动员恰好运动到最大高度处,t=0.30 s时运动员的速度大小v=10×1 m/s=10 m/s,故B正确,C错误;同理可知运动员落到蹦床时的速度大小为10 m/s,以竖直向上为正方向,根据动量定理F·Δt-mg·Δt=mv-(-mv),其中Δt=0.3 s,代入数据可得F=4 600 N,根据牛顿第三定律可知运动员每次与蹦床接触到离开过程中对蹦床的平均作用力大小为4 600 N,故D正确.故选BD.2.[2022·山东卷]我国多次成功使用“冷发射”技术发射长征十一号系列运载火箭.如图所示,发射仓内的高压气体先将火箭竖直向上推出,火箭速度接近零时再点火飞向太空.从火箭开始运动到点火的过程中()A.火箭的加速度为零时,动能最大B.高压气体释放的能量全部转化为火箭的动能C.高压气体对火箭推力的冲量等于火箭动量的增加量D.高压气体的推力和空气阻力对火箭做功之和等于火箭动能的增加量答案:A解析:从火箭开始运动到点火的过程中,火箭先加速运动后减速运动,当加速度为零时,动能最大,A项正确;高压气体释放的能量转化为火箭的动能和重力势能及火箭与空气间因摩擦产生的热量,B项错误;根据动量定理可得高压气体对火箭的推力F、火箭自身的重力mg和空气阻力f的冲量矢量和等于火箭动量的变化量,C项错误;根据动能定理可得高压气体对火箭的推力F、火箭自身的重力mg和空气阻力f对火箭做的功之和等于火箭动能的变化量,D项错误.3.[2022·湖南卷]1932年,查德威克用未知射线轰击氢核,发现这种射线是由质量与质子大致相等的中性粒子(即中子)组成.如图,中子以速度v0分别碰撞静止的氢核和氮核,碰撞后氢核和氮核的速度分别为v1和v2.设碰撞为弹性正碰,不考虑相对论效应,下列说法正确的是()A.碰撞后氮核的动量比氢核的小B.碰撞后氮核的动能比氢核的小C.v2大于v1D.v2大于v0答案:B解析:设中子质量为m0,被碰粒子质量为m,碰后中子速度为v′0,被碰粒子速度为v,二者发生弹性正碰,由动量守恒定律和能量守恒定律有m 0v 0=m 0v ′0+m v ,12 m 0v 20 =12m 0v ′20 +12 m v 2,解得v ′0=m 0-m m 0+m v 0,v =2m 0m 0+mv 0,因为当被碰粒子分别为氢核(m 0)和氮核(14m 0)时,有v 1=v 0,v 2=215 v 0,故C 、D 项错误;碰撞后氮核的动量为p 氮=14m 0·v 2=2815m 0v 0,氢核的动量为p 氢=m 0·v 1=m 0v 0,p 氮>p 氢,故A 错误;碰撞后氮核的动能为E k 氮=12·14m 0v 22 =28225 m 0v 20 ,氢核的动能为E k 氢=12 ·m 0·v 21 =12m 0v 20 ,E k 氮<E k 氢,故B 正确. 4.[2021·全国乙卷]如图,光滑水平地面上有一小车,一轻弹簧的一端与车厢的挡板相连,另一端与滑块相连,滑块与车厢的水平底板间有摩擦.用力向右推动车厢使弹簧压缩,撤去推力时滑块在车厢底板上有相对滑动.在地面参考系(可视为惯性系)中,从撤去推力开始,小车、弹簧和滑块组成的系统( )A .动量守恒,机械能守恒B .动量守恒,机械能不守恒C .动量不守恒,机械能守恒D .动量不守恒,机械能不守恒答案:B解析:撤去推力后,小车、弹簧和滑块组成的系统所受合外力为零,满足系统动量守恒的条件,故系统动量守恒;由于撤去推力时滑块在车厢底板上有相对滑动,存在摩擦力做功的情况,故系统机械能不守恒,所以选项B 正确.5.[2023·新课标卷](多选)使甲、乙两条形磁铁隔开一段距离,静止于水平桌面上,甲的N 极正对着乙的S 极,甲的质量大于乙的质量,两者与桌面之间的动摩擦因数相等.现同时释放甲和乙,在它们相互接近过程中的任一时刻( )A .甲的速度大小比乙的大B .甲的动量大小比乙的小C .甲的动量大小与乙的相等D .甲和乙的动量之和不为零答案:BD解析:对甲、乙两条形磁铁分别做受力分析,如图所示对于整个系统,由于μm 甲g >μm 乙g ,合力方向向左,合冲量方向向左,所以合动量方向向左,甲的动量大小比乙的小,m 甲v 甲<m 乙v 乙,又m 甲>m 乙,故v 甲<v 乙,B 、D 正确,A 、C 错误.故选BD.6.[2021·全国乙卷](多选)水平桌面上,一质量为m 的物体在水平恒力F 拉动下从静止开始运动.物体通过的路程等于s 0时,速度的大小为v 0,此时撤去F ,物体继续滑行2s 0的路程后停止运动.重力加速度大小为g .则( )A .在此过程中F 所做的功为12m v 20 B .在此过程中F 的冲量大小等于32m v 0 C .物体与桌面间的动摩擦因数等于v 20 4s 0gD .F 的大小等于物体所受滑动摩擦力大小的2倍答案:BC解析:设物体与桌面间的动摩擦因数为μ,根据功的定义,可知在此过程中,F 做的功为W F =Fs 0=12m v 20 +μmgs 0,选项A 错误;物体通过路程s 0时,速度大小为v 0,撤去F 后,由牛顿第二定律有μmg =ma 2,根据匀变速直线运动规律有v 20 =2a 2·2s 0,联立解得μ=v 20 4s 0g ,选项C 正确;水平桌面上质量为m 的物体在恒力F 作用下从静止开始做匀加速直线运动,有F -μmg =ma 1,又v 20 =2a 1s 0,可得a 1=2a 2,可得F =3μmg ,即F 的大小等于物体所受滑动摩擦力大小的3倍,选项D 错误;对F 作用下物体运动的过程,由动量定理有Ft -μmgt=m v 0,联立解得F 的冲量大小为I F =Ft =32m v 0,选项B 正确.。
高中物理动量守恒定律真题汇编(含答案)
高中物理动量守恒定律真题汇编(含答案)一、高考物理精讲专题动量守恒定律1.如下图,质量为 M=2kg 的小车静止在光滑的水平地面上,其AB 局部为半径R=0.3m一一1 一的光滑一圆孤,BC 局部水平粗糙,BC 长为L=0.6m .一可看做质点的小物块从A 点由静止4(1)小物块与小车 BC 局部间的动摩擦因数;(2)小物块从A 滑到C 的过程中,小车获得的最大速度.【答案】(1) 0.5 (2) 1m/s 【解析】解:(1)小物块滑到C 点的过程中,系统水平方向动量守恒那么有: (M m)v 0所以滑到C 点时小物块与小车速度都为 0由能量守恒得:mgR mgLR解得: R 0.5L(2)小物块滑到B 位置时速度最大,设为 必,此时小车获得的速度也最大,设为V 2由动量守恒得:mv 1 Mv 2121 2 由能重寸恒得:mgR — mv 1— Mv 2 22联立解得:v 2 1m / s2.如下图,一个带圆弧轨道的平台固定在水平地面上,光滑圆弧 MN 的半径为R=3.2m,水平局部NP 长L=3.5m,物体B 静止在足够长的平板小车 C 上,B 与小车的接触 面光滑,小车的左端紧贴平台的右端.从 M 点由静止释放的物体 A 滑至轨道最右端P 点后 再滑上小车,物体 A 滑上小车后假设与物体 B 相碰必粘在一起,它们间无竖直作用力. A 与释放,滑到C 点刚好相对小车停止.小物块质量 m=1kg,取 g=10m/s 2.求:平台水平轨道和小车上外表的动摩擦因数都为0.4,且最大静摩擦力与滑动摩擦力大小相取 g=10m/s 2,求等.物体A 、B 和小车C 的质量均为1kg,K(1)物体A 进入N 点前瞬间对轨道的压力大小?考点:牛顿第二定律;动量守恒定律;能量守恒定律(2)物体A 在NP 上运动的时间? (3)物体A 最终离小车左端的距离为多少?【答案】(1)物体A 进入N 点前瞬间对轨道的压力大小为30N ;(2)物体A 在NP 上运动的时间为 0.5s (3)物体A 最终离小车左端的距离为33m 16【解析】试题分析:(1)物体A 由M 到N 过程中,由动能定理得: 在N 点,由牛顿定律得 F N -m A g=m A 联立解得F N =3m A g=30N由牛顿第三定律得,物体 A 进入轨道前瞬间对轨道压力大小为:(2)物体A 在平台上运动过程中2m A gR=m A v NF N ' =3A g=30N(imAg=mAa 2 L=v N t-at 代入数据解得t=0.5s t=3.5s (不合题意,舍去)(3)物体A 刚滑上小车时速度 v 〔= v N -at=6m/s从物体A 滑上小车到相对小车静止过程中,小车、物体 A 组成系统动量守恒,而物体 B 保持静止(m A + m C )v 2= m A v 1小车最终速度 v 2=3m/s此过程中A 相对小车的位移为 L 1,那么,1 2 129mgL 1 — mv 1 - 2mv 2 解得:L [=1m2 24物体A 与小车匀速运动直到 A 碰到物体B, A, B 相互作用的过程中动量守恒:(m A + m B )v 3= m A V 2此后A, B 组成的系统与小车发生相互作用,动量守恒,且到达共同速度V 4(m A + m B )v 3+m C v 2=" (m" A +m B +m C ) v 4此过程中A 相对小车的位移大小为L 2,那么mgL 2 1mv 22 1 2 22mv 3213mv 42解得:23 1_2= — m16物体A 最终离小车左端的距离为,33 x=L i -L 2=— m163.光滑水平轨道上有三个木块A 、B 、 C,质量分别为 m A 3m 、m Bmb m ,开始时B 、C 均静止,A 以初速度V o 向右运动, 起,此后A 与B 间的距离保持不变.求A 与B 相撞后分开,B 又与C 发生碰撞并粘在一 B 与C碰撞前B 的速度大小.239 _94PU 经过 次a 盘变和 次3盘变,取后变成铅的同位 素.(填入铅的三种同位素 206 Pb 、282Pb 、282Pb 中的一种)(2)某同学利用如下图的装置验证动量守恒定律.图中两摆摆长相同,悬挂于同一高度,A 、B 两摆球均很小,质量之比为 1 :2.当两摆均处于自由静止状态时,其侧面刚好 接触.向右上方拉动 B 球使其摆线伸直并与竖直方向成 45.角,然后将其由静止释放.结果观察到两摆球粘在一起摆动,且最大摆角成 30..假设本实验允许的最大误差为土猊,此 实验是否成功地验证了动量守恒定律? 【解析】【详解】(1)设发生了 x 次“衰变和y 次3衰变,【解析】 【分析】设A 与B 碰撞后,A 的速度为V A , B 与C 碰撞前B 的速度为%, B 与C 碰撞后粘在一起的 速度为V,由动量守恒定律得: 对A 、B 木块:m A V o对B 、C 木块:M B由A 与B 间的距离保持不变可知 v A v 联立代入数据得:m A V A m B V Bmb4 .[物理出彳3—5] (1)天然放射性元素207【答案】(1) 8, 4, 82Pb ; (2)根据质量数和电荷数守恒可知,2x-y+82=94, 239=207+4x;由数学知识可知,x=8, y=4.假设是铅的同位素206,或208,不满足两数守恒, 因此最后变成铅的同位素是282Pb(2)设摆球A 、B 的质量分别为 m A 、m B,摆长为l, B 球的初始高度为h i,碰撞前B 球 的速度为V B .在不考虑摆线质量的情况下,根据题意及机械能守恒定律得h 1 l(1 cos45)①1 22m B V B m B ghi ②设碰撞前、后两摆球的总动量的大小分别为P i 、P 2.有 P i = m B V B ③所以,此实验在规定的范围内验证了动量守恒定律.5.氢是一种放射性气体,主要来源于不合格的水泥、墙砖、石材等建筑材料.呼吸时氨气 会随气体进入肺脏,氢衰变时放出射线,这种射线像小 炸弹〞一样轰击肺细胞,使肺细胞受损,从而引发肺癌、白血病等.假设有一静止的氢核222Rn 发生 衰变,放出一个速度为V .、质量为m 的 粒子和一个质量为 M 的反冲核针288 Po 此过程动量守恒,假设氢核发 生衰变时,释放的能量全部转化为粒子和针核的动能.(1)写衰变方程;联立①②③式得同理可得联立④⑤式得代人条件得由此可以推出 P m B J 2gl (1 cos45 ) ④F 2 (m A m B R2gl(1 cos30 )⑤P 2 m A m B 1 cos30 - - -------- J d P 1 m B . 1 cos452P2… —1.03⑦P(2)求出反冲核针的速度;(计算结果用题中字母表示相反;(3) m 【解析】 【分析】 【详解】(1)由质量数和核电荷数守恒定律可知,核反响方程式为222 218 4..86Rn 84 Po+2He (2)核反响过程动量守恒,以 a 离子的速度方向为正方向 由动量守恒定律得mv 0 Mv 0解得vmv 0■,负号表示方向与 a 离子速度方向相反 M(3)衰变过程产生的能量21 2 1 2M m mv oE -mv 2 - Mv 2-2 22M由爱因斯坦质能方程得2E mc解得M m mv 2m ------------ 5——2Mc 26.如下图,一对杂技演员(都视为质点)乘秋千(秋千绳处于水平位置)从A 点由静止出发绕.点下摆,当摆到最低点 B 时,女演员在极短时间内将男演员沿水平方向推出,然后自己刚好能回到高处 A.求男演员落地点 C 与O 点的水平距离s.男演员质量 m 1 和女演员质量 m 2之比m 1 :m 2=2,秋千的质量不计,秋千的摆长为R, C 点比.点低5R.【答案】8R 【解析】【分析】 【详解】两演员一起从从 A 点摆到B 点,只有重力做功,机械能守恒定律,设总质量为 m,那么12(3)求出这一衰变过程中的质量亏损.(计算结果用题中字母表示)2222184 ..【答木】(1) 86 Rn 84 Po 2 He ; (2) vmv o负号表示方向与“离子速度方向2M m mv 0 2Mc 2mgR -mv1 2女演员刚好能回到高处,机械能依然守恒:m2gR -m2v12女演员在极短时间内将男演员沿水平方向推出,两演员系统动量守恒:(m l m2) v m2v l m1v2③根据题意:m1 :m2 2有以上四式解得:v22 2gR1c 8R接下来男演员做平抛运动:由4R -gt2,得t —2 . g因而:s v2t 8R;【点睛】两演员一起从从A点摆到B点,只有重力做功,根据机械能守恒定律求出最低点速度;女演员在极短时间内将男演员沿水平方向推出,两演员系统动量守恒,由于女演员刚好能回到高处,可先根据机械能守恒定律求出女演员的返回速度,再根据动量守恒定律求出男演员平抛的初速度,然后根据平抛运动的知识求解男演员的水平分位移;此题关键分析求出两个演员的运动情况,然后对各个过程分别运用动量守恒定律和机械能守恒定律列式求解.7.光滑水平面上质量为1kg的小球A,以2.0m/s的速度与同向运动的速度为 1.0m/s、质量为2kg的大小相同的小球B发生正碰,碰撞后小球B以1.5m/s的速度运动.求:I~~J S I(1)碰后A球的速度大小;(2)碰撞过程中A、B系统损失的机械能.【答案】V A 1.0m/s, E损0.25J【解析】试题分析:(1)碰撞过程中动量守恒,由动量守恒定律可以求出小球速度.(2)由能量守恒定律可以求出损失的机械能.解:(1)碰撞过程,以A的初速度方向为正,由动量守恒定律得:m A V A+m B V B=m A V A+m B v B代入数据解:v A=1.0m/s②碰撞过程中A、B系统损失的机械能量为:_1 2,1 2 _ 1 y 2 _ 1 ,2KE损一]山正且? /8 ①山尸A/㈤胪B代入数据解得:E 损=0.25J 答:①碰后A 球的速度为1.0m/s ;②碰撞过程中A 、B 系统损失的机械能为 0.25J.【点评】小球碰撞过程中动量守恒、机械能不守恒,由动量守恒定律与能量守恒定律可以 正确解题,应用动量守恒定律解题时要注意正方向的选择.8 .如下图,光滑的水平地面上有一木板,其左端放有一重物,右方有一竖直的墙.重物质量为木板质量的2倍,重物与木板间的动摩擦因数为科使木板与重物以共同的速度 v o 向右运动,某时刻木板与墙发生碰撞,碰撞时间极短,碰撞后木板以原速率反弹长,重物始终在木板上.重力加速度为g.求木板从第一次与墙碰撞到再次碰撞所经历的时间4V 0 3~g解:木板第一次与墙碰撞后,向左匀减速直线运动,直到静止,再反向向右匀加速直线运动直到与重物有共同速度,再往后是匀速直线运动,直到第二次 撞墙. 木板第一次与墙碰撞后,重物与木板相互作用直到有共同速度V,动量守恒,有:2mv o - mv o = (2m+m) v, 解得: v=^-木板在第一个过程中,用动量定理,有: mv - m ( - v 0)=科2mgt…〜一 一 1? 1 2八用动能TE 理,有: -mv --IDV O =-科 2mgs木板在第二个过程中,匀速直线运动,有: s=vt 2,,一,…~、2v n 2v n I 4V n木板从第一次与墙碰撞到再次碰撞所经历的时间t=t l +t 2=—-+——-=一-3|Xg_ ……入……工……L,[W答:木板从第一次与墙碰撞到再次碰撞所经历的时间为34M【点评】此题是一道考查动量守恒和匀变速直线运动规律的过程复杂的好题,正确分析出 运动规律是关键.9 .如下图,带有 1光滑圆弧的小车 A 的半径为R,静止在光滑水平面上.滑块C 置于4木板B 的右端,A 、B 、C 的质量均为 m, A 、B 底面厚度相同.现 B 、C 以相同的速度向右 匀速运动,B 与A 碰后即粘连在一起,C 恰好能沿A 的圆弧轨道滑到与圆心等高.设木板足够处.那么:(重力加速度为 g)(1)B 、C 一起匀速运动的速度为多少?(2)滑块C 返回到A 的底端时AB 整体和C 的速度为多少?【解析】此题考查动量守恒与机械能相结合的问题.(1)设B 、C 的初速度为vo, AB 相碰过程中动量守恒,设碰后 AB 总体速度u,由12 1 2 12-mv 0 - 2mu - 3mu mgR 2 2 2解得 v o 2.3gR(2)C 从底端滑到顶端再从顶端滑到底部的过程中,满足水平方向动量守恒、机械能守恒,有 mv 0 2mu mv 1 2mv 210.如下图,在光滑的水平面上,质量为 4m 、长为L 的木板右端紧靠竖直墙壁,与墙壁 不粘连.质量为 m 的小滑块(可视为质点)以水平速度 v 0滑上木板左端,滑到木板右端时 速度恰好为零.现小滑块以水平速度 v 滑上木板左端,滑到木板右端时与竖直墙壁发生弹性碰撞,小滑块弹回后,刚好能够滑到木板左端而不从木板上落下,求 一的值. 0v 1【答案]一二三 %- 【解析】1 2试题分析:小滑块以水平速度 v 0右滑时,有:fL =0- - mv 2 (2分)2mv o 2mu ,解得 uV2C 滑到最高点的过程mv o 2mu 3mu1 2—mv 0 2-2mu 21mv ; - 2mv 2 2 22 解得:v 1 mgR, 35,3gR31 o 1 o小滑块以速度v 滑上木板到运动至碰墙时速度为vi,那么有 fL = — mv 1-—mv (2分)2 2滑块与墙碰后至向左运动到木板左端,此时滑块、木板的共同速度为 丫2,那么有 mv i =(m 4m)v 2(2 分)1 2 1 2由总能重寸恒可得:fL= —mv 1 -- (m 4m)v 2 (2分)2 2 v 3上述四式联立,解得 一一(1分)v o 2考点:动能定理,动量定理,能量守恒定律.11.如下图,一质量为 M 的平板车B 放在光滑水平面上,在其右端放一质量为 m 的小 木块A, m 〈M,A 、B 间粗糙,现给 A 和B 以大小相等、方向相反的初速度 v0,使A 开始向 左运动,B 开始向右运动,最后 A 不会1t 离B,求:(1) A 、B 最后的速度大小和方向;(2)从地面上看,小木块向左运动到离出发点最远处时,平板车的速度大小和方向.…… M m2Mm 2【答案】(1) ------------------------- v 0 (2) -------------- v 0M m 2 Mg【解析】试题分析:(1)由A 、B 系统动量守恒定律得:Mv0 —mv0= (M +m ) v ①一 M -w所以v=- ---------- v0 方向向右(2) A 向左运动速度减为零时,到达最远处,设此时速度为 Mv 0 mv 0Mv0 — mv0="Mv' v -------------------- 方 向向右M考点:动量守恒定律;点评:此题主要考查了动量守恒定律得直接应用,难度适中.12.如下图,粗细均匀的圆木棒 A 下端离地面高 H,上端套着一个细环 B. A 和B 的质 量均为m, A 和B间的滑动摩擦力为f,且fvmg.用手限制A 和B 使它们从静止开始自由 下落.当A 与地面碰撞后,A 以碰撞地面时的速度大小竖直向上运动,与地面发生碰撞时 间极短,空气阻力不计,运动过程中 A 始终呈竖直状态.求:假设 A 再次着地前B 不脱离A, A 的长度应满足什么条件?v'那么由动量守恒定律得:r~丘7 --------------(mg + D【解析】试题分析:设木棒着地时的速度为l v°,由于木棒与环一起自由下落,那么也=\Z两木棒弹起竖直上升过程中,由牛顿第二定律有:对木棒:『+ mg ai = -解得:山,方向竖直向下对环:・_ mg-/解得上m方向竖直向下可见环在木棒上升及下降的全过程中一直处于加速运动状态,所以木棒从向上弹起到再次着地的过程中木棒与环的加速度均保持不变2 vo木棒在空中运动的时间为在这段时间内,环运动的位移为--■ . ■要使环不碰地面,那么要求木棒长度不小于x,即,兰冈L>...................解得:+考点:考查了牛顿第二定律与运动学公式的综合应用【名师点睛】连接牛顿第二定律与运动学公式的纽带就是加速度,所以在做这一类问题时,特别又是多过程问题时,先弄清楚每个过程中的运动性质,根据牛顿第二定律求加速度然后根据加速度用运动学公式解题或者根据运动学公式求解加速度然后根据加速度利用牛顿第二定律求解力。
高考物理动量守恒定律题20套(带答案)及解析
高考物理动量守恒定律题20套(带答案)及解析一、高考物理精讲专题动量守恒定律1.如图所示,质量分别为m1和m2的两个小球在光滑水平面上分别以速度v1、v2同向运动,并发生对心碰撞,碰后m2被右侧墙壁原速弹回,又与m1碰撞,再一次碰撞后两球都静止.求第一次碰后m1球速度的大小.【答案】【解析】设两个小球第一次碰后m 1和m2速度的大小分别为和,由动量守恒定律得:(4分)两个小球再一次碰撞,(4分)得:(4分)本题考查碰撞过程中动量守恒的应用,设小球碰撞后的速度,找到初末状态根据动量守恒的公式列式可得2.如图所示,光滑水平直导轨上有三个质量均为m的物块A、B、C,物块B、C静止,物块B的左侧固定一轻弹簧(弹簧左侧的挡板质量不计);让物块A以速度v0朝B运动,压缩弹簧;当A、B速度相等时,B与C恰好相碰并粘接在一起,然后继续运动.假设B和C 碰撞过程时间极短.那么从A开始压缩弹簧直至与弹簧分离的过程中,求.(1)A、B第一次速度相同时的速度大小;(2)A、B第二次速度相同时的速度大小;(3)弹簧被压缩到最短时的弹性势能大小【答案】(1)v0(2)v0(3)【解析】试题分析:(1)对A、B接触的过程中,当第一次速度相同时,由动量守恒定律得,mv0=2mv1,解得v1=v0(2)设AB第二次速度相同时的速度大小v2,对ABC系统,根据动量守恒定律:mv0=3mv2解得v2=v0(3)B 与C 接触的瞬间,B 、C 组成的系统动量守恒,有:解得v 3=v 0 系统损失的机械能为当A 、B 、C 速度相同时,弹簧的弹性势能最大.此时v 2=v 0 根据能量守恒定律得,弹簧的最大弹性势能.考点:动量守恒定律及能量守恒定律【名师点睛】本题综合考查了动量守恒定律和能量守恒定律,综合性较强,关键合理地选择研究的系统,运用动量守恒进行求解。
3.如图所示,一辆质量M=3 kg 的小车A 静止在光滑的水平面上,小车上有一质量m=l kg 的光滑小球B ,将一轻质弹簧压缩并锁定,此时弹簧的弹性势能为E p =6J ,小球与小车右壁距离为L=0.4m ,解除锁定,小球脱离弹簧后与小车右壁的油灰阻挡层碰撞并被粘住,求:①小球脱离弹簧时的速度大小;②在整个过程中,小车移动的距离。
2020高考物理专题10 碰撞与动量守恒定律(高考押题)(解析版)
高考押题专练1.如图所示,两木块A 、B 用轻质弹簧连在一起,置于光滑的水平面上.一颗子弹水平射入木块A ,并留在其中.在子弹打中木块A 及弹簧被压缩的整个过程中,对子弹、两木块和弹簧组成的系统,下列说法中正确的是( )A .动量守恒、机械能守恒B .动量守恒、机械能不守恒C .动量不守恒、机械能守恒D .动量、机械能都不守恒 【答案】B【解析】子弹击中木块A 及弹簧被压缩的整个过程,系统不受外力作用,外力冲量为0,系统动量守恒.但是子弹击中木块A 过程,有摩擦做功,部分机械能转化为内能,所以机械能不守恒,B 正确.2.如果一个系统不受外力,或者所受外力的矢量和为零,这个系统的总动量保持不变,这就是动量守恒定律.若一个系统动量守恒时,则( )A .此系统内每个物体所受的合力一定都为零B .此系统内每个物体的动量大小不可能都增加C .此系统的机械能一定守恒D .此系统的机械能可能增加 【答案】D【解析】若一个系统动量守恒,则整个系统所受的合力为零,但是此系统内每个物体所受的合力不一定都为零,A 错误.此系统内每个物体的动量大小可能会都增加,但是方向变化,总动量不变这是有可能的,B 错误.因系统合外力为零,但是除重力以外的其他力做功不一定为零,故机械能不一定守恒,系统的机械能可能增加,也可能减小,C 错误,D 正确.3.在光滑水平面上,质量为m 的小球A 正以速度v 0匀速运动.某时刻小球A 与质量为3m 的静止小球B 发生正碰,两球相碰后,A 球的动能恰好变为原来的14.则碰后B 球的速度大小是( )A.v 02B.v 06C.v 02或v 06 D .无法确定 【答案】A【解析】两球相碰后A 球的速度大小变为原来的12,相碰过程中满足动量守恒,若碰后A 速度方向不变,则mv 0=12mv 0+3mv 1,可得B 球的速度v 1=v 06,而B 在前,A 在后,碰后A 球的速度大于B 球的速度,不符合实际情况,因此A 球一定反向运动,即mv 0=-12mv 0+3mv 1,可得v 1=v 02,A 正确,B 、C 、D 错误.4. A 、B 两物体在光滑水平面上沿同一直线运动,如图表示发生碰撞前后的v -t 图线,由图线可以判断( )A .A 、B 的质量比为3∶2 B .A 、B 作用前后总动量守恒C .A 、B 作用前后总动量不守恒D .A 、B 作用前后总动能不变 【答案】ABD【解析】设A 的质量为m 1,B 的质量为m 2,碰撞前后两物体组成的系统所受合外力为零,系统动量守恒,从图象上可得碰撞前后两者的速度,故有m 1×6+m 2×1=m 1×2+m 2×7,解得 m 1∶m 2=3∶2,A 、B 正确,C 错误.碰撞前系统的总动能E k1=12m 1×62+12m 2×12=553m 1,碰撞后总动能为E k2=12m 1×22+12m 2×72=553m 1=E k1,动能不变,D 正确.5.在光滑水平面上动能为E 0、动量大小为p 的小钢球1与静止小钢球2发生碰撞,碰撞前后球1的运动方向相反,将碰撞后球1的动能和动量大小分别记为E 1、p 1,球2的动能和动量大小分别记为E 2、p 2,则必有( )A .E 1<E 0B .p 2>p 0C .E 2>E 0D .p 1>p 0 【答案】AB【解析】因为碰撞前后动能不增加,故有E 1<E 0,E 2<E 0,p 1<p 0,A 正确,C 、D 错误.根据动量守恒定律得p 0=p 2-p 1,得到p 2=p 0+p 1,可见,p 2>p 0,B 正确.6.矩形滑块由不同材料的上、下两层粘合在一起组成,将其放在光滑的水平面上,质量为m 的子弹以速度v 水平射向滑块.若射击下层,子弹刚好不射出;若射击上层,则子弹刚好能射穿一半厚度,如图所示.则上述两种情况相比较( )A .子弹的末速度大小相等B .系统产生的热量一样多C .子弹对滑块做的功不相同D .子弹和滑块间的水平作用力一样大 【答案】AB【解析】根据动量守恒,两次最终子弹与滑块的速度相等,A 正确.根据能量守恒可知,初状态子弹的动能相同,末状态两滑块与子弹的动能也相同,因此损失的动能转化成的热量相等,B 正确.子弹对滑块做的功等于滑块末状态的动能,两次相等,因此做功相等,C 错误.产生的热量Q =f ×Δs ,由于产生的热量相等,而相对位移Δs 不同,因此子弹和滑块间的水平作用力大小不同,D 错误.7.如图甲所示,一物块在t =0时刻,以初速度v 0从足够长的粗糙斜面底端向上滑行,物块速度随时间变化的图象如图乙所示,t 0时刻物块到达最高点,3t 0时刻物块又返回底端.由此可以确定( )A .物块返回底端时的速度B .物块所受摩擦力大小C .斜面倾角θD .3t 0时间内物块克服摩擦力所做的功 【答案】AC【解析】上滑过程中做初速度为v 0的匀减速直线运动,下滑过程中做初速度为零、末速度为v 的匀加速直线运动,上滑和下滑的位移大小相等,所以有v 02t 0=v 2·2t 0,解得v =v 02,A 正确.上滑过程中有-(mg sin θ+μmg cos θ)·t 0=0-mv 0,下滑过程中有(mg sin θ-μmg cos θ)·2t 0=mv 02,解得F f =μmg cos θ=3mv 08t 0,sin θ=5v 08gt 0,由于不知道质量,所以不能求出摩擦力,可以求出斜面倾角,B 错误,C 正确.由于不知道物体的质量,所以不能求解克服摩擦力所做的功,D 错误.9.如图甲所示,物块A 、B 间拴接一个压缩后被锁定的轻弹簧,整个系统静止放在光滑水平地面上,其中A 物块最初与左侧固定的挡板相接触,B 物块质量为4 kg 。
高考物理《碰撞问题》真题练习含答案
高考物理《碰撞问题》真题练习含答案1.如图,在光滑水平面上,一质量为100 g 的A 球,以2 m/s 的速度向右运动,与质量为200 g 大小相同的静止B 球发生对心碰撞,撞后B 球的速度大小为1.2 m/s ,取A 球初速度方向为正方向,下列说法正确的是( )A .该碰撞为弹性碰撞B .该碰撞为完全非弹性碰撞C .碰撞前后A 球的动量变化为-1.6 kg·m/sD .碰撞前后A 球的动量变化为-0.24 kg·m/s答案:D解析:以A 球初速度方向为正方向,碰撞过程根据动量守恒得m A v 0=m A v A +m B v B ,解得A 球碰后的速度为v A =-0.4 m/s ,碰撞前后A 球的动量变化为Δp =m A v A -m A v 0=0.1×(-0.4) kg·m/s -0.1×2 kg·m/s =-0.24 kg·m/s ,C 错误,D 正确;碰撞前系统的机械能为E 1=12m A v 20 =12 ×0.1×22 J =0.2 J ,碰撞后系统的机械能为E 2=12 m A v 2A +12 m B v 2B =12×0.1×0.42 J +12×0.2×1.22 J =0.152 J ,由于E 2<E 1,且碰后A 、B 速度并不相同,则该碰撞不是弹性碰撞,也不是完全非弹性碰撞,A 、B 错误.2.[2024·辽宁省沈阳市期中考试]在某次台球比赛中,质量均为m 、材料相同的白球和黑球静止在水平台球桌面上,某时刻一青少年瞬击白球后,白球与一静止的黑球发生了对心碰撞,碰撞前后两球的位置标记如图所示,A 、B 分别为碰前瞬间白球、黑球所在位置,C 、D 分别为碰撞后白球、黑球停止的位置.则由图可知白、黑两球碰撞过程中损失的动能与碰前时刻白球动能的比值为( )A .12B .23C .49D .59答案:C解析:令碰后白球的位移为3x 0,则黑球碰后位移为12x 0,碰撞过程,根据动量守恒定律有m v 0=m v 1+m v 2,碰撞后两球做匀减速直线运动,利用逆向思维,根据速度与位移关系有v 21 =2μg ·3x 0,v 22 =2μg ·12x 0,白、黑两球碰撞过程中损失的动能ΔE k =12 m v 20 -12m v 21 -12 m v 22 ,碰前时刻白球动能E k0=12 m v 20 ,解得ΔE k ΔE k0 =49,C 正确. 3.[2024·北京市顺义区期中考试]如图所示,两物块A 、B 质量分别为m 、2m ,与水平地面的动摩擦因数分别为2μ、μ,其间用一轻弹簧连接.初始时弹簧处于原长状态,使A 、B 两物块同时获得一个方向相反,大小分别为v 1、v 2的水平速度,弹簧再次恢复原长时两物块的速度恰好同时为零.关于这一运动过程,下列说法正确的是( )A .两物块A 、B 及弹簧组成的系统动量不守恒B .两物块A 、B 及弹簧组成的系统机械能守恒C .两物块A 、B 初速度的大小关系为v 1=v 2D .两物块A 、B 运动的路程之比为2∶1答案:D解析:分析可知,物块A 、B 的质量分别为m 、2m ,与地面间的动摩擦因数分别为2μ、μ,因此在滑动过程中,两物块所受的摩擦力大小都等于2μmg ,且方向相反,由此可知系统所受合外力为零,系统动量守恒,A 错误;在系统运动过程中要克服摩擦力做功,系统的机械能转化为内能,系统机械能不守恒,B 错误;系统动量守恒,取向右为正方向,由动量守恒定律可得m v 1-2m v 2=0,解得v 1=2v 2,C 错误;系统动量守恒,取向右为正方向,由动量守恒定律可得m v 1-2m v 2=0,设A 、B 的路程分别为s 1、s 2,则有m s 1t -2m s 2t=0,解得s 1∶s 2=2∶1,D 正确.4.随着科幻电影《流浪地球》的热映,“引力弹弓效应”进入了公众的视野.“引力弹弓效应”是指在太空运动的探测器,借助行星的引力来改变自己的速度.为了分析这个过程,可以提出以下两种模式:探测器分别从行星运动的反方向或同方向接近行星,分别因相互作用改变了速度.如图所示,以太阳为参考系,设行星运动的速度为u ,探测器的初速度大小为v 0,在图示的两种情况下,探测器在远离行星后速度大小分别为v 1和v 2.探测器和行星虽然没有发生直接的碰撞,但是在行星的运动方向上,其运动规律可以与两个质量不同的钢球在同一条直线上发生的弹性碰撞规律作类比.那么下列判断中正确的是( )A .v 1>v 0B .v 1=v 0C .v 2>v 0D .v 2=v 0答案:A解析:根据题意,设行星的质量为M ,探测器的质量为m ,当探测器从行星的反方向接近行星时(题中左图),再设向左为正方向,根据动量守恒和能量守恒得-m v 0+Mu =Mu ′+m v 1.12 m v 20 +12 Mu 2=12 Mu ′2+12m v 21 ,整理得v 1-v 0=u +u ′,所以v 1>v 0,A 正确,B 错误;同理,当探测器从行星的同方向接近行星时(题中右图),再设向左为正方向,根据动量守恒和能量守恒得m v 0+Mu =Mu ″-m v 2,12 m v 20 +12 Mu 2=12 Mu ″2+12m v 22 ,整理得v 0-v 2=u +u ″,所以v 2<v 0,C 、D 错误.5.如图所示,质量为M 的滑块静止在光滑水平地面上,其左侧是四分之一光滑圆弧,左端底部恰好与地面相切.两小球的质量分别为m 1=2 kg 、m 2=3 kg ,m 1的初速度为v 0,m 2保持静止.已知m 1与m 2发生弹性正碰,要使m 1与m 2发生两次碰撞,则M 可能为( )A .2 kgB .3 kgC .5 kgD .6 kg答案:D解析:m 1与m 2发生第一次弹性碰撞后,设小球m 1与m 2的速度分别为v 1、v 2,则由动量守恒定律有m 1v 0=m 1v 1+m 2v 2,系统机械能守恒,有12 m 1v 20 =12 m 1v 21 +12m 2v 22 ,解得v 1=m 1-m 2m 1+m 2 v 0,v 2=2m 1m 1+m 2v 0;进入四分之一圆弧轨道M ,当m 2离开圆弧轨道时,设m 2的速度为v ′2,根据动量守恒和机械能守恒得v ′2=m 2-M m 2+Mv 2,要使m 1与m 2发生两次碰撞,则v ′2<0,即m >m 2,且|v ′2|>|v 1|,联立解得M >5 kg ,D 正确.6.[2024·浙江省宁波金兰教有合作组织联考]有一条捕鱼小船停靠在湖边码头,小船又窄又长,一位同学想用一个卷尺测量它的质量,他进行了如下操作:首先将船平行码头自由停泊,然后他轻轻从船尾上船,走到船头后停下,而后轻轻下船,用卷尺测出船后退的距离d 和船长L ,已知他自身的质量为m ,忽略船运动过程中水对它的阻力,则可测得船的质量为( )A .m (L -d )dB .m (L +d )dC .m (L +d )LD .mL d答案:A解析:设人走动时船的速度大小为v ,人的速度大小为v ′,船的质量为M ,人和船的相对位移为L ,人从船尾走到船头所用时间为t ,则v =d t ,v ′=L -d t,人和船组成的系统在水平方向上动量守恒,取船的速度方向为正方向,根据动量守恒定律得M v -m v ′=0,解得船的质量M =m (L -d )d,A 正确. 7.如图所示,平板小车A 放在光滑水平面上,长度L =1 m ,质量m A =1.99 kg ,其上表面距地面的高度h =0.8 m .滑块B (可视为质点)质量m B =1 kg ,静置在平板小车的右端,A 、B 间的动摩擦因数μ=0.1.现有mC =0.01 kg 的子弹以v 0=400 m/s 速度向右击中小车A 并留在其中,且击中时间极短,g 取10 m/s 2.求:(1)子弹C 击中平板小车A 后的瞬间,A 速度多大?(2)B 落地瞬间,平板小车左端与滑块B 的水平距离x 多大?答案:(1)2 m/s (2)0.4 m解析:(1)子弹C 击中小车A 后并留在其中,则A 与C 共速,速度为v 1,以v 0为正方向,根据动量守恒有m C v 0=(m C +m A )v 1,得v 1=2 m/s(2)设A 与B 分离时的速度分别是v 2、v 3,对A 、B 、C 组成的系统分析,由动量守恒和动能定理得(m A +m C )v 1=(m A +m C )v 2+m B v 3-μm B gL =12 (m A +m C )v 22 +12 m B v 23 -12(m A +m C )v 21 解得v 2=53 m/s ,v 3=23m/s 或v 2=1 m/s ,v 3=2 m/s(舍去,因为A 的速度不能小于B 的速度)B 从A 飞出以v 3做平抛运动,则h =12gt 2 得t =0.4 sA 以v 2向右做匀速直线运动,则当B 落地时,它们的相对位移x =(v 2-v 3)t =0.4 m8.[2024·河北省唐山市一中联盟联考]如图所示,光滑水平面上有一质量M =1.98 kg 的小车,小车上表面有一半径为R =1 m 的14光滑圆弧轨道,与水平轨道在B 点相切,B 点右侧粗糙,小车的最右端D 点竖直固定轻质弹簧片CD .一个质量m =2 kg 的小球置于车的B 点,车与小球均处于静止状态,有一质量m 0=20 g 的子弹,以速度v 0=800 m/s 击中小车并停留在车中,设子弹击中小车的过程时间极短,已知小球与弹簧片碰撞时无机械能损失,BD 之间距离为0.3 m ,小球与水平轨道间的动摩擦因数μ=0.5,g 取10 m/s 2.求:(1)子弹击中小车后的瞬间,小车的速度;(2)小球再次返回圆弧轨道最低点时,小球的速度大小;(3)小球最终相对于B 点的距离.答案:(1)8 m/s (2)8 m/s (3)0.2 m解析:(1)取向右为正方向,子弹打小车过程,子弹和小车系统动量守恒m 0v 0=(m 0+M )v解得v =8 m/s(2)子弹、小车和小球构成的系统动量守恒(m 0+M )v =(m 0+M )v 1+m v 2子弹、小车和小球构成的系统机械能守恒12 (m 0+M )v 2=12 (m 0+M )v 21 +12m v 22 联立可得v 1=0 v 2=8 m/s(3)小球最终状态是三者共速时(m 0+M )v =(m 0+m +M )v 3损失的机械能12 (m 0+M )v 2-12(m 0+m +M )v 23 =μmgs 联立可得s =3.2 m所以相对于B 点的距离是x =s -0.3×10 m =0.2 m9.[2024·江苏省宿迁市月考]如图所示,滑块A 、B 、C 位于光滑水平面上,已知A 的质量m A =1 kg ,B 的质量m B =m C =2 kg.滑块B 的左端连有轻质弹簧,弹簧开始处于自由伸长状态.现使滑块A 以v 0=3 m/s 速度水平向右运动,通过弹簧与静止的滑块B 相互作用,直至分开未与C 相撞.整个过程弹簧没有超过弹性限度,求:(1)弹簧被压缩到最短时,B 物体的速度大小;(2)弹簧给滑块B 的冲量;(3)滑块A 的动能最小时,弹簧的弹性势能.答案:(1)1 m/s (2)4 N·s ,方向向右(3)2.25 J解析:(1)对AB 系统,AB 速度相等时,弹簧被压缩到最短.取向右为正方向,根据动量守恒定律可得m A v 0=(m A +m B )v 1代入数据解得v 1=1 m/s(2)在弹簧作用的过程中,B 一直加速,B 与弹簧分开后,B 的速度最大,取向右为正方向,根据动量守恒定律可得m A v 0=m A v A +m B v B根据机械能守恒定律可得12 m A v 20 =12 m A v 2A +12m B v 2B 联立解得v B =2 m/s对B 根据动量定理可得I =m B v B -0=2×2 N·s -0=4 N·s方向向右;(3)滑块A 的动能最小时速度为零,取向右为正方向,根据动量守恒定律可得m A v 0=m B v ′B 代入数据解得v ′B =1.5 m/s根据功能关系可得E p =12 m A v 20 -12m B v ′2B 代入数据解得E p =2.25 J .。
物理动量守恒定律专题练习(及答案)含解析
物理动量守恒定律专题练习(及答案)含解析一、高考物理精讲专题动量守恒定律1 .在图所示足够长的光滑水平面上,用质量分别为3kg 和1kg 的甲、乙两滑块,将仅与甲拴接的轻弹簧压紧后处于静止状态.乙的右侧有一挡板P.现将两滑块由静止释放,当弹簧恢复原长时,甲的速度大小为2m/s ,此时乙尚未与P 相撞.①求弹簧恢复原长时乙的速度大小;②若乙与挡板P 碰撞反弹后,不能再与弹簧发生碰撞.求挡板P 对乙的冲量的最大值.【答案】v 乙=6m/s. I =8N【解析】【详解】(1 )当弹簧恢复原长时,设甲乙的速度分别为和,对两滑块及弹簧组成的系统,设向左的方向为正方向,由动量守恒定律可得:又知联立以上方程可得,方向向右。
(2)乙反弹后甲乙刚好不发生碰撞,则说明乙反弹的的速度最大为由动量定理可得,挡板对乙滑块冲量的最大值为:2.如图所示,在水平地面上有两物块甲和乙,它们的质量分别为2m 、m,甲与地面间无摩擦,乙与地面间的动摩擦因数恒定.现让甲以速度v0向着静止的乙运动并发生正碰,且碰撞时间极短,若甲在乙刚停下来时恰好与乙发生第二次碰撞,试求:(1 )第一次碰撞过程中系统损失的动能(2)第一次碰撞过程中甲对乙的冲量12【答案】(1)mv0 ;(2)mv04【解析】【详解】解:(1)设第一次碰撞刚结束时甲、乙的速度分别为v1 、v2,之后甲做匀速直线运动,乙以v初速度做匀减速直线运动,在乙刚停下时甲追上乙碰撞,因此两物体在这段时间平2均速度相等,有:v1v222mv0 2mv1 mv2而第一次碰撞中系统动量守恒有:1 21 212 1 2E g2 mgv 0 g2mgv 1mv 2 mv 02 2 24I mv 2 0 mv 03.如图所示,质量分别为m 1 和m 2的两个小球在光滑水平面上分别以速度v 1、 v 2同向运动,并发生对心碰撞,碰后 m 2被右侧墙壁原速弹回,又与 m 1碰撞,再一次碰撞后两球都静止.求第一次碰后 m 1 球速度的大小 .设两个小球第一次碰后 m 1 和 m 2速度的大小分别为 和 , 由动量守恒定律得: ( 4 分)两个小球再一次碰撞, ( 4 分)本题考查碰撞过程中动量守恒的应用,设小球碰撞后的速度,找到初末状态根据动量守恒 的公式列式可得4. 装甲车和战舰采用多层钢板比采用同样质量的单层钢板更能抵御穿甲弹的射击.通过对一下简化模型的计算可以粗略说明其原因.质量为 2m 、厚度为 2d 的钢板静止在水平光滑桌面上.质量为 m 的子弹以某一速度垂直射向该钢板,刚好能将钢板射穿.现把钢板分成厚度均为 d 、质量均为 m 的相同两块,间隔一段距离水平放置,如图所示.若子弹以相同的速度垂直射向第一块钢板,穿出后再射向第二块钢板,求子弹射入第二块钢板的深 度.设子弹在钢板中受到的阻力为恒力,且两块钢板不会发生碰撞不计重力影v 0, v 2v 0所以第一次碰撞中的机械能损失为:(2)根据动量定理可得第一次碰撞过程中甲对乙的冲量:得:4 分)设子v0,射入厚度为2d的钢板后,mv=(2m+m)V 121此过程中动能损失为:ΔE 损=f ·2d= mv-×2 2解得ΔE =mv23 v1 和V1:mv 1+mV 1mv0且考虑到 v 1 必须大于 V 1, 解得:v 1= (1 3)v 026设子弹射入第二块钢板并留在其中后两者的共同速度为 V 2,由动量守恒得: 2mV 2= mv 1( 1 分)1212损失的动能为: Δ E =′ mv 1 - × 2mV 2 ( 2 分)联立解得: Δ E = ′ 1 (12因为 Δ E =′ f ·x ( 1 分), 可解得射入第二钢板的深度 x 为:( 2 分)子弹打木块系统能量损失完全转化为了热量,相互作用力乘以相对位移为产生的热量,以 系统为研究对象由能量守恒列式求解5.如图所示,光滑的水平地面上有一木板,其左端放有一重物,右方有一竖直的墙 .重物质量为木板质量的 2 倍,重物与木板间的动摩擦因数为 μ. 使木板与重物以共同的速度 v 0向 右运动,某时刻木板与墙发生碰撞,碰撞时间极短,碰撞后木板以原速率反弹 .设木板足够长,重物始终在木板上 .重力加速度为 g.求木板从第一次与墙碰撞到再次碰撞所经历的时间【答案】 t 4v 03g2 分)2ΔE 损 1= f ·d= mv 021212mv 1 + mV 1mv 20 - ΔE 损 1( 2 分) 2【解析】解:木板第一次与墙碰撞后,向左匀减速直线运动,直到静止,再反向向右匀加速直线运动直到与重物有共同速度,再往后是匀速直线运动,直到第二次撞墙.木板第一次与墙碰撞后,重物与木板相互作用直到有共同速度v,动量守恒,有:2mv0﹣mv0=(2m+m )v,解得:v=mv ﹣ m (﹣ v 0) =μ 2mg 1t 用动能定理,有:﹣=﹣ 木板在第二个过程中,匀速直线运动,有:木板从第一次与墙碰撞到再次碰撞所经历的时间t=t 1+t 2= + = +t = +=答:木板从第一次与墙碰撞到再次碰撞所经历的时间为运动规律是关键.6.如图所示,光滑平行金属导轨的水平部分处于竖直向下的 B=4T 的匀磁场中,两导轨间距 L=0.5m ,导轨足够长金属棒 a 和 b 的质量都为 m=1kg ,电阻 R a R b 1 .b 棒静止于轨道水平部分,现将 a 棒从 h=80cm 高处自静止沿弧形轨道下滑,通过 C 点进入轨道的水平 部分,已知两棒在运动过程中始终保持与导轨垂直,且两棒始终不相碰.求 a 、 b 两棒的最终速度大小以及整个过程中 b 棒中产生的焦耳热(已知重力加速度 g 取 10m/s 2)a 棒下滑至C 点时速度设为 v 0,则由动能定理,有:12mgh mv 0 0( 2 分)2解得 v 0=4m/s ;( 2分)此后的运动过程中,a 、b 两棒达到共速前,两棒所受安培力始终等大反向,因此 a 、 b两棒组成的系统动量守恒,有:mv 0 m m v ( 2 分)解得 a 、 b 两棒共同的最终速度为 v=2m/s ,此后两棒一起做匀速直线运动;木板在第一个过程中,用动量定理,有: 2mgss=vt22m/s 2J由能量守恒定律可知,整个过程中回路产生的总的焦耳热为:1 21 2Q mv0 m m v (2 分)221则b 棒中的焦耳热Q b Q (2 分)27.如图所示,质量均为M = 4 kg 的小车 A 、 B , B 车上用轻绳挂有质量为m = 2 kg 的小球C ,与 B 车静止在水平地面上, A 车以 v 0= 2 m/s 的速度在光滑水平面上向 B 车运动,相碰后粘在一起 (碰撞时间很短 ).求:(1)碰撞过程中系统损失的机械能;(2)碰后小球 C 第一次回到最低点时的速度大小.【答案】 (1) 4 J (2) 1.6 m/s 【解析】 【详解】 解: (1)设 A 、 B 车碰后共同速度为 v 1 ,由动量守恒得:Mv 0 2Mv 111系统损失的能量为: E损Mv 022Mv 124 J22(2)设小球C 再次回到最低点时 A 、 B 车速为 v 2,小球 C 速度为v 3,对A 、B 、C 系统由水平方向动量守恒得: 2Mv 1 2Mv 2 mv 3111由能量守恒得: 2Mv 122Mv 22mv 322 12223解得:v 3 1.6 m/ s8. 如图所示,光滑固定斜面的倾角 Θ =30°,一轻质弹簧一端固定,另一端与质量M=3kg的物体 B 相连,初始时 B 静止 .质量 m=1kg 的 A 物体在斜面上距 B 物体处 s1=10cm 静止释 放, A 物体下滑过程中与 B 发生碰撞,碰撞时间极短,碰撞后与 B 粘在一起,已知碰后整 体经t=0.2s下滑s2=5cm至最低点. 弹簧始终处于弹性限度内,A 、 B可视为质点,g 取10m/s 2.1 )从碰后到最低点的过程中,求弹簧最大的弹性势能联立解得: Q b =2J2 分)B 的冲量大小.(1)A 物体下滑过程, A 物体机械能守恒,求得 A 与 B 碰前的速度; A 与 B 碰撞是完全非弹性碰撞, A 、 B 组成系统动量守恒,求得碰后 AB 的共同速度;从碰后到最低点的过程中,A 、B 和弹簧组成的系统机械能守恒,可求得从碰后到最低点的过程中弹性势能的增加量.2)(2)从碰后至返回到碰撞点的过程中,A、B 和弹簧组成的系统机械能守恒,可求得返回碰撞点时AB 的速度;对AB 从碰后至返回到碰撞点的过程应用动量定理,可得此过程中弹簧对物体 B 冲量的大小.【详解】01 2(1)A 物体下滑过程,A物体机械能守恒,则:mgS1sin30mv02解得:v0 2gS1sin300 2 10 0.1 0.5 ms 1msA与B 碰撞是完全非弹性碰撞,据动量守恒定律得:mv0 (m M )v1解得:v1 0.25 ms从碰后到最低点的过程中,A、B 和弹簧组成的系统机械能守恒,则:12 0(m M )v1 (m M ) gS2 sin30EPT增解得:E PT增1.125J(2)从碰后至返回到碰撞点的过程中,A、B 和弹簧组成的系统机械能守恒,可求得返回碰撞点时AB的速度大小v2 v1 0.25 m s以沿斜面向上为正,由动量定理可得:I T (m M )gsin3002t (m M )v2 (m M )v1解得:I T 10N s9.如图所示,内壁粗糙、半径R=0.4 m 的四分之一圆弧轨道AB 在最低点B 与光滑水平轨道BC相切。
高考物理动量守恒定律专题训练答案及解析
高考物理动量守恒定律专题训练答案及解析一、高考物理精讲专题动量守恒定律1.如图所示,小明站在静止在光滑水平面上的小车上用力向右推静止的木箱,木箱最终以速度v 向右匀速运动.已知木箱的质量为m ,人与车的总质量为2m ,木箱运动一段时间后与竖直墙壁发生无机械能损失的碰撞,反弹回来后被小明接住.求:(1)推出木箱后小明和小车一起运动的速度v 1的大小; (2)小明接住木箱后三者一起运动的速度v 2的大小. 【答案】①2v;②23v 【解析】试题分析:①取向左为正方向,由动量守恒定律有:0=2mv 1-mv 得12v v =②小明接木箱的过程中动量守恒,有mv+2mv 1=(m+2m )v 2 解得223v v =考点:动量守恒定律2.在相互平行且足够长的两根水平光滑的硬杆上,穿着三个半径相同的刚性球A 、B 、C ,三球的质量分别为m A =1kg 、m B =2kg 、m C =6kg ,初状态BC 球之间连着一根轻质弹簧并处于静止,B 、C 连线与杆垂直并且弹簧刚好处于原长状态,A 球以v 0=9m/s 的速度向左运动,与同一杆上的B 球发生完全非弹性碰撞(碰撞时间极短),求:(1)A 球与B 球碰撞中损耗的机械能; (2)在以后的运动过程中弹簧的最大弹性势能; (3)在以后的运动过程中B 球的最小速度. 【答案】(1);(2);(3)零.【解析】试题分析:(1)A 、B 发生完全非弹性碰撞,根据动量守恒定律有:碰后A 、B 的共同速度损失的机械能(2)A、B、C系统所受合外力为零,动量守恒,机械能守恒,三者速度相同时,弹簧的弹性势能最大根据动量守恒定律有:三者共同速度最大弹性势能(3)三者第一次有共同速度时,弹簧处于伸长状态,A、B在前,C在后.此后C向左加速,A、B的加速度沿杆向右,直到弹簧恢复原长,故A、B继续向左减速,若能减速到零则再向右加速.弹簧第一次恢复原长时,取向左为正方向,根据动量守恒定律有:根据机械能守恒定律:此时A、B的速度,C的速度可知碰后A、B已由向左的共同速度减小到零后反向加速到向右的,故B 的最小速度为零.考点:动量守恒定律的应用,弹性碰撞和完全非弹性碰撞.【名师点睛】A、B发生弹性碰撞,碰撞的过程中动量守恒、机械能守恒,结合动量守恒定律和机械能守恒定律求出A球与B球碰撞中损耗的机械能.当B、C速度相等时,弹簧伸长量最大,弹性势能最大,结合B、C在水平方向上动量守恒、能量守恒求出最大的弹性势能.弹簧第一次恢复原长时,由系统的动量守恒和能量守恒结合解答3.如图所示,一辆质量M=3 kg的小车A静止在光滑的水平面上,小车上有一质量m=l kg 的光滑小球B,将一轻质弹簧压缩并锁定,此时弹簧的弹性势能为E p=6J,小球与小车右壁距离为L=0.4m,解除锁定,小球脱离弹簧后与小车右壁的油灰阻挡层碰撞并被粘住,求:①小球脱离弹簧时的速度大小;②在整个过程中,小车移动的距离。
高考物理动量守恒定律真题汇编(含答案)及解析
4.如图所示,质量为 m 的由绝缘材料制成的球与质量为 M=19m 的金属球并排悬挂.现将 绝缘球拉至与竖直方向成 θ=600 的位置自由释放,下摆后在最低点与金属球发生弹性碰 撞.在平衡位置附近存在垂直于纸面的磁场.已知由于磁场的阻尼作用,金属球将于再次 碰撞前停在最低点处.求经过几次碰撞后绝缘球偏离竖直方向的最大角度将小于
试题分析:(1)P1
滑到最低点速度为
v1,由机械能守恒定律有:
1 2
mv02
mgR
1 2
mv12
解得:v1=5m/s
P1、P2 碰撞,满足动量守恒,机械能守恒定律,设碰后速度分别为 v1 、 v2
则由动量守恒和机械能守恒可得: mv1 mv1 mv2
1 2
mv12
1 2
mv12
1 2
mv22
解得: v1 0 、 v2 5m/s
(2)P2 向右滑动时,假设 P1 保持不动,对 P2 有:f2=μ2mg=2m(向左) 设 P1、M 的加速度为 a2;对 P1、M 有:f=(m+M)a2
a2
f m M
2m 5m
0.4m/s2
此时对 P1 有:f1=ma2=0.4m<fm=1.0m,所以假设成立.
故滑块的加速度为 0.4m/s2;
滑板碰后,P1 向右滑行距离: s1
v2 2a1
0.08m
P2 向左滑行距离: s2
v22 2a2
2.25m
所以 P1、P2 静止后距离:△S=L-S1-S2=1.47m
考点:考查动量守恒定律;匀变速直线运动的速度与位移的关系;牛顿第二定律;机械能
守恒定律.
【名师点睛】本题为动量守恒定律及能量关系结合的综合题目,难度较大;要求学生能正
物理动量守恒定律题20套(带答案)
物理动量守恒定律题20套(带答案)一、高考物理精讲专题动量守恒定律1.在图所示足够长的光滑水平面上,用质量分别为3kg和1kg的甲、乙两滑块,将仅与甲拴接的轻弹簧压紧后处于静止状态.乙的右侧有一挡板P.现将两滑块由静止释放,当弹簧恢复原长时,甲的速度大小为2m/s,此时乙尚未与P相撞.①求弹簧恢复原长时乙的速度大小;②若乙与挡板P碰撞反弹后,不能再与弹簧发生碰撞.求挡板P对乙的冲量的最大值.【答案】v乙=6m/s. I=8N【解析】【详解】(1)当弹簧恢复原长时,设甲乙的速度分别为和,对两滑块及弹簧组成的系统,设向左的方向为正方向,由动量守恒定律可得:又知联立以上方程可得,方向向右。
(2)乙反弹后甲乙刚好不发生碰撞,则说明乙反弹的的速度最大为由动量定理可得,挡板对乙滑块冲量的最大值为:2.如图:竖直面内固定的绝缘轨道abc,由半径R=3 m的光滑圆弧段bc与长l=1.5 m的粗糙水平段ab在b点相切而构成,O点是圆弧段的圆心,Oc与Ob的夹角θ=37°;过f点的竖直虚线左侧有方向竖直向上、场强大小E=10 N/C的匀强电场,Ocb的外侧有一长度足够长、宽度d =1.6 m的矩形区域efgh,ef与Oc交于c点,ecf与水平向右的方向所成的夹角为β(53°≤β≤147°),矩形区域内有方向水平向里的匀强磁场.质量m2=3×10-3 kg、电荷量q=3×l0-3 C的带正电小物体Q静止在圆弧轨道上b点,质量m1=1.5×10-3 kg的不带电小物体P从轨道右端a以v0=8 m/s的水平速度向左运动,P、Q碰撞时间极短,碰后P以1 m/s的速度水平向右弹回.已知P与ab间的动摩擦因数μ=0.5,A、B均可视为质点,Q 的电荷量始终不变,忽略空气阻力,sin37°=0.6,cos37°=0.8,重力加速度大小g=10m/s2.求:(1)碰后瞬间,圆弧轨道对物体Q的弹力大小F N;(2)当β=53°时,物体Q刚好不从gh边穿出磁场,求区域efgh内所加磁场的磁感应强度大小B1;(3)当区域efgh内所加磁场的磁感应强度为B2=2T时,要让物体Q从gh边穿出磁场且在磁场中运动的时间最长,求此最长时间t及对应的β值.【答案】(1)24.610N F N -=⨯ (2)1 1.25B T = (3)127s 360t π=,001290143ββ==和 【解析】 【详解】解:(1)设P 碰撞前后的速度分别为1v 和1v ',Q 碰后的速度为2v 从a 到b ,对P ,由动能定理得:221011111-22m gl m v m v μ=- 解得:17m/s v =碰撞过程中,对P ,Q 系统:由动量守恒定律:111122m v m v m v '=+取向左为正方向,由题意11m/s v =-', 解得:24m/s v =b 点:对Q ,由牛顿第二定律得:2222N v F m g m R-=解得:24.610N N F -=⨯(2)设Q 在c 点的速度为c v ,在b 到c 点,由机械能守恒定律:22222211(1cos )22c m gR m v m v θ-+=解得:2m/s c v =进入磁场后:Q 所受电场力22310N F qE m g -==⨯= ,Q 在磁场做匀速率圆周运动由牛顿第二定律得:2211c c m v qv B r =Q 刚好不从gh 边穿出磁场,由几何关系:1 1.6m r d == 解得:1 1.25T B = (3)当所加磁场22T B =,2221m cm v r qB == 要让Q 从gh 边穿出磁场且在磁场中运动的时间最长,则Q 在磁场中运动轨迹对应的圆心角最大,则当gh 边或ef 边与圆轨迹相切,轨迹如图所示:设最大圆心角为α,由几何关系得:22cos(180)d r rα-︒-= 解得:127α=︒ 运动周期:222m T qB π=则Q 在磁场中运动的最长时间:222127127•s 360360360m t T qB παπ===︒此时对应的β角:190β=︒和2143β=︒3.两个质量分别为0.3A m kg =、0.1B m kg =的小滑块A 、B 和一根轻质短弹簧,弹簧的一端与小滑块A 粘连,另一端与小滑块B 接触而不粘连.现使小滑块A 和B 之间夹着被压缩的轻质弹簧,处于锁定状态,一起以速度03/v m s =在水平面上做匀速直线运动,如题8图所示.一段时间后,突然解除锁定(解除锁定没有机械能损失),两滑块仍沿水平面做直线运动,两滑块在水平面分离后,小滑块B 冲上斜面的高度为 1.5h m =.斜面倾角o 37θ=,小滑块与斜面间的动摩擦因数为0.15μ=,水平面与斜面圆滑连接.重力加速度g 取210/m s .求:(提示:o sin 370.6=,o cos370.8=)(1)A 、B 滑块分离时,B 滑块的速度大小. (2)解除锁定前弹簧的弹性势能.【答案】(1)6/B v m s = (2)0.6P E J = 【解析】试题分析:(1)设分离时A 、B 的速度分别为A v 、B v , 小滑块B 冲上斜面轨道过程中,由动能定理有:2cos 1sin 2B B B Bm gh m gh m v θμθ+⋅= ① (3分)代入已知数据解得:6/B v m s = ② (2分)(2)由动量守恒定律得:0()A B A A B B m m v m v m v +=+ ③ (3分) 解得:2/A v m s = (2分) 由能量守恒得:2220111()222A B P A A B Bm m v E m v m v ++=+ ④ (4分) 解得:0.6P E J = ⑤ (2分)考点:本题考查了动能定理、动量守恒定律、能量守恒定律.4.如图所示,质量M=1kg 的半圆弧形绝缘凹槽放置在光滑的水平面上,凹槽部分嵌有cd 和ef 两个光滑半圆形导轨,c 与e 端由导线连接,一质量m=lkg 的导体棒自ce 端的正上方h=2m 处平行ce 由静止下落,并恰好从ce 端进入凹槽,整个装置处于范围足够大的竖直方向的匀强磁场中,导体棒在槽内运动过程中与导轨接触良好。
1验证动量守恒定律(高考物理力学实验)含答案与解析
1验证动量守恒定律(高考物理力学实验)含答案与解析组卷老师:莫老师评卷人得分一.实验题(共50小题)1.如图,用“碰撞实验器”可以验证动量守恒定律,即研究两个小球在轨道水平部分碰撤前后的动量关系。
图中0点是小球抛出点在地面上的垂直投影,实验时先让入射球m1,多次从倾斜轨道上S位置静止释放,找到其平均落地点的位置P,然后,把被碰小球m2静置于轨道的水平部分,再将入射球m1,从斜轨上S位置静上释放,与小球m2相碰,并多次重复,测出碰后m1平均落地点在M点,m2平均落地点在N点,不计小球与轨道润的摩擦。
(1)实验中,不需要测量的物理量是(填选项前的符号)。
A.两个小球的质量m1、m2B.小球抛出点距地面的高度HC.小球做平抛运动的射程(2)若实验中发现m1OM+m2ON小于m1OP,则可能的原因是(填选项前的符号)。
A.碰撞过程有机械能的损失B.计算时没有将小球半径考虑进去C.放上小球m2后,入射球m1从倾斜轨道上都止释放的位置比原来的低(3)若两球发生弹性正碰,则OM、ON、OP之间一定满足的关系是(填选项前的符号)。
A.OP=ON﹣OMB.2OP=ON+OMC.OP﹣ON=2OM第1页(共111页)2.用如图甲所示的装置验证动量守恒定律,小车P的前端粘有橡皮泥,后端连接通过打点计时器的纸带,在长木板右端垫放木块以平衡摩擦力,推一下小车P,使之运动,与静止的小车Q相碰粘在一起,继续运动。
(1)实验获得的一条纸带如图乙所示,根据点迹的不同特征把纸带上的点进行了区域划分,用刻度尺测得各点到起点A的距离。
根据碰撞前后小车的运动情况,应选纸带上段来计算小车P的碰前速度。
(2)测得小车P(含橡皮泥)的质量为m1,小车Q(含橡皮泥)的质量为m2,如果实验数据满足关系式,则可验证小车P、Q碰撞前后动量守恒。
(3)如果在测量小车P的质量时,忘记粘橡皮泥,则所测系统碰前的动量与系统碰后的动量相比,将(填“偏大”或“偏小”或“相等”)。
高中动量守恒、能量守恒定理经典练习题(含答案)
动量守恒、能量守恒、机械能守衡一冲量1.定义:力与力的作用时间的乘积叫做力的冲量。
2.公式:Ft I =3.矢量,方向与作用力方向一致二、动量定理:物体所受合外力的冲量等于它的动量的改变量,这叫做动量定理。
(1)公式:o t mv mv t F -=合三动量守恒:四、弹性碰撞:'22'112211v m v m v m v m +=+2'222'1122221121212121v m v m v m v m +=+()2112122'12m m v m m v m v +-+= ()2121211'22m m v m m v m v +-+=练习一:1.如图,质量为3 kg 的木板放在光滑的水平地面上,质量为1 kg 的木块放在木板上,它们之间有摩擦,木板足够长,两者都以4 m/s 的初速度向相反方向运动.当木板的速度为2.4 m/s 时,木块( A )A.处于匀速运动阶段B.处于减速运动阶段C.处于加速运动阶段 D.静止不动2(多选).如图所示,位于光滑水平桌面,质量相等的小滑块P 和Q 都可以视作质点,Q 与轻质弹簧相连,设Q 静止,P 以某一初动能E 0水平向Q 运动并与弹簧发生相互作用,若整个作用过程中无机械能损失,用E 1表示弹簧具有的最大弹性势能,用E2表示Q 具有的最大动能,则( AD )A .201E E = B .01E E = C .202E E = D .02E E = 3(多选).光滑水平桌面上有两个相同的静止木块(不是紧捱着),枪沿两个木块连线方向以一定的初速度发射一颗子弹,子弹分别穿过两个木块。
假设子弹穿过两个木块时受到的阻力大小相同,且子弹进入木块前两木块的速度都为零。
忽略重力和空气阻力的影响,那么子弹先后穿过两个木块的过程中( CD )22112211v m v m v m v m '+'=+Pv QA.子弹两次损失的动能相同B.每个木块增加的动能相同C.因摩擦而产生的热量相同D.每个木块移动的距离不相同4.如图所示,一个木箱原来静止在光滑水平面上,木箱内粗糙的底板上放着一个小木块。
物理动量守恒定律专题练习(及答案)含解析
①求弹簧恢复原长时乙的速度大小; ②若乙与挡板 P 碰撞反弹后,不能再与弹簧发生碰撞.求挡板 P 对乙的冲量的最大值. 【答案】v 乙=6m/s. I=8N 【解析】 【详解】 (1)当弹簧恢复原长时,设甲乙的速度分别为 和 ,对两滑块及弹簧组成的系统,设向 左的方向为正方向,由动量守恒定律可得:
又知
(2 分)
因为子弹在射穿第一块钢板的动能损失为 ΔE 损 1=f·d=
mv
2 0
(1
分),
由能量守恒得:
1 2
mv
2 1
+
1 2
mV
2 1
=
1 2
mv
2 0
-ΔE
损 1(2
分)
且考虑到 v1 必须大于 V1,
解得:v1= ( 1 3 ) v0 26
设子弹射入第二块钢板并留在其中后两者的共同速度为 V2,
物理动量守恒定律专题练习(及答案)含解析
一、高考物理精讲专题动量守恒定律
1.在图所示足够长的光滑水平面上,用质量分别为 3kg 和 1kg 的甲、乙两滑块,将仅与甲 拴接的轻弹簧压紧后处于静止状态.乙的右侧有一挡板 P.现将两滑块由静止释放,当弹簧 恢复原长时,甲的速度大小为 2m/s,此时乙尚未与 P 相撞.
(1)求物块 M 碰撞后的速度大小; (2)若平台表面与物块 M 间的动摩擦因数 μ=0.5,物块 M 与小球的初始距离为 x1=1.3 m, 求物块 M 在 P 处的初速度大小. 【答案】(1)3.0m/s(2)7.0m/s 【解析】 试题分析:(1)碰后物块 M 做平抛运动,设其平抛运动的初速度为 V
6.如图所示,光滑平行金属导轨的水平部分处于竖直向下的 B=4T 的匀磁场中,两导轨间 距 L=0.5m,导轨足够长金属棒 a 和 b 的质量都为 m=1kg,电阻 Ra Rb 1 .b 棒静止于轨 道水平部分,现将 a 棒从 h=80cm 高处自静止沿弧形轨道下滑,通过 C 点进入轨道的水平 部分,已知两棒在运动过程中始终保持与导轨垂直,且两棒始终不相碰.求 a、b 两棒的最 终速度大小以及整个过程中 b 棒中产生的焦耳热(已知重力加速度 g 取 10m/s2)
高三物理动量守恒练习题及答案
高三物理动量守恒练习题及答案动量守恒是物理学中的重要概念,通过练习题的形式可以更好地理解和掌握动量守恒的原理和应用。
下面是一些高三物理动量守恒练习题及答案,供同学们参考和练习。
练习题1:一个质量为2kg的小球以4m/s的速度向右运动,与一个质量为3kg 的小球发生完全弹性碰撞后,原来静止的小球反弹出去。
求碰撞后两球的速度分别是多少?解答:根据动量守恒定律,碰撞前后系统的总动量不变。
设第一个小球的速度为V1,第二个小球的速度为V2,碰撞后两球的速度分别为V1'和V2'。
碰撞前的动量:m1 * V1 + m2 * V2 = 2kg * 4m/s + 3kg * 0m/s = 8kg·m/s碰撞后的动量:m1 * V1' + m2 * V2' = 2kg * (-4m/s) + 3kg * V2'根据动量守恒定律,两者相等:2kg * (-4m/s) + 3kg * V2' = 8kg·m/s解方程可得:V2' = -5.34m/s练习题2:一辆质量为1200kg的小车以20m/s的速度向东行驶,与一辆质量为800kg的小车发生完全弹性碰撞后,第一个小车的速度变为10m/s,请问第二个小车的速度是多少?解答:设第二个小车的速度为V2'。
碰撞前的动量:m1 * V1 + m2 * V2 = 1200kg * 20m/s + 800kg * 0m/s = 24000kg·m/s 碰撞后的动量:m1 * V1' + m2 * V2' = 1200kg * 10m/s + 800kg * V2'根据动量守恒定律,两者相等:1200kg * 10m/s + 800kg * V2' = 24000kg·m/s解方程可得:V2' = 15m/s练习题3:一个质量为0.1kg的小球以12m/s的速度向右运动,与一个质量为0.2kg的小球发生完全非弹性碰撞后,两球一起向右运动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三物理碰撞与动量守恒练习题(带答案)
第1章碰撞与动量守恒章末练习1
1.质量M=50kg的空箱子,放在光滑的水平面上,箱中有一质量m =30kg的铁块,如图56-1所示.铁块的左侧面与箱子内壁的左侧面相距S=1m,铁块一旦碰到箱壁后不再分开,箱底与铁块间摩擦可忽略不计,现用向右的恒力F=10N作用于箱子,经过时间t=2s后撤去.求 (1)箱的左壁与铁块碰撞前铁块和箱的速度; (2)箱的左壁与铁块碰撞后箱子的速度.解析:(1)在F作用的2s内,设箱没有碰到铁块,则对于箱子2s末立,所以碰前箱的速度为0.4m/s,水平向右,铁块的速度为零. (2)箱子与铁块碰撞时,外力F已撤去,对箱子与铁块这一系统碰撞过程中总动量守恒MvM=(M+m)v',所以碰后的共同速度为v′=点拨:要善于分析不同的物理过程和应用相应物理规律,对整个运动过程,我们就箱子和铁块这一系统用动量定理有:Ft=(M+m)v',这一关系不论在何时撤去F,最终的共同速度都由此关系求出 2.质量为m,半径为R的小球,放在质量为M,半径为2R的圆柱形桶内,桶静止在光滑的水平面上,当小球从图56-2所示的位球的质量之比.点拨:在球和圆筒相互作用的过程中,系统在水平方向的动量始终不变(在竖直方向的动量先增大后减少),所以可以用水平方向的位移来表示水平方向的动量守恒. 3.从地面以速率v1竖直向上抛出一小球,小球落地时的速率为v2,若小球在运动过程中所受的空气阻力大小与其速率成正比,试求小球在空中的运动时间.解析:小球在上升阶段和下落阶段发生的位移大小相等,方向相反.位移在速度图象上是图线与时间轴所围的“面积”,冲量在力随时间变化的图象(F~t图象)上是图线与时间轴所围的“面积”,由题意空气阻力与速率成正比,可得到小球在上升阶段和下落阶段空气阻力的冲量大小相等,方向相反,即在小球的整个运动过程中,空气阻力对小球的总冲量为零.对小球在整个过程中,由动量定理得:点拨在各知识点间进行分析,类比是高考对考生能力的要求,高考考纲明文规定“能运用几何图形,函数图象进行表达、分析”. 4.总质量为M的列车以不变的牵引力匀速行驶,列车所受的阻力与其重量成正比,在行驶途中忽然质量为m的最后一节车厢脱
钩.司机发现事故关闭油门时已过时间T,求列车与车厢停止运动的时间差.点拨车厢未脱钩时,列车匀速运动,所以牵引力F=kMg,车厢脱钩后,对脱钩的车厢和前面部分的列车分别应用动量定理.本题也可以这样来考虑,若车厢一脱钩司机就关闭油门,则列车与脱钩的车厢同时停止运动,现由于过了时间T才关闭油门,所以存在时间差ΔT,按冲量作用与动量变化的关系应有,牵引力在时间T内的冲量等于前面部分的列车比脱钩的车厢多运动时间ΔT内阻力的冲量.即kMgT=k(M-m)gΔT. 5.一个宇航员,连同装备的总质量
为100kg,在空间跟飞船相距45m处相对飞船处于静止状态,他带有一个装有0.5kg氧气的贮气筒,贮气筒上有一个可以以50m/s的速度喷出氧气的喷嘴,宇航员必须向着跟返回飞船方向相反的方向释放氧气,才能回到飞船上去,同时又必须保留一部分氧气供他在返回飞船的途中呼吸,已知宇航员呼吸的耗氧率为2.5×10-4kg/s试问: (1)如果他在准备返回的瞬时,释放0.15kg的氧气,他是否能安全地返
回到飞船? (2)宇航员安全地返回飞船的最长和最短时间分别是多少?解析:宇航员使用氧气喷嘴喷出一部分氧气后,根据动量守恒
定律,可以求出他返回的速度,从而求出返回的时间和返回途中呼吸所消耗的氧气. (1)令M=100kg, m0=0.5kg,Δm=0.15kg,氧气的释放速度为u,宇航员的返回速度为v 由动量守恒定律得0=(M-Δm)v-Δm(u-v) 宇航员返回途中所耗氧气m'=kt=
2.5×10-4×600=0.15(kg) 氧气筒喷射后剩余氧气m″=m0-m=
0.5-0.15=0.35(kg)>m',所以宇航员能安全返回飞船. (2)设释
放氧气Δm未知,途中所需时间为t,则 m0=kt+Δm 宇航员安全
返回飞船的最长和最短时间分别为1800s和200s.点拨喷嘴喷出
氧气的速度为相对喷嘴的速度,本例中找出动量守恒的系统和过程是关键,通过物理量间的制约关系得出问题的解. 6.火箭推进器中盛有强还原剂液态肼(N2H4)和强氧化剂液态双氧水,当它们混合反应时,即产生大量的氮气和水蒸气,并放出大量热,已知0.4mol液态肼与
等量液态双氧水反应,生成氮气和水蒸气,放出256.625kJ的热量. (1)写出该反应的热化学方程式________. (2)又已知H2O(液)=H2O(气)-44kJ,则16g液态肼与等量液态双氧水反应生成液态水
时放出的热量是________kJ (3)此反应用于对火箭的推进,它是
________定律的一个实际应用,在此反应中除释放大量热和快速产生大量气体外,还有一个很大的优点是________ 点拨火箭是利用喷出气体的反冲来获得动力的,是动量守恒定律的实际应用,从此反应的生成物来看,不会对环境造成污染.高考巡礼 7.如图56-3所示,一排人站在沿x轴的水平轨道旁,原点O两侧的人的序号都为n(n=1、2、3……),每人只有一只沙袋,x>0一侧的每个沙袋质量为m
=14.0kg,x<0一侧的每个沙袋质量为m'=10.0kg,一质量为M=48.0kg的小车以某初速度从原点出发向正x方向滑行,不计轨道阻力,当车每经过一人身旁时,此时就把沙袋以水平速度v朝与车速相反的方向沿车面扔到车上,v的大小等于扔此袋之前的瞬间车速大小的2n倍(n是此人的序号数). (1)空车出发后,车上堆积了几个沙
袋时车就反向滑行? (2)车上最终大小沙袋共几个?解析:(1)在小车朝正x方向滑行的过程中第(n-1)个沙袋扔到车上后的车速为
vn-1,第n个沙袋扔到车上后的车速为vn,由动量守恒定律有 [M+(n-1)m]vn-1-2nmvn-1=(M+nm)vn 小车反向运动的条件是vn-1>0,vn<0 即M-nm>0 M-(n+1)m<0 n应为整数,故n=3,即车
上堆积3个沙袋后车就反向滑行. (2)车自反向滑行直到接近x<0
一侧第1人所在位置时,车速保持不变,而车的质量为M+3m,若车朝负x方向滑行过程中,第(n-1)个沙袋扔到车上后车速为v'n-1,第n个沙袋仍到车上后车速为vn',现取在图中向左的方向(负x方向)为的正方向,则由动量守恒定律有 [M+3m+(n-1)m']v'n-1
-2nm'v'n-1=(M+3m+nm')vn'车不再向左滑行的条件是v'
n-1>0,vn'≤0 即M+3m-nm'>0 M+3m-(n+1)m'≤0 n=8时,车停止滑行,即在x<0一侧第8个沙袋扔到车上后车就停住,故车
上最终共有大小沙袋3+8=11个.点拨本题要求考生在准确领会
题意的基础上,应用归纳的方法,找准研究对象和物理过程,正确地运用动量守恒定律,建立第n个沙袋扔上车前后之间动量守恒的方程,对考生具有很高的综合素质要求. 8.质量为M的小船以速度v0行驶,船上有两个质量皆为m的小孩a和b,分别静止站在船头和船尾,现小孩a沿水平方向以速率v(相对静止水面)向前跃入水中,然后小
孩b沿水平方向以同一速率v(相对静止水面)向后跃入水中,求小孩b跃出后小船的速度.点拨将小船和两小孩作为系统,系统的总动量守恒,在用动量守恒定律列等式时,各个速度都应相对静止水面的速度,题中所给的多个速度恰都是相对静止水面的.
参考答案 (气)+4H2O(气)+641.63kJ; (2)408.81kJ(3)动量守恒;生成物不污染。