1叠加定理实验

合集下载

1叠加定理实验

1叠加定理实验

GDOU-B-11-112广东海洋大学学生实验报告书(学生用表)实验名称叠加定理实验课程名称课程号学院(系)专业班级学生姓名学号19 实验地点科技楼实验日期一、实验目的验证线性电路叠加原理的正确性,加深对线性电路的叠加性和齐次性的认识和理解。

二、原理说明叠加原理指出:在有多个独立源共同作用下的线性电路中,通过每一个元件的电流或其两端的电压,可以看成是由每一个独立源单独作用时在该元件上所产生的电流或电压的代数和。

线性电路的齐次性是指当激励信号(某独立源的值)增加或减小K 倍时,电路的响应(即在电路中各电阻元件上所建立的电流和电压值)也将增加或减小K倍。

四、实验内容实验线路如图7-1所示,用HE-12挂箱的“基尔夫定律/叠加原理”线路。

1. 将两路稳压源的输出分别调节为12V和6V,接入U1和U2处。

2. 令U1电源单独作用(将开关K1投向U1侧,开关K2投向短路侧)。

用直流数字电压表和毫安表(接电流插头)测量各支路电流及各电阻元件两端的电压,数据记入表7-1。

3. 令U2电源单独作用(将开关K1投向短路侧,开关K2投向U2侧),重复实验步骤2的测量和记录,数据记入表7-1。

4. 令U1和U2共同作用(开关K1和K2分别投向U1和U2侧),重复上述的测量和记录,数据记入表7-1。

5. 将U2的数值调至+12V,重复上述第3项的测量并记录,数据记入表7-1。

表7-1五、实验注意事项1. 用电流插头测量各支路电流时,或者用电压表测量电压降时,应注意仪表的极性,并应正确判断测得值的+、-号。

2. 注意仪表量程的及时更换。

六、预习思考题1. 在叠加原理实验中,要令U1、U2分别单独作用,应如何操作可否直接将不作用的电源(U1或U2)短接置零答:①要令Ul单独作用,应该把K2往左拨,要U2单独作用应该把K1往右拨。

②不可以直接将不作用的电源(Ul或U2)短接置零,因为电压源内阻很小,如果直接短接会烧毁电源2.实验电路中,若有一个电阻器改为二极管,试问叠加原理的迭加性与齐次性还成立吗为什么答:①实验电路中,若有一个电阻器改为二极管,叠加原理的迭加性与齐次性不成立,因为叠加原理的迭加性与齐次性只适用于线性电路,二极管是非线性元件,使实验电路为非线性电路,所以不成立。

叠加定理实验报告

叠加定理实验报告

叠加定理实验报告实验报告:叠加定理实验一、实验目的:1.了解叠加定理的基本概念和原理;2.掌握使用叠加定理解决简单电路中的电流和电压问题。

二、实验器材:1.直流电源;2.二极管;3.电阻;4.万用表。

三、实验原理:叠加定理是指在线性电路中,若有多个电压源对同一支路产生作用,则这些电压源产生的作用可分别计算,再进行矢量叠加,最终得到总的电压作用。

同样,多个处于同一支路的电流源也可以按此原理进行计算。

叠加定理的具体公式如下:对于电压源:V=V1+V2+V3+...对于电流源:I=I1+I2+I3+...其中V代表总的电压,V1、V2、V3等分别代表各个电压源的电压。

I代表总的电流,I1、I2、I3等分别代表各个电流源的电流。

四、实验步骤:1.准备一个简单电路,包括一个直流电源、一个二极管、一个电阻和一个万用表;2.将直流电源接入电路,使得电流通过二极管和电阻;3.测量电源电压,记录下来;4.按照叠加定理,依次断开电源、电阻和二极管,只保留一个元件,测量每个元件的电压和电流;5.根据叠加定理的公式,计算出总的电压和电流,并与实际测量值进行比较。

五、实验结果和分析:实验中,我们选用了一个5V的直流电源,一个10kΩ的电阻和一个二极管。

测量得到电源的电压为5V。

按照步骤4,依次断开电源、电阻和二极管,测量得到的结果如下:1.断开电源,测得电压为0V;2.只留下电源,测得电压为5V;3.只留下电阻,测得电压为0V;4.只留下二极管,测得电压为0.6V。

按照叠加定理的公式,计算总的电压:V=0V+5V+0V+0.6V=5.6V实际测量的总电压为5.6V,与计算结果相符合。

六、实验结论:通过本次实验,我们学习了叠加定理的基本原理和使用方法。

实验结果验证了叠加定理的正确性,即在一个支路中,多个电压源产生的电压可以分别计算,最后进行叠加得到总的电压作用。

这对于解决复杂电路中的电压和电流分析问题非常有帮助。

七、实验感想:通过本次实验,我深刻体会到了叠加定理在电路分析中的重要性。

实验一 叠加定理

实验一 叠加定理

实验一叠加定理1.1.1实验目的1.用实验方法验证叠加定理,加深对该定理的理解。

2.加深对电路的电流、电压参考方向的理解。

1.1.2 实验原理叠加定理指出:在有几个独立电源共同作用下的线性电路中,通过每一个元件的电流或其两端的电压,可以看成是由每一个独立电源单独作用时在该元件上所产生的电流或电压的代数和。

在实验中当一个电源单独作用时,其他的电源必须置为零(电压源短路,电流源开路);在求电流或电压的代数和时,当电源单独作用时电流或电压的参考方向与共同作用时的参考方向一致时,符号取正,否则取负。

叠加定理反映了线性电路的叠加性,另外线性电路还具有齐次性,即当激励信号(如电源作用)增加或减小K倍时,电路的响应(即在电路其他各元件上所产生的电流和电压值)也将增加或减小K倍。

叠加性和齐次性都只适用于求解线性电路中的电流、电压。

对于非线性电路,叠加性和齐次性都不适用。

在本实验中,用直流稳压电源来近似模拟电压源,由其产生的误差可忽略不计,这是因为直流稳压电源的等效内阻很小。

1.1.3实验预习要求1.复习教材中叠加定理与计算方法,预习3.1.3中直流电压表、电流表、万用表和稳压电源的主要技术特性并掌握正确的使用方法。

2.按表1.1.1的要求,用支路电流法计算出图1.1.1电路中支路电流和各电阻元件两端的电压,注意参考方向,并把计算结果填入表1.1.1中。

3.利用EDA软件对图1.1.1电路进行仿真分析。

软件详细介绍见教材和附录1。

电流表插座图1.1.1叠加定理的实验电路1.1.4实验设备与器件1.双路可调直流稳压电源2.数字万用表3.电阻器若干4.叠加定理实验电路板1.1.5 实验内容与步骤1.实验电路如图1.1.1所示,按实验电路图连接线路并调节电源参数值。

2.在电路图中接入电压表或电流表,当E1、E2共同作用时测量各支路电流及各电阻元件两端的电压,数据记入表1.1.1中。

3.当E1单独作用时,BC两点不接电源,直接用短路线相连。

1叠加定理实验

1叠加定理实验

GDOU-B-11-112广东海洋大学学生实验报告书(学生用表)实验名称叠加定理实验课程名称课程号学院(系)专业班级学生姓名学号 19 实验地点科技楼实验日期一、实验目的验证线性电路叠加原理的正确性,加深对线性电路的叠加性和齐次性的认识和理解。

二、原理说明叠加原理指出:在有多个独立源共同作用下的线性电路中,通过每一个元件的电流或其两端的电压,可以看成是由每一个独立源单独作用时在该元件上所产生的电流或电压的代数和。

线性电路的齐次性是指当激励信号(某独立源的值)增加或减小K 倍时,电路的响应(即在电路中各电阻元件上所建立的电流和电压值)也将增加或减小K倍。

三、实验设备四、实验内容实验线路如图7-1所示,用HE-12挂箱的“基尔夫定律/叠加原理”线路。

图 7-11. 将两路稳压源的输出分别调节为12V和6V,接入U1和U2处。

2. 令U1电源单独作用(将开关K1投向U1侧,开关K2投向短路侧)。

用直流数字电压表和毫安表(接电流插头)测量各支路电流及各电阻元件两端的电压,数据记入表7-1。

3. 令U2电源单独作用(将开关K1投向短路侧,开关K2投向U2侧),重复实验步骤2的测量和记录,数据记入表7-1。

4. 令U1和U2共同作用(开关K1和K2分别投向U1和U2侧),重复上述的测量和记录,数据记入表7-1。

5. 将U2的数值调至+12V,重复上述第3项的测量并记录,数据记入表7-1。

表 7-1五、实验注意事项1. 用电流插头测量各支路电流时,或者用电压表测量电压降时,应注意仪表的极性,并应正确判断测得值的+、-号。

2. 注意仪表量程的及时更换。

六、预习思考题1. 在叠加原理实验中,要令U1、U2分别单独作用,应如何操作可否直接将不作用的电源(U1或U2)短接置零答:①要令Ul单独作用,应该把K2往左拨,要U2单独作用应该把K1往右拨。

②不可以直接将不作用的电源(Ul或U2)短接置零,因为电压源内阻很小,如果直接短接会烧毁电源2.实验电路中,若有一个电阻器改为二极管,试问叠加原理的迭加性与齐次性还成立吗为什么答:①实验电路中,若有一个电阻器改为二极管,叠加原理的迭加性与齐次性不成立,因为叠加原理的迭加性与齐次性只适用于线性电路,二极管是非线性元件,使实验电路为非线性电路,所以不成立。

叠加定理实验报告

叠加定理实验报告

叠加定理
一、实验目的
1.通过设计加深对叠加定理的理解
2.进一步学习使用仿真测量仪表测量电压、电流等变量。

二、实验方案
自己设计一个有源二端网络,要求包括至少两个以上
的独立源(一个电压源和一个电流源),分别测量每个
独立源单独作用时的响应,并测量所有独立源一起作
用时的响应,验证叠加定理。

并与理论计算值比较。

三、实验步骤
1.用EWB软件设计电路图
2.进行仿真验证
当它们全部作用时
分别取两个电源单独作用时的电流和电源:a)12V电压源单独作用时
b)1A电流源单独作用时
计算:-499.8mA+-5.977mA=-505.7mA;
5.977V+499.8V=505.7V;
符合叠加定理。

四、实验结果分析
如图数据显示可知,两个个电源单独作用的电流
之和或电压之和等于它们一起作用时的电流或
电压。

五、实验结论
通过数据分析可知,电源的作用符合叠加定理,即单
独作用之和等于总的作用。

实验一基尔霍夫定律与叠加原理的验证

实验一基尔霍夫定律与叠加原理的验证

实验一 基尔霍夫定律与叠加原理的验证一、实验目的 1. 验证基尔霍夫定律和叠加定理的正确性,加深对基尔霍夫定律和叠加定理的理解。

2. 学会用电流插头、插座测量各支路电流。

二、原理说明基尔霍夫定律是电路的基本定律。

测量某电路的各支路电流及每个元件两端的电压,应能分别满足基尔霍夫电流定律(KCL )和电压定律(KVL )。

即对电路中的任一个节点而言,应有ΣI =0;对任何一个闭合回路而言,应有ΣU =0。

叠加原理指出:在有多个独立源共同作用下的线性电路中,通过每一个元件的电流或其两端的电压,可以看成是由每一个独立源单独作用时在该元件上所产生的电流或电压的代数和。

线性电路的齐次性是指当激励信号(某独立源的值)增加或减小K 倍时,电路的响应(即在电路中各电阻元件上所建立的电流和电压值)也将增加或减小K 倍。

运用上述定律原理时必须注意各支路或闭合回路中电流的正方向,此方向可预先任意设定。

三、实验设备序号名称型号与规格数量备注1双路直流可调稳压电源MCH-303D-Ⅱ 0~30V12数字万用表VC9801A+1自备3直流电压表0~200V14电位、电压测定实验电路板1DGJ-03三、实验内容(一)基尔霍夫定律的验证(a)DGJ-2型设备实验电路图(b) TX 型设备实验电路图图2-1验证基尔霍夫定律和叠加定理实验电路图DGJ-2型设备实验线路如图2-1(a),用DGJ-03挂箱的“基尔霍夫定律/叠加原理”线路。

TX型设备实验线路如图2-1(b),需要自行连接电路。

1. 实验前先任意设定三条支路和三个闭合回路的电流正方向。

图2-1中的I1、I2、I3的方向已设定。

三个闭合回路的电流正方向可设为ADEFA、BADCB和FBCEF。

2. 分别将两路直流稳压源接入电路,令U1=12V,U2=6V。

3. 熟悉电流插头的结构,将电流插头的两端接至数字毫安表的“+、-”两端。

4. 将电流插头分别插入三条支路的三个电流插座中,读出并记录电流值。

实验1叠加定理

实验1叠加定理

实验1 迭加定理一、 实验目的1、用实验方法研究迭加定理的正确性和使用条件。

2、掌握简单电路的连接方法及仪表的使用方法。

二、 实验原理与内容1、 迭加原理:在线性电路中,任一支路的电流或电压都是电路中每一个独立源单独作用时在该支路所产生的电流或电压的代数和。

实验电路如图1所示,测量填入表一中,注意电流方向,并根据所学理论,自行校验结果。

图1 图2表一R1=510ΩR2=200Ω+-12V U R1=510ΩR2=200Ω+-1V U S12、如图2,在R3支路串入非线性元件(二极管D),重复上述实验,将测得数据填入表二中,并自行分析测量结果。

能得出什么样的结论。

表二注:1、实物二极管上标注有点为阴极。

2、做非线性实验时,控制屏不能提供相应低电压的,电源用JW—2稳压电源的“+,-”提供。

3、实验完毕后,整理实验台桌,器件放入袋内。

万用表置于交流电压最高档。

三、实验仪器与器材JW—2(或3)型直流稳压稳电源一台MD30型数字万用表一只MF30型普通万用表一只ZX21型旋转式电阻箱二只通用实验板底一块器材510Ω电阻二只200Ω和24Ω电阻各一只普通二极管一只四、实验报告1、整理实验数据,讨论结果,验证迭加原理,分析误差原因。

实验报告要体现出表一中I1和U AB的理论计算过程。

2、总结本次实验收获。

3、回答思考题(1)在验证迭加原理时,如果电源电阻不能忽略,该如何进行?(2)迭加原理和使用的条件是什么?如果实验电路中的电源是交流(正弦)结果将会怎样?4、(选作)用EWB软件验证上述实验数据。

下图为在软件中的连接图。

AA。

叠加原理的实验

叠加原理的实验

叠加原理的实验实验一:叠加原理的介绍实验目的:通过实验验证叠加原理,并了解其在电路中的应用。

实验材料:1. 电源2. 电阻器3. 电流表4. 电压表5. 连接线实验步骤:1. 连接电路:首先,将电源的正极和负极连接到电路板上的两个不同节点。

然后,将一个电阻器连接到正极,并将另一个电阻器连接到负极。

确保电路的连接稳固。

2. 测量电阻:使用电流表和电压表分别测量两个电阻器的电流和电压。

记录测量结果。

3. 加入电压源:在电路中加入一个额外的电压源,并将其与一个电阻器连接。

确保电压源的正负极正确连接。

4. 再次测量电阻:使用电流表和电压表分别测量另一个电阻器和额外电压源的电流和电压。

记录测量结果。

5. 对比数据:比较不同情况下测量的电流和电压数据。

观察它们之间的关系和变化。

6. 分析实验结果:根据实验数据,分析叠加原理在电路中的应用。

讨论电流和电压之间的叠加关系,并解释实验结果。

实验结果与讨论:通过上述实验,我们可以得出以下结论:1. 叠加原理:根据实验结果,我们可以看出电流和电压在电路中可以叠加,即可以将各个电源或电阻器产生的电流和电压相加,得到整个电路的总电流和总电压。

2. 叠加原理的应用:叠加原理在电路分析中具有重要的应用。

它可以帮助我们简化复杂的电路结构,将复杂的电路拆分为多个简单的电路,然后通过叠加原理计算各个简单电路的电流和电压,最后合并结果,得到整个电路的电流和电压。

通过实验结果的分析,我们可以进一步理解叠加原理在电路分析中的重要性,它为我们解决实际问题提供了一种简洁而有效的方法。

总结:叠加原理是电路分析中一个基本而重要的原理,通过实验的验证我们得出了电流和电压在电路中可以叠加的结论。

叠加原理在工程领域中有着广泛的应用,能够帮助我们简化复杂的电路结构,更好地理解和分析电路中的电流和电压。

通过实验的学习,我们不仅加深了对叠加原理的理解,也了解了实验的操作步骤和数据处理方法。

这将为我们今后在电路分析和解决电路问题时提供有力的支持。

叠加定理1

叠加定理1

4 + 12V–
4
i"
p i' R i" R 8W
2 2
结论:不能用叠加定理求功率
4
4
+ 6V –
计算机仿真
五、用叠加定理解题 应注意的问题:
①叠加定理只适用于线性电路求电压和电流;不能 用叠加定理求功率(功率为 电源的二次函数)。不适 用于非线性电路。 ②应用时电路的结构参数必须前后一致。 ③不作用的电压源短路;不作用的电流源开路 ④叠加时注意参考方向下求代数和。 ⑤运用叠加定理时也可以把电源分组求解,每个分 电路的电源个数可能不止一个。
七、总结
1、叠加定理的内容 2、叠加定理的应用即求解电路方法 3、思考如何使用叠加定理求解含有受控源的电路
6 + 9V – 3 – I1 3 6I1 + a + UR – b
作业:4—1、2、3、5
3. 电压源单独作 用时,iS=0开路
i 2" 1 R1 R 2
R1 R1 R 2
iS
uS
i 1"
R1 + u 1" –
i 2"
u 1' i 2 ' R 2 iS
u 1" R 1 i 2 " uS
uS –
+
R2
★四、应用定理求解电路

重点 i 4
(1) 12V电压源单独作用:
在该处产生的电压或电流的叠加。
单独作用:一个电源作用,其余电源不作用(值为零)
电源不作用 (值为零) 电压源(us=0) 电流源 (is=0) 短路 开路
★三、叠加定理的证明
R 1 i1 R 2 i 2 u S

电路原理 实验指导书

电路原理 实验指导书

4.83
-3.67
2US1 单独作用
8.5
-2.4
-6.2
4.40
-2.41
-3.20
五、实验注意事项
1. 用电流插座测量电流时,要注意电流表的极性(红正蓝负)及选取合适的量程,切勿使仪表 超过量程。
2. 所有需要测量的电压值,均以电压表测量的读数为准。防止稳压电源的两个输出端碰线短路。 3. 用指针式电压表或电流表测量电压或电流时,如果仪表指针反偏,则必须调换仪表极性,重 新测量。如果仪表指针正偏,可读出电压或电流值。若用数显电压表或电流表测量,则可直接读出 电压或电流值。 六、思考题
测量有源二端网络的短路电流 ISC
,则等效内阻 R0
UOC I SC

(3)加压求流法
将有源二端网络 N 中的所有独立电源置零,在 a、b 端施加一已知直流电压 U,测量流入二端网络
的电流
I,如图
2-3
所示,则等效内阻 R0
U I

(4)半电压法
电路如图 2-4 所示,改变 RL 值,当负载电压U 0.5UOC 时,负载电阻即为被测有源二端网络的等
效电阻值。
图 2-3 加压求流法
图 2-4 半电压法
(5)直线延长法
当有源二端网络不允许短路时,先测开路电压UOC ,然后按图 2-5(a)所示的电路连线,读出电压
表读数U1 和电流表读数 I1 。在电压和电流的直角坐标系中标出(UOC ,0)(U1 , I1 )两点,如图 2-5
(b)所示,过这两点作直线,与纵轴的交点为(0,I SC
US1 US2 共
5.34
7.11
-12.44
2.67
7.00
-0.73

叠加定理实验报告

叠加定理实验报告

叠加定理实验报告实验目的,通过实验验证叠加定理在电学中的应用。

实验仪器,直流电源、电阻、导线、毫安表、伏特表。

实验原理,叠加定理是指在线性电路中,若有多个电源作用于电路中,某一支路的电流或电压等于各个电源单独作用时该支路的电流或电压之和。

即叠加定理适用于线性电路,不适用于非线性电路。

实验步骤:1. 将直流电源、电阻、导线按照电路图连接好。

2. 分别用毫安表和伏特表测量电路中的电流和电压。

3. 记录下各个电源单独作用时电路中的电流和电压数值。

4. 同时接通两个电源,测量电路中的电流和电压数值。

5. 比较实验结果,验证叠加定理。

实验结果:1. 电源1单独作用时,电路中的电流为I1,电压为U1。

2. 电源2单独作用时,电路中的电流为I2,电压为U2。

3. 两个电源同时作用时,电路中的电流为I,电压为U。

实验结论,根据实验结果,可以得出结论,电路中的电流和电压等于各个电源单独作用时该支路的电流或电压之和,验证了叠加定理在电学中的应用。

实验中遇到的问题及解决方法:1. 实验中发现电路连接不良导致测量数值不准确,及时重新连接电路,确保连接良好。

2. 实验中毫安表和伏特表的使用不熟练,导致测量过程中出现误差,经过反复练习,熟练掌握仪器的使用方法。

实验中的收获:通过本次实验,我深刻理解了叠加定理在电学中的应用,掌握了实验操作的方法和技巧,提高了自己的动手能力和实验数据处理能力。

实验的意义:叠加定理是电学中的基本原理之一,它在电路分析和设计中有着重要的应用价值。

通过本次实验,不仅验证了叠加定理的正确性,也加深了对电学知识的理解和掌握,为今后的学习和科研打下了坚实的基础。

总结:本次实验通过实际操作验证了叠加定理在电学中的应用,实验结果符合叠加定理的要求,验证了叠加定理的正确性。

同时,实验中也积累了丰富的实验操作经验,提高了自己的动手能力和实验数据处理能力。

这次实验对于深入理解电学知识,提高实验技能有着重要的意义。

实验1 基尔霍夫定律及叠加定理实验报告

实验1 基尔霍夫定律及叠加定理实验报告

实验1 基尔霍夫定律及叠加定理实验报告1、实验目的本实验的目的是通过实验测量和计算,验证基尔霍夫定律和叠加定理在电路中的有效性,并实际应用这些定律去解决实际工程中的电路问题。

2、实验原理基尔霍夫定律是德国物理学家罗尔夫·基尔·霍夫(Gustav Kirchhoff)在1845年提出的,它说明在电路中,其中一个点的流入电流之和等于其中另一个点的流出电流之和:即电流经过支路时守恒,这就是熟知的第一定律(支路定律)。

对应地,基尔霍夫又提出了“点定律”,即:电势差绕任意一电路回路理论上其未知部分的总和为零。

叠加定理是1929年由英国物理学家K.波普特提出的,它规定:对于电路中任意两点之间的电路电势,它们相等的那段路线上的电势差等于这线路的所有分支的电势差的累加和。

3、实验过程(1)首先按照实验要求,准备好电路和元件,连接成实验电路。

实验电路中的电阻可以通过额定的值调节,从而在不同的实验中可以调整出不同的抗性。

(2)用万用表测量电阻R1和R2之间的电压和电流,以计算两个抗性之间的电阻。

(3)计算在实验电路上电位差V1和V2之间的电压和电流,以验证基尔霍夫和叠加定理的有效性。

(4)在实验室实验中,将R1的电阻值逐步增加,结合实验数据,计算出随着R1变化时,V1和V2之间的关系。

(5)将实验数据绘制到V-R图上,比较实验数据与基尔霍夫定律和叠加定理的理论图是否一致,看看它们是否有准确性。

4、实验结果在V-R图上可以看出,实验数据与基尔霍夫定律和叠加定理的理论图近似一致,并且他们之间的误差很小,说明基尔霍夫定律和叠加定理在实验中是有效的。

叠加定理实验报告

叠加定理实验报告

叠加定理实验报告引言:在物理学中,叠加定理是一个重要的概念,它在描述波动现象时具有广泛的应用。

通过叠加定理,我们可以将多个波动的效果相加,以获得整体的波动模式。

本次实验旨在验证叠加定理的有效性,并探究它在不同场景下的具体应用。

实验一:光的叠加首先,我们使用激光器、一块透明玻璃和一束红色激光光束进行实验。

我们将透明玻璃垂直放置在激光器前方,使光束垂直射入玻璃。

然后,我们在光束下方放置一块透明薄板,并将其顶部部分部分遮挡住。

观察到,光束通过薄板后发生了偏折和干涉现象。

通过仔细观察在薄板下方的屏幕上出现的干涉条纹,我们可以清晰地看到光束发生了叠加效应。

实验二:声音的叠加为了验证叠加定理在声音领域的应用,我们利用音响设备进行实验。

我们先播放一段频率为1000Hz的音频,然后再播放一段频率为2000Hz的音频。

通过调节音量和相位,我们可以听到两个音频叠加后产生了新的声音。

这再次验证了叠加定理在声音领域的应用。

不仅如此,我们还可以利用叠加定理来控制声音的强弱和方向。

实验三:波动的叠加在实验室中,我们利用水波实验装置进行了波动的叠加实验。

我们先使用一个振荡器在水面上产生一条完整的波浪,然后再在波浪中心位置增加另一个振荡器产生的波浪。

我们观察到两个波浪相遇后形成了更复杂的波动模式,这是因为叠加定理使得两个波浪之间相互干涉,从而形成了新的波形。

实验四:电磁场的叠加最后,我们进行了电磁场的叠加实验。

通过在实验室中设置两个电磁场源,我们可以观察到两个电磁场叠加后形成了更强大的电磁场。

这一实验结果再次验证了叠加定理在电磁学中的应用,并为我们提供了理解和应用电磁学的重要工具。

总结通过以上实验的研究,我们可以看到叠加定理在描述波动现象时的广泛应用。

无论是光束、声音还是波动,都可以通过叠加定理来解释它们的叠加效应。

通过叠加定理,我们可以更好地理解波动现象,并能够利用这一原理来探索更多的应用。

叠加定理的实验报告,旨在为读者提供一个清晰的实验过程概览,并对叠加定理在不同情境下的实际应用进行了讨论,希望能够为读者提供更深入的了解和启发。

实验报告1叠加定理

实验报告1叠加定理

实验报告:叠加定理的仿真验证一、实验目的1.进一步掌握直流稳压电源和万用表的使用方法。

2.掌握直流电压和直流电流的测试方法。

3.进一步加深对叠加定理的理解。

二、实验原理叠加定理。

三、实验步骤1.设计实验电路;2.在Multisim12.0软件上实现电路的搭建并仿真;3.根据表格(实验内容中)记录仿真实验数据;4.验证叠加定理。

四、测量方法数据由Multisim12.0软件中的Agilent万用表直接测量。

五、实验内容1.实验电路(其中电压源9V,电流源1A)2.使用万用表分别测量(a),(b),(c)三图中经过电阻R1,R2,R3的电阻的电流和两端参数i1 i2 i3 UR1 UR2 UR3 V1单独作用 2.25A 0A 2.25A 4.5V 0V 4.5V i单独作用-0.5A -1A 0.5A -1V -2V 1V共同作用测量值 1.75A -1A 2.75A 3.5V -2V 5.5V验证叠加定理成立参数i1 i2 i3 UR1 UR2 UR3 V1单独作用3A 0A 3A 6V 0V 6V i单独作用-1A -2A 1A -2V -4V 2V共同作用测量值2A -2A 4A 3.5V -4V 7V验证叠加定理成立六、实验数据处理和分析对图中线性电路进行理论分析,利用回路电流法或节点电压法列出电路方程求解,得出的电压、电流的数据与测量值相符。

验证了测量数据的准确性。

电压表和电流表的测量有一定的误差,都在可允许的误差范围内。

验证叠加定理:以R1为例,V1单独作用时,i1’=2.25A;电压源i单独作用时,i1’’=-0.5A,i1’+i1’’=1.75A,V1和i共同作用时,测量值为1.75A,因此叠加性得以验证。

其他的支路电流和电压也可类似验证叠加定理的准确性。

七、实验小结测量电压、电流时,应注意仪表的极性与电压、电流的参考方向一致,这样纪录的数据才是准确的。

线性电路中,叠加定理成立。

实验一叠加定理和戴维南定理

实验一叠加定理和戴维南定理

实验一叠加定理和戴维南定理一、实验目的1.掌握叠加定理和戴维南定理的基本原理。

2.学会使用叠加定理和戴维南定理分析电路。

二、实验原理1.叠加定理:当线性电路中有多个独立电源同时作用时,其总电压和电流可以通过每个独立电源产生的电压和电流的叠加得到。

即,总电压等于每个独立电源产生的电压之和,总电流等于每个独立电源产生的电流之和。

2.戴维南定理:任何一个线性有源二端网络都可以等效为一个电压源和内阻串联的形式。

其中,电压源的电压等于网络两端点的开路电压,内阻等于网络断路电阻。

通过戴维南定理,我们可以将复杂的网络简化为一个简单的电压源,方便分析计算。

三、实验步骤1.搭建实验电路,包含多个独立电源和负载。

2.连接测量仪器,如万用表等,测量电路的总电压和总电流。

3.分别断开每个独立电源,测量每个独立电源产生的电压和电流。

4.根据叠加定理,计算总电压和总电流,验证是否与测量结果相符。

5.运用戴维南定理,将实验电路等效为一个电压源和内阻串联的形式。

6.断开负载,测量开路电压和断路电阻。

7.根据戴维南定理,计算等效电压源的电压和内阻,验证是否与测量结果相符。

四、实验结果与分析1.实验数据记录:独立电源产生的电流之和。

在此实验中,总电压为23V,总电流为9A,与测量结果相符。

3.根据戴维南定理,等效电压源的电压等于网络两端点的开路电压,内阻等于网络断路电阻。

在此实验中,开路电压为23V,断路电阻为6Ω(未提供具体计算过程)。

因此,等效电压源的电压为23V,内阻为6Ω。

五、结论总结与实验心得体会通过本次实验,我们掌握了叠加定理和戴维南定理的基本原理,学会了如何使用这两个定理来分析电路。

实验结果表明,叠加定理可以帮助我们分析多个独立电源同时作用时的总电压和电流,戴维南定理可以帮助我们将复杂的电路简化为一个简单的电压源和内阻串联的形式,方便我们进行电路分析和计算。

通过本次实验,我们更加深入地理解了线性电路的基本性质和电路设计的基本原理。

叠加定理验证实验报告

叠加定理验证实验报告

电子科技大学电子技术实验报告学生姓名: 班级学号:考核成绩:实验地点:指导教师:试验时间:实验报告内容:1.实验名称、目的、原理与方案2.进过整理的实验数据、曲线3.对实验结果的分析讨论以及得出的结论4.对指定问题的回答实验报告要求:书写清楚、文字简洁、图表工整,并附原始记录,按时交任课老师评阅实验名称:叠加定理的验证一:实验目的1.进一步掌握直流稳压电源的使用和万用表的使用方法。

2.掌握直流电压和直流电流的测试方法。

3.进一步加深对叠加定理的理解。

二:实验原理1.叠加定理叠加定理指出,全部电源在电路中产生的任意电压或电流,等于每一个电源单独左右产生电压或电流代数和。

如图(a)所示电路,电路中的各支路电流、电压等于图(b)中U1s单独作用产生的电流、电压与图(c)中U2s单独作用产生的电流、电压的代数和。

2.面包板和色环电阻的识别。

三:测试方法1.直流电压的测试方法用万用表测量:若不知道被测电压的大小,应首先用高档,而后在选择合适的档位来测试所选档位越靠近被测值,测量数值就越准确;要注意万用表内阻对被测量的影响;若用指针万用表测量未知电压时,应注意正负极的判断。

示波器测量直流电压时,应先将垂直通道的耦合方式需置于接地耦合,此时,荧光屏上的水平时基线即测量时零电位线,可使用垂直位移旋钮调节零基线的位置。

确定了零基线后,将垂直耦合方式置于D C偶合,可读出基线上移或下移的格数,该格数乘以灵敏度即为直流电压的大小。

2.直流电流的测试方法可以直接测量电流的仪器只有万用表,测量时,应首先注意电流表应串联在被测电路中;其次,一定要注意量程的选择、表笔的接孔转换。

否则,会烧掉保险,甚至损坏万用表。

四:实验内容五:注意事项1.在验证叠加定理时,电压源不能直接置零,而应用短路线替代电压源,否则可能会损坏直流稳压电压。

2.在测试电流的时候,电流表应串联在电路中,否则会损坏电流表。

3.无论是测量电压还是电流,都应先从大量程测起,再根据具体值换小量程。

实验一 叠加定理的验证

实验一 叠加定理的验证

实验一叠加定理的验证
一、实验目的
1. 熟悉使用示波器的基本操作方法;
2. 掌握叠加原理的概念及其实际应用。

二、实验原理
1. 叠加原理
叠加原理是在线性电路理论中,指当多个电源同时作用于同一个电路中时,每个电源所产生的效果与其单独作用于电路时产生的效果相同。

2. 信号的叠加
在电路中,当两个不同的信号作用于同一电阻时,其总电流等于这两个信号产生的电流的代数和。

同理,当两个不同的电压作用于同一电容时,其总电压等于这两个信号产生的电压的代数和。

3. 简单谐波信号
简单谐波信号是指在一个完整的周期内,电流或电压的大小随时间而变化呈正弦曲线。

三、实验步骤
1. 使用示波器观察基波信号
将正弦波发生器的输出接入通道1,在示波器上观察到基波的正弦波形。

调节幅度、频率和时基等参数,使波形清晰可见。

2. 观察一阶谐波
将正弦波发生器的输出接入通道1,再将经过一阻值为R的电阻后输出的波形接入通道2,调节通道1和通道2的增益,使两个波形在示波器屏幕上清晰可见。

4. 将两个信号分别输入到两个不同的电阻上观察结果。

四、实验结果
在示波器上观察到基波信号的正弦波形。

(见图1)
观察到经过一阻值为R的电阻后的波形是一个一阶谐波。

(见图2)
将两个信号叠加起来,可以观察到叠加波形,其频率等于两个信号频率的代数和。

(见图3)
将两个信号分别输入到两个不同的电阻上,再将两个波形的输出接入示波器的通道1和通道2,观察到两个波形的叠加结果,其频率等于两个信号频率的代数和。

(见图4)。

叠加定理实验报告

叠加定理实验报告

叠加定理实验报告实验介绍:叠加定理是电学中的一个基础定理,建立在线性电路的基础之上,用于判断在电路中存在多个电源时,电子的运动状态。

本次实验旨在通过对叠加定理的实验验证,深入理解电路中的电子运动规律。

实验原理:叠加定理是指任意一个电路,当有多个电源同时作用于电路中时,其电流、电压等物理量等效为各个电源单独作用于电路中所产生的电流、电压等物理量的叠加。

这条定理的基本思想是,对于线性电路,在其内部各点处的电压、电流等变量可以分别看成是某些电源单独作用造成的各条结果的代数和。

实验内容:1. 准备电路:将两个电源分别连接在两个不同的电阻上,构建一个简单的叠加定理实验电路。

2. 实验记录:记录在不同电源电压下电路中的电流、电压等物理量。

利用万用表对电路中的电子运动状态进行实时监测。

3. 叠加计算:根据叠加定理的原理,将两个电源所产生的电流、电压等物理量进行叠加运算,得到电路整体的电流、电压等物理变量。

将计算结果与实验数据进行对比。

实验结果:经过实验记录和叠加计算,我们得到了电路在不同电源电压下的电流、电压等物理量。

同时,通过对实验数据的对比分析,我们发现实验结果与叠加计算的计算结果基本一致。

实验结论:本次叠加定理实验的结果表明,叠加定理确实是电学中一个有效的工具,用于分析和计算线性电路中存在多个电源时的电子运动状态。

通过该实验,我们进一步加深了对叠加定理的理解,同时还学习到了利用万用表进行电路监测和记录的重要技能。

实验思考:在实验过程中,我们发现万用表的操作不太熟练,导致了一些电路变量的误差。

因此,在今后的实验中,我们需要加强对万用表的掌握,提高实验数据的准确性。

另外,在构建电路时,需要注意电路的连接方式和电阻值等因素,以避免电路的失效和实验结果的误差。

叠加定理验证实验报告

叠加定理验证实验报告

叠加定理验证实验报告叠加定理验证实验报告引言:叠加定理是电磁学中的基本原理之一,它描述了在线性系统中,多个电磁场的叠加效应。

通过实验验证叠加定理的准确性,可以深入理解电磁学中的重要概念,并为进一步研究和应用提供基础。

实验目的:本实验旨在验证叠加定理在电磁学中的应用。

通过将不同频率和振幅的电磁场叠加在一起,观察和测量叠加后的电磁场的特性,以验证叠加定理的准确性。

实验装置与方法:1. 实验装置:本实验使用了一个信号发生器、一个示波器、一根导线和一块带有刻度的纸。

2. 实验方法:步骤一:将信号发生器的输出连接到示波器的输入端,确保电路连接正确。

步骤二:调整信号发生器的频率和振幅,产生不同的电磁场。

步骤三:将产生的电磁场导入示波器,观察并记录示波器上的波形。

步骤四:将不同频率和振幅的电磁场叠加在一起,再次观察并记录示波器上的波形。

步骤五:对比叠加前后的波形差异,验证叠加定理在电磁学中的应用。

实验结果与分析:通过实验观察和记录,我们得到了如下结果:1. 单独产生的电磁场波形:当我们调整信号发生器的频率和振幅,产生不同的电磁场时,示波器上显示出相应的波形。

我们观察到频率越高,波形的周期越短;振幅越大,波形的幅度越高。

这与电磁学中的基本原理相符合。

2. 叠加后的电磁场波形:将不同频率和振幅的电磁场叠加在一起后,示波器上显示出了叠加后的波形。

我们观察到,叠加后的波形是由各个电磁场波形的叠加构成的。

通过调整不同电磁场的频率和振幅,我们可以得到不同形状和特性的叠加波形。

3. 实验结果验证叠加定理:通过对比叠加前后的波形差异,我们可以验证叠加定理在电磁学中的应用。

实验结果表明,叠加定理在电磁学中是成立的,即多个电磁场可以叠加在一起,形成新的电磁场。

结论:本实验通过观察和测量不同频率和振幅的电磁场叠加后的波形,验证了叠加定理在电磁学中的应用。

实验结果表明,叠加定理是电磁学中的基本原理之一,可以用于描述和分析复杂的电磁场问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

GDOU-B-11-112广东海洋大学学生实验报告书(学生用表)
实验名称叠加定理实验课程名称课程号
学院(系)专业班级
学生姓名学号 19 实验地点科技楼实验日期
一、实验目的
验证线性电路叠加原理的正确性,加深对线性电路的叠加性和齐次性的认识和理解。

二、原理说明
叠加原理指出:在有多个独立源共同作用下的线性电路中,通过每一个元件的电流或其两端的电压,可以看成是由每一个独立源单独作用时在该元件上所产生的电流或电压的代数和。

线性电路的齐次性是指当激励信号(某独立源的值)增加或减小K 倍时,电路的响应(即在电路中各电阻元件上所建立的电流和电压值)也将增加或减小K倍。

三、实验设备
序号名称型号与规格数量备注
1 直流稳压电源0~30V可调二路
2 万用表 1
3 直流数字电压表 1
4 直流数字毫安表 1
5 迭加原理实验电路板 1 HE-12
四、实验内容
实验线路如图7-1所示,用HE-12挂箱的“基尔夫定律/叠加原理”线路。

F12
图7-1
1. 将两路稳压源的输出分别调节为12V和6V,接入U1和U2处。

2. 令U 1电源单独作用(将开关K 1投向U 1侧,开关K 2投向短路侧)。

用直流数字电压表和毫安表(接电流插头)测量各支路电流及各电阻元件两端的电压,数据记入表7-1。

3. 令U 2电源单独作用(将开关K 1投向短路侧,开关K 2投向U 2侧),重复实验步骤2的测量和记录,数据记入表7-1。

4. 令U 1和U 2共同作用(开关K 1和K 2分别投向U 1和U 2侧), 重复上述的测量和记录,数据记入表7-1。

5. 将U 2的数值调至+12V ,重复上述第3项的测量并记录,数据记入表7-1。

表 7-1
五、实验注意事项
1. 用电流插头测量各支路电流时,或者用电压表测量电压降时,应注意仪表的极性,并应正确判断测得值的+、-号。

2. 注意仪表量程的及时更换。

六、预习思考题
1. 在叠加原理实验中,要令U 1、U 2分别单独作用,应如何操作?可否直接将不作用的电源(U 1或U 2)短接置零?
答:①要令Ul 单独作用,应该把K2往左拨,要U2单独作用应该把K1往右拨。

②不可以直接将不作用的电源(Ul 或U2)短接置零,因为电压源内阻很小,如果直接短接会烧毁电源
2. 实验电路中,若有一个电阻器改为二极管, 试问叠加原理的迭加性与齐次性还成立吗?为什么?
答:①实验电路中,若有一个电阻器改为二极管,叠加原理的迭加性与齐次性不成立,因为叠加原理的迭加性与齐次性只适用于线性电路,二极管是非线性元件,使实验电路为非线性电路,所以不成立。

3.当K 1(或K 2)拨向短路侧时,如何测U FA (或U AB )?
答:①当用指针式电压表时, 电压表的红表笔接高电位点,黑表笔接低电位点,如果Kl(或K2)拨向短路侧,只有U2单独作用,B 点比A 点电位高,要测量U AB ,红表笔接B 点,黑表笔接A 点,但要加负号,同样,A 点比F 点电位高,要测量U FA ,红表笔接A 点,黑表笔接F 点,也要加负号。

对于K2拨向短路侧,原理类似。

②对于本实验,用的是数字电压表,表笔接法没有讲究,但要注意正、负号。

一般红的接线柱接起点,黑的接线柱接终点,如要测量U FA 红的接线柱接F 点,黑的接线柱接A 点,直接记录数据,否则需要加负号。

七、实验报告
1. 根据实验数据表格,进行分析、比较,归纳、总结实验结论,即验证线性电路的叠
测量项目 实验内容 U 1 (V) U 2 (V) I 1 (mA) I 2 (mA) I 3 (mA) U A B (V) U C D (V) U A D (V) U D E (V) U F A (V) U 1单独作用 12 0 8.60 -2.37 6.21 2.38 0.787 3.165 4.40
4.39
U 2单独作用 0 6. -1.187 3.58 2.38 -.3.58
-1.187
1.213 -0.610 -0.608 U 1、U 2共同作用 12 6 7.41 1.216 8.60 -1.221 -0.402 4.385 3.79 3.78 2U 2单独作用
12
-2.36
7.14
4.74
-7.41
-2.35
2.417
-1.23
-1.229
加性与齐次性。

从表7-1 可以看出,U1U2共同作用时,其电流和电压是U1和U2单独作用的代数和,符合线性电路的叠加性;2U2单独作用时,其电流和电压是U2单独作用的2倍,符合线性电路的齐次性。

2. 各电阻器所消耗的功率能否用叠加原理计算得出?试用上述实验数据,进行计算并作结论。

各电阻器所消耗的功率不能用叠加原理计算得出,因为P=I2R或U2/R,如R3的功率P3=······.
3. 通过实验步骤6及分析表格7-2的数据,你能得出什么样的结论?
通过实验步骤6及分析表格2.2的数据,可以得出叠加定理只适用于线性电路,在非线性电路中不成立。

4. 心得体会及其他。

成绩指导老师日期
第页,共页。

相关文档
最新文档