2019年四川南充中考数学试题含详解
2024年四川省南充市中考真题数学试卷含答案解析
2024年四川省南充市中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1 )A .点AB .点BC .点CD .点D2.学校举行篮球技能大赛,评委从控球技能和投球技能两方面为选手打分,各项成绩均按百分制计,然后再按控球技能占60%,投球技能占40%计算选手的综合成绩(百分制人选手李林控球技能得90分,投球技能得80分.李林综合成绩为( )A .170分B .86分C .85分D .84分【答案】B【分析】本题考查求加权平均数,利用加权平均数的计算方法,进行求解即可.【详解】解:9060%8040%86⨯+⨯=(分);故选B .3.如图,两个平面镜平行放置,光线经过平面镜反射时,1240∠=∠=︒,则3∠的度数为( )A .80︒B .90︒C .100︒D .120︒【答案】C 【分析】本题考查利用平行线的性质求角的度数,平角的定义求出4∠的度数,再根据平行线的性质,即可得出结果.【详解】解:∵1240∠=∠=︒,∴418012100∠=︒-∠-∠=︒,∵两个平面镜平行放置,∴经过两次反射后的光线与入射光线平行,∴34100∠=∠=︒;故选C .4.下列计算正确的是( )A .235a a a +=B .842a a a ÷=C .236a a a ⋅=D .()326327a a =【答案】D【分析】本题考查整式的运算,根据合并同类项,同底数幂的乘除法则,积的乘方和幂的乘方法则,逐一进行判断即可.【详解】解:A 、23,a a 不能合并,原选项计算错误,不符合题意;B 、844a a a ÷=,原选项计算错误,不符合题意;C 、235a a a ⋅=,原选项计算错误,不符合题意;D 、()326327a a =,原选项计算正确,符合题意;故选D .5.如图,在Rt ABC 中,90306C B BC ∠=︒∠=︒=,,,AD 平分CAB ∠交BC 于点D ,点E 为边AB 上一点,则线段DE 长度的最小值为( )A B C .2D .3【答案】C 【分析】本题主要考查解直角三角形和角平分线的性质,垂线段最短,根据题意求得BAC ∠和AC ,结合角平分线的性质得到CAD ∠和DC ,当DE AB ⊥时,线段DE 长度的最小,结6.我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”诗中后两句的意思是:如果每一间客房住7人,那么有7人无房住;如果每一间客房住9人,那么就空出一间客房.设该店有客房x 间、房客y 人,下列方程组中正确的是( )A .779(1)x y x y+=⎧⎨-=⎩B .779(1)x y x y +=⎧⎨+=⎩C .779(1)x y x y -=⎧⎨-=⎩D .779(1)x y x y-=⎧⎨+=⎩【答案】A 【分析】根据“如果每一间客房住7人,那么有7人无房住;如果每一间客房住9人,那么就空出一间客房”分别列出两个方程,联立成方程组即可.【详解】根据题意有779(1)x y x y+=⎧⎨-=⎩故选:A .【点睛】本题主要考查列二元一次方程组,读懂题意找到等量关系是解题的关键.7.若关于x 的不等式组2151x x m -<⎧⎨<+⎩的解集为3x <,则m 的取值范围是( )A .m>2B .2m ≥C .2m <D .2m ≤【答案】B【分析】本题考查根据不等式组的解集求参数的范围,先解不等式组,再根据不等式组的解集,得到关于参数的不等式,进行求解即可.【详解】解:解2151x x m -<⎧⎨<+⎩,得:31x x m <⎧⎨<+⎩,∵不等式组的解集为:3x <,∴13m +≥,∴2m ≥;故选B .8.如图,已知线段AB ,按以下步骤作图:①过点B 作BC AB ⊥,使12BC AB =,连接AC ;②以点C 为圆心,以BC 长为半径画弧,交AC 于点D ;③以点A 为圆心,以AD 长为半径画弧,交AB 于点E .若AE mAB =,则m 的值为( )A B C 1D 29.当25x ≤≤时,一次函数2(1)1y m x m =+++有最大值6,则实数m 的值为( )A .3-或0B .0或1C .5-或3-D .5-或1【答案】A【分析】本题主要考查了一次函数的性质,以及解一元二次方程,分两种情况,当10m +>时和当10+<m ,根据一次函数性质列出关于m 的一元二次方程,求解即可得出答案.【详解】解:当10m +>即1m >-时,一次函数y 随x 的增大而增大,∴当5x =时,6y =,即25(1)16m m +++=,整理得:250m m +=解得:0m =或5m =-(舍去)当10+<m 即1m <-时,一次函数y 随x 的增大而减小,∴当2x =时,6y =,即22(1)16m m +++=,整理得:2230m m +-=解得:3m =-或1m =(舍去)综上,0m =或3m =-,故选:A10.如图是我国汉代赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”,它是由四个全等的直角三角形和一个小正方形组成.在正方形ABCD 中,10AB =.下列三个结论:①若3tan 4ADF ∠=,则2EF =;②若Rt ABG △的面积是正方形EFGH 面积的3倍,则点F 是AG 的三等分点;③将ABG 绕点A 逆时针旋转90︒得到ADG '△,则BG '的最大值为5.其中正确的结论是( )A.①②B.①③C.②③D.①②③∴2255BO OA AB =+=∴555BG BO OG ''≤+=+即:BG '的最大值为55+故选D .【点睛】本题考查解直角三角形,勾股定理,旋转的性质,解一元二次方程,求圆外一点到圆上一点的最值,熟练掌握相关知识点,并灵活运用,是解题的关键.二、填空题11.计算---a b a b a b 的结果为 .12.若一组数据6,6,m ,7,7,8的众数为7,则这组数据的中位数为.【答案】7【分析】本题考查众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.众数是数据13.如图,AB 是O 的直径,位于AB 两侧的点C ,D 均在O 上,30BOC ∠=︒,则ADC ∠= 度.14.已知m 是方程2410x x -=+的一个根,则(5)(1)m m +-的值为.【答案】4-【分析】本题主要考查了二元一次方程的解,以及已知式子的值求代数式的值,根据m 是方程2410x x -=+的一个根,可得出241m m +=,再化简代数式,整体代入即可求解.【详解】解:∵m 是方程2410x x -=+的一个根,∴241m m +=(5)(1)m m +-255m m m =-+-245m m =+-15=-4=-,故答案为:4-.15.如图,在矩形ABCD 中,E 为AD 边上一点,30ABE ∠=︒,将ABE 沿BE 折叠得FBE ,连接CF ,DF ,若CF 平分BCD ∠,2AB =,则DF 的长为 .∴90CMF CNF ∠=∠=︒,∵四边形ABCD 是矩形,∴90DCM ABC ∠=∠=︒,∴四边形CMFN 是矩形,16.已知抛物线21:C y x mx m =++与x 轴交于两点A ,B (A 在B 的左侧),抛物线22:()C y x nx n m n =++≠与x 轴交于两点C ,D (C 在D 的左侧),且AB CD =.下列四个结论:①1C 与2C 交点为(1,1)-;②4m n +=;③0mn >;④A ,D 两点关于(1,0)-对称.其中正确的结论是 .(填写序号)【点睛】本题考查了二次函数的图象与性质,二次函数与一元二次方程的关系,解一元二次方程,根的判别式,熟练掌握知识点的应用是解题的关键.三、解答题17.先化简,再求值:()23(2)3x x x x +-+÷,其中2 x =-.【答案】41x +,7-【分析】本题主要考查了整式的化简求值,运用完全平方公式展开,先算除法,再算加减法,最后代入求值即可.【详解】解:原式()()22443x x x =++-+22443x x x =++--41x =+,当2x =-时,原式4(2)17=⨯-+=-.18.如图,在ABC 中,点D 为BC 边的中点,过点B 作BE AC ∥交AD 的延长线于点E .(1)求证:BDE CDA ≌ .(2)若AD BC ⊥,求证:BA BE =【答案】(1)见解析(2)见解析【分析】本题考查全等三角形的判定和性质,中垂线的判定和性质:(1)由中点,得到BD CD =,由BE AC ∥,得到,E DAC DBE C ∠=∠∠=∠,即可得证;(2)由全等三角形的性质,得到ED AD =,进而推出BD 垂直平分AE ,即可得证.【详解】(1)证明:D 为BC 的中点,BD CD ∴=.,BE AC ∥,E DAC DBE C ∴∠=∠∠=∠;在BDE 和CDA 中,E DAC DBE C BD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS BDE CDA ∴ ≌;(2)证明:,BDE CDA △≌△ED AD∴=,AD BC ⊥ BD ∴垂直平分AE ,BA BE ∴=.19.某研学基地开设有A ,B ,C ,D 四类研学项目.为了解学生对四类研学项目的喜爱情况,随机抽取部分参加完研学项目的学生进行调查统计(每名学生必须选择一项,并且只能选择一项),并将调查结果绘制成两幅不完整的统计图,(如图).根据图中信息,解答下列问题:(1)参加调查统计的学生中喜爱B 类研学项目有多少人?在扇形统计图中,求C 类研学项目所在扇形的圆心角的度数.(2)从参加调查统计喜爱D 类研学项目的4名学生(2名男生2名女生)中随机选取2人接受访谈,求恰好选中一名男生一名女生的概率.20.已知1x ,2x 是关于x 的方程22210x kx k k -+-+=的两个不相等的实数根.(1)求k 的取值范围.(2)若5k <,且k ,1x ,2x 都是整数,求k 的值.【答案】(1)1k >(2)2【分析】本题主要考查了根据一元二次方程根的情况求参数范围、解一元二次方程,熟练掌握一元二次方程根的情况与判别式的关系是解题的关键.(1)根据“1x ,2x 是关于x 的方程22210x kx k k -+-+=的两个不相等的实数根”,则0∆>,得出关于k 的不等式求解即可;(2)根据5k <,结合(1)所求k 的取值范围,得出整数k 的值有2,3,4,分别计算讨21.如图,直线y kx b =+经过(0,2),(1,0)A B --两点,与双曲线(0)my x x=<交于点(,2)C a .(1)求直线和双曲线的解析式.(2)过点C 作CD x ⊥轴于点D ,点P 在x 轴上,若以O ,A ,P 为顶点的三角形与BCD △相似,直接写出点P 的坐标.综上:点P 坐标为(4,0)-或(1,0)-或(1,0)或(4,0).22.如图,在O 中,AB 是直径,AE 是弦,点F 是»AE 上一点,AF BE =,,AE BF 交于点C ,点D 为BF 延长线上一点,且CAD CDA ∠=∠.(1)求证:AD 是O 的切线.(2)若4,BE AD ==,求O 的半径长.23.2024年“五一”假期期间,阆中古城景区某特产店销售A ,B 两类特产.A 类特产进价50元/件,B 类特产进价60元/件.已知购买1件A 类特产和1件B 类特产需132元,购买3件A 类特产和5件B 类特产需540元.(1)求A 类特产和B 类特产每件的售价各是多少元?(2)A 类特产供货充足,按原价销售每天可售出60件.市场调查反映,若每降价1元,每天可多售出10件(每件售价不低于进价).设每件A 类特产降价x 元,每天的销售量为y 件,求y 与x 的函数关系式,并写出自变量x 的取值范围.(3)在(2)的条件下,由于B 类特产供货紧张,每天只能购进100件且能按原价售完.设该店每天销售这两类特产的总利润为w 元,求w 与x 的函数关系式,并求出每件A 类特产降价多少元时总利润w 最大,最大利润是多少元?(利润=售价-进价)【答案】(1)A 类特产的售价为60元/件,B 类特产的售价为72元/件(2)1060y x =+(010x ≤≤)(3)A 类特产每件售价降价2元时,每天销售利润最犬,最大利润为1840元【分析】本题主要考查一元一次方程的应用、函数关系式和二次函数的性质,()1根据题意设每件A 类特产的售价为x 元,则每件B 类特产的售价为()132x -元,进一步得到关于x 的一元一次方程求解即可;()2根据降价1元,每天可多售出10件列出函数关系式,结合进价与售价,且每件售价不低于进价得到x 得取值范围;()3结合(2)中A 类特产降价x 元与每天的销售量y 件,得到A 类特产的利润,同时求得B类特产的利润,整理得到关于x 的二次函数,利用二次函数的性质求解即可.【详解】(1)解:设每件A 类特产的售价为x 元,则每件B 类特产的售价为()132x -元.根据题意得()35132540x x +-=.解得60x =.则每件B 类特产的售价1326072-=(元).答:A 类特产的售价为60元/件,B 类特产的售价为72元/件.(2)由题意得1060y x =+∵A 类特产进价50元/件,售价为60元/件,且每件售价不低于进价∴010x ≤≤.答:1060y x =+(010x ≤≤).(3)(6050)(1060)100(7260)w x x =--++⨯-221040180010(2)1840x x x =-++=--+.100,-<Q ∴当2x =时,w 有最大值1840.答:A 类特产每件售价降价2元时,每天销售利润最大,最大利润为1840元.24.如图,正方形ABCD 边长为6cm ,点E 为对角线AC 上一点,2CE AE =,点P 在AB 边上以1cm /s 的速度由点A 向点B 运动,同时点Q 在BC 边上以2cm /s 的速度由点C 向点B 运动,设运动时间为t 秒(03t <≤).(1)求证:AEP CEQ ∽.(2)当EPQ △是直角三角形时,求t 的值.(3)连接AQ ,当1tan 3AQE ∠=时,求AEQ △的面积.①当90EPQ ∠=︒时,有即22416324t t t -+=-解得12623,6t t =-=②当90PEQ ∠=︒时,有又2CE AE = ,13AE AE AC AF ∴==1tan 3AFE ∴∠=.125.已知抛物线2y x bx c =-++与x 轴交于点()1,0A -,()3,0B .(1)求抛物线的解析式;(2)如图1,抛物线与y 轴交于点C ,点P 为线段OC 上一点(不与端点重合),直线PA ,PB 分别交抛物线于点E ,D ,设PAD 面积为1S ,PBE △面积为2S ,求12S S 的值;(3)如图2,点K 是抛物线对称轴与x 轴的交点,过点K 的直线(不与对称轴重合)与抛物线交于点M ,N ,过抛物线顶点G 作直线l x ∥轴,点Q 是直线l 上一动点.求QM QN +的最小值.l y=,则(N'由题意得直线:4。
四川省南充市白塔中学2018-2019学年八年级第二学期下册期中考试数学试题(含答案)
四川省南充市白塔中学2018-2019年度第二学期八年级下册期中考试数学测试卷一、选择题:(每题3分,共30分)1.下列运算错误的是( )A. =B. =C. =D. 2(2=【答案】A【解析】【分析】根据同类二次根式的合并,二次根式的乘除法则,分别进行各选项的判断即可.【详解】解:AB ,计算正确,故本选项错误;CD 、()2=2,计算正确,故本选项错误;故选A .【点睛】本题考查了二次根式的加减及乘除运算,解答本题的关键是掌握二次根式的加减及乘除法则.2.若k ,m ,n =,则下列关于k ,m ,n 的大小关系,正确的是( )A. m <k <nB. m =n >kC. m <n <kD. k <m =n【答案】A【解析】分析】化为最简二次根式,求得k 、m 、n 的值,比较即可解答.=∴k=3,m=2,n=5,∴m <k <n ,故选A.解决问题的关键.3.如图,矩形ABCD 的两条对角线相交于点O ,∠AOB=60°,AB=2,则矩形的对角线AC 的长是( )A. 2B. 4C.D. 【答案】B【解析】【分析】 根据矩形的性质可得AC=BD ,OA=OC ,OD=OB ,由此可得OA=OB ,再由∠AOB=60°,根据有一个角为60°的等腰三角形是等边三角形,即可判定△AOB 是等边三角形,所以OA=OB=AB=2,即可得AC=2OA=4.【详解】∵矩形ABCD ,∴AC=BD ,OA=OC ,OD=OB ,∴OA=OB ,∵∠AOB=60°,∴△AOB 是等边三角形,∴OA=OB=AB=2,∴AC=2OA=2×2=4,故选B .【点睛】本题考查了矩形的性质,熟练运用矩形的性质是解决问题的关键.4.如图,在Rt ABC ∆中,9AB =,6BC =,90B ∠=︒,将ABC ∆折叠,使A 点与BC 的中点D 重合,折痕为MN ,则线段BN 的长为( )A. 52B. 53C. 4D. 5【答案】C【解析】【分析】设BN=x ,则由折叠的性质可得DN=AN=9-x ,根据中点的定义可得BD=3,在Rt △BND 中,根据勾股定理可得关于x 的方程,解方程即可求解.【详解】设BN x =,则9AN x =-.由折叠的性质,得9DN AN x ==-.因为点D 是BC 的中点,所以3BD =.在Rt NBD ∆中,由勾股定理,得222BN BD DN +=,即()22239x x +=-,解得4x =,故线段BN 的长为4.故选C.【点睛】此题考查了折叠的性质,勾股定理,中点的定义以及方程思想,熟练掌握折叠的性质及勾股定理是解答本题的关键.5. 下列命题中,真命题是A. 对角线相等的四边形是矩形B. 对角线互相垂直的四边形是菱形C. 对角线互相平分的四边形是平行四边形D. 对角线互相垂直平分的四边形是正方形【答案】C【解析】试题分析:A、两条对角线相等且相互平分的四边形为矩形;故本选项错误;B、对角线互相垂直的平行四边形是菱形;故本选项错误;C、对角线互相平分的四边形是平行四边形;故本选项正确;D、对角线互相垂直平分且相等的四边形是正方形;故本选项错误.故选C.6.若x=﹣3,则1等于( )A. ﹣1B. 1C. 3D. ﹣3【答案】B【解析】分析:将x=-3代入二次根式进行计算即可得出答案.=-=,故选B.详解:当x=-3时,原式=1121点睛:本题主要考查的就是二次根式的计算法则,属于基础题型.明确二次根式的计算法则是解题的关键.7.如图,在波平如镜的湖面上,有一朵盛开的美丽的红莲,它高出水面3尺.突然一阵大风吹过,红莲被吹至一边,花朵刚好齐及水面,如果知道红莲移动的水平距离为6尺,则水是()尺.A. 3.5B. 4C. 4.5D. 5【答案】C【解析】试题分析:如图,设水深h尺,在Rt△ABC中,AB=h,AC=h+3,BC=6,由勾股定理得,AC2=AB2+BC2,即(h+3)2=h2+62,∴h2+6h+9=h2+36,6h=27,解得h=4.5.故答案选C.考点:勾股定理.8.如图,在菱形ABCD中,E,F分别在AB,CD上,且BE=DF,EF与BD相交于点O,连结AO.若∠CBD=35°,则∠DAO的度数为()A. 35°B. 55°C. 65°D. 75°【答案】B【解析】试题分析:由菱形的性质以及已知条件可证明△BOE≌△DOF,所以可得BO=DO,即O为BD的中点,进而可得AO⊥BD,再由∠CBD=35°,则可以求出∠DAO的度数.解:∵四边形ABCD是菱形,∴AB∥CD,∴∠OEB=∠OFD,∠EBO=∠ODF,∵BE=DF,∴在△BOE和△DOF中,,∴△BOE≌△DOF,∴BO=OD ,∴AO⊥BD ,∴∠AOD=90°,∵∠CBD=35°,∴∠ADO=35°,∴∠DAO=55°,故选B .点评:本题考查了菱形的性质、全等三角形的判定和性质,证明出AO⊥BD 是解题的关键.9.若△ABC 三边长a ,b ,c +|1b a --|+(5c -)2=0,则△ABC 是( )A. 等腰三角形B. 等边三角形C. 直角三角形D. 等腰直角三角形【答案】C【解析】【分析】 根据非负数的性质求得a 、b 、c 的值,再根据勾股定理的逆定理即可解答.【详解】+|b-a-1|+(c-5)2=0,∴a+b-25=0,b-a-1=0,c-5=0,∴a=12,b=13,c=5,∵222169a c b +==,∴△ABC 直角三角形.故选C.【点睛】本题考查了非负数的性质及勾股定理的逆定理,根据非负数的性质求得a 、b 、c 的值是解决问题的关键.10.如图,矩形ABCD 的面积为20cm 2,对角线交于点O ;以AB 、AO 为邻边做平行四边形AOC 1B ,对角线交于点O 1;以AB 、AO 1为邻边做平行四边形AO 1C 2B ;…依此类推,则平行四边形AO 4C 5B 的面积为A. 54cm 2B. 58cm 2C. 516cm 2D. 532cm 2 【答案】B【解析】【详解】根据矩形的对角线互相平分,平行四边形的对角线互相平分可得下一个图形的面积是上一个图形面积的12. 设矩形ABCD 的面积为S ,则S =20cm 2.∵O 为矩形ABCD 的对角线的交点,∴平行四边形AOC 1B 底边AB 上的高等于BC 的12 ∴平行四边形AOC 1B 的面积12S =. ∵平行四边形AOC 1B 的对角线交于点O 1, ∴平行四边形AO 1C 2B 的边AB 上的高等于平行四边形AOC1B 底边AB 上的高的12, ∴平行四边形AO 1C 2B 的面积=12⨯12S =212S , ……依此类推,平行四边形AO 4C 5B 的面积55205228S ===(cm 2). 二、填空题:(每题3分,共24分)11.3-x ,则x 的取值范围是__________.【答案】3x ≤【解析】﹣x,∴x-3≤0,解得:x≤3,12..E为□ABCD边AD上一点,将ABE沿BE翻折得到FBE,点F在BD上,且EF=DF.若∠C=52°,则∠ABE=____.【答案】51°【解析】【分析】由平行四边形的性质和折叠的性质得出∠BFE=∠A=52°,∠FBE=∠ABE,由等腰三角形的性质和三角形的外角性质得出∠EDF=∠DEF=12∠BFE=26°,由三角形内角和定理求出∠ABD=102°,即可得出∠ABE的度数.【详解】∵四边形ABCD为平行四边形,∴∠A=∠C=52°,AD∥B C.由折叠的性质可得∠ABE=∠FBE,∠A=∠BFE=52°,∵EF=DF,∴∠FED=∠EDF,∴∠EFB=∠FED+∠EDF=2∠EDF=52°,即∠EDF=26°. ∵AD∥BC,∴∠CBD=∠EDF=26°,∠ABC=180°-∠A=128°,∴∠ABF=∠ABC-∠CBD=128°-26°=102°.又∵∠ABE=∠FBE,∴∠ABE=12∠ABF=12×102°=51°.【点睛】本题是图形翻折变换的题目,掌握翻折变换的性质以及平行四边形的性质是关键.13.如图,阴影部分是两个正方形,其他三个图形是一个正方形和两个直角三角形,则阴影部分的面积和为______.【答案】81 【解析】【分析】两个阴影正方形的面积和等于直角三角形另一未知边的平方.利用勾股定理即可求出.【详解】两个阴影正方形的面积和为152-122=81,故答案为81.【点睛】本题考查了正方形的面积以及勾股定理的应用,准确识图是解题的关键.14.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B'处,当△CEB'为直角三角形时,BE的长为 .【答案】3或32.【解析】【分析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=3,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.【详解】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,在Rt△ABC中,AB=3,BC=4,∴,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,∴EB=EB′,AB=AB′=3,∴CB′=5-3=2,设BE=x,则EB′=x,CE=4-x,在Rt△CEB′中,∵EB′2+CB′2=CE2,∴x2+22=(4-x)2,解得3x2 =,∴BE=32;②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=3.综上所述,BE的长为32或3.故答案为:32或3.15.如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,E是AC的中点.若DE=4, 则AB长为_____.【答案】8【解析】【分析】根据垂线的性质可知△ADC是直角三角形,再Rt△ADC中,利用直角三角形斜边上的中线是斜边的一半可得AC=8;由AB=AC即可得AB=8.【详解】∵在△ABC中,AD⊥BC,垂足为D,∴△ADC是直角三角形;∵E是AC的中点.∴DE=12AC(直角三角形的斜边上的中线是斜边的一半);又∵DE=4,AB=AC,∴AB=8;故答案为8.【点睛】本题考查了直角三角形斜边上的中线的性质.熟知直角三角形的斜边上的中线是斜边的一半是解决问题的关键.16.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF 的长为______.【答案】4-【解析】∵四边形ABCD是正方形,其边长为4,BD是其对角线,∴∠BAD=90°,∠ABD=∠ADB=45°,BD=又∵∠BAE=22.5°,∴∠DAE=90°-22.5°=67.5°,∴∠AED=180°-45°-67.5°=67.5°=∠DAE,∴DE=AD=4,∴BE=4,∵EF⊥AB于点F,∠ABD=45°,∴△BEF是等腰直角三角形,∴4=-故答案为4-17.计算:3=___________【答案】1【解析】【分析】根据实数的乘除法混合运算法则计算即可.【详解】原式=1333=⨯=1.故答案为1.【点睛】本题考查了实数的混合运算.解题的关键是掌握实数混合运算的顺序与法则.18.如图,菱形ABCD中,对角线AC=6,BD=8,M、N分别是BC、CD的中点,P是线段BD上的一个动点,则PM+PN的最小值是____.【答案】5【解析】【详解】试题分析:作M关于BD的对称点Q,连接NQ,交BD于P,连接MP,此时MP+NP的值最小,连接AC,∵四边形ABCD是菱形,∴AC⊥BD,∠QBP=∠MBP,即Q在AB上,∵MQ⊥BD,∴AC∥MQ,∵M为BC中点,∴Q为AB中点,∵N为CD中点,四边形ABCD是菱形,∴BQ∥CD,BQ=CN,∴四边形BQNC是平行四边形,∴NQ=BC,∵四边形ABCD是菱形,∴CP=12AC=3,BP=12BD=4,在Rt△BPC中,由勾股定理得:BC=5,即NQ=5,∴MP+NP=QP+NP=QN=5,考点:1、菱形的性质;2、轴对称-最短路线问题三、解答题(共计66分)19.计算:25|.【答案】【解析】试题分析:先进行二次根式的乘法运算,再去绝对值,然后把二次根式化为最简二次根式后合并即可.试题解析:原式.20.为了增强学生体质,学校鼓励学生多参加体育锻炼,小华同学马上行动,每天围绕小区进行晨跑锻炼.该小区外围道路近似为如图所示四边形ABCD,已知四边形ABED为正方形,∠DCE=45°,AB=100米.小华某天绕该道路晨跑5 1.41)【答案】小华该天晨跑的路程约为2705米【解析】分析:由正方形的性质得△DEC是等腰直角三角形,然后利用勾股定理求出CD的长度,然后求出小胖每天晨跑的路程.详解:∵四边形ABCD是正方形,∴DE=AB=BE=AD=100,∠DEC=∠DEB=90°,又∵∠DCE=45°,∴△DEC是等腰直角三角形,∴EC=DE=100,∴DC==5(AB+BC+CD+AD)=5(100+100+100+100)=5(400+≈2705(米),∴小华该天晨跑的路程约为2705米.点睛:本题主要考查了正方形的性质和解直角三角形的应用,解题的关键是利用勾股定理求出DC的长度,此题难度不大.21.如图,在平行四边形ABCD中,∠ABC=45°,E、F分别在CD和BC的延长线上,AE∥BD,∠EFC =30°,AB=2.求CF的长.【答案】.【解析】【分析】首先证明四边形ABDE是平行四边形,可得AB=DE=CD,即D为CE中点,然后再得CE=4,再利用三角函数可求出HF和CH的长即可.【详解】四边形ABCD是平行四边形,=,//∴,AB DCAB CDAE DB,//∴四边形ABDE是平行四边形,∴==,即D为CE中点,AB DE CDAB=,2∴=,CE4//AB CD ,45ECF ABC ∴∠=∠=,过E 作EH BF ⊥于点H ,4CE =,45ECF ∠=,EH CH ∴==,30EFC ∠=,FH ∴=CF ∴=.【点睛】本题考查了平行四边形的判定与性质,以及三角函数的应用,关键是掌握平行四边形对边相等. 22.如图,四边形ABCD 是菱形,,BE AD BF CD ⊥⊥,垂足分别为点,E F .()1求证:BE BF =;()2当菱形ABCD 的对角线8AC =,BD=6时,求BE 的长.【答案】(1)见解析;(2)245BE =. 【解析】【分析】(1)根据菱形的邻边相等,对角相等,证明△ABE 与△CBF 全等,再根据全等三角形对应边相等即可证明;(2)先根据菱形的对角线互相垂直平分,求出菱形的边长,再根据菱形的面积等于对角线乘积的一半和底边乘以高两种求法即可求出.【详解】(1)证明:四边形ABCD 是菱形,BAE BCF ∴∠=∠, BA BC =又BE AD ⊥,BF CD ⊥AEB CFB ∴∠=∠∴△ABE ≌△CBF(AAS)BE BF ∴=(2)解:四边形ABCD 是菱形,142OA AC ∴==,132OB BD ==,90AOB ∠︒=,AD AB =,5AD AB ∴===,1··2ABCD S AD BE AC BD 菱形==, 15862BE ∴⨯⨯=, 245BE ∴=. 故答案为(1)见解析;(2)245. 【点睛】本题考查了全等三角形的性质和判定,菱形的性质和面积,注意:菱形的四条边都相等,菱形的对角相等.23.当=1x x 2-4x +2的值. 【答案】1【解析】试题分析:先化简x ,然后代入求值.试题解析:解:2x ==+原式=2(2)2x --=2(22)2-=3-2=1.24.已知:如图,AB=3,AC=4,AB ⊥AC ,BD=12,CD=13,(1)求BC 的长度;(2)证明:BC ⊥BD .【答案】(1)5;(2)证明见解析.【解析】(1)在Rt△ABC中,直接利用勾股定理即可求出BC 的长;(2)利用勾股定理的逆定理判断出△BCD为直接三角形,其中∠CBD=90°,即可得证.25. 如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点,点M是AB边上一动点(不与点A 重合),延长ME交射线CD于点N,连接MD,AN.(1)求证:四边形AMDN是平行四边形;(2)填空:①当AM的值为时,四边形AMDN是矩形;②当AM的值为时,四边形AMDN是菱形.【答案】(1)见解析(2)①1;②2【解析】试题分析:(1)利用菱形的性质和已知条件可证明四边形AMDN的对边平行且相等即可;(2)①有(1)可知四边形AMDN是平行四边形,利用有一个角为直角的平行四边形为矩形即∠DMA=90°,所以AM=12AD=1时即可;②当平行四边形AMND的邻边AM=DM时,四边形为菱形,利用已知条件再证明三角形AMD是等边三角形即可.试题解析:(1)证明:∵四边形ABCD是菱形,∴ND∥AM ,∴∠NDE=∠MAE ,∠DNE=∠AME ,又∵点E 是AD 边的中点,∴DE=AE ,∴△NDE≌△MAE ,∴ND=MA ,∴四边形AMDN 是平行四边形;(2)解:①当AM 的值为1时,四边形AMDN 是矩形.理由如下: ∵AM=1=12AD , ∴∠ADM=30°∵∠DAM=60°,∴∠AMD=90°,∴平行四边形AMDN 是矩形;②当AM 的值为2时,四边形AMDN 是菱形.理由如下:∵AM=2,∴AM=AD=2,∴△AMD 是等边三角形,∴AM=DM ,∴平行四边形AMDN 是菱形,考点:1.菱形的判定与性质;2.平行四边形的判定;3.矩形的判定.26.如图1,将ABC ∆纸片沿中位线EH 折叠,使点A 的对称点D 落在BC 边上,再将纸片分别沿等腰BED ∆和等腰DHC ∆的底边上的高线EF 、HG 折叠,折叠后的三个三角形拼合形成一个矩形,类似地,对多边形进行折叠,若翻折后的图形恰能拼成一个无缝隙、无重叠的矩形,这样的矩形称为叠合矩形.(1)将ABCD 纸片按图2的方式折叠成一个叠合矩形AEFG ,则操作形成的折痕分别是线段______和______;:ABCD AEFG S S =Y 矩形______.(2)ABCD 纸片还可以按图3的方式折叠成一个叠合矩形EFGH ,若5EF =,12EH =,求AD 的长;(3)如图4,梯形ABCD 纸片满足//AD BC ,AD BC <,AB BC ⊥,8AB =,10CD =.小明把该纸片折叠,得到叠合正方形....请你帮助画出叠合正方形的示意图,并求出AD 、BC 的长. 【答案】 (1). AE (2). GF (3). 1:2【解析】分析:(1)由图可直接得到第一、二空答案,根据折叠的性质可得△AEH 与△ABE 面积相等、梯形HFGA 与梯形FCDG 面积相等,据此不难得到第三空答案;(2)对图形进行点标注,如图所示:首先根据勾股定理求得FH 的长,再根据折叠的性质以及请到的知识可得AH =FN ,HD =HN ,然后根据线段和差关系即可得到AD 的长;(3)根据题目信息,动手这一下,然后将结合画出来,再结合折叠的性质以及勾股定理的知识分析解答即可.详解:(1)根据题意得:操作形成的折痕分别是线段AE 、GF ;由折叠的性质得:△ABE≌△AHE,四边形AHFG≌四边形DCFG ,∴△ABE 的面积=△AHE 的面积,四边形AHFG 的面积=四边形DCFG 的面积,∴S 矩形AEFG =12S 平行四边形ABCD , ∴S 矩形AEFG :S 平行四边形ABCD =1:2;故答案为AE,GF,1:2;(2)∵四边形EFGH是矩形,∴∠HEF=90°,∴=13,由折叠的性质得:AD=FH=13;由折叠的对称性可知:DH=NH,AH=HM,CF=FN. 易得△AEH≌CGF,所以CF=AH,所以AD=DH+AH=HN+FN=FH=13.(3)有3种折法,如图4、图5、图6所示:①折法1中,如图4所示:由折叠的性质得:AD=BG,AE=BE=12AB=4,CF=DF=12CD=5,GM=CM,∠FMC=90°,∵四边形EFMB是叠合正方形,∴BM=FM=4,∴=,∴AD=BG=BM-GM=1,BC=BM+CM=7;②折法2中,如图5所示:由折叠的性质得:四边形EMHG的面积=12梯形ABCD的面积,AE=BE=12AB=4,DG=NG,NH=CH,BM=FM,MN=MC,∴GH=12CD=5,∵四边形EMHG是叠合正方形,∴EM=GH=5,正方形EMHG的面积=52=25,∵∠B=90°,∴,设AD=x,则MN=FM+FN=3+x,∵梯形ABCD的面积=12(AD+BC)×8=2×25,∴AD+BC=252,∴BC=252-x,∴MC=BC-BM=252-x-3,∵MN=MC,∴3+x=252-x-3,解得:x=134,∴AD=134,BC=252-134=374;③折法3中,如图6所示,作GM⊥BC于M,则E 、G 分别为AB 、CD 的中点,则AH=AE=BE=BF=4,CG=12CD=5,正方形的边长,GM=FM=4,,∴BC=BF+FM+CM=11,FN=CF=7,DH=NH=8-7=1,∴AD=5.点睛:本题是四边形综合题,考查了折叠的性质,正方形的性质、勾股定理、梯形面积的计算、解方程等知识,本题综合性强,有一定难度.。
2019年数学中考试卷(含答案)
【参考答案】***试卷处理标记,请不要删除
24.某公司销售两种椅子,普通椅子价格是每把 180 元,实木椅子的价格是每把 400 元. (1)该公司在 2019 年第一月销售了两种椅子共 900 把,销售总金额达到了 272000 元,求两 种椅了各销售了多少把? (2)第二月正好赶上市里开展家俱展销活动,公司决定将普通椅子每把降 30 元后销售,实 木椅子每把降价 2a%(a>0)后销售,在展销活动的第一周,该公司的普通椅子销售量比上
22.4 月 18 日,一年一度的“风筝节”活动在市政广场举行 ,如图,广场上有一风筝 A,小 江抓着风筝线的一端站在 D 处,他从牵引端 E 测得风筝 A 的仰角为 67°,同一时刻小芸在 附近一座距地面 30 米高(BC=30 米)的居民楼顶 B 处测得风筝 A 的仰角是 45°,已知小江 与居民楼的距离 CD=40 米,牵引端距地面高度 DE=1.5 米,根据以上条件计算风筝距地
7.D
解析:D 【解析】 【分析】 【详解】
解:A 选项中,根据对顶角相等,得 1与 2 一定相等; B、C 项中无法确定 1与 2 是否相等;
D 选项中因为∠1=∠ACD,∠2>∠ACD,所以∠2>∠1. 故选:D
8.A
解析:A 【解析】
【分析】
【详解】
该班男生有
x
人,女生有
y
人.根据题意得:
x y 30 3x 2y 78
一元二次方程拔高专题(2019中考真题)(含答案)
2019-2020一元二次方程培优专题(中考真题含答案)一、单选题1.(2019·贵州中考真题)一元二次方程x 2﹣3x +1=0的两个根为x 1,x 2,则x 12+3x 2+x 1x 2﹣2的值是( ) A .10B .9C .8D .72.(2019·内蒙古中考真题)若12x x ,是一元二次方程230x x +-=的两个实数根,则3221417-+x x 的值为( )A .﹣2B .6C .﹣4D .43.(2019·湖北中考真题)从1、2、3、4四个数中随机选取两个不同的数,分别记为a 、c ,则关于x 的一元二次方程240ax x c ++=有实数解的概率为( )A .14B .13C .12D .234.(2019·内蒙古中考真题)已知等腰三角形的三边长分别为4a b 、、,且a 、b 是关于x 的一元二次方程21220x x m -++=的两根,则m 的值是( ) A .34B .30C .30或34D .30或365.(2019·湖北中考真题)若一次函数y kx b =+的图象不经过第二象限,则关于x 的方程20x kx b ++=的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .无实数根D .无法确定6.(2019·黑龙江中考真题)某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是43,则这种植物每个支干长出的小分支个数是( ) A .4B .5C .6D .77.(2019·新疆中考真题)若关于x 的一元二次方程()2110k x x -++=有两个实数根,则k 的取值范围是() A .54k ≤B .54k >C .514k k ≠<且D .514k k ≤≠且 8.(2019·河南中考真题)一元二次方程(1)(1)23x x x +-=+的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根9.(2019·广东中考真题)关于x 的一元二次方程2(1)20x k x k ---+=有两个实数根12,x x ,()1212122(2)2x x x x x x -+--+3=-,则k 的值( )A .0或2B .-2或2C .-2D .210.(2019·山东中考真题)已知a ,b 是方程230x x +-=的两个实数根,则22019a b -+的值是( )A .2023B .2021C .2020D .201911.(2019·山东中考真题)关于x 的一元二次方程2220x mx m m +++=的两个实数根的平方和为12,则m 的值为( ) A .2m =-B .3m =C .3m =或2m =-D .3m =-或2m =12.(2019·山东中考真题)若关于x 的一元二次方程2(2)26k x kx k --+=有实数根,则k 的取值范围为( ) A .0k ≥B .0k ≥且2k ≠C .32k ≥D .32k ≥且2k ≠13.(2018·宁夏中考真题)若是方程x 2-4x+c=0的一个根,则c 的值是( )A .1B .C .D .14.(2018·内蒙古中考真题)已知关于x 的一元二次方程x 2+2x+m ﹣2=0有两个实数根,m 为正整数,且该方程的根都是整数,则符合条件的所有正整数m 的和为( ) A .6 B .5 C .4 D .3二、填空题15.(2019·四川中考真题)若关于x 的一元二次方程210(0)4ax x a --=≠有两个不相等的实数根,则点(1, 3 )P a a +--在第____象限.16.(2019·宁夏中考真题)你知道吗,对于一元二次方程,我国古代数学家还研究过其几何解法呢!以方程25140x x +-=即(5)14x x +=为例加以说明.数学家赵爽(公元3~4世纪)在其所著的《勾股圆方图注》中记载的方法是:构造图(如下面左图)中大正方形的面积是2(5)x x ++,其中它又等于四个矩形的面积加上中间小正方形的面积,即24145⨯+,据此易得2x =.那么在下面右边三个构图(矩形的顶点均落在边长为1的小正方形网格格点上)中,能够说明方程24120x x --=的正确构图是_____.(只填序号)17.(2019·湖北中考真题)已知是关于的方程的两个不相等实数根,且满足,则的值为__________.18.(2018·四川中考真题)已知x 1,x 2是一元二次方程x 2-2x-1=0的两实数根,则12112121x x +++的值是__.19.(2015·四川中考真题)已知实数m ,n 满足,,且,则= .20.(2018·四川中考真题)已知关于x 的方程ax 2+bx +1=0的两根为x 1=1,x 2=2,则方程a (x +1)2+b (x +1)+1=0的两根之和为__________.21.(2014·内蒙古中考真题)已知m ,n 是方程x 2+2x ﹣5=0的两个实数根,则m 2﹣mn+3m+n=___________.三、解答题22.(2019·湖南中考真题)关于x 的一元二次方程230x x k -+=有实数根. (1)求k 的取值范围;(2)如果k 是符合条件的最大整数,且一元二次方程()2130m x x m -++-=与方程230x x k -+=有一个相同的根,求此时m 的值.23.(2019·湖北中考真题)已知关于x 的一元二次方程26(41)0x x m -++=有实数根.(1)求m 的取值范围.(2)若该方程的两个实数根为1x 、2x ,且124x x -=,求m 的值.24.(2019·湖北中考真题)已知于x的元二次方程26250x x a-++=有两个不相等的实数根12,x x.(1)求a的取值范围;(2)若22121230x x x x+-…,且a为整数,求a的值.25.(2018·四川中考真题)已知关于x的一元二次方程x2﹣(2m﹣2)x+(m2﹣2m)=0.(1)求证:方程有两个不相等的实数根.(2)如果方程的两实数根为x1,x2,且x12+x22=10,求m的值.26.(2019·重庆中考真题)某菜市场有2.5平方米和4平方米两种摊位,2.5平方米的摊位数是4平方米摊位数的2倍.管理单位每月底按每平方米20元收取当月管理费,该菜市场全部摊位都有商户经营且各摊位均按时全额缴纳管理费.(1)菜市场毎月可收取管理费4500元,求该菜市场共有多少个4平方米的摊位?(2)为推进环保袋的使用,管理单位在5月份推出活动一:“使用环保袋送礼物”,2.5平方米和4平方米两种摊位的商户分别有40%和20%参加了此项活动.为提高大家使用环保袋的积极性,6月份准备把活动一升级为活动二:“使用环保袋抵扣管理费”,同时终止活动一.经调査与测算,参加活动一的商户会全部参加活动二,参加活动二的商户会显著增加,这样,6月份参加活动二的2.5平方米摊位的总个数将在5月份参加活动一的同面积个数的基础上增加2a%,毎个摊位的管理费将会减少3%10a;6月份参加活动二的4平方米摊位的总个数将在5月份参加活动一的同面积个数的基础上增加6a%,每个摊位的管理费将会减少1%4a.这样,参加活动二的这部分商户6月份总共缴纳的管理费比他们按原方式共缴纳的管理费将减少5%18a,求a的值.参考答案1.D 【解析】 【分析】先利用一元二次方程的解的定义得到x 12=3x 1-1,则x 12+3x 2+x 1x 2-2=3(x 1+x 2)+x 1x 2-3,接着利用根与系数的关系得到x 1+x 2=3,x 1x 2=1,然后利用整体代入的方法计算. 【详解】∵x 1为一元二次方程x 2﹣3x+1=0的根, ∴x 12﹣3x 1+1=0, ∴x 12=3x 1﹣1,∴x 12+3x 2+x 1x 2﹣2=3x 1﹣1+3x 2+x 1x 2﹣2=3(x 1+x 2)+x 1x 2﹣3, 根据题意得x 1+x 2=3,x 1x 2=1, ∴x 12+3x 2+x 1x 2﹣2=3×3+1﹣3=7. 故选:D . 【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,x 1+x 2=-b a ,x 1x 2=c a. 2.A【解析】 【分析】利用根与系数的关系可得出x 1+x 2=-1、x 1•x 2=-3,211x x 3+=,将代数式2132x 4x 17+﹣进行转化后,再代入数据即可得出结论. 【详解】 解:12x x ,是一元二次方程2x x 30+﹣=的两个实数根,12x x 1∴+=﹣,12x x 3=﹣,211x x 3+=,3221x 4x 17∴+﹣ 32211418--+=x x()()2222111418=-++-+x x x x()211114418=---⨯-+x x21184418=---+x x()2118418=--++x x 10432=-⨯=-故选:A . 【点睛】本题考查了方程的解、根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,则1212,b c x x x x a a+=-=. 3.C 【解析】 【分析】先根据一元二次方程有实数根求出ac≤4,继而画树状图进行求解即可. 【详解】由题意,△=42-4ac≥0,∴ac≤4, 画树状图如下:a 、c 的积共有12种等可能的结果,其中积不大于4的有6种结果数, 所以a 、c 的积不大于4(也就是一元二次方程有实数根)的概率为61=122, 故选C. 【点睛】本题考查了一元二次方程根的判别式,列表法或树状图法求概率,得到ac≤4是解题的关键. 4.A 【解析】【分析】分三种情况讨论,①当a=4时,②当b=4时,③当a=b 时;结合韦达定理即可求解; 【详解】解:当4a =时,8b <,a b 、是关于x 的一元二次方程21220x x m -++=的两根, 412b ∴+=, 8b ∴=不符合;当4b =时,8a <,a b 、是关于x 的一元二次方程21220x x m -++=的两根, 412a ∴+=, 8a ∴=不符合;当a b =时,a b 、是关于x 的一元二次方程21220x x m -++=的两根, 1222a b ∴==, 6a b ∴==, 236m ∴+=, 34m ∴=;故选:A . 【点睛】本题考查一元二次方程根与系数的关系;根据等腰三角形的性质进行分类讨论,结合韦达定理和三角形三边关系进行解题是关键. 5.A 【解析】 【分析】利用一次函数性质得出k >0,b≤0,再判断出△=k 2-4b >0,即可求解.【详解】 解:一次函数y kx b =+的图象不经过第二象限,0k ∴>,0b ≤,240k b ∴∆=->,∴方程有两个不相等的实数根.故选:A . 【点睛】本题考查的是一元二次方程的根的判别式,熟练掌握一次函数的图像和一元二次方程根的判别式是解题的关键. 6.C 【解析】 【分析】设这种植物每个支干长出x 个小分支,根据主干、支干和小分支的总数是43,即可得出关于x 的一元二次方程,解之取其正值即可得出结论 【详解】设这种植物每个支干长出x 个小分支, 依题意,得:2143x x ++=, 解得: 17x =-(舍去),26x =. 故选:C . 【点睛】此题考查一元二次方程的应用,解题关键在于列出方程 7.D 【解析】 【分析】运用根的判别式和一元二次方程的定义,组成不等式组即可解答 【详解】解:∵关于x 的一元二次方程(k ﹣1)x 2+x +1=0有两个实数根,∴210=1-41)10k k -⎧⎨∆⨯-⨯≥⎩≠( ,解得:k ≤54且k ≠1. 故选:D .【点睛】此题考查根的判别式和一元二次方程的定义,掌握根的情况与判别式的关系是解题关键 8.A 【解析】 【分析】先化成一般式后,在求根的判别式,即可确定根的状况. 【详解】解:原方程可化为:2240x x --=,1a \=,2b =-,4c =-,2(2)41(4)200∴∆=--⨯⨯-=>, ∴方程由两个不相等的实数根.故选:A . 【点睛】本题运用了根的判别式的知识点,把方程转化为一般式是解决问题的关键. 9.D 【解析】 【分析】将()1212122(2)2=3x x x x x x -+--+-化简可得,()21212124423x x x x x x +-+=--,利用韦达定理,()2142(2)3k k ----+=-,解得,k =±2,由题意可知△>0, 可得k =2符合题意. 【详解】解:由韦达定理,得:12x x +=k -1,122x x k +=-,由()1212122(2)23x x x x x x -+--+=-,得:()21212423x x x x --+=-,即()21212124423x x x x x x +-+=--, 所以,()2142(2)3k k ----+=-,化简,得:24k =, 解得:k =±2, 因为关于x 的一元二次方程2(1)20x k x k ---+=有两个实数根, 所以,△=()214(2)k k ---+=227k k +-〉0, k =-2不符合, 所以,k =2 故选:D. 【点睛】本题考查了一元二次方程根与系数的关系,熟练掌握并灵活运用是解题的关键. 10.A 【解析】 【分析】根据题意可知b=3-b 2,a+b=-1,ab=-3,所求式子化为a 2-b+2019=a 2-3+b 2+2019=(a+b )2-2ab+2016即可求解.【详解】a ,b 是方程230x x +-=的两个实数根,∴23b b =-,1a b +=-,-3ab =,∴222201932019a b a b -+=-++()2220161620162023a b ab =+-+=++=; 故选A . 【点睛】本题考查一元二次方程的根与系数的关系;根据根与系数的关系将所求式子进行化简代入是解题的关键. 11.A 【解析】 【分析】设1x ,2x 是2220x mx m m +++=的两个实数根,由根与系数的关系得122x x m +=-,212x x m m ⋅=+,再由()2221212122x x x x x x +=+-⋅代入即可.设1x ,2x 是2220x mx m m +++=的两个实数根, ∴40m ∆=-≥, ∴0m ≤,∴122x x m +=-,212x x m m ⋅=+,∴()2221212122x x x x x x +=+-⋅2224222212m m m m m =--=-=,∴3m =或2m =-, ∴2m =-, 故选A . 【点睛】本题考查一元二次方程根与系数的关系;牢记韦达定理,灵活运用完全平方公式是解题的关键. 12.D 【解析】 【分析】根据二次项系数非零结合根的判别式△≥0,即可得出关于k 的一元一次不等式组,解之即可得出k 的取值范围. 【详解】(k-2)x 2-2kx+k-6=0,∵关于x 的一元二次方程(k-2)x 2-2kx+k=6有实数根,∴220(2)4(2)(6)0k k k k -≠⎧⎨=----⎩…, 解得:32k ≥且k≠2. 故选D . 【点睛】本题考查了一元二次方程的定义以及根的判别式,根据一元二次方程的定义结合根的判别式△≥0,列出关于k 的一元一次不等式组是解题的关键. 13.A【分析】把2代入方程x 2﹣4x +c =0就得到关于c 的方程,就可以解得c 的值.【详解】把2代入方程x 2﹣4x +c =0,得(22﹣4(2+c =0,解得:c =1.故选A . 【点睛】本题考查的是一元二次方程的根即方程的解的定义.能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根. 14.B 【解析】 【分析】根据一元二次方程根的判别式和一元二次方程的解法结合已知条件进行分析解答即可. 【详解】∵关于x 的一元二次方程x 2+2x+m ﹣2=0有两个实数根, ∴△=()224120m =⨯⨯-≥,解得:3m ≤,又∵m 为正整数, ∴m=1或2或3,(1)当m=1时,原方程为x 2+2x-1=0,此时方程的两根均不为整数,故m=1不符合要求; (2)当m=2时,原方程为x 2+2x=0,此时方程的两根分别为0和-2,符合题中要求; (3)当m=3时,原方程为x 2+2x+1=0,此时方程的两根都为1,符合题中要求;∴ m=2或m=3符合题意,∴m 的所有符合题意的正整数取值的和为:2+3=5. 故选B. 【点睛】读懂题意,熟知“在一元二次方程()200ax bx c a ++=≠中,若方程有两个实数根,则△=240b ac -≥”是解答本题的关键.【解析】 【分析】由二次项系数非零及根的判别式△>0,即可得出关于a 的一元一次不等式组,解之即可得出a 的取值范围,由a 的取值范围可得出a+1>0,-a-3<0,进而可得出点P 在第四象限,此题得解. 【详解】∵关于x 的一元二次方程210(0)4ax x a --=≠有两个不相等的实数根, ∴201(1)4-04a a ≠⎧⎪⎨⎛⎫∆=--⨯⨯> ⎪⎪⎝⎭⎩, 解得:1a >-且0a ≠. ∴10a +>,30a --<, ∴点(1,3)P a a +--在第四象限. 故答案为:四. 【点睛】本题考查了根的判别式、一元二次方程的定义以及点的坐标,利用二次项系数非零及根的判别式△>0,找出关于a 的一元一次不等式组是解题的关键. 16.②. 【解析】 【分析】仿造案例,构造面积是2(4)x x +-的大正方形,由它的面积为24124⨯+,可求出6x =,此题得解. 【详解】 解:24120x x --=即()412x x -=,∴构造如图②中大正方形的面积是2(4)x x +-,其中它又等于四个矩形的面积加上中间小正方形的面积,即24124⨯+, 据此易得6x =.故答案为:②.【点睛】本题考查了一元二次方程的应用,仿造案例,构造出合适的大正方形是解题的关键.17.1 .【解析】【分析】根据根与系数的关系结合,可得出关于的一元二次方程,解之即可得出的值,根据方程的系数结合根的判别式,可得出关于的一元二次不等式,把k的值代入,进而即可确定值,此题得解.【详解】是关于的方程的两个实数根,.,即,整理,得:,解得:.关于的方程的两个不相等实数根,当k=时,△=-<0,故k=不符合题意;当k=1时,△=4>0;.故答案为:1.【点睛】本题考查了根与系数的关系以及根的判别式,利用根与系数的关系结合,求出值是解题的关键. 18.6 【解析】 【分析】已知x 1,x 2是一元二次方程x 2﹣2x ﹣1=0的两实数根,根据方程解的定义及根与系数的关系可得x 12﹣2 x 1﹣1=0, x 22﹣2 x 2﹣1=0,x 1+x 2=2,x 1·x 2=-1,即x 12=2 x 1+1, x 22=2 x 2+1,代入所给的代数式,再利用完全平方公式变形,整体代入求值即可. 【详解】∵x 1,x 2是一元二次方程x 2﹣2x ﹣1=0的两实数根, ∴x 12﹣2 x 1﹣1=0, x 22﹣2 x 2﹣1=0,x 1+x 2=2,x 1·x 2=-1,即x 12=2 x 1+1, x 22=2 x 2+1,∴12112121x x +++=()22212121222222212121221142 6.1x x x x x x x x x x x x +-+++==== 故答案为6. 【点睛】本题考查了一元二次方程解的定义及根与系数的关系,会熟练运用整体思想是解决本题的关键.19..【解析】 试题分析:由时,得到m ,n 是方程的两个不等的根,根据根与系数的关系进行求解.试题解析:∵时,则m ,n 是方程3x 2﹣6x ﹣5=0的两个不相等的根,∴,.∴原式===,故答案为:.考点:根与系数的关系. 20.1【解析】分析:利用整体的思想以及根与系数的关系即可求出答案.详解:设x+1=t ,方程a (x+1)2+b (x+1)+1=0的两根分别是x 3,x 4,∴at 2+bt+1=0,由题意可知:t 1=1,t 2=2, ∴t 1+t 2=3, ∴x 3+x 4+2=3 故答案为:1点睛:本题考查根与系数的关系,解题的关键是熟练运用根与系数的关系,本题属于基础题型. 21.8 【解析】试题分析:根据m+n=﹣=﹣2,m•n=﹣5,直接求出m 、n 即可解题.∵m 、n 是方程x 2+2x ﹣5=0的两个实数根, ∴mn=﹣5,m+n=﹣2, ∵m 2+2m ﹣5=0 ∴m 2=5﹣2mm 2﹣mn+3m+n=(5﹣2m )﹣(﹣5)+3m+n=10+m+n=10﹣2=8 考点:(1)、根与系数的关系;(2)、一元二次方程的解.22.(1)94k ≤;(2)m 的值为32. 【解析】 【分析】(1)利用判别式的意义得到()2340k ∆=--≥,然后解不等式即可;(2)利用(1)中的结论得到k 的最大整数为2,解方程2320x x -+=解得121,2x x ==,把1x =和2x =分别代入一元二次方程()2130m x x m -++-=求出对应的m ,同时满足10m -≠.【详解】解:(1)根据题意得()2340k ∆=--≥,解得94k ≤; (2)k 的最大整数为2,方程230x x k -+=变形为2320x x -+=,解得121,2x x ==,∵一元二次方程()2130m x x m -++-=与方程230x x k -+=有一个相同的根,∴当1x =时,1130m m -++-=,解得32m =; 当2x =时,()41230m m -++-=,解得1m =, 而10m -≠, ∴m 的值为32. 【点睛】本题考查了根的判别式:一元二次方程()200ax bx c a ++=≠的根与24b ac ∆=-有如下关系:当0∆>时,方程有两个不相等的实数根;当0∆=时,方程有两个相等的实数根;当0∆<时,方程无实数根. 23.(1)2m ≤.(2)1m =. 【解析】 【分析】(1)根据方程的系数结合根的判别式△≥0,即可得出关于m 的一元一次不等式,解之即可得出m 的取值范围;(2)由根与系数的关系可得出x 1+x 2=6,x 1x 2=4m+1,结合|x 1-x 2|=4可得出关于m 的一元一次方程,解之即可得出m 的值. 【详解】(1)∵关于x 的一元二次方程x 2-6x+(4m+1)=0有实数根,∴△=(-6)2-4×1×(4m+1)≥0, 解得:m≤2;(2)∵方程x 2-6x+(4m+1)=0的两个实数根为x 1、x 2,∴x 1+x 2=6,x 1x 2=4m+1,∴(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=42,即32-16m=16, 解得:m=1.【点睛】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当△≥0时,方程有实数根”;(2)利用根与系数的关系结合|x 1-x 2|=4,找出关于m 的一元一次方程. 24.(1)a<2;(2)-1,0,1 【解析】 【分析】(1)根据根的判别式,可得到关于a 的不等式,则可求得a 的取值范围;(2)由根与系数的关系,用a 表示出两根积、两根和,由已知条件可得到关于a 的不等式,则可求得a 的取值范围,再求其值即可. 【详解】 (1)关于x 的一元二次方程26250x x a -++=有两个不相等的实数根12,x x ,0∴∆>,即2(6)4(25)0a --+>,解得2a <;(2)由根与系数的关系知:12126,25x x x x a +==+,12,x x 满足221212x x x x 30+-…,()21212330x x x x ∴+-…, 363(25)30a ∴-+…,3,2a ∴-…a 为整数,a ∴的值为1,0,1-.【点睛】本题主要考查根与系数的关系及根的判别式,利用根的判别式求得k 的取值范围是解题的关键,注意方程根的定义的运用. 25.(1)见解析;(2)m=﹣1或m=3. 【解析】 【分析】(1)求出∆的值,即可判断出方程根的情况;(2)根据根与系数的关系即可求出答案. 【详解】(1)由题意可知:△=(2m ﹣2)2﹣4(m 2﹣2m )=4>0,∴方程有两个不相等的实数根.(2)∵x 1+x 2=2m ﹣2,x 1x 2=m 2﹣2m ,∴x 12+x 22=(x 1+x 2)2﹣2x 1x 2=10, ∴(2m ﹣2)2﹣2(m 2﹣2m )=10, ∴m 2﹣2m ﹣3=0, ∴m=﹣1或m=3 【点睛】本题考查根与系数的关系,解题的关键是熟练运用根与系数的关系以及一元二次方程的解法,本题属于中等题型.26.(1)该菜市场共有25个4平方米的摊位.(2)a 的值为50. 【解析】 【分析】(1)设该菜市场共有x 个4平方米的摊位,则有2x 个2.5平方米的摊位,根据菜市场毎月可收取管理费4500元,即可得出关于x 的一元一次方程,解之即可得出结论;(2)由(1)可得出:5月份参加活动一的2.5平方米摊位及4平方米摊位的个数,再由参加活动二的这部分商户6月份总共缴纳的管理费比他们按原方式共缴纳的管理费将减少518%a ,即可得出关于a 的一元二次方程,解之取其正值即可得出结论. 【详解】解:(1)设该菜市场共有x 个4平方米的摊位,则有2x 个2.5平方米的摊位, 依题意,得:20420 2.524500x x ⨯+⨯⨯=, 解得:25x =.答:该菜市场共有25个4平方米的摊位.(2)由(1)可知:5月份参加活动一的2.5平方米摊位的个数为25240%20⨯⨯=(个),5月份参加活动一的4平方米摊位的个数为2520%5⨯=(个). 依题意,得:320(12%)20 2.5%10a a +⨯⨯⨯()1516%204%4a a ++⨯⨯⨯[20(12%)20a =+⨯⨯2.5+5(16%)a +5204]%18a ⨯⨯⨯, 整理,得:2500a a -=,解得:10a =(舍去),250a =. 答:a 的值为50. 【点睛】本题考查了一元一次方程的应用以及一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)找准等量关系,正确列出一元二次方程.。
四川中考考前模拟考试《数学卷》含答案解析
四川数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________第Ⅰ卷 选择题(36分)一、选择题(本大题共12个小题,每小题3分,满分36分)在每小题给出的四个选项中,有且仅有一项是符合题目要求的.1.31-+=( ) A. 4B. -4C. 2D. -22.下列计算中,正确的是( ) A. 2a+3a=5B. 325a a a ⋅=C. 321a a ÷=D. (-a)33a =3.某企业2017年总收入约为7380000元,这一数据用科学记数法表示为( ) A. 7.38410元B. 73.8510元C. 7.38610元D. 0.738610元4. 下列图形中,既是中心对称图形又是轴对称图形的是( ) A. 等边三角形B. 平行四边形C. 等腰梯形D. 矩形5.在一次歌唱比赛中,10名评委给某一歌手打分如下表: 成绩(分) 8.9 9.3 9.4 9.5 97 9.8 评委(名) 121411则这名歌手成绩的中位数和众数分别是( ) A. 9.3, 2B. 9.5 ,4C. 9.5,9.5D. 9.4 ,9.56.一个底面直径为2,高为3的圆锥的体积是( ) A.B. 2C. 3D. 47.如图的几何体是由六个完全相同的正方体组成的,这个几何体的主视图是( )A. B. C. D.8.一个菱形的四个内角度数之比依次为1:2:3:4,这个事件是( )A. 必然事件B. 随机事件C. 不可能事件D. 以上都不是9.关于x的分式方程55ax x=-有解,则字母a的取值范围是( )A. a=5或a=0B. a≠0C. a≠5D. a≠5且a≠010.将矩形ABCD沿对角线BD折叠,使得与'C重合,若2DC'=,则AB=( )A. 1B. 2C. 3D. 411.如图,已知AB、CD、EF都与BD垂直,垂足分别是B、D、F,且AB=1,CD=3,那么EF的长是( )A. 13B.23C.34D.4512.如图,动点P从点A出发,沿线段AB运动至点B后,立即按原路返回.点P在运动过程中速度大小不变.则以点A为圆心,线段AP长为半径的圆的面积S与点P的运动时间t之间的函数图象大致为A. B. C. D.第Ⅱ卷非选择题(84分)二、填空题(本大题共5个小题,每小题3分,满分15分)请把答案直接填在题中的横线上.13.分解因式:4a2﹣16=_____.14.一个不透明的袋子里装有除颜色不同外其他都相同的5个小球,其中红球3个、白球2个,一次从中摸出两个小球,全是红球的概率为________________.15.如图,⊙O半径为1cm,正六边形内接于⊙O,则图中阴影部分面积为_____.16.对于反比例函数2y x=,下列说法:①点()2,1--在它的图象上;②它的图象在第一、三象限;③当x 0)>时,随的增大而增大;④当x 0<时,随的增大而减小.上述说法中,正确的序号是________.(填上所有你认为正确的序号) 17.观察下列等式: 12×231=132×21, 13×341=143×31, 23×352=253×32, 34×473=374×43, 62×286=682×26, …………………….以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为”数字对称等式”.根据上述规律填空:27×_________=_______×_________.三、解答题(第18题6分,第19题7分,第20题11分,本大题满分24分)18.计算:()1131tan 601222π-⎛⎫+-︒--︒+÷ ⎪⎝⎭.19. 如图,在正方形ABCD 中,点E 在对角线AC 上,点F 在边BC 上,连接BE 、DF ,DF 交对角线AC 于点G ,且DE=DG . (1)求证:AE=CG;(2)试判断BE 和DF 的位置关系,并说明理由.20.学校准备在各班设立图书角以丰富同学们的课余文化生活,为了更合理的搭配各类书籍,学校团委以”我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题:(1)在这次抽样调查中,一共调查了多少名学生;(2)请把折线统计图(图1)补充完整;(3)求出扇形统计图(图2)中,体育部分所对应的圆心角的度数;(4)如果这所中学共有学生1800名,那么请你估计最喜爱科普类书籍学生人数;(5)学校若在喜爱艺术、文学、科普、体育四类中任意抽取两类建立兴趣小组,求出恰好选中是体育和科普两类的概率.四、解答题(第21题9分,第22题10分,本大题满分19分)21.如图,点D在双曲线上,AD垂直轴,垂足为A,点C在AD上,CB平行于轴交双曲线于点B,直线AB与轴交于点F,已知AC:AD=1:3,点C的坐标为(3,2).(1)求该双曲线的解析式;(2)求△OFA的面积.22.某体育用品专卖店销售7个篮球和9个排球的总利润为355元,销售10个篮球和20个排球的总利润为650元.(1)求每个篮球和每个排球销售利润;(2)已知每个篮球的进价为200元,每个排球的进价为160元,若该专卖店计划用不超过17400元购进篮球和排球共100个,且要求篮球数量不少于排球数量的一半,请你为专卖店设计符合要求的进货方案.五、解答题(本大题满分12分)23. 如图,在Rt△ABC中,∠ABC=90°,AC的垂直平分线分别与AC,BC及AB的延长线相交于点D,E,F,且BF=BC,⊙O是△BEF的外接圆,∠EBF的平分线交EF于点G,交于点H,连接BD、FH.(1)求证:△ABC≌△EBF;(2)试判断BD与⊙O的位置关系,并说明理由;(3)若AB=1,求HG•HB的值.六、解答题(本大题满分14分)24.如图,经过原点的抛物线y=﹣x2﹣2mx(m>1)与x轴的另一个交点为A.过点P(﹣1,m)作直线PD⊥x 轴于点D,交抛物线于点B,BC∥x轴交抛物线于点C.(1)当m=2时.①求线段BC的长及直线AB所对应的函数关系式;②若动点Q在直线AB上方的抛物线上运动,求点Q在何处时,△QAB的面积最大?③若点F在坐标轴上,且PF=PC,请直接写出符合条件的点F在坐标;(2)当m>1时,连接CA、CP,问m何值时,CA⊥CP.答案与解析第Ⅰ卷 选择题(36分)一、选择题(本大题共12个小题,每小题3分,满分36分)在每小题给出的四个选项中,有且仅有一项是符合题目要求的.1.31-+=( ) A. 4 B. -4C. 2D. -2【答案】C 【解析】【详解】解:根据正数的绝对值是它本身,0的绝对值是0,负数的绝对值是它的相反数可知:3122-+=-=.故选C.2.下列计算中,正确的是( ) A. 2a+3a=5B. 325a a a ⋅=C. 321a a ÷=D. (-a)33a =【答案】B 【解析】A.合并同类项字母及字母的指数不变,系数相加,2a +3a =5a ,则2235a a a +=错误;B. 同底数幂相乘,底数不变,指数相加,33522a a a a +⋅==,正确;C.同底数幂相除,底数不变,指数相减,3232a a a a -÷==,则321a a ÷=错误;D.根据乘方的意义()33a a -=-,则()33a a -=错误. 故选B.3.某企业2017年总收入约为7380000元,这一数据用科学记数法表示为( ) A. 7.38410元 B. 73.8510元C. 7.38610元D. 0.738610元【答案】C 【解析】 【分析】将一个数字表示成10n a ⨯的形式,其中1≤|a |<10,n 为整数,这种表示方法叫做科学记数法.当原数较大时,n 等于原数的整数位数减去1.【详解】解:则673800007.3810=⨯.故选C.4. 下列图形中,既是中心对称图形又是轴对称图形的是( )A. 等边三角形B. 平行四边形C. 等腰梯形D. 矩形【答案】D【解析】【详解】根据轴对称图形的概念和中心对称图形的定义针对每一个选项进行分析,即可选出答案D.考点:1.中心对称图形;2.轴对称图形5.在一次歌唱比赛中,10名评委给某一歌手打分如下表:则这名歌手成绩的中位数和众数分别是( )A. 9.3,2B. 9.5 ,4C. 9.5,9.5D. 9.4 ,9.5【答案】C【解析】【分析】根据众数与中位数的定义分别进行解答即可.【详解】解:由于共有10个数据,则中位数为第5、6个数据的平均数,即中位数为9.5+9.52=9.5(分),这组数据中出现次数最多的是9.5分,一共出现了4次,则众数为9.5分,故选:C.【点睛】此题考查了众数与中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错;众数是一组数据中出现次数最多的数.6.一个底面直径为2,高为3的圆锥的体积是( )A. B. 2 C. 3 D. 4【答案】A【解析】【分析】圆锥的体积等于底面积乘以高的三分之一.【详解】解:212332ππ⎛⎫⨯⨯=⎪⎝⎭故选A.7.如图的几何体是由六个完全相同的正方体组成的,这个几何体的主视图是( )A. B. C. D.【答案】A【解析】【详解】解:这个几何体的主视图有两层,从左起上一层有两列,下一层有三列所以其主视图为故选A.8.一个菱形的四个内角度数之比依次为1:2:3:4,这个事件是( )A. 必然事件B. 随机事件C. 不可能事件D. 以上都不是【答案】C【解析】【分析】根据必然事件、不可能事件、随机事件的概念解答即可.【详解】解:菱形的对角相等,不可能出现菱形的四个内角度数之比依次为1:2:3:4,所以这个事件是不可能事件,故选:C.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.用到的知识点为:确定事件包括必然事件和不可能事件.必然事件指在一定条件下一定发生的事件不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.9.关于x的分式方程55ax x=-有解,则字母a的取值范围是( )A. a=5或a=0B. a≠0C. a≠5D. a≠5且a≠0【答案】D 【解析】【详解】55ax x=-,去分母得:5(x﹣5)=ax,去括号得:5x﹣25=ax,移项,合并同类项得:(5﹣a)x=25,∵关于x的分式方程55ax x=-有解,∴5﹣a≠0,x≠0且x≠2,即a≠5,系数化为1得:255xa =-,∴255a-≠0且255a-≠5,即a≠5,a≠0,综上所述:关于x的分式方程55ax x=-有解,则字母a的取值范围是a≠5,a≠0;故选D.点睛:此题考查了求分式方程的解,由于我们的目的是求a的取值范围,根据方程的解列出关于a的不等式.另外,解答本题时,容易漏掉5﹣a≠0,这应引起同学们的足够重视.10.将矩形ABCD沿对角线BD折叠,使得与'C重合,若2DC'=,则AB=( )A. 1B. 2C. 3D. 4【答案】B【解析】【详解】解:因为折叠前后对应线段相等,所以DC=DC′,而DC=AB,所以AB=2.故选B.11.如图,已知AB、CD、EF都与BD垂直,垂足分别是B、D、F,且AB=1,CD=3,那么EF的长是( )A. 13B. 23C. 34D. 45 【答案】C 【解析】 【分析】易证△DEF ∽△DAB ,△BEF ∽△BCD ,根据相似三角形的性质可得EF AB = DF DB ,EF CD =BF BD,从而可得EF AB +EF CD =DF DB +BF BD=1.然后把AB=1,CD=3代入即可求出EF 的值. 【详解】∵AB 、CD 、EF 都与BD 垂直,∴AB ∥CD ∥EF ,∴△DEF ∽△DAB,△BEF ∽△BCD ,∴EF AB = DF DB ,EF CD =BF BD, ∴EF AB +EF CD =DF DB +BF BD =BD BD =1. ∵AB=1,CD=3,∴1EF +3EF =1, ∴EF=34. 故选C.【点睛】本题考查了相似三角形的判定及性质定理,熟练掌握性质定理是解题的关键.12.如图,动点P 从点A 出发,沿线段AB 运动至点B 后,立即按原路返回.点P 在运动过程中速度大小不变.则以点A 为圆心,线段AP 长为半径的圆的面积S 与点P 的运动时间t 之间的函数图象大致为A. B. C. D.2·S AP π=(是AP 二次函数),点P 从A –B 时,AP 变长,点P 从B –A 时,AP 变短,故选A第Ⅱ卷 非选择题(84分)二、填空题(本大题共5个小题,每小题3分,满分15分)请把答案直接填在题中的横线上. 13.分解因式:4a 2﹣16=_____.【答案】4(a +2)(a ﹣2)【解析】【分析】首先提取公因式4,进而利用平方差公式进行分解即可.【详解】解:4a 2﹣16=4(a 2﹣4)=4(a+2)(a ﹣2).故答案为:4(a+2)(a ﹣2).【点睛】本题是对因式分解的考查,熟练掌握因式分解的提公因式法和公式法是解决本题的关键. 14.一个不透明的袋子里装有除颜色不同外其他都相同的5个小球,其中红球3个、白球2个,一次从中摸出两个小球,全是红球的概率为________________. 【答案】310 【解析】【详解】解:这是一个等可能事件,一次从中摸出两个小球共有20种可能性,其中全是红球的可能性有6种,所以P (一次从中摸出两个小球,全是红球)=632010=. 故答案为:310. 15.如图,⊙O 的半径为1cm ,正六边形内接于⊙O ,则图中阴影部分面积为_____.【答案】6π根据图形分析可得求阴影部分面积实为求扇形面积,将原图阴影部分面积转化为扇形面积求解即可.【详解】解:如图,连接BO,CO,OA.由题意得,△OBC,△AOB都是等边三角形,∴∠AOB=∠OBC=60°,∴OA∥BC,∴△OBC的面积=△ABC的面积,∴图中阴影部分的面积等于扇形OBC的面积=2601= 3606ππ⨯.故答案为6π【点睛】本题考查正多边形与圆、扇形的面积公式、平行线的性质等知识,解题的关键是得出阴影部分面积=S扇形OBC,属于中考常考题型.16.对于反比例函数2yx=,下列说法:①点()2,1--在它的图象上;②它的图象在第一、三象限;③当x0)>时,随的增大而增大;④当x0<时,随的增大而减小.上述说法中,正确的序号是________.(填上所有你认为正确的序号)【答案】①②④【解析】【详解】解:①因为(-2)×(-1)=2,所以点(﹣2,﹣1)在它的图象上,正确;②因为k=2>0,所以它的图象在第一、三象限,正确;③k=2>0,所以在每一个象限内,y随x的增大而减小,所以当x>0时,y随x的增大而增大,错误;④k=2>0,所以在每一个象限内,y随x的增大而减小,所以当x<0时,y随x的增大而减小,正确.故答案为①②④.17.观察下列等式:12×231=132×21,13×341=143×31,23×352=253×32,34×473=374×43,62×286=682×26,…………………….以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为”数字对称等式”.根据上述规律填空:27×_________=_______×_________.【答案】 (1). 792 (2). 297 (3). 72【解析】【详解】解:等式的第二个数的百位数是第一个数的个位数,第二个数的个位数是第一个数的十位数,第二个数的十位数是第一个数的数位上数字的和,等式右边的两个数分别是左边两个数的对称数.故答案为:27×792=297×72. 【点睛】本题考查的是有理数的乘法,其本质是探索规律,探索规律型问题也是归纳猜想型问题,其特点是:给出一组具有某种特定关系的数、式、图形,或是给出与图形有关的操作变化过程,或某一具体的问题情境,要求通过观察分析推理,探究其中蕴含的规律,进而归纳或猜想出一般性的结论.三、解答题(第18题6分,第19题7分,第20题11分,本大题满分24分)18.计算:()1131tan 6022π-⎛⎫+-︒--︒+ ⎪⎝⎭. 【答案】4【解析】试题分析:理解负整数指数,零指数,绝对值的意义,二次根式的化简,并记住60°角的正切值.试题解析:原式=)211+-=4. 19.如图,在正方形ABCD 中,点E 在对角线AC 上,点F 在边BC 上,连接BE 、DF ,DF 交对角线AC 于点G ,且D E=DG .(1)求证:AE=CG;(2)试判断BE 和DF 的位置关系,并说明理由.【答案】(1)证明见解析;(2)BE ∥DF ,理由见解析.【解析】试题分析:(1)先证∠AED=∠CGD ,再证明△ADE ≌△CDG ,根据全等三角形的对应边相等即可得出结论;(2)先证明△AEB ≌△CGD ,得出对应角相等∠AEB=∠CGD ,得出∠AEB=∠EGF ,即可证出平行线. 试题解析:(1)在正方形ABCD 中,∵AD=CD ,∴∠DAE=∠DCG ,∵DE=DG ,∴∠DEG=∠DGE ,∴∠AED=∠CGD .在△AED 和△CGD 中,{DAE DCGAED CGD DE DG∠=∠∠=∠=∴△AED ≌△CGD(AAS),∴AE=CG .(2)BE ∥DF ,理由如下:在正方形ABCD 中,AB ∥CD ,∴∠BAE=∠DCG .在△AEB 和△CGD 中,{AE CGBAE DCG AB CD=∠=∠=∴△AEB ≌△CGD(SAS),∴∠AEB=∠CGD .∵∠CGD=∠EGF ,∴∠AEB=∠EGF ,∴BE∥DF.考点:1.正方形的性质;2.全等三角形的判定与性质.20.学校准备在各班设立图书角以丰富同学们的课余文化生活,为了更合理的搭配各类书籍,学校团委以”我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题:(1)在这次抽样调查中,一共调查了多少名学生;(2)请把折线统计图(图1)补充完整;(3)求出扇形统计图(图2)中,体育部分所对应的圆心角的度数;(4)如果这所中学共有学生1800名,那么请你估计最喜爱科普类书籍的学生人数;(5)学校若在喜爱艺术、文学、科普、体育四类中任意抽取两类建立兴趣小组,求出恰好选中是体育和科普两类的概率.【答案】(1)300人;(2)补图见解析;(3)48 ;(4)480人;(5)16.【解析】【分析】(1)由折线图知喜爱文学的人数,由扇形统计图可知喜爱文学学生所占的百分比,则此则可求出参加调查学生的总数;(2)结合折线图与扇形图计算出喜爱艺术的人数和其他的人数;(3)用喜爱体育学生点总人数的百分比乘以360°;(4)用样本估计总体,通过300个中喜爱科普类书籍估计结果;(5)这是一个等可能事件,画出树状图,列出所有可能的结果,是科普和体育的结果,从而计算出是体育和科普两类的概率.【详解】解:(1)调查的学生人数为:90÷30%=300人;(2)如图(3)喜爱体育书籍的学生人数为:300―80―90―60―30=40体育部分所对的圆心角为:40100%36048 300︒︒⨯⨯=;(4)在抽样调查中,喜欢科普类书籍所占比例为:80430015=,可以估计,在全校同学中,喜欢科普类书籍人数大约占了415,人数约为1800×415=480人;(5)画出树状图:∴P(选中恰是体育和科普)=16.四、解答题(第21题9分,第22题10分,本大题满分19分)21.如图,点D在双曲线上,AD垂直轴,垂足为A,点C在AD上,CB平行于轴交双曲线于点B,直线AB与轴交于点F,已知AC:AD=1:3,点C的坐标为(3,2).(1)求该双曲线的解析式;(2)求△OFA的面积.【答案】(1)该双曲线解析式为18yx;(2)32【解析】【分析】(1)由点C的坐标为(3,2)得AC=2,而AC:AD=1:3,得到AD=6,则D点坐标为(3,6),然后利用待定系数法确定双曲线的解析式;(2)已知A(3,0)和B(9,2),利用待定系数法确定直线AB解析式,得到F点的坐标,然后利用三角形的面积公式计算即可【详解】(1)∵点C的坐标为(3,2),AD垂直x轴,∴AC=2,又∵AC:AD=1:3,∴AD=6,∴D点坐标为(3,6),设双曲线的解析式为y=k x把D(3,6)代入y=kx得,k=3×6=18,所以双曲线解析式为y=18x;(2)设直线AB的解析式为y=kx+b,∵CB平行于x轴交曲线于点B,∵双曲线的解析式为y=18x,∴B(9,2)把A(3,0)和B(9,2)代入y=kx+b得,3k+b=0,9k+b=2,解得k=13,b=-1,∴直线AB的解析式为y=13x-1,令x=0,得y=-1,∴F点的坐标为(0,-1),∴S△OFA=12×OA×OF=12×3×1=32.【点睛】本题考查了利用待定系数法确定反比例函数和一次函数解析式的方法:把求解析式的问题转化为解方程或方程组.也考查了坐标与线段之间的关系以及三角形面积公式.22.某体育用品专卖店销售7个篮球和9个排球的总利润为355元,销售10个篮球和20个排球的总利润为650元.(1)求每个篮球和每个排球的销售利润;(2)已知每个篮球的进价为200元,每个排球的进价为160元,若该专卖店计划用不超过17400元购进篮球和排球共100个,且要求篮球数量不少于排球数量的一半,请你为专卖店设计符合要求的进货方案.【答案】(1)每个篮球和每个排球的销售利润分别为25元,20元(2)购进篮球34个排球66个,或购进篮球35个排球65个两种购买方案.【解析】【分析】(1)设每个篮球和每个排球的销售利润分别为x元,y元,根据题意列方程组,解方程即可得到结果;(2)设购进篮球m个,排球(100﹣m)个,根据题意得不等式组即可得到结果.【详解】解:(1)设每个篮球和每个排球的销售利润分别为x元,y元,根据题意得:79355 1020650 x yx y+=+=⎧⎨⎩,解得:2520 xy⎧⎨⎩==.答:每个篮球和每个排球的销售利润分别为25元,20元;(2)设购进篮球m个,排球(100﹣m)个,根据题意得:200160(100)17400 1002m mmm⎪+-≤-⎧⎪⎨⎩≥,解得:10035 3m≤≤,∴m=34或m=35,∴购进篮球34个排球66个,或购进篮球35个排球65个两种购买方案.【点睛】本题考查一元一次不等式的应用;二元一次方程组的应用;方案型.五、解答题(本大题满分12分)23. 如图,在Rt△ABC 中,∠ABC=90°,AC 的垂直平分线分别与AC ,BC 及AB 的延长线相交于点D ,E ,F ,且BF=BC ,⊙O 是△BEF 的外接圆,∠EBF 的平分线交EF 于点G ,交于点H ,连接BD 、FH .(1)求证:△ABC≌△EBF ;(2)试判断BD 与⊙O 的位置关系,并说明理由;(3)若AB=1,求HG•HB 的值.【答案】(1)证明见试题解析;(2)相切,理由见试题解析;(3)22【解析】【分析】(1)由∠ABC=90°和FD ⊥AC ,得到∠ABF=∠EBF ,由∠DEC=∠BEF ,得到∠DCE=∠EFB ,从而得到△ABC ≌△EBF (ASA );(2)BD 与⊙O 相切.连接OB ,只需证明∠DBE+∠OBE=90°,即可得到OB ⊥BD ,从而有BD 与⊙O 相切;(3)连接EA ,EH ,由DF 为线段AC 的垂直平分线,得到AE=CE ,由△ABC ≌△EBF ,得到AB=BE=1,进而得到22AB =12BF BC ==+2422EF =+BH 为角平分线,易证△EHF 为等腰直角三角形,故222EF HF =,得到221222HF EF ==,再由△GHF ∽△FHB ,得到2HG HB HF ⋅=.【详解】解:(1)∵∠ABC=90°,∴∠CBF=90°,∵FD ⊥AC ,∴∠CDE=90°,∴∠ABF=∠EBF ,∵∠DEC=∠BEF ,∴∠DCE=∠EFB ,∵BC=BF ,∴△ABC ≌△EBF (ASA );(2)BD 与⊙O 相切.理由:连接OB ,∵DF 是AC 的垂直平分线,∴AD=DC ,∴BD=CD ,∴∠DCE=∠DBE ,∵OB=OF ,∴∠OBF=∠OFB ,∵∠DCE=∠EFB ,∴∠DBE=∠OBF ,∵∠OBF+∠OBE=90°,∴∠DBE+∠OBE=90°,∴OB ⊥BD ,∴BD 与⊙O 相切;(3)连接EA ,EH ,∵DF 为线段AC 的垂直平分线,∴AE=CE ,∵△ABC ≌△EBF ,∴AB=BE=1,∴=∴1BF BC ==+∴(2222114EF BE BF =+=++=+ 又∵BH 为角平分线,∴∠EBH=∠EFH=45°,∴∠HEF=∠HBF=45°,∠HFG=∠EBG=45°,∴△EHF 为等腰直角三角形,∴222EF HF =,∴22122HF EF ==,∵∠HFG=∠FBG=45°,∠GHF=∠GHF,∴△GHF∽△FHB,∴HF HG HB HF=,∴2HG HB HF⋅=,∴222HG HB HF⋅==+.【点睛】本题考查了全等三角形的判定和性质,相似三角形的判定和性质,圆周角定理,勾股定理,线段的垂直平分线的性质,直角三角形的性质,等腰直角三角形的判定和性质,熟练掌握这些定理是解题的关键.六、解答题(本大题满分14分)24.如图,经过原点的抛物线y=﹣x2﹣2mx(m>1)与x轴的另一个交点为A.过点P(﹣1,m)作直线PD⊥x 轴于点D,交抛物线于点B,BC∥x轴交抛物线于点C.(1)当m=2时.①求线段BC的长及直线AB所对应的函数关系式;②若动点Q在直线AB上方的抛物线上运动,求点Q在何处时,△QAB的面积最大?③若点F在坐标轴上,且PF=PC,请直接写出符合条件的点F在坐标;(2)当m>1时,连接CA、CP,问m为何值时,CA⊥CP.【答案】(1)BC=2;①直线AB所对应的函数关系式为y=x+4;②当a=-52时,△QAB的面积最大,此时Q的坐标为(-52,154);③符合条件的点F坐标为F1(﹣2,0),F2(0,0),F3(0,4);(2)m=32.【解析】【分析】(1)①将m=2代入y=﹣x2﹣2mx,得出y=﹣x2﹣4x,求出A(﹣4,0),B(﹣1,3),由B、C两点关于抛物线y=﹣x2﹣4x的对称轴x=﹣2对称,得出BC=2,运用待定系数法求出直线AB所对应的函数关系式;②过点Q作QE∥y轴,交AB于点E,设Q(a,﹣a2﹣4a),则E(a,a+4),QE=(﹣a2﹣4a)﹣(a+4)=﹣a2﹣5a﹣4,由S△QAB=12QE•AD求出S△QAB=﹣32(a+52)2+278,根据二次函数的性质即可求解;③分两种情况进行讨论:若点Fx轴上,设F(x,0).根据PF=PC列出方程,解方程得到F1(﹣2,0),F2(0,0);若点F在y轴上,设F(0,y),根据PF=PC列出方程,解方程得到F3(0,4),F4(0,0)与F2(0,0)重合;(2)过点C作CH⊥x轴于点H.先求出PB=m﹣1,BC=2(m﹣1),CH=2m﹣1,AH=1,再证明△ACH∽△PCB,根据相似三角形对应边成比例得出AH CHPB BC=,即12112(1)mm m-=--,解方程可求出m的值.【详解】解:(1)①当m=2时,y=﹣x2﹣4x,令y=0,得﹣x2﹣4x=0,解得x1=0,x2=﹣4,则A(﹣4,0).当x=﹣1时,y=3,则B(﹣1,3).∵抛物线y=﹣x2﹣4x的对称轴为直线x=﹣2,∴B、C两点关于对称轴x=﹣2对称,∴C(﹣3,3),BC=2.设直线AB所对应的函数关系式为y=kx+b.∵A(﹣4,0)、B(﹣1,3)在直线AB上,∴043k bk b⎧⎨⎩=-+=-+,解得14kb=⎧⎨=⎩∴直线AB所对应的函数关系式为y=x+4;②过点Q作QE∥y轴,交AB于点E(如图1).由题意可设Q(a,﹣a2﹣4a),则E(a,a+4),∴QE=(﹣a2﹣4a)﹣(a+4)=﹣a2﹣5a﹣4.∴S△QAB=12QE•AD=12×(﹣a2﹣5a﹣4)×3=﹣32(a+52)2+278,∴当a=-52时,△QAB的面积最大,此时Q的坐标为(-52,154);③分两种情况:若点F在x轴上,设F(x,0).∵PF=PC,P(﹣1,2),C(﹣3,3),∴(x+1)2+(2﹣0)2=(﹣3+1)2+(3﹣2)2,整理,得x2+2x=0,解得x1=﹣2,x2=0,∴F1(﹣2,0),F2(0,0);若点F在y轴上,设F(0,y).∵PF=PC,P(﹣1,2),C(﹣3,3),∴(0+1)2+(y﹣2)2=(﹣3+1)2+(3﹣2)2,整理,得y2﹣4y=0,解得y1=4,y2=0,∴F3(0,4),F4(0,0)与F2(0,0)重合;综上所述,符合条件的点F坐标为F1(﹣2,0),F2(0,0),F3(0,4);(2)过点C作CH⊥x轴于点H(如图2).∵P(﹣1,m),B(﹣1,2m﹣1),∴PB=m﹣1.∵抛物线y=﹣x2﹣2mx的对称轴为直线x=﹣m,其中m>1,∴B、C两点关于对称轴x=﹣m对称,∴BC=2(m﹣1),∴C(1﹣2m,2m﹣1),H(1﹣2m,0),∴CH=2m﹣1,∵A(﹣2m,0),∴AH=1.由已知,得∠ACP=∠BCH=90°,∴∠ACH=∠PCB.又∵∠AHC=∠PBC=90°,∴△ACH∽△PCB,∴AH CHPB BC=,即12112(1)mm m-=--,∴m=32.【点睛】本题考查二次函数综合题.其中涉及到运用待定系数法求一次函数解析式,二次函数的性质,三角形的面积,两点间的距离公式,相似三角形的判定与性质等知识,综合性较强,难度适中.运用数形结合、方程思想是解题的关键.。
2019年南充市中考适应性考试数学试卷及答案(word解析版)
四川省南充市中考2019年适应性考试数学试卷一、选择题(本大题共10个小题,每小题3分,共30分)每小题都有代号为A、B、C、D的四个答案选项,其中只有一个是正确的,请把正确选项的代号用2B铅笔涂在答题卡上.涂正确记3分,不涂、涂错或涂出的代号超过一个记0分.B(﹣)的倒数是﹣2.(3分)(2019•南充模拟)如图,立体图形的主视图是()B,、5.(3分)(2019•南充模拟)关于x的方程的解是正数,则a的取值范围是()x=>6.(3分)(2019•南充模拟)甲、乙两同学五次测试数学的平均成绩相同,方差分别为,甲、乙两同学数学成绩较稳定的是()BP=8.(3分)(2019•南充模拟)如图是一个以O为对称中心的中心对称图形,若∠A=30°,∠C=90°,AC=1,则AB的长为()AO===BA=2AO=9.(3分)(2019•南充模拟)如果直线y=x+b与双曲线有一个交点为A(1,m),则b=210.(3分)(2019•南充模拟)如图,⊙O与AB切于点C,∠BCE=60°,DC=6,DE=4,则S△CDE为()B=3=.二、填空题(本大题共4个小题,每小题3分,共12分)请将答案直接填写在答题卡横线上11.(3分)(2019•南充模拟)分解因式:2x2﹣2x﹣12=2(x﹣3)(x+2).12.(3分)(2019•南充模拟)一圆锥的底面圆半径为2cm,母线长为3cm,则侧面积为6πcm2.×13.(3分)(2019•南充模拟)第一盒乒乓球中有2 个白球2 个黄球,第二盒乒乓球中有1个白球3个黄球,分别从每个盒中随机地取出1个球,则取出的两个球中有一个白球和一个黄球的概率是.=.故答案为:.14.(3分)(2019•南充模拟)如图,在Rt△ABC中,AB=AC,D,E是斜边BC上两动点,∠DAE=45°,将△ADC绕点A顺时针旋转90°后得到△AFB,连接EF.下列结论:①△AED≌△AEF,②△ABE∽△ACD,③BE+CD>DE,④cos∠BEF=.一定成立的有①②④.BEF=,即.三、(本大题共3个小题,每小题6分,共18分)15.(6分)(2019•南充模拟)计算:.4+3+4×4+3+4416.(6分)(2019•南充模拟)如图,▱ABCD的BC边的中点E,延长AE交DC的延长线于点F.求证:DC=CF.17.(6分)(2019•南充模拟)某校为了促进体育活动的开展,组建了足球、篮球、乒乓球、羽毛球、田径五个体育活动小组,经调查九(l )班各活动小组参加人数的条形统计图和扇形统如下:(1)该班有多少学生?(2)请你将条形统计图补充完整;(3)对扇形统计图中,乒乓球小组所对应的扇形圆心角比羽毛球小组所对应的扇形圆心角大多少度?×=108四、(本大题共2个小题,每小题8分,共16分)18.(8分)(2019•南充模拟)已知关于x的方程(x﹣3)(x﹣2)﹣p2=0.(1)求证:这个方程总有两个不相等的实数根;(2)若二实根x1,x2满足,求p的值.219.(8分)(2019•南充模拟)如图,已知矩形ABCD中,E为AD上一点,BE⊥CE.(1)求证:△EAB∽△CDE;(2)若AB=3,AD=8,求AE的长.=,即,±±.五、(本题满分8分)20.(8分)(2019•南充模拟)某商场购进一批单价为16元的商品,经市场调查发现若按20元/件销售,每月能售出360件,若按25元/件销售,何月能售出210件,设每月销售量y (件)是售价x(元/件)的一次函数.(1)求y与x之间的函数关系式;(2)销售价定为多少时,才能使月利润最大,月最大利润是多少?.六、(本题满分8分)21.(8分)(2019•南充模拟)如图,四边形ABCD是矩形,将△BCD沿BD折叠为△BED,连接AE.(1)求证:四边形ABDE是等腰梯形;(2)若∠BDC=60°,BC=6,求AE的长.==2,AB=CD=2×=2=,即=七、(本题满分8分)22.(8分)(2019•南充模拟)如图,已知抛物线与x轴交于点A(﹣2,0),B(4,0),与y轴交于点C(0,8).(1)求抛物线的解析式及其顶点D的坐标;(2)设直线CD交x轴于点E.在线段OB的垂直平分线上是否存在点P,使得点P到直线CD的距离等于点P到原点O的距离?如果存在,求出点P的坐标;如果不存在,请说明理由;(3)过点B作x轴的垂线,交直线CD于点F,将抛物线沿其对称轴平移,使抛物线与线段EF总有公共点.试探究:抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度?的距离为8),.个单位长,向下最多可平移个单位长.。
2019年中考数学试题含答案
2019年中考数学试题含答案一、选择题1.阅读理解:已知两点1122,,()(),M x y N x y ,则线段MN 的中点(),K x y 的坐标公式为:122x x x +=,122y y y +=.如图,已知点O 为坐标原点,点()30A -,,O e 经过点A ,点B 为弦PA 的中点.若点(),P a b ,则有,a b 满足等式:229a b +=.设(),B m n ,则,m n 满足的等式是( )A .229m n +=B .223922m n -⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭ C .()()222323m n ++= D .()222349m n ++= 2.如图的五个半圆,邻近的两半圆相切,两只小虫同时出发,以相同的速度从A 点到B 点,甲虫沿大半圆弧ACB 路线爬行,乙虫沿小半圆弧ADA 1、A 1EA 2、A 2FA 3、A 3GB 路线爬行,则下列结论正确的是 ( )A .甲先到B 点 B .乙先到B 点C .甲、乙同时到B 点D .无法确定3.老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是( )A .只有乙B .甲和丁C .乙和丙D .乙和丁4.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( )A .12B .15C .12或15D .185.如图,长宽高分别为2,1,1的长方体木块上有一只小虫从顶点A出发沿着长方体的外表面爬到顶点B,则它爬行的最短路程是()A.10B .5C .22D.36.我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l:y=kx+43与x轴、y轴分别交于A 、B,∠OAB=30°,点P在x轴上,⊙P与l相切,当P 在线段OA上运动时,使得⊙P成为整圆的点P个数是()A.6B.8C.10D.127.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.若AC=5,BC=2,则sin∠ACD的值为()A.5B.25C.5D.238.不等式组213312xx+⎧⎨+≥-⎩<的解集在数轴上表示正确的是()A.B.C.D.9.下列各曲线中表示y是x的函数的是()A.B.C.D.10.如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD的长度之比为()A.tan tanαβB.sinsinβαC.sinsinαβD.coscosβα11.如图,正比例函数1y=k x与反比例函数2ky=x的图象相交于点A、B两点,若点A的坐标为(2,1),则点B的坐标是()A.(1,2)B.(-2,1)C.(-1,-2)D.(-2,-1)12.如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB、CD交于点E、F,连结BF交AC于点M,连结DE、BO.若∠COB=60°,FO=FC,则下列结论:①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④S△AOE:S△BCM=2:3.其中正确结论的个数是()A.4个B.3个C.2个D.1个二、填空题13.一列数123,,,a a a……na,其中1231211111,,,,111nna a a aa a a-=-===---L L,则1232014a a a a++++=L L__________.14.如图,矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为____________.15.如图,在平面直角坐标系中,菱形OABC 的面积为12,点B 在y 轴上,点C 在反比例函数y =k x 的图象上,则k 的值为________.16.半径为2的圆中,60°的圆心角所对的弧的弧长为_____.17.如图,在Rt △AOB 中,OA=OB=32,⊙O 的半径为1,点P 是AB 边上的动点,过点P 作⊙O 的一条切线PQ (点Q 为切点),则切线PQ 的最小值为 .18.若一个数的平方等于5,则这个数等于_____.19.已知圆锥的底面圆半径为3cm ,高为4cm ,则圆锥的侧面积是________cm 2.20.对于有理数a 、b ,定义一种新运算,规定a ☆b =a 2﹣|b|,则2☆(﹣3)=_____.三、解答题21.如图,AD 是ABC ∆的中线,AE BC ∥,BE 交AD 于点F ,F 是AD 的中点,连接EC .(1)求证:四边形ADCE 是平行四边形;(2)若四边形ABCE 的面积为S ,请直接写出图中所有面积是13S 的三角形.22.先化简,再求值: 233212-),322x x x x x x (其中+-+÷=++ 23.直线AB 交⊙O 于C 、D 两点,CE 是⊙O 的直径,CF 平分∠ACE 交⊙O 于点F ,连接EF ,过点F 作FG∥ED 交AB 于点G .(1)求证:直线FG 是⊙O 的切线;(2)若FG =4,⊙O 的半径为5,求四边形FGDE 的面积.24.解方程:3x x +﹣1x =1. 25.计算:(1)2(m ﹣1)2﹣(2m+1)(m ﹣1)(2)(1﹣)【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据中点坐标公式求得点B 的坐标,然后代入,a b 满足的等式进行求解即可.【详解】∵点()30A -,,点(),P a b ,点(),B m n 为弦PA 的中点, ∴32a m -+=,02b n +=, ∴23,2a m b n =+=, 又,a b 满足等式:229a b +=,∴()222349m n ++=,故选D .【点睛】本题考查了坐标与图形性质,解题的关键是理解中点坐标公式. 2.C解析:C【解析】1 2π(AA1+A1A2+A2A3+A3B)=12π×AB,因此甲虫走的四段半圆的弧长正好和乙虫走的大半圆的弧长相等,因此两个同时到B点。
四川中考综合模拟考试《数学试题》含答案解析
四川数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.-2的倒数是( )A. -2B. 12-C. 12D. 22.下列所给图案中,既是轴对称图形,又是中心对称图形的是( )A. B. C. D. 3.如图,夜晚路灯下有一排同样高的旗杆,离路灯越近,旗杆的影子( )A. 越长B. 越短C. 一样长D. 随时间变化而变化 4.如今青白江投资环境,得到越来越多的境内外优质企业的青睐,外资和注册资本5000万以上的企业相比去年同期翻了一番,将5000万这个数用科学记数法表示为( )A. 65010⨯B. 7510⨯C. 8510⨯D. 9510⨯ 5.已知3( ) A. 75° B. 60° C. 45° D. 30°6.下列运算正确的是( )A. 2x 2•3x 2=6x 2B. x 3+x 5=x 8C. x 4÷x =x 3D. (x 5)2=x 77.二次函数2y ax bx c =++的图象如图所示,下列结论错误..的是( )A. 0a <B. 0b <C. 0c >D. 240b ac -> 8.样本数据4,m ,5,n ,9的平均数是6,众数是9,则这组数据的中位数是( )A. 3B. 4C. 5D. 99.如图,ABC 中,//DE BC ,若:1:2AD DB =,ADE 的周长是6,则ABC 的周长是( )A. 6B. 12C. 18D. 24 10.当0<x <1时,x 2、x 、1x 的大小顺序是( ) A. 21x x x << B. 21x x x << C. 21x x x << D. 21x x x<< 二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.计算(31)(31)+-的结果等于_____________.12.如图,等边OAB 的边长为2,则点B 的坐标为_____.13.若23b a =,则a b b -的值等于_____. 14.如图,AB 是⊙O 的弦,半径OC ⊥AB 于点D ,若⊙O 的半径为10,AB =16,则CD 的长是__.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(1)计算30(2)2716sin 60(2019)π︒--+-+-. (2)先化简,再求值:22169211x x x x x ⎛⎫-++-÷ ⎪+-⎝⎭,其中1x =-. 16.已知23+是方程240x x c -+=的一个根,求方程的另一个根及c 的值.17.小明调查了本校九年级300名学生到校的方式,根据调査结果绘制出统计图的一部分如图:(1)补全条形统计图;(2)求扇形统计图中表示”步行”的扇形圆心角的度数;(3)请估计在全校1200名学生中乘公交的学生人数.18.如图,有一个三角形的钢架ABC ,30A ︒∠=,C 45︒∠=,AC 2(31)m =+.请计算说明,工人师傅搬运此钢架能否通过一个直径为2.4m 的圆形门?19.如图,已知三角形OAB 的顶点B 在x 轴的负半轴上,AB OB ⊥,点A 的坐标为(4,2)-),双曲线k y (k 0)x=<的一支经过OA 边的中点C ,且与AB 相交于点D.(1)求此双曲线的函数表达式;(2)连结OD ,求AOD 的面积.20.将一副三角板Rt △ABD 与Rt △ACB (其中∠ABD =∠ACB =90°,∠D =60°,∠ABC =45°)如图摆放,Rt △ABD 中∠D 所对的直角边与Rt △ACB 的斜边恰好重合.以AB 为直径的圆经过点C ,且与AD 相交于点E ,连接EB ,连接CE 并延长交BD 于F .(1)求证:EF 平分∠BED ;(2)求△BEF 与△DEF 的面积的比值.四、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)B 卷(共50分) 21.已知a 2a -_____.22.在试制某种洗发液新品种时,需要选用两种不同添加剂.现有芳香度分别为0,1,2,3,4,5的六种添加剂可供选用.根据试验设计原理,通常要先从芳香度为0,1,2的三种添加剂中随杋选取一种,再从芳香度为3,4,5的三种添加剂中随机选取一种,进行搭配试验,则芳香度之和等于5的概率为____. 23.如图,在平面直角坐标系中,直线11:y x 2l =-与反比例函数k y x =的图象交于A ,B 两点(点A 在点B 左侧),已知A 点的纵坐标是1:将直线11:y x 2l =-沿y 向上平移后的直线2l 与反比例函数k y x =在第二象限内交于点C ,如果ABC 的面积为3,则平移后的直线2l 的函数表达式为_____.24.如图,等边三角形ABC 中,3AB =,点D 是CB 延长线上一点,且BD 1=,点E 在直线..AC 上,当BAD CDE ∠=∠时,AE 长为_____.25.如图,线段AC =n +1(其中n 为正整数),点B 在线段AC 上,在线段AC 同侧作菱形ABMN 与菱形BCEF ,点F 在BM 边上,AB =n ,∠ABM =60°,连接AM 、ME 、EA 得到△AME .当AB =1时,△AME 的面积记为S 1;当AB =2时,△AME 的面积记为S 2;当AB =3时,△AME 的面积记为S 3;…;当AB =n 时,△AME 的面积记为S n ,当n ≥2时,S n ﹣S n ﹣1=__.五、解答题(本小题共三个小题,共30分,答案写在答题卡上)26.某服装厂生产某品牌的T 恤衫成本是每件10元.根据市场调查,以单价13元批发给经销,商销商愿意经销5000件,并且表示每降价0.1元,愿意多经销500件.服装厂决定批发价在不低于11.4元的前提下,将批发价下降0.1x 元.(1)求销售量y 与x 的关系,并求出x 的取值范围;(2)不考虑其他因素,请问厂家批发单价是多少时所获利润W 可以最大?最大利润为多少?27.已知:ABC 和ADE 均为等腰直角三角形,90BAC DAE ︒∠=∠=,AB AC =,AD AE =,连接BD CD CE ,,.(1)如图1所示,线段BD 与CE 的数量关系是_____,位置关系是_____;(2)在图1中,若点M 、P 、N 分别为DE DC BC 、、的中点,连接PM PN MN ,,,请判断PMN 的形状,并说明理由;(3)如图2所示,若M 、N 、P 分别为DE BC DC 、、上的点,且满足DM BN DP 1DE BC DC 3===,6BD =,连接PM PN MN ,,,则线段MN 长度是多少? 28.如图,抛物线2y ax bx c =++与x 轴相交于A (3,0)、B 两点,与y 轴交于点C (0,3),点B 在x 轴的负半轴上,且OA 3OB =.(1)求抛物线的函数关系式;(2)若P 是抛物线上且位于直线AC 上方的一动点,求ACP 的面积的最大值及此时点P 的坐标;(3)在线段OC 上是否存在一点M ,使2BM CM 2+值最小?若存在,请求出这个最小值及对应的M 点的坐标;若不存在,请说明理由.答案与解析一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.-2的倒数是()A. -2B.12C. 12D. 2【答案】B【解析】【分析】根据倒数的定义求解.【详解】-2的倒数是-1 2故选B【点睛】本题难度较低,主要考查学生对倒数相反数等知识点的掌握2.下列所给的图案中,既是轴对称图形,又是中心对称图形的是( )A. B. C. D.【答案】D【解析】【分析】根据中心对称图形与轴对称图形的概念对各选项进行逐一分析即可.【详解】A.不是轴对称图形,是中心对称图形,故本选项错误;B.不是轴对称图形,是中心对称图形,故本选项错误;C.是轴对称图形,但不是中心对称图形,故本选项错误;D. 既是轴对称图形,又是中心对称图形,故本选项正确;故选:D.【点睛】本题考查的是中心对称图形,轴对称图形.熟知中心对称图形与轴对称图形的概念是解答此题的关键.3.如图,夜晚路灯下有一排同样高的旗杆,离路灯越近,旗杆的影子( )A. 越长B. 越短C. 一样长D. 随时间变化而变化【答案】B【解析】 由图易得AB <CD ,那么离路灯越近,它的影子越短,故选B .【点睛】本题考查了中心投影,用到的知识点为:影长是点光源与物高的连线形成的在地面的阴影部分的长度.4.如今的青白江投资环境,得到越来越多的境内外优质企业的青睐,外资和注册资本5000万以上的企业相比去年同期翻了一番,将5000万这个数用科学记数法表示为( )A. 65010⨯B. 7510⨯C. 8510⨯D. 9510⨯【答案】B【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:5000万=50000000=7510⨯.故选:B.【点睛】本题考查用科学记数法表示一个数. 科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,能正确确定a 和n 是关键.5.已知sin=32,且是锐角,则等于( ) A. 75°B. 60°C. 45°D. 30°【答案】B【解析】 试题分析:本题只需要根据特殊角的三角函数值即可得出答案.sin60°=32,则=60°. 6.下列运算正确的是( )A. 2x 2•3x 2=6x 2B. x 3+x 5=x 8C. x 4÷x =x 3 D. (x 5)2=x 7 【答案】C【解析】【分析】 根据同底数幂的乘除法运算法则与合并同类项法则及积的乘方运算法则逐一计算,然后再加以判断即可.【详解】A :224236x x x ⋅=,故A 错误;B :3x 与5x 不是同类项,无法合并,故B 错误;C :43x x x ÷=,故C 正确;D :()2510x x =,故D 错误;故选:C .【点睛】本题主要考查了同底数幂的乘除法运算与合并同类项及积的乘方运算,熟练掌握相关方法是解题关键.7.二次函数2y ax bx c =++的图象如图所示,下列结论错误..的是( )A. 0a <B. 0b <C. 0c >D. 240b ac ->【答案】B【解析】【分析】据抛物线的开口方向得出a 的符号,可判断A ;根据抛物线的对称轴在y 轴的右侧,a ,b 异号,得出b 的符号,可判断B ;根据抛物线与y 轴的交点情况得到c 的符号,可判断C ;根据抛物线与x 轴交点情况得到24b ac -的符号,可判断D.【详解】解:A .由二次函数的图象开口向下可得a <0,故A 正确; B. 0,0,02b x a b a=-><∴>,故B 错误; C.图象与y 轴相交于正半轴,所以0c >,故C 正确;D.图象与x 轴有两个交点,所以240b ac ->,故D 正确.故选:B.【点睛】本题考查二次函数图象与系数关系. 对于二次函数y=ax 2+bx+c (a≠0)来说,①二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线开口向下;|a|还可以决定开口大小,|a|越大开口就越小.②一次项系数b 和二次项系数a 共同决定对称轴的位置. 当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右.(简称:左同右异)③常数项c 决定抛物线与y 轴交点. 抛物线与y 轴交于(0,c ).④抛物线与x 轴交点个数.△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴无交点.8.样本数据4,m ,5,n ,9的平均数是6,众数是9,则这组数据的中位数是( )A. 3B. 4C. 5D. 9【答案】C【解析】【分析】先判断出m ,n 中至少有一个是9,再用平均数求出12m n +=,即可求出这两个数,由中位数的定义排序后求中位数即可.【详解】解:∵一组数据4,m ,5,n ,9的众数为9,∴m ,n 中至少有一个是9,∵一组数据4,m ,5,n ,9的平均数为6, 45965m n ++++= ∴12m n +=∴m ,n 中一个是9,另一个是3∴这组数按从小到大排列为:3,4,5,9,9.∴这组数的中位数为:5.故选:C.【点睛】本题考查了众数、平均数和中位数的知识.能结合平均数和众数的定义对这组数据正确分析是解决此题的关键.9.如图,ABC 中,//DE BC ,若:1:2AD DB =,ADE 的周长是6,则ABC 的周长是( )A. 6B. 12C. 18D. 24【答案】C【解析】【分析】 根据:1:2AD DB =可得出:1:3AD AB =,根据//DE BC 可证明△ADE ∽△ABC ,再根据相似三角形的性质即可求解.【详解】:1:2AD DB =:1:3AD AB ∴=//DE BC∴△ADE ∽△ABC ,相似比为:1:3 ∴13ADE ABC C C =△△ ∴ABC 的周长是:1618.3÷= 故选:C 【点睛】本题考查比例的性质,相似三角形的性质与判定.掌握相似三角形周长比等于相似比是解决此题的关键.10.当0<x <1时,x 2、x 、1x 的大小顺序是( ) A. 21x x x <<B. 21x x x <<C. 21x x x <<D. 21x x x<< 【答案】A【解析】分析:先在不等式0<x<1的两边都乘上x,再在不等式0<x<1的两边都除以x,根据所得结果进行判断即可.详解:当0<x<1时,在不等式0<x<1的两边都乘上x,可得0<x2<x,在不等式0<x<1的两边都除以x,可得0<1<1x,又∵x<1,∴x2、x、1x的大小顺序是:x2<x<1x.故选A.点睛:本题主要考查了不等式,解决问题的关键是掌握不等式的基本性质.不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,即:若a>b,且m>0,那么am>bm或a bm m >.二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.计算(31)(31)+-的结果等于_____________.【答案】2【解析】【分析】根据平方差公式计算即可.【详解】解:原式=3﹣1=2.故答案为2.【点睛】本题考查了二次根式的混合运算,熟记平方差公式是解题的关键.12.如图,等边OAB的边长为2,则点B的坐标为_____.【答案】3).【解析】【分析】过B作BD⊥OA于D,则∠BDO=90°,根据等边三角形性质求出OD,根据勾股定理求出BD,即可得出答案.【详解】解:如图,过B 作BD ⊥OA 于D ,则∠BDO=90°,∵△OAB 是等边三角形,112122OD AD OA ∴===⨯= 在Rt △BDO 中,由勾股定理得:22213BD =-=∴点B 的坐标为:3). 故答案为:3).【点睛】本题考查了等边三角形的性质,坐标与图形和勾股定理.能正确作出辅助线,构造Rt △BDO 是解决此题的关键.13.若23b a =,则a b b -的值等于_____. 【答案】12. 【解析】【分析】 根据23b a =可得32a b =,然后利用分比性质即可得解. 【详解】解:∵23b a = ∴32a b = ∴32122a b b --==. 故答案为:12. 【点睛】本题考查比例的性质.熟练掌握分比性质(如果a c b d=,则a b c d b d --=)是解决此题的关键. 14.如图,AB 是⊙O 的弦,半径OC ⊥AB 于点D ,若⊙O 的半径为10,AB =16,则CD 的长是__.【答案】4【解析】【分析】连接OA ,如图,利用垂径定理得到AD =BD =12AB =8,再利用勾股定理计算出OD ,然后计算OC ﹣OD 即可.【详解】解:连接OA ,如图,∵OC ⊥AB ,∴AD =BD =12AB =12×16=8, 在Rt △OAD 中,OD =22108-=6,∴CD =OC ﹣OD =10﹣6=4.故答案为:4.【点睛】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(1)计算30(2)2716sin 60(2019)π︒--+-. (2)先化简,再求值:22169211x x x x x ⎛⎫-++-÷ ⎪+-⎝⎭,其中1x =-. 【答案】(1)-8;(2)化简为:13x x -+,结果为:. 【解析】【分析】(1)原式第一项利用乘方进行计算,第二项化简二次根式,第三项绝对值内利用特殊角的三角函数值计算后化简绝对值,第四项利用零指数幂进行计算,将各自计算的结果相加(减);(2)根据分式的减法和除法可以化简题目中的式子,然后将x 的值代入化简后的式子即可.【详解】解:(1)原式=6811--+-=811+--+=-8;(2)原式=231221111x x x x x x x +--÷++-++()()()()=23(1)(1)1(3)x x x x x ++-++ =13x x -+. 当1x =-时,原式=11113--=--+. 【点睛】本题考查实数的混合运算,分式的化简求值.(1)中能根据乘方、二次根式的性质、绝对值、三角函数、零指数幂分别计算是解决此问的关键;(2)中熟练掌握分式的混合运算顺序和运算法则是解决此问的关键.16.已知2是方程240x x c -+=的一个根,求方程的另一个根及c 的值.【答案】1x 2=1c =【解析】试题分析:设另一根为x 1,由根与系数的关系得,两根和为4,求得x 1,,再根据两根积求得常数项c.试题解析:设另一根为x 1,由根与系数的关系得:12x 4∴=1x 2∴=(2c =1c =考点:根与系数的关系.17.小明调查了本校九年级300名学生到校的方式,根据调査结果绘制出统计图的一部分如图:(1)补全条形统计图;(2)求扇形统计图中表示”步行”的扇形圆心角的度数;(3)请估计在全校1200名学生中乘公交的学生人数.【答案】(1)补全条形统计图见解析;(2)”步行”的扇形圆心角的度数为60°;(3)1200名学生中乘公交的人数约为560人.【解析】【分析】(1)先计算乘公交的学生数=300-步行人数-骑自行车人数-乘私车人数,据此补充条形统计图即可;(2)先计算步行所占调查人数的比,再计算步行扇形圆心角的度数;(3)先计算乘公交的学生占调查学生的比例,再估计1200名学生中乘公交的人数.【详解】(1)乘公交的人数为:300−50−80−30=140(人)补全的条形图如图所示:(2)”步行”的扇形圆心角的度数为:5036060300︒⨯=︒;(3)因为调查的九年级300名学生中,乘公交的学生有140人,所以乘公交的学生占调查学生的比例为:1407= 30015,所以1200名学生中乘公交的人数约为:71200=56015⨯人.答:1200名学生中乘公交的人数约为560人.【点睛】本题考查条形统计图,扇形统计图,用样本估计总体.能读懂条形图和扇形图,从中提取有用信息是解决本题的关键.18.如图,有一个三角形的钢架ABC ,30A ︒∠=,C 45︒∠=,AC 2(31)m =+.请计算说明,工人师傅搬运此钢架能否通过一个直径为2.4m 的圆形门?【答案】工人师傅搬运此钢架能通过一个直径为2.4m 的圆形门.【解析】【分析】过B 作BD ⊥AC 于D ,设BD=xm ,解直角三角形求出3,AD x CD x ==,根据AD CD AC += 得出方程,求出方程即可求出BD 的长度,与2.4m 比较即可.【详解】解:工人师傅搬运此钢架能通过一个直径为2.4m 的圆形门,理由是:过B 作BD ⊥AC 于D ,∵AB >BD ,BC >BD ,AC >AB , ∴求出BD 长和2.4m 比较即可,设BD=xm ,∵∠A=30°,∠C=45°,∴在Rt △ABD 和Rt △BDC 中,33DC BD xm AD BD xm ====,2(31)AC m =,331)x x ∴=,解得x=2,即BD=2m <2.4m ,∴工人师傅搬运此钢架能通过一个直径为2.4m 的圆形门.【点睛】本题考查了解直角三角形的应用,一元一次方程的应用.能正确作出辅助线,构造Rt △ABD 和Rt △BDC 是解决此题的关键.19.如图,已知三角形OAB 的顶点B 在x 轴的负半轴上,AB OB ⊥,点A 的坐标为(4,2)-),双曲线k y (k 0)x=<的一支经过OA 边的中点C ,且与AB 相交于点D.(1)求此双曲线的函数表达式;(2)连结OD ,求AOD 的面积.【答案】(1)2y x-=;(2)3. 【解析】【分析】(1)根据C 为OA 的中点,由A 点的坐标求出C 点坐标,根据C 点坐标利用待定系数法可求双曲线的函数表达式;(2)根据AOD ABO DBO S S S ∆∆∆=-,分别求出ABO S ∆和DBO S ∆即可求出AOD 的面积.【详解】(1)∵点A 的坐标为(4,2)-,C 为OA 的中点,∴C 点的坐标为(2,1)-, 将C (2,1)-代入k y (k 0)x=<中得12k =-, 解得k=-2, 所以,此双曲线的函数表达式为:2y x-=; (2)∵AB OB ⊥,D 点在双曲线2y x-=上 ∴|2|12DBO S ∆-==,1142422ABO S BO AB ∆=⋅=⨯⨯= ∴413AOD ABO DBO S S S ∆∆∆=-=-=故AOD 的面积为3.【点睛】本题考查反比例函数与几何综合,反比例函数比例系数k 的几何意义及应用.(1)中能利用C 为OA 的中点求出点C 坐标是解决此问的关键;(2)中理解过反比例函数图象一点,作任一坐标轴的垂线,并连接原点,围成的三角形的面积为||2k 是解决此问的关键. 20.将一副三角板Rt △ABD 与Rt △ACB (其中∠ABD =∠ACB =90°,∠D =60°,∠ABC =45°)如图摆放,Rt △ABD 中∠D 所对的直角边与Rt △ACB 的斜边恰好重合.以AB 为直径的圆经过点C ,且与AD 相交于点E ,连接EB ,连接CE 并延长交BD 于F .(1)求证:EF 平分∠BED ;(2)求△BEF 与△DEF 的面积的比值.【答案】(1)见解析;(23【解析】【分析】(1)利用圆周角定理证明∠AEC =∠ABC =45°即可解决问题.(2)首先证明BE 3,再利用三角形的面积公式计算即可.【详解】(1)证明:∵CA =CB ,∠ACB =90°,∴∠ABC =∠AEC =45°,∵AB 是直径,∴∠AEB =∠BED =90°,∵∠AEC =∠DEF =45°, ∴FEB =∠FED =45°,∴EF 平分∠BED .(2)解:∵∠BED =90°,∠D =60°,∴tan ∠D =BE DE 3 ∵S △BEF =12•BE •EF •sin45°,S △EDF =12•DE •EF •sin45°, ∴BEFDEF S S =BE DE3 【点睛】本题考查圆周角定理、三角形的面积和三角函数,解题的关键是掌握圆周角定理、三角形的面积和三角函数的使用.四、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)B卷(共50分)21.已知a_____.【答案】0【解析】【分析】根据非负数性质,只有a=0【详解】解:根据非负数的性质a2≥0,根据二次根式的意义,﹣a2≥0,故只有a=00.故填:0.【点睛】考查了算术平方根.注意:平方数和算术平方根都是非负数,这是解答此题的关键.22.在试制某种洗发液新品种时,需要选用两种不同的添加剂.现有芳香度分别为0,1,2,3,4,5的六种添加剂可供选用.根据试验设计原理,通常要先从芳香度为0,1,2的三种添加剂中随杋选取一种,再从芳香度为3,4,5的三种添加剂中随机选取一种,进行搭配试验,则芳香度之和等于5的概率为____.【答案】1 3 .【解析】【分析】列举出所有情况,让芳香度之和等于5的情况数除以总情况数即为所求的概率.【详解】解:列表如下:所有可能出现的结果共有9种,芳香度之和等于5的结果有3种,故概率为31 93 =.故答案为:1 3 .【点睛】考查的是用列表法或树状图法求概率,能根据题意利用列表法或树状图法列出所有可能的结果是解决此题的关键. 概率=所求情况数与总情况数之比.23.如图,在平面直角坐标系中,直线11:y x 2l =-与反比例函数k y x =的图象交于A ,B 两点(点A 在点B 左侧),已知A 点的纵坐标是1:将直线11:y x 2l =-沿y 向上平移后的直线2l 与反比例函数k y x =在第二象限内交于点C ,如果ABC 的面积为3,则平移后的直线2l 的函数表达式为_____.【答案】1322y x =-+. 【解析】【分析】 先求出A 点坐标,根据题意可得A 、B 关于原点对称,求出B 点坐标. 设平移后的直线l 2与y 轴交于点D ,连接AD 和BD ,可知△ABC 的面积与△ABD 的面积相等.由此可求出D 点坐标. 直线2l 的一次项系数与直线1l 的一次项系数相同,它的常数项即为D 点的纵坐标.【详解】解:∵直线11:y x 2l =-经过A 点,且A 点纵坐标是1, ∴当y=1时,x=-2,∴(2,1)A -,∵反比例函数与正比例函数都关于原点中心对称,∴(2,1)B -如下图,设平移后的直线l 2与y 轴交于点D ,连接AD 和BD ,根据平移的性质12l l //,∴△ABC 的面积与△ABD 的面积相等,∵△ABC 的面积为3,3AOD BOD S S∴+=,即()132A B OD x x +=, ∴1432OD ⨯=,解得32OD =, 即平移后的直线2l 的函数表达式为:1322y x =-+. 故答案为:1322y x =-+. 【点睛】本题考查反比例函数与一次函数交点问题,一次函数的平移,一次函数与几何问题.本题的关键点有两个①根据正比例函数与反比例函数的对称性求得B 点坐标;②构造△ABD ,依据△ABC 的面积与△ABD 的面积相等,得到D 点的坐标.24.如图,等边三角形ABC 中,3AB =,点D 是CB 延长线上一点,且BD 1=,点E 在直线..AC 上,当BAD CDE ∠=∠时,AE 的长为_____.【答案】2或133. 【解析】【分析】 分①在线段AC 上,②在线段AC 的延长线上两种情况讨论.对于①作EF//AB 与BC 相交于F ,证明△DFE ∽△ABD ,利用相似三角形对应边相等可求得EC ,即也可求得AE ;对于②作EF//AB 与BC 的延长线交于F ,证明△DCE ∽△ABD ,利用相似三角形对应边相等可求得EC ,即也可求得AE.【详解】解:E 点的位置有两种可能,①在线段AC 上,②在线段AC 的延长线上. E 不可能在CA 的延长线上(因为若E 在CA 的延长线上由①可知CDE ∠不可能等于BAD ∠).①若E 在线段AC 上,如图作EF//AB 与BC 相交于F ,∵ABC ∆等边三角形,3AB =,∴AC=BC=AB=3,60BAC ABC C ∠=∠=∠=︒,∴∠ABD=120°,∵EF//AB ,∴60,60CFE ABC CEF BAC ∠=∠=︒∠=∠=︒,∴△EFC 为等边三角形,∠EFD=120°,设EF=FC=EC=x .∵BAD CDE ∠=∠,∠ABD=∠EFD=120°,∴△DFE ∽△ABD , ∴EF DF BD AB= ∵1BD =,∴314BFBC FC BD x x =-+=-+=- ∴413x x -=,解得 1.x = ∴EF=FC=EC=1,∴AE=AC-EC=3-1=2;②若E 点在线段AC 的延长线上,作EF//AB 与BC 的延长线交于F.与①同理可证△EFC为等边三角形,∠ECD=120°,设EF=FC=EC=x. ∵BAD CDE∠=∠,∠ABD=∠ECD=120°,∴△DCE∽△ABD,∴EC DC BD AB=,∵1BD=,∴BD=BC+BD=4,∴413x=,解得43x=,∴EF=FC=EC=43,413333AE AC CE∴=+=+=,故答案为:2或13 3.【点睛】本题考查等边三角形的性质和判定,相似三角形的性质和判定. 解题的关键是学会用分类讨论的思想,学会添加常用辅助线,构造相似三角形解决问题.25.如图,线段AC=n+1(其中n为正整数),点B在线段AC上,在线段AC同侧作菱形ABMN与菱形BCEF,点F在BM边上,AB=n,∠ABM=60°,连接AM、ME、EA得到△AME.当AB=1时,△AME的面积记为S1;当AB=2时,△AME的面积记为S2;当AB=3时,△AME的面积记为S3;…;当AB=n时,△AME的面积记为S n,当n≥2时,S n﹣S n﹣1=__.【答案】2334n-【解析】【分析】根据连接BE,则BE∥AM,利用△AME的面积=△AMB的面积即可得出S n=34n2,S n﹣1=34(n﹣1)2,即可得出答案.【详解】连接BE.∵菱形ABMN及菱形BCEF,∠ABM=60°,∠FBC=180°﹣∠ABM=120°,∴NA∥MB,∠EBC=60°,∴NAB=180°﹣∠ABM=120°,∴∠MAB=60°,∴∠MAB=∠EBC,∴BE∥AM,∴△AME与△AMB同底等高,∴△AME的面积=△AMB的面积,∴当AB=n时,△AME的面积记为S n=S△ABM 32,S n﹣13n﹣1)2,∴当n≥2时,S n﹣S n﹣13n﹣1)232233n-;故答案为:2334n.【点睛】本题考查三角形面积求法以及菱形的性质,根据已知得出正确图形,得出S与n的关系是解题关键.五、解答题(本小题共三个小题,共30分,答案写在答题卡上)26.某服装厂生产某品牌的T 恤衫成本是每件10元.根据市场调查,以单价13元批发给经销,商销商愿意经销5000件,并且表示每降价0.1元,愿意多经销500件.服装厂决定批发价在不低于11.4元的前提下,将批发价下降0.1x 元.(1)求销售量y 与x 的关系,并求出x 的取值范围;(2)不考虑其他因素,请问厂家批发单价是多少时所获利润W 可以最大?最大利润为多少?【答案】(1)5005000y x =+,016x ≤≤;(2)批发单价是12元时所获利润W 可以最大,最大利润为20000元.【解析】【分析】(1)根据销售量=原销量+多经销的销量即可列出函数关系式,根据批发价在不低于11.4元,可得x 的取值范围;(2)根据利润W=销量×单利润即可列出函数关系式,将函数化为顶点式,根据顶点式求最值即可.【详解】解:(1)根据题意:5005000y x =+,因为批发价在不低于11.4元,所以130.111.4x -≥,解得16x ≤,又0x ≥,所以016x ≤≤.所以销售量y 与x 的关系为:5005000y x =+,x 的取值范围为016x ≤≤;(2)根据题意:22(5005000)(13100.1)5010001500050(10)20000W x x x x x =+--=-++=--+ 因为-50<0,所以当x=10时(在x 取值范围之内),利润最大为20000元.因为当x=10时,13-0.1x=12元所以当批发单价是12元时所获利润W 可以最大,最大利润为20000元.【点睛】本题考查一次函数的应用,二次函数的应用.能根据题意得出等量关系,根据等量关系列出函数关系式是解决此题的关键.27.已知:ABC 和ADE 均为等腰直角三角形,90BAC DAE ︒∠=∠=,AB AC =,AD AE =,连接BD CD CE ,,.(1)如图1所示,线段BD 与CE 的数量关系是_____,位置关系是_____;(2)在图1中,若点M 、P 、N 分别为DE DC BC 、、的中点,连接PM PN MN ,,,请判断PMN 的形状,并说明理由;(3)如图2所示,若M 、N 、P 分别为DE BC DC 、、上的点,且满足DM BN DP 1DE BC DC 3===,6BD =,连接PM PN MN ,,,则线段MN 长度是多少?【答案】(1)相等,垂直;(2)PMN 为等腰直角三角形,证明见解析;(3)25MN =.【解析】【分析】(1)延长BD 与EC 相交于F ,证明△ABD ≌△ACE ,根据全等三角形的性质可得BD=CE,ABD ACE ∠=∠,再进一步证明90DBC BCE ∠+∠=︒可得∠BFC=90°,由此可证明BD 与CE 垂直且相等;(2)结合(1),根据中位线的定理,可推出PMN 为等腰直角三角形;(3)证明△CPN ∽△CDB ,△DPM ∽△DCE ,根据相似三角形的性质可求得NP 和MP 的值,结合(2)可证明∠NPM=90°,根据勾股定理可求得MN 的长度.【详解】解:(1)如下图延长BD 与EC 相交于F ,∵ABC 和ADE 均为等腰直角三角形,90BAC DAE ∠=∠=︒,∴90,90,BAD DAC EAC DAC ∠+∠=︒∠+∠=︒∴,BAD EAC ∠=∠又∵AB AC =,AD AE =∴△ABD ≌△ACE(SAS)∴BD=CE,ABD ACE ∠=∠,∵BAC 90∠=︒∴90ABC ACB ∠+∠=︒,∴ 90ABD DBC ACB ∠+∠+∠=︒∴90ACE DBC ACB ∠+∠+∠=︒,即90DBC BCE ∠+∠=︒∴90BFC ∠=︒,即BF EC ⊥.故线段BD 与CE 的数量关系是相等,位置关系是垂直.答案为:相等,垂直.(2)PMN 为等腰直角三角形,理由如下:∵点M 、P 、N 分别为DE DC BC 、、的中点,∴NP 和MP 分别为△BCD 和△ECD 的中位线, ∴11//,,//,,22NP BD NP BD MP CE MP CE == ∴,DPN FDC DPM DCE ∠=∠∠=∠,由(1)得BD=CE ,∴NP MP =,由(1)得BF EC ⊥,∴90FDC DCE ∠+∠=︒∴90DPN DPM ∠+∠=︒,即90NPM ∠=︒.∴PMN 为等腰直角三角形.(3)∵13BN DP BC DC == ∴23CP BC C DC N == 又∵∠BCD=∠BCD∴△CPN ∽△CDB ∴23CP BD N DC P ==,NPC BDC ∠=∠, ∴NP//BD ,∵6BD = ∴243NP BD ==, 同理可证△DPM ∽△DCE ,13PM DP EC DC ==,MP//EC ,∴11233PM CE BC === 与(2)同理可证90NPM ∠=︒,∴在Rt △NPM 中,根据勾股定理22224225MN NP MP =+=+=.【点睛】本题考查等腰直角三角形的性质,全等三角形的性质和判定,三角形中位线定理,相似三角形的性质和判定,勾股定理.(1)中掌握全等三角形的判定定理并能灵活运用是解决此问的关键;(2)掌握三角形中位线的判定定理是解决此问的关键;(3)能根据证明三角形相似,并根据相似三角形的性质求出NP 和PM 是解题关键.本题中的难点是利用角之间的数量关系证明∠BFC 和∠MPN 为90°. 28.如图,抛物线2y ax bx c =++与x 轴相交于A (3,0)、B 两点,与y 轴交于点C (0,3),点B 在x 轴的负半轴上,且OA 3OB =.(1)求抛物线的函数关系式;(2)若P 是抛物线上且位于直线AC 上方的一动点,求ACP 的面积的最大值及此时点P 的坐标;(3)在线段OC 上是否存在一点M ,使2BM +的值最小?若存在,请求出这个最小值及对应的M 点的坐标;若不存在,请说明理由.【答案】(1)2y x 2x 3=-++;(2)ACP 的面积的最大值为278,此时315(,)24P -;(3)当(0,1)M 时,2BM CM 2+的最小值为2【解析】【分析】(1)根据OA 3OB =求出B 点坐标,设交点式,用待定系数法即可求出函数关系式;(2)作PD ⊥x 轴,与线段AC 相交于D ,根据APC DPC DPA S S S ∆∆∆=+表示ACP 的面积,利用二次函数的性。
四川中考模拟考试《数学卷》含答案解析
四川数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________—、选择题:(本大题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的).1.在数轴上表示数-1和2019的两点分别为点和点,则、两点之间的距离为( )A. 2018B. 2019C. 2020D. 20212.下列计算正确的是( )A ()3473a a b b = B. 2(41)82b a ab b --=--C. ()23242a a a a ⨯+=D. 22(1)1a a -=-3.如图是由六个棱长为1小正方体搭成的几何体,其俯视图的面积为( )A. 3B. 4C. 5D. 64.2019年未至2020年初全球爆发了新冠肺炎”19COVID -“,世卫组织表示国际病毒分类委员会认定引发本次全球疫情病毒是SARS 冠状病毒姊妹病毒.若某种冠状病毒的直径为120纳米,1纳米910-=米,则这种冠状病毒的直径(单位:米)用科学记数法表示为( )A. 912010-⨯米B. 61.210-⨯米C. 71.210-⨯米D. 81.210-⨯米 5.如图,若//AB EF ,//AB CD .则下列各式成立的是( )A. 231180∠+∠-∠=︒B. 12390∠-∠+∠=︒C. 123180∠+∠+∠=︒D. 123180∠+∠+-∠=︒6.2019年第七届世界军人运动会(7thCISMMilitaryWorldGames )于2019年10月18日至27日在中国武汉举行,这是中国第一次承办综合性国际军事赛事,也是继北京奥运会后,中国举办的规模最大的国际体育盛会.某射击运动员在一次训练中射击了10次,成绩如图所示.下列结论中不正确的有( )个①众数是8;②中位数是8;③平均数是8;④方差是1.6.A. 1B. 2C. 3D. 47.如图,在菱形ABCD 中,点E,F 分别在AB,CD 上,且AE CF =,连接EF 交BD 于点O 连接AO.若25DBC ∠=︒,,则OAD ∠的度数为( )A. 50°B. 55°C. 65°D. 75°8.已知y 关于x 的函数表达式是24y ax x a =--,下列结论不正确的是( )A. 若1a =-,函数的最大值是5B. 若1a =,当2x ≥时,y 随x 的增大而增大C. 无论a 为何值时,函数图象一定经过点(1,4)-D. 无论a 为何值时,函数图象与x 轴都有两个交点9.如图,O 与正六边形OABCDE 的边,OA OE 分别交于点,F G ,点M 为劣弧FG 的中点.若42FM =.则点到FM 的距离是( )A. B. 32 C. 6 D. 4210.已知二次函数()2340y mx mx m m =--≠的图象与轴交于、两点(点在点的左侧),与轴交于点,且90ACB ∠=︒,则的值为( )A. 4±B. 2±C. 14±D. 12±11.已知圆锥的高为AO ,母线为AB ,且518OB AB =,圆锥的侧面展开图为如图所示的扇形.将扇形沿BE 折叠,使点恰好落在BC 上的点,则弧长CF 与圆锥的底面周长的比值为( )A. 12B. 25C. 23D. 3412.如图等边ABC ∆的边长为4cm ,点,点Q 同时从点出发,点Q 沿AC 以1/cm s 的速度向点运动,点沿A B C --以2/cm s 的速度也向点运动,直到到达点时两点都停止运动,若APQ ∆的面积为2)(S cm ,点Q 的运动时间为()t s ,则下列最能反映与之间函数关系的图象是( )A. B.C. D.二、填空题:(本大题共6小题,每小题4分,共24分,请把最后结果填在答题卡对应的位置上)13.分解因式:224mx my -=_________.14.若关于x 的方程2x m 2x 22x++=--有增根,则m 的值是 ▲ 15.如图,在正方形ABCD 中,2AC =,、分别是边AD 、CD 上的点,且AE DF =,AF 、BE 交于点,为AB 的中点,则OP =_________.16.已知双曲线4y x=与O 在第一象限内交于A B ,两点,45AOB ∠=,则扇形OAB 的面积是__________.17.已知关于x 的不等式组423(){23(2)5x x a x x +>+>-+仅有三个整数解,则a 的取值范围是___________. 18.如图,已知直线334y x =-与轴、轴分别交于、两点,是以()0,1C 为圆心,1为半径的圆上一动点,连接PA 、PB ,当PAB ∆的面积最大时,点的坐标为_______.三、解答题:(本大题共7小题,共78分.解答题应写出文字说明、证明过程或演算步骤)19.计算:231183tan 301212-⎛⎫-︒++++- ⎪⎝⎭20.如图,点是菱形ABCD 对角线的交点,//CE BD ,//BE AC ,连接OE 交CB 于点.(1)求证:OE CB =;(2)若菱形ABCD 的边长为2,且60ADC ∠=︒,求四边形OCEB 的面积.21.在”五四青年节”来临之际,某校举办了以”我的青春我做主”为主题的演讲比赛.并从参加比赛的学生中随机抽取部分学生的演讲成绩进行统计(等级记为:优秀,:良好,:一般,:较差),并制作了如下统计图表(部分信息未给出).等级人数2010请根据统计图表中的信息解答下列问题:(1)这次共抽取了______名参加演讲比赛的学生,统汁图中a =________,b =_______;(2)求扇形统计图中演讲成绩等级为”一般”所对应扇形的圆心角的度数;(3)若该校学生共2000人,如果都参加了演讲比赛,请你估计成绩达到优秀的学生有多少人?(4)若演讲比赛成绩为等级的学生中恰好有2名女生,其余的学生为男生,从等级的学生中抽取两名同学参加全市演讲比赛,请用列表或画树状图的方法求出”恰好抽中—名男生和一名女生”的概率.22.如图,一次函数y=kx+b(k 、b 为常数,k≠0)的图象与x 轴、y 轴分别交于A 、B 两点,且与反比例函数y=n x(n 为常数,且n≠0)的图象在第二象限交于点C .CD⊥x 轴,垂足为D ,若OB=2OA=3OD=12. (1)求一次函数与反比例函数的解析式;(2)记两函数图象的另一个交点为E ,求△CDE 的面积;(3)直接写出不等式kx+b≤n x的解集.23.新冠疫情期间,某医药器材经销商计划同时购进一批甲、乙两种型号的口罩,若购进2箱甲型口罩和1箱乙型口罩,共需要资金2800元;若购进3箱甲型口罩和2箱乙型口罩,共需要资金4600元.(1)求甲、乙型号口罩每箱的进价为多少元?(2)该医药器材经销商计划购进甲、乙两种型号的口罩用于销售,预汁用不多于1.8万元且不少于1.74万元的资金购进这两种型号口罩共20箱,请问有几种进货方案?并写出具体的进货方案;(3)若销售一箱甲型口罩,利润率为40%,乙型口罩的售价为每箱1280元.为了促销,公司决定每售出一箱乙型口罩,返还顾客现金元,而甲型口罩售价不变,要使(2)中所有方案获利相同,求的值. 24.如图所示,以ABC ∆的边AB 为直径作O ,点在O 上,BD 是O 的弦,A CBD ∠=∠,过点作CF AB ⊥于点,交BD 于点,过点作//CE BD 交AB 的延长线于点.(1)求证:CE 是O 的切线;(2)求证:CG BG =;(3)若30DBA ∠=︒,CG=4,求BE 长.25.如图,已知抛物线23y ax bx =++与轴交于点(1,0)A -、(3,0)B ,顶点为M .(1)求抛物线的解析式和点M 的坐标;(2)点E 是抛物线段BC 上的一个动点,设BEC ∆的面积为S ,求出S 的最大值,并求出此时点E 的坐标;(3)在抛物线的对称轴上是否存在点P ,使得以A 、P 、C 为顶点的三角形是直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由.答案与解析—、选择题:(本大题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的).1.在数轴上表示数-1和2019的两点分别为点和点,则、两点之间的距离为( )A. 2018B. 2019C. 2020D. 2021 【答案】C【解析】【分析】根据数轴上两点之间的距离公式确定出A ,B 两点之间的距离即可.【详解】解:根据题意得:AB=|2019-(-1)|=|2019+1|=2020,故选:C .【点睛】本题考查了数轴上两点之间的距离,弄清数轴上两点间的距离公式是解本题的关键. 2.下列计算正确的是( )A. ()3473a a b b =B. 2(41)82b a ab b --=--C. ()23242a a aa ⨯+=D. 22(1)1a a -=- 【答案】C【解析】【分析】 根据整式的混合运算法则逐一进行判断即可.【详解】解:A .()34123a a b b =,此选项计算错误;B .2(41)82b a ab b --=-+,此选项计算错误;C .()2324442a a a a a a =+⨯+=,此选项计算正确;D .22(1)21a a a -=-+,此选项计算错误;故选:C .【点睛】本题考查了整式的混合运算,熟练掌握整式的混合运算的法则是解题的关键3.如图是由六个棱长为1的小正方体搭成的几何体,其俯视图的面积为( )A. 3B. 4C. 5D. 6【答案】B【解析】【分析】 主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,看分别得到几个面,据此解答即可.【详解】从上面看,可以看到4个正方形,面积为4.故选:B .【点睛】本题主要考查了几何体的三种视图面积的求法及比较,关键是掌握三视图的画法.4.2019年未至2020年初全球爆发了新冠肺炎”19COVID -“,世卫组织表示国际病毒分类委员会认定引发本次全球疫情病毒是SARS 冠状病毒的姊妹病毒.若某种冠状病毒的直径为120纳米,1纳米910-=米,则这种冠状病毒的直径(单位:米)用科学记数法表示为( )A. 912010-⨯米B. 61.210-⨯米C. 71.210-⨯米D. 81.210-⨯米【答案】C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】120纳米=120×10-9=1.2×10-7故选:C【点睛】在日常的生活和学习过程中,常常会遇到很多较小的数,如1纳米=0.000000001米.这些数字在读写时都不方便,而且很容易出现错误.但是,科学记数法的应运而生有效地解决了这一难题.用科学记数法表示较小的数,一般形式a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.5.如图,若//AB EF ,//AB CD .则下列各式成立的是( )A. 231180∠+∠-∠=︒B. 12390∠-∠+∠=︒C. 123180∠+∠+∠=︒D. 123180∠+∠+-∠=︒【答案】A【解析】【分析】 已知//AB EF ,//AB CD ,可得EF ∥CD ,根据平行线的性质,即可得到∠3=∠CGE ,∠2+∠BGE=180°,进而得出∠2+∠3-∠1=180°.【详解】∵AB ∥EF ,AB ∥CD ,∴EF ∥CD ,∴∠3=∠CGE ,∴∠3−∠1=∠CGE−∠1=∠BGE ,∵AB ∥EG ,∴∠2+∠BGE=180°即∠2+∠3−∠1=180°故选:A【点睛】本题考查了平行定理,两条直线都和第三条直线平行,那么这两条直线也平行;两条直线平行内错角相等;两直线平行,同旁内角互补.6.2019年第七届世界军人运动会(7thCISMMilitaryWorldGames )于2019年10月18日至27日在中国武汉举行,这是中国第一次承办综合性国际军事赛事,也是继北京奥运会后,中国举办的规模最大的国际体育盛会.某射击运动员在一次训练中射击了10次,成绩如图所示.下列结论中不正确的有( )个①众数是8;②中位数是8;③平均数是8;④方差是1.6.A. 1B. 2C. 3D. 4 【答案】B【解析】【分析】分别求出射击运动员的众数、中位数、平均数和方差,然后进行判断,即可得到答案.【详解】解:由图可得,数据8出现3次,次数最多,所以众数为8,故①正确;10次成绩排序后为:6,7,7,8,8,8,9,9,10,10,所以中位数是12(8+8)=8,故②正确;平均数为110(6+7×2+8×3+9×2+10×2)=8.2,故③不正确;方差为110[(6﹣8.2)2+(7﹣8.2)2+(7﹣8.2)2+(8﹣8.2)2+(8﹣8.2)2+(8﹣8.2)2+(9﹣8.2)2+(9﹣8.2)2+(10﹣8.2)2+(10﹣8.2)2]=1.56,故④不正确;不正确的有2个,故选:B.【点睛】本题考查了求方差,求平均数,求众数,求中位数,解题的关键是熟练掌握公式和定义进行解题.7.如图,在菱形ABCD中,点E,F分别在AB,CD上,且AE CF=,连接EF交BD于点O连接AO.若25DBC∠=︒,,则OAD∠的度数为()A. 50°B. 55°C. 65°D. 75°【答案】C【解析】【分析】由菱形的性质以及已知条件可证明△BOE≌△DOF,然后根据全等三角形的性质可得BO=DO,即O为BD 的中点,进而可得AO⊥BD,再由∠ODA=∠DBC=25°,即可求出∠OAD的度数.【详解】∵四边形ABCD为菱形∴AB=BC=CD=DA,AB∥CD,AD∥BC∴∠ODA=∠DBC=25°,∠OBE=∠ODF,又∵AE=CF∴BE=DF在△BOE和△DOF中,BOE=DOF OBE=ODF BE=DF ∠∠⎧⎪∠∠⎨⎪⎩∴△BOE ≌△DOF (AAS )∴OB=OD即O 为BD 的中点,又∵AB=AD∴AO ⊥BD∴∠AOD=90°∴∠OAD=90°-∠ODA=65° 故选C.【点睛】本题考查了菱形的性质,全等三角形的判定与性质,以及等腰三角形三线合一的性质,熟练掌握菱形的性质,得出全等三角形的判定条件是解题的关键.8.已知y 关于x 的函数表达式是24y ax x a =--,下列结论不正确的是( )A. 若1a =-,函数的最大值是5B. 若1a =,当2x ≥时,y 随x 的增大而增大C. 无论a 为何值时,函数图象一定经过点(1,4)-D. 无论a 为何值时,函数图象与x 轴都有两个交点【答案】D【解析】【分析】将a 的值代入函数表达式,根据二次函数的图象与性质可判断A 、B ,将x=1代入函数表达式可判断C ,当a=0时,y=-4x 是一次函数,与x 轴只有一个交点,可判断D 错误.【详解】当1a =-时,()224125=--+=-++y x x x ,∴当2x =-时,函数取得最大值5,故A 正确;当1a =时,()224125y x x x =--=--,∴函数图象开口向上,对称轴为2x =,∴当2x ≥时,y 随x 的增大而增大,故B 正确;当x=1时,44=--=-y a a ,∴无论a 为何值,函数图象一定经过(1,-4),故C 正确;当a=0时,y=-4x ,此时函数为一次函数,与x 轴只有一个交点,故D 错误;故选D.【点睛】本题考查了二次函数的图象与性质,以及一次函数与x 轴的交点问题,熟练掌握二次函数的性质是解题的关键.9.如图,O 与正六边形OABCDE 的边,OA OE 分别交于点,F G ,点M 为劣弧FG 的中点.若42FM =.则点到FM 的距离是( )A.B. 32C. 26D. 42【答案】C【解析】【分析】 连接OM ,作OH MF ⊥,交MF 与点H ,根据正六边性的性质可得出AOE 120∠=︒,AOM 60∠=︒,得出FOM 为等边三角形,再求OH 即可.【详解】解:∵六边形OABCDE 是正六边形,∴AOE 120∠=︒∵点M 为劣弧FG 的中点∴AOM 60∠=︒连接OM ,作OH MF ⊥,交MF 与点H∵FOM 为等边三角形∴FM=OM ,OMF 60∠=︒∴OH 2==故答案为:C.【点睛】本题考查的知识点有多边形的内角与外角,特殊角的三角函数值,等边三角形的性质,理解题意正确作出辅助线是解题的关键.10.已知二次函数()2340y mx mx m m =--≠的图象与轴交于、两点(点在点的左侧),与轴交于点,且90ACB ∠=︒,则的值为( )A. 4±B. 2±C. 14±D. 12± 【答案】C【解析】【分析】首先求出点A 、B 、C 的坐标,由已知条件易证△AOC ∽△COB ,再根据相似三角形的性质即可求出m 的值.【详解】设y=0,则=mx 2−3mx −4m=0,解得:m=4或m=−1,∵点A 在点B 的左侧,∴OA=1,OB=4,设x=0,则y=−4m ,∴OC=|−4m|,∵∠ACO+∠OCB=90°,∠CAO+∠ACO=90°∴∠CAO=∠BCO ,又∵∠AOC=∠BOC=90°∴△AOC ∽△COB , ∴AO OC OC OB=∴OC2=OA⋅OB 即16m2=4,解得:m=±1 4故选:C【点睛】本题已知抛物线解析式可求得函数图象与x轴,y轴截距,考查了相似三角形的判定和性质,两个三角形相似对应边成比例.11.已知圆锥的高为AO,母线为AB,且518OBAB=,圆锥的侧面展开图为如图所示的扇形.将扇形沿BE折叠,使点恰好落在BC上的点,则弧长CF与圆锥的底面周长的比值为()A. 12B.25C.23D.34【答案】B【解析】【分析】连接AF,如图,设OB=5a,AB=18a,∠BAC=n°,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长得到1825180n aaππ⨯⨯=,解得n得到∠BAC=100°,再根据折叠的性质得到BA=BF,则可判断△ABF为等边三角形,于是可计算出∠FAC=40°,然后根据弧长公式计算弧长CF与圆锥的底面周长的比值.【详解】连接AF,如图,设OB=5a,AB=18a,∠BAC=n°∴1825180n aaππ⨯⨯=,解得n=100即∠BAC=100°∵将扇形沿BE折叠,使A点恰好落在BC上F点,∴BA=BF而AB=AF∴△ABF为等边三角形∴∠BAF=60°∴∠FAC=40°∴CF的长度=40184180aa ππ⨯⨯=∴弧长CF与圆锥的底面周长的比值=42 255aaππ=故选:B【点睛】本题考查了圆锥侧面展开图为扇形,且扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长,题中还用到了图形折叠的性质,熟练掌握弧长计算公式是解题的关键.12.如图等边ABC ∆的边长为4cm ,点,点Q 同时从点出发,点Q 沿AC 以1/cm s 的速度向点运动,点沿A B C --以2/cm s 的速度也向点运动,直到到达点时两点都停止运动,若APQ ∆的面积为2)(S cm ,点Q 的运动时间为()t s ,则下列最能反映与之间函数关系的图象是( )A. B. C D.【答案】C【解析】【分析】先计算点P 从点A 运动到点B 时APQ ∆的面积等式,再计算点P 从点B 运动到点C 时APQ ∆的面积等式,最后根据二次函数图象的性质即可得出答案.【详解】由等边三角形的性质得:4,60AB BC AC cm A C ===∠=∠=︒由题意,分点P 从点A 运动到点B 和点P 从点B 运动到点C 两段分析:(1)点P 从点A 运动到点B点P 运动到点B 时,时间为4222AB t ===,此时点Q 运动到AC 的中点处 2,AP t AQ t ==1cos 60cos 2AQ A AP ∴==︒= APQ ∴∆是直角三角形,223PQ AP AQ t =-=则APQ ∆的面积为21133(02)222S PQ AQ t t t t =⋅=⋅⋅=≤≤ (2)点P 从点B 运动到点C点P 运动到点C 时,时间为44422AB BC t ++===,此时点Q 运动到点C 处 如图,2,AB BP t AQ t +==()82,4CP AB BC AB BP t CQ AC AQ t ∴=+-+=-=-=-41cos60cos 822CQ t C CP t -∴===︒=- CPQ ∆∴是直角三角形,223(4)PQ CP CQ t =-=-则APQ ∆的面积为21133(4)23(24)222S PQ AQ t t t t t =⋅=⋅-⋅=-+<≤ 综上,223(02)2323(24)2t t S t t t ⎧≤≤⎪⎪=⎨⎪-+<≤⎪⎩根据二次函数图象的性质可得,只有C 项符合题意故选:C.【点睛】本题考查了二次函数的几何应用,依据题意分两段讨论,分别求出面积S 的表达式是解题关键.二、填空题:(本大题共6小题,每小题4分,共24分,请把最后结果填在答题卡对应的位置上)13.分解因式:224mx my -=_________.【答案】(2)(2)m x y x y +-【解析】分析】先提取公因式m ,再利用平方差公式进行因式分解.【详解】22224(4)(2)(2)mx my m x y m x y x y -=-=+-【点睛】本题考查了提取公因式和公式法结合进行因式分解,先提取公式因,再利用平方差公式进行因式分解,必须熟练掌握平方差公式.14.若关于x 的方程2x m 2x 22x++=--有增根,则m 的值是 ▲ 【答案】0.【解析】方程两边都乘以最简公分母(x -2),把分式方程化为整式方程,再根据分式方程的增根就是使最简公分母等于0的未知数的值求出x 的值,然后代入进行计算即可求出m 的值:方程两边都乘以(x -2)得,2-x -m=2(x -2).∵分式方程有增根,∴x -2=0,解得x=2.∴2-2-m=2(2-2),解得m=0.15.如图,在正方形ABCD 中,2AC =,、分别是边AD 、CD 上的点,且AE DF =,AF 、BE 交于点,为AB 的中点,则OP =_________.【答案】12【解析】【分析】 证明△ADF ≌△BAE (SAS ),得出∠DAF=∠ABE ,证出∠AOB=90°,由直角三角形斜边上的中线性质即可得出答案.【详解】∵四边形ABCD 是正方形,∴AD=AB ,∠D=∠EAB=90°,2AB ,∴222=1, 在△ADF 和△BAE 中,AD BA D EAB DF AE =⎧⎪∠=∠⎨⎪=⎩∴△ADF ≌△BAE(SAS),∴∠DAF=∠ABE ,∵∠DAF+∠BAO=90°,∴∠ABE+∠BAO=90°,∴∠AOB=90°,∵P 为AB 的中点,∴OP=12AB=12; 故答案为:12 【点睛】本题考查了全等三角形的判定和性质,正方形的性质,以及直角三角形斜边上的中线等于斜边的一半的知识.16.已知双曲线4y x =与O 在第一象限内交于A B ,两点,45AOB ∠=,则扇形OAB 的面积是__________.【答案】2π【解析】【分析】设⊙O的半径OA=OB=r,连接AB,作直线y=x,与AB交于点C,过A作AD⊥y轴于点D,过B作BE⊥x 轴于点E,过A作AF⊥OB于点F.由圆与双曲线的对称性得△AOD≌△AOC≌△BOC≌△BOE,进而由反比例函数的比例系数的几何意义得△AOB的面积,再由三角形的面积公式求得圆的半径,最后由扇形的面积公式求得结果.【详解】设⊙O的半径OA=OB=r,连接AB,作直线y=x,与AB交于点C,过A作AD⊥y轴于点D,过B作BE⊥x轴于点E,过A作AF⊥OB于点F.∵⊙O在第一象限关于y=x对称,4yx=也关于y=x对称,∴∠AOC=∠BOC,OC⊥AB,∠AOD=∠BOE,∵∠AOB=45°,∴∠AOD=∠AOC=∠BOC=∠BOE=22.5°,由对称性知,△AOD≌△AOC≌△BOC≌△BOE,由反比例函数的几何意义知,S△AOD=S△BOE=12×4=2,∴S△AOC=S△BOC=2,∴S △AOB =2+2=4, ∵∠AOB=45°,∴OF∴AF=OF=2OA =2r , ∵S △AOB =12OB•AF ,∴4=12r×2r ,∴r 2=,∴S 扇形OAB =245360r π=45360π⨯=.【点睛】本题考查了反比例函数的性质,圆的基本性质,扇形的面积公式,解题的关键是知道反比例函数在k >0时关于y=x 对称,求得三角形的面积. 17.已知关于x 的不等式组423(){23(2)5x x a x x +>+>-+仅有三个整数解,则a 的取值范围是___________.【答案】103a -≤< 【解析】【详解】解:由4x+2>3x+3a , 解得x >3a ﹣2, 由2x >3(x ﹣2)+5, 解得3a ﹣2<x <1, 由关于x 的不等式组423()23(2)5x x a x x +>+⎧⎨>-+⎩仅有三个整数解,得﹣3≤3a ﹣2<﹣2解得103a -≤<, 故答案为:103a -≤<. 考点:一元一次不等式组的整数解 18.如图,已知直线334y x =-与轴、轴分别交于、两点,是以()0,1C 为圆心,1为半径的圆上一动点,连接PA、PB,当PAB∆的面积最大时,点的坐标为_______.【答案】(−35,95)【解析】【分析】过C作CM⊥AB于M,交x轴于E,连接AC,MC的延长线交⊙C于D,作DN⊥x轴于N,则由三角形面积公式得,12×AB×CM=12×OA×BC,可知圆C上点到直线y=34x-3的最长距离是DM,当P点在D这个位置时,△PAB的面积最大,先证得△COE∽△CMB,求得OE、CE,再通过证得△COE∽△DNE,求得DN和NE,由此求得答案.【详解】过C作CM⊥AB于M,交x轴于E,连接AC,MC的延长线交⊙C于D,作DN⊥x轴于N,∵直线334y x=-与x轴、y轴分别交于A,B两点,令x=0,得y=-3,令y=9,得x=4∴A(4,0),B(0,−3),∴OA=4,OB=3,∴5 ==则由三角形面积公式得,12×AB×CM=12×OA×BC,∴12×5×CM=12×4×(1+3),∴CM=16 5∴125 ==∴圆C上点到直线334y x=-的最大距离是DM=1+165=215当P点在D这个位置时,△PAB的面积最大,∵∠CMB=∠COE=90°,∠OCE=∠MCB,∴△COE∽△CMB,∴OE OC CE BM CM CB==∴1 1216455 OE CE==∴OE=34,CE=54,∴ED=1+54=94∵DN⊥x轴,∴DN∥OC,∴△COE∽△DNE,∴DN NE DECO OE CE==,即9435144DN NE==∴DN=95,NE=2720∴ON=NE−OE=2720−34=35∴D(−35,95)∴当△PAB的面积最大时,点P的坐标为(−35,95)故答案为:(−35,95) 【点睛】本题考查了相似三角形的判定和性质,根据两个三角形相似可得出对应边成比例,是求线段长度的方法之一,已知一次函数的解析式,可求得函数与x 轴,y 轴的截距.三、解答题:(本大题共7小题,共78分.解答题应写出文字说明、证明过程或演算步骤)19.计算:231183tan 301212-⎛⎫-︒++++- ⎪⎝⎭【答案】4232-+ 【解析】 【分析】根据二次根式运算法则,特殊角三角函数,负整数指数幂,绝对值性质,三次根式运算法则进行实数混合运算即可.【详解】231183tan 301212-⎛⎫-︒++++- ⎪⎝⎭=332321213-⨯+++- =32322-++ =4232-+故答案为:4232-+【点睛】本题考查了二次根式运算法则,特殊角三角函数,负整数指数幂,绝对值性质,三次根式运算法则,熟练掌握这些法则是运算基础.20.如图,点是菱形ABCD 对角线的交点,//CE BD ,//BE AC ,连接OE 交CB 于点. (1)求证:OE CB =;(2)若菱形ABCD 的边长为2,且60ADC ∠=︒,求四边形OCEB 的面积.【答案】(1)证明见解析;(2)3【解析】【分析】(1)通过证明四边形OCEB 是矩形来推知OE=CB ,根据ABCD 是菱形,对角线垂直平分,已知//CE BD ,//BE AC ,可得四边形OCEB 是平行四边形,由此即可推得四边形OCEB 是矩形.(2)已知四边形ABCD 是菱形,60ADC ∠=︒,根据菱形的性质即可求得OC 和OD 的长,即可求出四边形OCEB 的面积.【详解】(1)∵四边形ABCD 是菱形, ∴AC ⊥BD∵CE ∥BD ,EB ∥AC , ∴四边形OCEB 是平行四边形, ∴四边形OCEB 是矩形, ∴OE=CB ;(2)∵四边形ABCD 是菱形∴OA=OC ,OD=OB ,∠CDO=∠ODA=12∠CDA=30° ∴在Rt △COD 中,OC=12CD=1 ∴2222213OB OD CD OC ==-=-= ∵四边形OCEB 是矩形∴S 四边形OCEB =OC ×OB=1×3=3 故答案为:3【点睛】本题考查了菱形的性质,对角线互相垂直平分且平分每组对角,以及矩形的判定和性质,有一个角是直角的平行四边形是矩形.21.在”五四青年节”来临之际,某校举办了以”我的青春我做主”为主题的演讲比赛.并从参加比赛的学生中随机抽取部分学生的演讲成绩进行统计(等级记为:优秀,:良好,:一般,:较差),并制作了如下统计图表(部分信息未给出).等级 人数请根据统计图表中的信息解答下列问题:(1)这次共抽取了______名参加演讲比赛的学生,统汁图中a=________,b=_______;(2)求扇形统计图中演讲成绩等级为”一般”所对应扇形的圆心角的度数;(3)若该校学生共2000人,如果都参加了演讲比赛,请你估计成绩达到优秀的学生有多少人?(4)若演讲比赛成绩为等级的学生中恰好有2名女生,其余的学生为男生,从等级的学生中抽取两名同学参加全市演讲比赛,请用列表或画树状图的方法求出”恰好抽中—名男生和一名女生”的概率.【答案】(1)50,40,30;(2)108︒;(3)200人;(4)3 5【解析】【分析】(1)根据D等级人数和对应百分比可得抽取的人数,再分别求得等级B的人数所占百分比和等级C的人数所占百分比即可得出a,b的值;(2)扇形统计图中演讲成绩等级为”一般”的为C类,所对应扇形的圆心角的度数为:30%360108⨯︒=︒(3)用等级A的人数所占百分比乘以2000即可(4)用列表法列出所有情况,再根据概率公式即可求得【详解】(1)这次抽取的演讲比赛的学生人数为10÷20%=50(名)等级B的学生所占百分比为:2050×100%=40%∴a=40等级C的学生所占百分比为1−10%−20%−40%=30%∴b=30故答案为:50,40,30(2)扇形统计图中演讲成绩等级为”一般”的为C类,所对应扇形的圆心角的度数为:30%360108⨯︒=︒故答案为:108︒(3)估计成绩达到优秀的人数为:2000×10%=200(人)故答案为:200人(4)A等级的学生共有50×10%=5(名),其中有2名女生,那么男生有3名,列表分析如下:由上表可知,一共有20种等可能的结果,其中抽中一名男生和一名女生的结果有12种,则P(抽中一名男生和一名女生)=123 205故答案为:3 5【点睛】本题考查了扇形统计图,用整个圆表示总数,用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系,据此可求出扇形统计图的圆心角,用所占百分比乘以360°即可,本题还考查了用列表法求概率,某一事件发生的概率等于某一事件发生的次数除以各种情况出现的次数.22.如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=nx(n为常数,且n≠0)的图象在第二象限交于点C.CD⊥x轴,垂足为D,若OB=2OA=3OD=12.(1)求一次函数与反比例函数的解析式;(2)记两函数图象的另一个交点为E,求△CDE的面积;(3)直接写出不等式kx+b≤nx的解集.【答案】(1)y=﹣80x,y=﹣2x+12(2)S △CDE =140;(3)x≥10,或﹣4≤x<0 【解析】 【分析】(1)根据三角形相似,可求出点坐标,可得一次函数和反比例函数解析式; (2)联立解析式,可求交点坐标;(3)根据数形结合,将不等式转化为一次函数和反比例函数图象关系. 【详解】(1)由已知,OA=6,OB=12,OD=4 ∵CD ⊥x 轴 ∴OB ∥CD ∴△ABO ∽△ACD∴OA OB=AD CD ∴612=10CD∴CD=20∴点C 坐标为(﹣4,20) ∴n=xy=﹣80∴反比例函数解析式为:y=80x-把点A (6,0),B (0,12)代入y=kx+b 得:0=612k bb +⎧⎨=⎩ 解得:212k b =-⎧⎨=⎩∴一次函数解析式为:y=﹣2x+12 (2)当80x-=﹣2x+12时,解得 x 1=10,x 2=﹣4当x=10时,y=﹣8 ∴点E 坐标为(10,﹣8) ∴S △CDE =S △CDA +S △EDA =112010810=14022⨯⨯+⨯⨯ (3)不等式kx+b≤nx,从函数图象上看,表示一次函数图象不低于反比例函数图象 ∴由图象得,x≥10,或﹣4≤x<0【点睛】本题考查了应用待定系数法求一次函数和反比例函数解析式以及用函数的观点通过函数图象解不等式.23.新冠疫情期间,某医药器材经销商计划同时购进一批甲、乙两种型号的口罩,若购进2箱甲型口罩和1箱乙型口罩,共需要资金2800元;若购进3箱甲型口罩和2箱乙型口罩,共需要资金4600元. (1)求甲、乙型号口罩每箱的进价为多少元?(2)该医药器材经销商计划购进甲、乙两种型号的口罩用于销售,预汁用不多于1.8万元且不少于1.74万元的资金购进这两种型号口罩共20箱,请问有几种进货方案?并写出具体的进货方案;(3)若销售一箱甲型口罩,利润率为40%,乙型口罩的售价为每箱1280元.为了促销,公司决定每售出一箱乙型口罩,返还顾客现金元,而甲型口罩售价不变,要使(2)中所有方案获利相同,求的值.【答案】(1)甲型号口罩每箱进价为1000元,乙型号口罩每箱进价为800元;(2)共4种方案:方案一:购进甲型口罩7箱、乙型口罩13箱,方案二:购进甲型口罩8箱、乙型口罩12箱,方案三:购进甲型口罩9箱、乙型口罩11箱,方案四:购进甲型口罩10箱、乙型口罩10箱;(3)80 【解析】 【分析】(1)设甲型号口罩每箱进价为x 元,乙型号口罩每箱进价为y 元,根据题意建立方程组求解就可以求出答案; (2)设购进甲型号口罩a 箱,则购进乙型号口罩(20-a )箱,根据”用不多于1.8万元且不少于1.74万元的资金购进这两种型号口罩共20台”建立不等式组,求出其解就可以得出结论;(3)由题意得出w=400a+(1280-800-m )(20-a )=(m-80)a+9600-20m ,根据”(2)中所有方案获利相同”知w 与a 的取值无关,据此解答可得.【详解】设甲型号口罩每箱进价为x 元,乙型号口罩每箱进价为y 元,22800324600x y x y +=⎧⎨+=⎩解得1000800x y =⎧⎨=⎩答:甲型号口罩每箱进价为1000元,乙型号口罩每箱进价为800元.。
2019年四川南充中考数学试题含详解
2019年四川省南充市初中学业水平考试数学试题考试时间:120分钟满分:120分{题型:1-选择题}一、选择题:本大题共10小题,每小题3分,合计30分.{题目}1.(2019年南充)如果16a,那么a 的值为()A.6 B.61 C.-6 D.61{答案} B{}本题考查了倒数的定义,根据乘积为1的数互为倒数即可判断,16=16,因此本题选B .{分值}3{章节:[1-1-4-2]有理数的除法}{考点:倒数}{类别:常考题}{难度:1-最简单}{题目}2.(2019年南充)下列各式计算正确的是()A.32xxxB.532)(xx C.326xxxD.32xxx {答案}D{}本题考查了合并同类项以及同底数幂的乘除运算,A.x+x 2,无法合并,故此选项错误;B.(x 2)3=x 6,故此选项错误; C.x 6÷x 2=x 4,故此选项错误; D.x?x 2=x 3,故此选项正确.因此本题选D .{分值}3{章节:[1-14-1]整式的乘法}{考点:整式加减}{考点:同底数幂的乘法}{考点:幂的乘方}{考点:同底数幂的除法}{类别:常考题} {难度:2-简单}{题目}3.(2019年南充)如图是一个几何体的表面展开图,这个几何体是()A .B .C .D .{答案} C{}本题考查了几何体的展开图,由平面图形的折叠及三棱柱的展开图的特征可知,这个几何体是三棱柱,因此本题选C .{分值}3{章节:[1-4-4]课题学习设计制作长方体形状的包装纸盒}{考点:几何体的展开图}{类别:发现探究} {难度:2-简单}{题目}4.(2019年南充)在2019年南充市初中毕业升学体育与健康考试中,某校九年级(1)班体育委员对本班50名同学参加球类自选项目做了统计,制作出扇形统计图(如图),则该班选考乒乓球人数比羽毛球人数多()A .5人B .10人C .15人D .20人{答案}B{}本题考查了扇形统计图的应用,∵选考乒乓球人数为50×40%=20人,选考羽毛球人数为7250360o o=10人,∴选考乒乓球人数比羽毛球人数多20﹣10=10人,,因此本题选B .{分值}3{章节:[1-10-1]统计调查}{考点:扇形统计图}{类别:常考题} {难度:2-简单}{题目}5.(2019年南充)如图,在△ABC 中,AB 的垂直平分线交AB 于点D ,交BC 于点E ,若BC =6,AC =5,则△ACE 的周长为()A .8B .11C .16D .17{答案}B{}本题考查了线段垂直平分线的性质:线段垂直平分线上点到线段两端点的距离相等,由DE 垂直平分线AB ,可得AE =BE ,所以△ACE 的周长=AC+EC+AE =AC+EC+BE =AC+BC =11,因此本题选B .{分值}3{章节:[1-13-1-2]垂直平分线}{考点:垂直平分线的性质}{类别:常考题} {难度:2-简单}{题目}6.(2019年南充)关于x 的一元一次方程2x a-2+m =4的解为x =1,则a+m 的值为()A .9B .8C .5D .4{答案}C{}本题考查了一元一次方程的定义和一元一次方程解的定义,所以a ﹣2=1,2+m =4,所以a =3,m =2,所以a+m =3+2=5,因此本题选C .{分值}3{章节:[1-3-1-1]一元一次方程}{考点:一元一次方程的定义}{考点:方程的解}{类别:易错题}{难度:2-简单}{题目}7.(2019年南充)如图,在半径为6的⊙O 中,点A ,B ,C 都在⊙O 上,四边形OABC 是平行四边形,则图中阴影部分的面积为()A.6πB.33πC.32π D.2π{答案}A{}本题考查了平行四边形的性质、扇形面积的计算,连接OB ,根据平行四边形的性质得到AB =OC ,推出△AOB 是等边三角形,得到∠AOB =60°,所以S △AOB =S △ABC ,再根据扇形的面积公式即可求解,S 阴影=S 扇形OAB =2606360=6π,因此本题选A .{分值}3{章节:[1-24-4]弧长和扇形面积}{考点:平行四边形边的性质}{考点:平行四边形角的性质}{考点:扇形的面积}{考点:等边三角形的判定与性质}{类别:思想方法}{难度:3-中等难度}{题目}8.(2019年南充)关于x 的不等式2x+a ≤1只有2个正整数解,则a 的取值范围为()A .﹣5<a <﹣3B .﹣5≤a <﹣3C .﹣5<a ≤﹣3D .﹣5≤a ≤﹣3{答案}C{}本题考查了一元一次不等式(组)及应用,首先解不等式不等式可得12a x,再根据不等式有两个正整数解,一定是1和2,所以1232a <,解得:﹣5<a ≤﹣3.因此本题选C .{分值}3{章节:[1-9-2]一元一次不等式}{考点:解一元一次不等式}{考点:一元一次不等式的整数解}{类别:易错题}{难度:3-中等难度}{题目}9.(2019年南充)如图,正方形MNCB 在宽为2的矩形纸片一端,对折正方形MNCB 得到折痕AE ,再翻折纸片,使AB 与AD 重合,以下结论错误的是()A .AB 2=10+25B .512CD BC=C .BC 2=CD ?EHD .sin ∠AHD =515{答案}A{}本题考查了矩形、正方形、菱形的性质与判定.首先证明四边形ABHD 是菱形,利用勾股定理求出AB ,AD ,CD ,EH ,AH ,即可判断.解:在Rt △AEB 中, AB =22AEBE =2221=5,∵AB ∥DH ,BH ∥AD ,∴四边形ABHD 是平行四边形,∵AB =AD ,∴四边形ABHD 是菱形,∴AD =AB =5,∴CD =AD =AD =5﹣1,∴512CD BC=,故选项B 正确,∵BC 2=4,CD ?EH =(5﹣1)(5+1)=4,∴BC 2=CD?EH ,故选项C 正确,∵四边形ABHD 是菱形,∴∠AHD =∠AHB ,∴sin ∠AHD =sin ∠AHB =AE AH=222251=515,因此本题选A .{分值}3{章节:[1-18-2-2]菱形}{考点:矩形的性质}{考点:菱形的性质}{考点:菱形的判定}{考点:正方形的性质}{考点:几何选择压轴}{考点:折叠问题}{类别:发现探究} {难度:4-较高难度}{题目}10.(2019年南充)抛物线y =ax 2+bx+c (a ,b ,c 是常数),a >0,顶点坐标为(12,m ),给出下列结论:①若点(n ,y 1)与)223(2y n ,在该抛物线上,当n <12时,则y 1<y 2;②关于x的一元二次方程ax 2﹣bx+c ﹣m+1=0无实数解,那么()A .①正确,②正确B .①正确,②错误C .①错误,②正确D .①错误,②错误{答案}A{}本题考查了二次函数图象及其性质,①根据二次函数的增减性进行判断便可;②先把顶点坐标代入抛物线的式,求得m ,再把m 代入一元二次方程ax 2﹣bx+c ﹣m+1=0的根的判别式中计算,判断其正负即可判断正误.解:①∵顶点坐标为(12,m ),n <12,∴点(n ,y 1)关于抛物线的对称轴x=12的对称点为(1﹣n ,y 1),∴点(1﹣n ,y 1)与(322n ,y 2)在该抛物线上,∵(1﹣n )﹣(322n )=n ﹣12<0,∴1﹣n <322n ,∵a >0,∴当x >12时,y 随x 的增大而增大,∴y 1<y 2,故①正确;②把(12,m )代入y =ax 2+bx+c 中,得m =1142ab c ,∴一元二次方程ax 2﹣bx+c ﹣m+1=0中,△=b 2﹣4ac+4am ﹣4a =b 2﹣4ac+4a (1142ab c )﹣4a=(a+b )2﹣4a <0,∴一元二次方程ax 2﹣bx+c ﹣m+1=0无实数解,故②正确;因此本题选A .{分值}3{章节:[1-22-2]二次函数与一元二次方程}{考点:二次函数y =ax2+bx+c 的性质}{考点:抛物线与一元二次方程的关系}{类别:易错题} {难度:4-较高难度}{题型:2-填空题}二、填空题:本大题共6个小题,每小题3分,合计18分.{题目}11.(2019年南充)原价为a 元的书包,现按8折出售,则售价为元.{答案}0.8a{}本题考查了整式的基本概念,能根据题意列出代数式是解题的关键,因此本题答案为0.8a .{分值}3{章节:[1-2-1]整式}{考点:列代数式}{类别:常考题} {难度:1-最简单}{题目}12.(2019年南充)如图,以正方形ABCD 的AB 边向外作正六边形ABEFGH ,连接DH ,则∠ADH = °{答案}15{}本题考查了正方形和等腰三角形的性质,根据正方形的性质得到AB =AD ,∠BAD =90°,在正六边形ABEFGH 中,求得AB =AH ,∠BAH =120°,于是得到AH =AD ,∠HAD =360°﹣90°﹣120°=150°,根据等腰三角形的性质即可得到结论,因此本题答案为15.{分值}3{章节:[1-13-2-1]等腰三角形}{考点:正方形的性质}{考点:等腰直角三角形}{类别:常考题} {难度:2-简单}{题目}13.(2019年南充)计算:xx x1112.{答案} x+1{}本题考查了分式的加减运算,先化为同分母分式,利用同分母分式的减法法则:同分母分式相加减,分母不变,分子相加减,计算即可得到结果,因此本题答案为x+1.{分值}3{章节:[1-15-2-2]分式的加减}{考点:两个分式的加减}{类别:常考题}{难度:2-简单}{题目}14.(2019年南充)下表是某养殖户的500只鸡出售时质量的统计数据.质量/kg1.0 1.2 1.4 1.6 1.82.0 频数/只561621121204010则500只鸡质量的中位数为.{答案}1.4kg{}本题考查了中位数的基本概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.因此本题答案为 1.4kg .{分值}3{章节:[1-20-1-2]中位数和众数}{考点:中位数}{类别:常考题} {难度:2-简单}{题目}15.(2019年南充)在平面直角坐标系xOy 中,点)2,3(n m A 在直线1x y上,点),(n m B 在双曲线xk y上,则k 的取值范围为 .{答案}124k ≤且0k {}本题考查了一次函数与反比例函数图象及其应用,根据一次函数图象上点的特征求得312m n,即可得到B (m ,312m ),根据反比例函数图象上点的特征得到k 关于m 的函数,k =m?312m =23112624m,根据二次函数的性质即可求得k 的取值范围,注意0k .因此本题答案为124k ≤且0k .{分值}3{章节:[1-26-1]反比例函数的图像和性质}{考点:反比例函数与一次函数的综合}{考点:二次函数y =ax2+bx+c 的性质}{类别:易错题} {难度:4-较高难度}{题目}16.(2019年南充)如图,矩形硬纸片ABCD 的顶点A 在y 轴的正半轴及原点上滑动,顶点B在x 轴的正半轴及原点上滑动,点E 为AB 的中点,AB=24,BC=5.给出下列结论:①点A 从点O 出发,到点B 运动至点O 为止,点E 经过的路径长为12π;②△OAB 的面积的最大值为144;③当OD 最大时,点D 的坐标为)2626125,262625(.其中正确的结论是(填写序号).{答案}②③{}本题考查了直角三角形的性质、矩形的性质、相似三角形的判定和性质等知识,关键是学会添加常用辅助线,构造相似三角形解决问题,①由条件可知AB =24,则AB 的中点E 的运动轨迹是圆弧,最后根据弧长公式即可计算出点E 所经过的路径长;②当△OAB 的面积最大时,因为AB =24,所以△OAB 为等腰直角三角形,即OA =OB ,可求出最大面积为144;③当O 、E 、D 三点共线时,OD 最大,过点D 作DF ⊥y 轴于点F ,可求出OD =25,证明△DFA ∽△AOB 和△DFO ∽△BOA ,可求出DF 长,则D 点坐标可求出.因此本题答案为②③.解:∵点E 为AB 的中点,AB =24,∴OE =12AB =12,∴AB 的中点E 的运动轨迹是以点O 为圆心,12为半径的一段圆弧,∵∠AOB =90°,∴点E 经过的路径长为9012180=6,故①错误;当△OAB 的面积最大时,因为AB =24,所以△OAB 为等腰直角三角形,即OA =OB ,∵E 为AB 的中点,∴OE ⊥AB , OE =12AB =12,∴S △AOB =124122=144,故②正确;如图,当O 、E 、D 三点共线时,OD 最大,过点D 作DF ⊥y 轴于点F ,∵AD =BC =5,AE =12AB =12,∴DE =22AD AE=22512=13,∴OD =DE +OE =13+12=25,设DF =x ,∴OF =22ODDF=2225x ,∵四边形ABCD 是矩形,∴∠DAB =90°,∴∠DFA =∠AOB ,∴∠DAF =∠ABO ,∴△DFA ∽△AOB ∴DF DA OA AB ,∴524x OA,∴245xOA,∵E 为AB 的中点,∠AOB =90°,∴AE =OE ,∴∠AOE =∠OAE ,∴△DFO ∽△BOA ,∴OD OF AB OA,∴22252524245xx ,解得x =252626,x =﹣252626舍去,∴OF =1252626,∴D (252626,1252626)故③正确.故答案为:②③.{分值}3{章节:[1-18-2-1]矩形}{考点:三角形综合题}{考点:相似三角形的判定(两角相等)}{考点:相似三角形的性质}{难度:5-高难度}{题型:4-解答题}三、解答题:本大题共9个小题,合计72分.{题目}17.(2019年南充)计算:12112|32|)1({}本题考查了实数的混合计算,关键在于计算要准确,不能漏掉符号.{答案}解:原式=232)23(1-----------------------------------4分=232231------------------------------------------------------------ 5分=31---------------------------------------------------6分{分值}6{章节:[1-6-3]实数}{难度:3-中等难度}{类别:常考题}{考点:负指数参与的运算}{考点:算术平方根}{考点:绝对值的性质}{考点:零次幂}{题目}18.(2019年南充)如图,点O 是线段AB 的中点,OD ∥BC 且OD=BC.(1)求证:△AOD ≌△OBC ;(2)若∠ADO =35°,求∠DOC 的度数.{}本题考查了全等三角形的判定和性质,平行线的性质,(1)根据线段中点的定义得到AO =BO ,根据平行线的性质得到∠AOD =∠OBC ,根据全等三角形的判定定理即可得到结论;(2)根据全等三角形的性质和平行线的性质即可得到结论.{答案}解:(1)证明:∵点O 线段AB 的中点,∴AO=BO .-------------------------------------- 1分∵OD ∥BC ,∴∠AOD=∠OBC .-------------------------------------------------------------------------- 2分在△AOD 和△OBC 中,BCODOBC AOD BOAO,∴△AOD ≌△OBC (SAS )----------------------------------------------------4分(2)解:∵△AOD ≌△OBC ,∴∠ADO =∠OCB=35°. ----------------------------------------- 5分∵OD ∥BC ,∴∠DOC =∠OCB=35°.------------------------------------------------------------------ 6分{分值}6{章节:[1-12-2]三角形全等的判定}{难度:2-简单}{类别:常考题}{考点:全等三角形的性质}{考点:全等三角形的判定SAS}{考点:平行线的性质与判定}{题目}19.(2019年南充)现有四张完全相同的不透明卡片,其正面分别写有数字-2,-1,0,2,把这四张卡片背面朝上洗匀后放在桌面上.(1)随机抽取一张卡片,求抽取的卡片上的数字为负数的概率;(2)先随机抽取卡片,其上的数字作为点A 的横坐标;然后放回并洗匀,再随机抽取一张卡片,其上的数字作为点A 的纵坐标,试用画树状图或列表的方法求出点A 在直线y=2x 上的概率.{}本题考查了树状图法或列表法求概率、概率公式、一次函数图象上点的坐标特征,(1)由概率公式即可得出结果;(2)直接利用树状图法列举出所有可能进而得出答案.{答案}解:(1)∵抽取的负数可能为-2,-1,∴抽取出数字为负数的概率为P=2142---------- 2分(2)列表如下﹣2﹣1 0 2 ﹣2 (﹣2,﹣2)(﹣2,﹣1)(﹣2,0)(﹣2,2)﹣1 (﹣1,﹣2)(﹣1,﹣1)(﹣1,0)(﹣1,2)0 (0,﹣2)(0,﹣1)(0,0)(0,2)2(2,﹣2)(2,﹣1)(2,0)(2,2)或者画树状图如下----------------------- 4分∵共有16种等可能结果,其中点A 在直线y=2x 上的结果有2种-------------------------------- 5分∴点A 在直线y=2x 上的概率为21168P------------------------------------ 6分{分值}6{章节:[1-25-2]用列举法求概率}{难度:3-中等难度}{类别:常考题}{考点:一次函数的图象}{考点:两步事件放回}{题目}20.(2019年南充)已知关于x 的一元二次方程03)12(22mx m x有实数根.(1)求实数m 的取值范围;(2)当m=2时,方程的根为21,x x ,求代数式)24)(2(222121x x x x 的值.{}本题考查了一元二次方程的解以及一元二次方程根与系数的关系:两根之和等于b a,两根之积等于c a”.(1)根据△≥0,解不等式即可;(2)将m =2代入原方程可得:x 2+3x+1=0,计算两根和与两根积,化简所求式子,可得结论.{答案}解:(1)△=(2m ﹣1)2﹣4(m 2﹣3)=﹣4m+13, ------------------------------------ 2分由题意知原方程有实根,∴△=﹣4m+13≥0, --------------------------------------------------------- 3分∴m ≤134.-------------------------------------------------------------------------------------------------------- 4分(2)当m =2时,方程为x 2+3x+1=0,------------------------------------------------------------------- 5分∴x 1+x 2=﹣3,x 1x 2=1, ------------------------------------------------------------------------------------- 6分∵方程的根为x 1,x 2,∴x 12+3x 1+1=0,x 22+3x 2+1=0,∴(x 12+2x 1)(x 22+4x 2+2)=(x 12+2x 1+x 1﹣x 1)(x 22+3x 2+x 2+2)=(﹣1﹣x 1)(﹣1+x 2+2)=(﹣1﹣x 1)(x 2+1)=﹣x 2﹣x 1x 2﹣1﹣x 1=﹣x 2﹣x 1﹣2 =3﹣2=1.--------------------------------------------------------------------------------------------------------------- 8分{分值}8{章节:[1-21-3] 一元二次方程根与系数的关系}{难度:3-中等难度}{类别:常考题}{考点:根的判别式}{考点:根与系数关系}{题目}21.(2019年南充)双曲线xk y(k 为常数,且0k )与直线b x y 2交于1(,2)2A m m ,(1,)B n 两点.(1)求k 与b 的值;(2)如图,直线AB 交x 轴于点C ,交y 轴于点D ,若点E 为CD 的中点,求△BOE 的面积.{}本题考查了待定系数法求反比例函数式、反比例函数与一次函数的图象与性质.(1)将A 、B 两点的坐标代入一次函数式可得b 和n 的值,则求出点B (1,﹣2),代入反比例函数式可求出k 的值.(2)先求出点C 、D 两点的坐标,再求出E 点坐标,则S △BOE =S △ODE +S △ODB =12B E ODx x ,可求出△BOE 的面积.{答案}解:(1)∵点)2,21(m m A 在直线b x y2上,∴12()22m b m ,∴b =﹣2 -------------------------------------------------------------------- 2分∴22xy,∵点B (1,n )在直线22x y 上,∴4212n------------ 3分∴B (1,-4),∵B (1,-4)在双曲线xk y 上,∴4)4(1k ----------------------- 4分(2)直线22x y 交x 轴于C (-1,0),交y 轴于D (0,-2) --------------------------------- 5分∴S △COD =1|2||1|21∵点E 为CD 的中点,∴S △COE =21S △COD =21-------------------------------------------------------------- 6分∵S △COB =2|4||1|21 -------------------------------------------------------------------------------- 7分∴S △BOE =S △COB -S △COE =2-2321. -----------------------------------------------8分{分值}8{章节:[1-26-1]反比例函数的图像和性质}{难度:3-中等难度}{类别:常考题}{考点:反比例函数与一次函数的综合}{题目}22.(2019年南充)如图,在△ABC 中,以AC 为直径的⊙O 交AB 于点D ,连接CD ,∠BCD =∠A.(1)求证:BC 是⊙O 的切线;(2)若BC=5,BD =3,求点O 到CD 的距离.{}本题考查了切线的判定和性质、圆周角定理、相似三角形的判定和性质、垂径定理、三角形的中位线的性质.(1)根据圆周角定理得到∠ADC =90°,得到∠A+∠ACD =90°,求得∠ACB =90°,于是得到结论;(2)过O 作OH ⊥CD 于H ,根据相似三角形的性质得到AB =253,根据垂径定理得到CH =DH ,根据三角形的中位线的性质即可得到结论.{答案}解:(1)证明:∵AC 是⊙O 的直径,∴∠ADC =90°. --------------------- 1分∴∠A+∠ACD=90°,∵∠BCD =∠A ,∴∠BCD+∠ACD =90°---------------------- 2分∴OC ⊥BC ,∵OC 是⊙O 的半径,∴BC 是⊙O 的切线. --------------------------3分(2)解:过点O 作OE ⊥CD 于点E ,如图所示---------------------------------- 4分在Rt △BCD 中,∵BC=5,BD=3,∴CD =4---------------------------------------5分∵∠ADC =∠CDB=90°,∠BCD =∠A.∴Rt △BDC ∽Rt △CDA.∴43CDBD ADCD ,∴316AD-------------------------- 6分∵OE ⊥CD ,∴E 为CD 的中点 ------------------------------------------------ 7分又∵点O 是AC 的中点,∴OE=3821AD-------------------------------------- 8分{分值}8{章节:[1-24-2-2]直线和圆的位置关系}{难度:4-较高难度}{类别:常考题}{考点:切线的性质}{考点:切线的判定}{考点:三角形中位线}{考点:直径所对的圆周角}{考点:垂径定理}{题目}23.(2019年南充)在“我为祖国点赞”征文活动中,学校计划对获得一、二等奖的学生分别奖励一支钢笔,一本笔记本.已知购买2支钢笔和3个笔记本共38元,购买4支钢笔和5个笔记本共70元.(1)钢笔、笔记本的单价分别为多少元?(2)经与商家协商,购买钢笔超过30支时,每增加一支,单价降低0.1元;超过50支,均按购买50支的单价销售.笔记本一律按原价销售.学校计划奖励一、二等奖学生共计100人,其中一等奖的人数不少于30人,且不超过60人,这次奖励一等学生多少人时,购买奖品金额最少,最少为多少元?{}本题考查了二次函数的应用,二元一次方程组的应用.(1)钢笔、笔记本的单价分别为x 、y 元,根据题意列方程组即可得到结论;(2)设钢笔的单价为a 元,购买数量为b 元,支付钢笔和笔记本的总金额w 元,①当30≤b ≤50时,求得w =﹣0.1(b ﹣35)2+722.5,于是得到700≤w ≤722.5;②当50<b ≤60时,求得w =8b+6(100﹣b )=2b+600,700<w ≤720,于是得到当30≤b ≤60时,w 的最小值为700元,即可得到答案.{答案}解:(1)设钢笔、笔记本的单价分别为x 、y 元.根据题意可得70543832yx y x -- 2分解得:610yx . -------------------------------------------------------------4分答:钢笔、笔记本的单价分别为10元,6元.(2)设钢笔单价为a 元,购买数量为b 支,支付钢笔和笔记本总金额为W 元. ①当30≤b ≤50时,131.0)30(1.010b b a ------------------------------------------------- 5分5.722)35(1.060071.0)100(6)131.0(22b b bb b b W ------------- 7分∵当30b 时,W=720,当b=50时,W=700 ∴当30≤b ≤50时,700≤W ≤722.5----------------------------------------------------------------------------- 8分②当50<b ≤60时,a=8,720700,6002)100(68W b b b W------------------- 9分∴当30≤b ≤60时,W 的最小值为700元∴当一等奖人数为50时花费最少,最少为700元.----------------------------------------------------10分{分值}10{章节:[1-22-3]实际问题与二次函数}{难度:3-中等难度}{类别:常考题}{考点:商品利润问题}{考点:简单的列二元一次方程组应用题}{考点:二次函数y =ax2+bx+c 的性质}{题目}24.(2019年南充)如图,在正方形ABCD 中,点E 是AB 边上的一点,以DE 为边作正方形DEFG ,DF 与BC 交于点M ,延长EM 交GF 于点H ,EF 与GB 交于点N ,连接CG.(1)求证:CD ⊥CG ;(2)若tan ∠MEN=31,求EMMN 的值;(3)已知正方形ABCD 的边长为1,点E 在运动过程中,EM 的长能否为21?请说明理由.{}本题考查了全等三角形的判定和性质,相似三角形的判定和性质.(1)由正方形的性质得出∠A=∠ADC =∠EDG =90°,AD =CD ,DE =DG ,即∠ADE =∠CDG ,由SAS 证明△ADE ≌△CDG 得出∠A =∠DCG =90°,即可得出结论;(2)先证明△EDM ≌△GDM 得出∠DME =∠DMG ,又∠DMG =∠NMF ,得出∠DME =∠NMF ,所以△DME ∽△FMN ,得出DMFM MEMN ,由DE ∥HF ,得出DMFM EDHF ,又ED =EF ,所以EFHF MEMN ,在Rt △EFH 中,tan ∠HEF =31EFHF ,即可得出结果;(3)设AE=x ,则BE=1-x ,CG=x ,设CM=y ,在Rt △BEM 中,222EM BMBE,得出11x x y,112x xyx EM ,若21EM,则21112x x,方程无解,即可得出结论.{答案}解:(1)证明:在正方形ABCD ,DEFG 中,DA =DC ,DE =DG ,∠ADC=∠EDG=∠A=90°------------------------------------1分∴∠ADC -∠EDC=∠EDG-∠EDC ,即∠ADE =∠CDG ,∴△ADE ≌△CDG (SAS )---- 2分∴∠DCG =∠A=90°,∴CD ⊥CG ---------------------------------------------- 3分(2)解:∵CD ⊥CG ,DC ⊥BC ,∴G 、C 、M 三点共线.∵四边形DEFG 是正方形,∴DG=DE ,∠EDM =∠GDM =45°,又∵DM =DM∴△EDM ≌△GDM ,∴∠DME =∠DMG ----------------------------------------- 4分又∠DMG =∠NMF ,∴∠DME =∠NMF ,又∵∠EDM =∠NFM =45°∴△DME ∽△FMN ,∴DMFM ME MN . ----------------------------------------------------------------- 5分又∵DE ∥HF ,∴DMFM EDHF ,又∵ED=EF ,∴EFHF ME MN . -------------------------------- 6分在Rt △EFH 中,tan ∠HEF =31EFHF ,∴31MEMN .---------------------------------------------- 7分(3)设AE=x ,则BE=1-x ,CG=x ,设CM=y ,则BM=1-y ,EM =GM =x+y------------- 8分在Rt △BEM 中,222EM BMBE,∴222)()1()1(y x y x ,解得11x xy.------------------------------------------------------------------------------------------------9分∴112x x yxEM ,若21EM,则21112x x ,化简得:0122x x,△=-7<0,∴方程无解,故EM 长不可能为21. ---------- 10分{分值}10{章节:[1-18-2-3] 正方形}{难度:5-高难度}{类别:发现探究}{考点:全等三角形的性质}{考点:全等三角形的判定SAS}{考点:相似三角形的性质}{考点:相似三角形的判定(两角相等)}{考点:根的判别式}{考点:几何综合}{题目}25.(2019年南充)如图,抛物线c bxaxy 2与x 轴交于点A (-1,0),点B (-3,0),且OB=OC.(1)求抛物线的式;(2)点P 在抛物线上,且∠POB=∠ACB ,求点P 的坐标;(3)抛物线上两点M ,N ,点M 的横坐标为m ,点N 的横坐标为m+4.点D 是抛物线上M ,N 之间的动点,过点D 作y 轴的平行线交MN 于点E.①求DE 的最大值.②点D 关于点E 的对称点为 F.当m 为何值时,四边形MDNF 为矩形?{}本题考查了待定系数法求二次函数式、求二次函数最大值,等腰三角形的性质,相似三角形的判定和性质,一元二次方程的解法,二元一次方程组的解法,矩形的性质.(1)已知抛物线与x 轴两交点坐标,可设交点式y =a (x+1)(x+3);由OC =OB =3得C (0,﹣3),代入交点式即求得a =﹣1.(2)由∠POB =∠ACB 联想到构造相似三角形,因为求点P 坐标一般会作x 轴垂线PH 得Rt △POH ,故可过点A 在BC 边上作垂线AG ,构造△ACG ∽△POH .利用点A 、B 、C 坐标求得AG 、CG 的长,由相似三角形对应边成比例推出12PH AG OHCG.设点P 横坐标为p ,则OH 与PH 都能用p 表示,但需按P 横纵坐标的正负性进行分类讨论.得到用p 表示OH 与PH 并代入OH =2PH计算即求得p 的值,进而求点P 坐标.(3)①用m 表示M 、N 横纵坐标,把m 当常数求直线MN 的式.设D 横坐标为d ,把x =d 代入直线MN 式得点E 纵坐标,D 与E 纵坐标相减即得到用m 、d 表示的DE 的长,把m 当常数,对未知数d 进行配方,即得到当d =m+2时,DE 取得最大值.②由矩形MDNF 得MN =DF 且MN 与DF 互相平分,所以E 为MN 中点,得到点D 、E 横坐标为m+2.由①得d =m+2时,DE =4,所以MN =8.用两点间距离公式用m 表示MN 的长,即列得方程求m 的值.{答案}解:(1)∵OB=OC ,B (-3,0),∴C (0,-3) ---------------------------1分又题意可得:3390cc b a cb a ------------------------------------------------2分解得:3,4,1cba .∴342x xy. ---------------------------------------------------------3分(2)过点A 作AG ⊥BC 于点G ,如图所示,BG=AG=AB ·sin45°=2. -------------4分∵BC=232OB ,∴CG=BC-BG=22,∴tan ∠ACG=21CGAG . ---------------5分设P (34,2t tt ),过点P 作PQ ⊥x 轴于Q ,tan ∠POQ=tan ∠ACG=21.①当P 在x 轴上方时,034,02t tt则PQ=t OQ t t,342,tan ∠POQ=672,213422t t tt tOQPQ 解得23,221t t ,∴)43,23(),1,2(21P P . ---------------------------------- 6分②当点P 在第三象限时,0692,213422t t t y t,解得:4339,433943t t ∴)8339,4339(),8339,4339(43P P . --------------------------7分③当点P 在第四象限时,∠POB >90°,而∠ACB <90°,∴点P 不在第四象限故点P 坐标为),1,2(或)43,23(或)8339,4339(或)8339,4339((3)①由已知,)3)4(4)4(,4(),34,(22m m mN m m m M 即)3512,4(2m m mN ,设直线MN 为nkxy 得:3512)4(3422m mnmk m m n km 解得:34822m mnm k故MN 为)34()8(2m mx m y . ---------------------------------------8分设)34,(2t tt D ,))34()82(,(2m mt m t E ∴DE =)34(2t t )]34()82[(2m m tm =4)2()4()2(2222m tm mtm t,当2m t 时,DE 最大值为 4. -----------------------------------------------9分②当DE 最大时,点)198,2(2m mm E 为MN 的中点.由已知,点E 为DF 的中点,∴当DE 最大时,四边形MDNF 为平行四边形.如果□MDNF 为矩形,则,4222DE DFMN故22244)328(4m ,化简得,43)4(2m,故234m .当234m 或234时,四边形MDNF 为矩形. --------------------------- 10分{分值}10{章节:[1-22-1-1]二次函数}{难度:5-高难度}{类别:高度原创}{类别:发现探究}{考点:代数综合}{考点:二次函数与平行四边形综合}{考点:二次函数中讨论相似}{考点:二次函数的三种形式}{考点:矩形的性质}。
2019年四川省南充市中考数学试题及答案(Word解析版)
2019年四川省南充市中考数学试题及答案(Word 解析版)一、选择题(本大题共10小题,每小题3分,共30分) 1. (2018四川南充,1,3分)计算-2+3的结果是( )A.-5B. 1C.-1D. 5 2. (2018四川南充,2,3分)0.49的算术平方根的相反数是( )A.0.7B. -0.7C.7.0±D. 03. (2018四川南充,3,3分) 如图,△ABC 中,AB=AC,∠B=70°,则∠A 的度数是( )A.70°B. 55°C. 50°D. 40°4. (2018四川南充,4,3分)“一方有难,八方支援。
”四川省芦山县遭遇强烈地震灾害,我市某校师生共同为地震灾区捐款201800元用于灾后重建,把201800用科学记数法表示为 ( )A.1.35×106B. 13.5×105C. 1.35×105D. 13.5×1045. (2018四川南充,5,3分)不等式组()⎪⎩⎪⎨⎧≥+--+23x 321x 1x 3>的整数解是()A.-1,0,1B. 0,1C. -2,0,1D. -1,1 6. (2018四川南充,6,3分) 下列图形中,∠2>∠1 ()第6题7. (2018四川南充,7,3分)有五张卡片(形状、大小、质地都相同),上面分别画有下列图形:①线段;②正三角形;③平行四边形;④等腰梯形;⑤圆。
将卡片背面朝上洗匀,从中抽取一张,正面图形一定满足既是轴对称图形,又是中心对称图形的概率是 ( )A. 51B. 52C. 53 D. 548. (2018四川南充,8,3分)如图,函数y 1=xk 1与 y 2=k 2x 的图象相交于点A (1,2)和点B ,当y 1<y 2时,自变量x 的取值范围是( )D ab(a ∥b) C 21BAABC第3题目A. x >1B. -1<x <0C. -1<x <0 或x >1D. x <-1或0<x <19. (2018四川南充,9,3分)如图,把矩形ABCD 沿EF 翻折,点B 恰好落在AD 边的B ′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD 的面积是 ( )A.12B. 24C. 123D. 16310. (2018四川南充,9,3分) 如图1,把矩形ABCD 边AD 上一点,点P ,点Q 同时从点B 出发,点P 沿BE →ED →DC 运动到点C 停止,点Q 沿BC 运动到点C 停止,它们运动的速度都是1cm/s ,设P ,Q 出发t 秒时,△BPQ 的面积为ycm 2,已知y 与t 的函数关系的图形如图2(曲线OM 为抛物线的一部分),则下列结论::①AD=BE=5cm ;②当0<t ≤5时;y=52t 2;③直线NH 的解析式为y=-25t+27;④若△ABE 与△QBP 相似,则t=429秒。
2019年中考数学试题含答案
2019年中考数学试题含答案一、选择题1.如图A ,B ,C 是上的三个点,若,则等于( )A .50°B .80°C .100°D .130° 2.下列四个实数中,比1-小的数是( )A .2-B .0C .1D .23.二次函数y =x 2﹣6x +m 满足以下条件:当﹣2<x <﹣1时,它的图象位于x 轴的下方;当8<x <9时,它的图象位于x 轴的上方,则m 的值为( ) A .27B .9C .﹣7D .﹣164.小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是( ) A .110B .19C .16D .155.定义一种新运算:1an n n bn xdx a b -⋅=-⎰,例如:222khxdx k h ⋅=-⎰,若m252mx dx --=-⎰,则m =( )A .-2B .25-C .2D .256.肥皂泡的泡壁厚度大约是0.0007mm ,0.0007用科学记数法表示为( ) A .0.7×10﹣3 B .7×10﹣3 C .7×10﹣4 D .7×10﹣5 7.下列命题中,真命题的是( ) A .对角线互相垂直的四边形是菱形 B .对角线互相垂直平分的四边形是正方形 C .对角线相等的四边形是矩形D .对角线互相平分的四边形是平行四边形8.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D .若AC 5BC =2,则sin ∠ACD 的值为( )A .5 B .25C .5 D .239.若关于x 的一元二次方程()2110k x x -++=有两个实数根,则k 的取值范围是()A .54k ≤B .54k >C .514k k ≠<且D .514k k ≤≠且 10.如图,在直角坐标系中,矩形OABC 的顶点O 在坐标原点,边OA 在x 轴上,OC 在y 轴上,如果矩形OA′B′C′与矩形OABC 关于点O 位似,且矩形OA′B′C′的面积等于矩形OABC 面积的14,那么点B′的坐标是( )A .(-2,3)B .(2,-3)C .(3,-2)或(-2,3)D .(-2,3)或(2,-3)11.根据以下程序,当输入x =2时,输出结果为( )A .﹣1B .﹣4C .1D .11 12.已知关于x 的方程2x+a-9=0的解是x=2,则a 的值为A .2B .3C .4D .5二、填空题13.色盲是伴X 染色体隐性先天遗传病,患者中男性远多于女性,从男性体检信息库中随机抽取体检表,统计结果如表: 抽取的体检表数n 501002004005008001000120015002000色盲患者的频数m3 7 13 29 37 55 69 85 105 138色盲患者的频率m/n0.0600.0700.0650.0730.0740.0690.0690.0710.0700.069根据表中数据,估计在男性中,男性患色盲的概率为______(结果精确到0.01).14.如图,在四边形ABCD中,∠B=∠D=90°,AB=3, BC=2,tanA=43,则CD=_____.15.已知关于x的方程3x n22x1+=+的解是负数,则n的取值范围为.16.如图:已知AB=10,点C、D在线段AB上且AC=DB=2; P是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作等边△AEP和等边△PFB,连结EF,设EF的中点为G;当点P从点C运动到点D时,则点G移动路径的长是________.17.如图,在△ABC中E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC、△ADF、△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF-S△BEF=_________.18.如图,在△ABC中,BC边上的垂直平分线DE交边BC于点D,交边AB于点E.若△EDC的周长为24,△ABC与四边形AEDC的周长之差为12,则线段DE的长为_____.19.一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车单独运完这批货物分别用2, a a 次;甲、丙两车合运相同次数,运完这批货物,甲车共运180吨;乙、丙两车合运相同次数,运完这批货物乙车共运270吨,现甲、乙、丙合运相同次数把这批货物运完,货主应付甲车主的运费为___________ 元.(按每吨运费20元计算)20.在一个不透明的口袋中,装有A ,B ,C ,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是___.三、解答题21.如图,AB 是⊙O 的直径,点C 是的中点,连接AC 并延长至点D ,使CD =AC ,点E 是OB 上一点,且,CE 的延长线交DB 的延长线于点F ,AF 交⊙O 于点H ,连接BH .(1)求证:BD 是⊙O 的切线;(2)当OB =2时,求BH 的长.22.如图是某市一座人行天桥的示意图,天桥离地面的高BC 是10米,坡面AC 的倾斜角45CAB ∠=︒,在距A 点10米处有一建筑物HQ .为了方便行人推车过天桥,市政府部门决定降低坡度,使新坡面DC 的倾斜角30BDC ∠=︒,若新坡面下D 处与建筑物之间需留下至少3米宽的人行道,问该建筑物是否需要拆除(计算最后结果保留一位小数).(参考数据:2 1.414≈,3 1.732≈)23.某市某中学积极响应创建全国文明城市活动,举办了以“校园文明”为主题的手抄报比赛.所有参赛作品均获奖,奖项分为一等奖、二等奖、三等奖和优秀奖,将获奖结果绘制成如右两幅统计图.请你根据图中所给信息解答意)(1)等奖所占的百分比是________;三等奖的人数是________人;(2)据统计,在获得一等奖的学生中,男生与女生的人数比为11:,学校计划选派1名男生和1名女生参加市手抄报比赛,请求出所选2位同学恰是1名男生和1名女生的概率;(3)学校计划从获得二等奖的同学中选取一部分人进行集训使其提升为一等奖,要使获得一等奖的人数不少于二等奖人数的2倍,那么至少选取多少人进行集训?24.材料:解形如(x+a)4+(x+b)4=c的一元四次方程时,可以先求常数a和b的均值,然后设y=x+.再把原方程换元求解,用种方法可以成功地消去含未知数的奇次项,使方程转化成易于求解的双二次方程,这种方法叫做“均值换元法.例:解方程:(x﹣2)4+(x﹣3)4=1解:因为﹣2和﹣3的均值为,所以,设y=x﹣,原方程可化为(y+)4+(y﹣)4=1,去括号,得:(y2+y+)2+(y2﹣y+)2=1y4+y2++2y3+y2+y+y4+y2+﹣2y3+y2﹣y=1整理,得:2y4+3y2﹣=0(成功地消去了未知数的奇次项)解得:y2=或y2=(舍去)所以y=±,即x﹣=±.所以x=3或x=2.(1)用阅读材料中这种方法解关于x的方程(x+3)4+(x+5)4=1130时,先求两个常数的均值为______.设y=x+____.原方程转化为:(y﹣_____)4+(y+_____)4=1130.(2)用这种方法解方程(x+1)4+(x+3)4=70625.计算:(1)2(m﹣1)2﹣(2m+1)(m﹣1)(2)(1﹣)【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】试题分析:根据圆周的度数为360°,可知优弧AC的度数为360°-100°=260°,然后根据同弧所对的圆周角等于它所对的圆心角的一半,可求得∠B=130°.故选D考点:圆周角定理2.A解析:A【解析】试题分析:A.﹣2<﹣1,故正确;B.0>﹣1,故本选项错误;C.1>﹣1,故本选项错误;D.2>﹣1,故本选项错误;故选A.考点:有理数大小比较.3.D解析:D【解析】【分析】先确定抛物线的对称轴为直线x=3,根据抛物线的对称性得到x=−2和x=8时,函数值相等,然后根据题意判断抛物线与x轴的交点坐标为(−2,0),(8,0),最后把(−2,0)代入y=x2−6x+m可求得m的值.【详解】解:∵抛物线的对称轴为直线x=,∴x=−2和x=8时,函数值相等,∵当−2<x<−1时,它的图象位于x轴的下方;当8<x<9时,它的图象位于x轴的上方,∴抛物线与x轴的交点坐标为(−2,0),(8,0),把(−2,0)代入y=x2−6x+m得4+12+m=0,解得m=−16.故选:D.【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y =ax 2+bx +c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的性质.4.A解析:A 【解析】∵密码的末位数字共有10种可能(0、1、 2、 3、4、 5、 6、 7、 8、 9、 0都有可能), ∴当他忘记了末位数字时,要一次能打开的概率是110. 故选A.5.B解析:B 【解析】 【分析】根据新定义运算得到一个分式方程,求解即可. 【详解】 根据题意得,5211m11(5)25m x dx m m m m---⎰-=-=-=-, 则25m =-, 经检验,25m =-是方程的解, 故选B. 【点睛】此题考查了解分式方程,弄清题中的新定义是解本题的关键.6.C解析:C 【解析】 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】 解:0.0007=7×10﹣4 故选C . 【点睛】本题考查科学计数法,难度不大.7.D解析:D【分析】根据平行四边形、矩形、菱形、正方形的判定定理进行判断即可. 【详解】对角线互相垂直且平分的四边形是菱形,故A 是假命题; 对角线互相垂直平分且相等的四边形是正方形,故B 是假命题; 对角线相等且平分的四边形是矩形,故C 是假命题; 对角线互相平分的四边形是平行四边形,故D 是真命题. 故选D . 【点睛】本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8.A解析:A 【解析】 【分析】在直角△ABC 中,根据勾股定理即可求得AB ,而∠B =∠ACD ,即可把求sin ∠ACD 转化为求sin B . 【详解】在直角△ABC 中,根据勾股定理可得:AB ===3.∵∠B +∠BCD =90°,∠ACD +∠BCD =90°,∴∠B =∠ACD ,∴sin ∠ACD =sin ∠B AC AB ==. 故选A . 【点睛】本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系,难度适中.9.D解析:D 【解析】 【分析】运用根的判别式和一元二次方程的定义,组成不等式组即可解答 【详解】解:∵关于x 的一元二次方程(k ﹣1)x 2+x +1=0有两个实数根,∴210=1-41)10k k -⎧⎨∆⨯-⨯≥⎩≠( , 解得:k ≤54且k ≠1. 故选:D .此题考查根的判别式和一元二次方程的定义,掌握根的情况与判别式的关系是解题关键10.D解析:D【解析】如果两个图形不仅是相似图形,而且每组对应点的连线交于一点,对应边互相平行或在一条直线上,那么这两个图形叫做位似图形。
【优质部编】2019-2020中考数学试题分项版解析汇编(第02期)专题2.1 方程(含解析)
专题2.1 方程一、单选题1.【北京市2018年中考数学试卷】方程组的解为A. B. C. D.【答案】D【解析】分析:根据方程组解的概念,将4组解分别代入原方程组,一一进行判断即可.详解:将4组解分别代入原方程组,只有D选项同时满足两个方程,故选D.点睛:考查方程组的解的概念,能同时满足方程组中每个方程的未知数的值,叫做方程组的解.2.【山东省东营市2018年中考数学试题】小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()A. 19 B. 18 C. 16 D. 15【答案】B点睛:本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.3.【湖南省湘西州2018年中考数学试卷】若关于x的一元二次方程x2﹣2x+m=0有一个解为x=﹣1,则另一个解为()A. 1 B.﹣3 C. 3 D. 4【点睛】本题考查了根与系数的关系以及一元二次方程的解,牢记两根之和等于﹣、两根之积等于是解题的关键.4.【云南省昆明市2018年中考数学试题】关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则实数m 的取值范围是()A. m<3 B. m>3 C.m≤3 D.m≥3【答案】A【解析】分析:根据关于x的一元二次方程x2-2x+m=0有两个不相等的实数根可得△=(-2)2-4m>0,求出m 的取值范围即可.详解:∵关于x的一元二次方程x2-2x+m=0有两个不相等的实数根,∴△=(-2)2-4m>0,∴m<3,故选:A.点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.5.【广西钦州市2018年中考数学试卷】某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为()A. 80(1+x)2=100 B. 100(1﹣x)2=80 C. 80(1+2x)=100 D. 80(1+x2)=100【答案】A【解析】【分析】利用增长后的量=增长前的量×(1+增长率),设平均每次增长的百分率为x,根据“从80吨增加到100吨”,即可得出方程.【详解】由题意知,蔬菜产量的年平均增长率为x,根据2016年蔬菜产量为80吨,则2017年蔬菜产量为80(1+x)吨,2018年蔬菜产量为80(1+x)(1+x)吨,预计2018年蔬菜产量达到100吨,即: 80(1+x)2=100,【点睛】本题考查了一元二次方程的应用(增长率问题).解题的关键在于理清题目的含义,找到2017年和2018年的产量的代数式,根据条件找准等量关系式,列出方程.6.【四川省眉山市2018年中考数学试题】我市某楼盘准备以每平方6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方4860元的均价开盘销售,则平均每次下调的百分率是().A. 8% B. 9% C. 10% D. 11%【答案】C点睛:本题考查了一元二次方程的应用,降低率问题的数量关系的运用,一元二次方程的解法的运用,解答时根据降低率问题的数量关系建立方程是关键.【湖南省怀化市2018年中考数学试题】一艘轮船在静水中的最大航速为30km/h,它以最大航速沿江顺流航行100km 7.所用时间,与以最大航速逆流航行80km所用时间相等,设江水的流速为v km/h,则可列方程为()A.= B.= C.= D.=【答案】C点睛:此题是由实际问题抽象出分式方程,主要考查了水流问题,找到相等关系是解本题的关键.8.【云南省昆明市2018年中考数学试题】甲、乙两船从相距300km的A、B两地同时出发相向而行,甲船从A地顺流航行180km时与从B地逆流航行的乙船相遇,水流的速度为6km/h,若甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为()A.= B.=C.= D.=【答案】A【解析】分析:直接利用两船的行驶距离除以速度=时间,得出等式求出答案.详解:设甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为:=.故选:A.点睛:此题主要考查了由实际问题抽象出分式方程,正确表示出行驶的时间和速度是解题关键.9.【黑龙江省哈尔滨市2018年中考数学试题】方程的解为()A. x=﹣1 B. x=0 C. x= D. x=1【答案】D【解析】分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.详解:去分母得:x+3=4x,解得:x=1,经检验x=1是分式方程的解,故选:D.点睛:此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.10.【山东省淄博市2018年中考数学试题】“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A. B.C. D.【答案】C点睛:考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.11.【贵州省(黔东南,黔南,黔西南)2018年中考数学试题】施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x米,所列方程正确的是()A.=2 B.=2C.=2 D.=2【答案】A【解析】分析:设原计划每天施工x米,则实际每天施工(x+30)米,根据:原计划所用时间﹣实际所用时间=2,列出方程即可.详解:设原计划每天施工x米,则实际每天施工(x+30)米,根据题意,可列方程:=2,故选:A.点睛:本题考查了由实际问题抽象出分式方程,关键是读懂题意,找出合适的等量关系,列出方程.12.【湖南省张家界市2018年初中毕业学业考试数学试题】若关于的分式方程的解为,则的值为( )A. B. C. D.【答案】C点睛:此题主要考查了分式方程的解,正确解方程是解题关键.13.【台湾省2018年中考数学试卷】若二元一次联立方程式的解为x=a,y=b,则a+b之值为何?()A. 24 B. 0 C.﹣4 D.﹣8【答案】A【解析】分析:利用加减法解二元一次方程组,求得a、b的值,再代入计算可得答案.详解:,①﹣②×3,得:﹣2x=﹣16,解得:x=8,将x=8代入②,得:24﹣y=8,解得:y=16,即a=8、b=16,则a+b=24,故选:A.点睛:本题主要考查二元一次方程组的解,解题的关键是熟练掌握加减消元法解二元一次方程组的能力.14.【新疆自治区2018年中考数学试题】某文具店一本练习本和一支水笔的单价合计为3元,小妮在该店买了20本练习本和10支水笔,共花了36元.如果设练习本每本为x元,水笔每支为y元,那么根据题意,下列方程组中,正确的是()A. B. C. D.【答案】B点睛:此题主要考查了由实际问题抽象出二元一次方程组,得到单价和总价的2个等量关系是解决本题的关键.15.【湖南省常德市2018年中考数学试卷】阅读理解:,,,是实数,我们把符号称为阶行列式,并且规定:,例如:.二元一次方程组的解可以利用阶行列式表示为:;其中,,.问题:对于用上面的方法解二元一次方程组时,下面说法错误的是()A. B. C. D.方程组的解为【答案】C【解析】【分析】根据阅读材料中提供的方法逐项进行计算即可得.【详解】A、D==2×(-2)-3×1=﹣7,故A选项正确,不符合题意;B、D x==﹣2﹣1×12=﹣14,故B选项正确,不符合题意;C、D y==2×12﹣1×3=21,故C选项不正确,符合题意;D、方程组的解:x==2,y==﹣3,故D选项正确,不符合题意,故选C.【点睛】本题考查了阅读理解型问题,考查了2×2阶行列式和方程组的解的关系,读懂题意,根据材料中提供的方法进行解答是关键.16.【广西壮族自治区桂林市2018年中考数学试题】若,则x,y的值为()A. B. C. D.【答案】D点睛:本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.17.【浙江省台州市2018年中考数学试题】甲、乙两运动员在长为100m的直道AB(A,B为直道两端点)上进行匀速往返跑训练,两人同时从A点起跑,到达B点后,立即转身跑向A点,到达A点后,又立即转身跑向B点…若甲跑步的速度为5m/s,乙跑步的速度为4m/s,则起跑后100s内,两人相遇的次数为()A. 5 B. 4 C. 3 D. 2【答案】B【解析】分析:可设两人相遇的次数为x,根据每次相遇的时间,总共时间为100s,列出方程求解即可.详解:设两人相遇的次数为x,依题意有x=100,解得x=4.5,∵x为整数,∴x取4.故选:B.点睛:考查了一元一次方程的应用,利用方程解决实际问题的基本思路如下:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.18.【河北省2018年中考数学试卷】有三种不同质量的物体“”“”“”,其中,同一种物体的质量都相等,现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不相等,则该组是()A. B.C. D.【答案】A【点睛】本题主要考查了等式的性质,正确得出物体之间的重量关系是解题关键.19.【湖南省邵阳市2018年中考数学试卷】程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人,下列求解结果正确的是()A.大和尚25人,小和尚75人 B.大和尚75人,小和尚25人C.大和尚50人,小和尚50人 D.大、小和尚各100人【答案】A【详解】设大和尚有x人,则小和尚有(100﹣x)人,根据题意得:3x+=100,解得x=25,则100﹣x=100﹣25=75(人),所以,大和尚25人,小和尚75人,故选A.【点睛】本题考查了一元一次方程的应用,弄清题意,找准等量关系列出方程是解题的关键.20【湖北省恩施州2018年中考数学试题】.一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店()A.不盈不亏 B.盈利20元 C.亏损10元 D.亏损30元【答案】C【解析】分析:设两件衣服的进价分别为x、y元,根据利润=销售收入-进价,即可分别得出关于x、y的一元一次方程,解之即可得出x、y的值,再用240-两件衣服的进价后即可找出结论.详解:设两件衣服的进价分别为x、y元,根据题意得:120-x=20%x,y-120=20%y,解得:x=100,y=150,∴120+120-100-150=-10(元).故选:C.点睛:本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.21.【湖北省武汉市2018年中考数学试卷】将正整数1至2018按一定规律排列如下表:平移表中带阴影的方框,方框中三个数的和可能是()A. 2019 B. 2018 C. 2016 D. 2013【答案】D【解析】【分析】设中间数为x,则另外两个数分别为x﹣1、x+1,进而可得出三个数之和为3x,令其分别等于四个选项中数,解之即可得出x的值,由x为整数、x不能为第一列及第八列数,即可确定x值,此题得解.【点睛】本题考查了一元一次方程的应用以及规律型中数字的变化类,找准等量关系,正确列出一元一次方程是解题的关键.二、填空题22.【上海市2018年中考数学试卷】方程组的解是_____.【答案】,【解析】【分析】方程组中的两个方程相加,即可得出一个一元二次方程,求出方程的解,再代入求出y即可.【详解】,②+①得:x2+x=2,解得:x=﹣2或1,把x=﹣2代入①得:y=﹣2,把x=1代入①得:y=1,所以原方程组的解为,,故答案为,.【点睛】本题考查了解二元二次方程组,根据方程组的结构特点灵活选取合适的方法求解是关键.这里体现的消元与转化的数学思想.23.【湖南省长沙市2018年中考数学试题】已知关于x方程x2﹣3x+a=0有一个根为1,则方程的另一个根为_____.【答案】2点睛:本题考查了根与系数的关系,牢记两根之和等于-是解题的关键.24.【湖南省湘西州2018年中考数学试卷】对于任意实数a、b,定义一种运算:a※b=ab﹣a+b﹣2.例如,2※5=2×5﹣2+5﹣2=ll.请根据上述的定义解决问题:若不等式3※x<2,则不等式的正整数解是_____.【答案】1【解析】【分析】根据新定义可得出关于x的一元一次不等式,解之取其中的正整数即可得出结论.【详解】∵3※x=3x﹣3+x﹣2<2,∴x<,∵x为正整数,∴x=1,故答案为:1.【点睛】本题考查一元一次不等式的整数解以及实数的运算,通过解不等式找出x<是解题的关键.25.【山东省聊城市2018年中考数学试题】已知关于x的方程(k﹣1)x2﹣2kx+k﹣3=0有两个相等的实根,则k的值是_____.【答案】点睛:本题考查了根的判别式以及一元二次方程的定义,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.26.【湖南省邵阳市2018年中考数学试卷】已知关于x的方程x2+3x﹣m=0的一个解为﹣3,则它的另一个解是_____.【答案】0【解析】【分析】设方程的另一个解是n,根据根与系数的关系可得出关于n的一元一次方程,解之即可得出方程的另一个解.【详解】设方程的另一个解是n,根据题意得:﹣3+n=﹣3,解得:n=0,故答案为:0.【点睛】本题考查了一元二次方程的解以及根与系数的关系,熟记一元二次方程ax2+bx+c=0(a≠0)的两根之和等于﹣、两根之积等于是解题的关键.27.【山东省烟台市2018年中考数学试卷】已知关于x的一元二次方程x2﹣4x+m﹣1=0的实数根x1,x2,满足3x1x2﹣x1﹣x2>2,则m的取值范围是_____.【答案】3<m≤5.点睛:本题考查了一元二次方程的根的判别式的应用,解此题的关键是得出关于m的不等式,注意:一元二次方程ax2+bx+c=0(a、b、c为常数,a≠0)①当b2﹣4ac>0时,一元二次方程有两个不相等的实数根,②当b2﹣4ac=0时,一元二次方程有两个相等的实数根,③当b2﹣4ac<0时,一元二次方程没有实数根.28.【江苏省淮安市2018年中考数学试题】若关于x、y的二元一次方程3x﹣ay=1有一个解是,则a=_____.【答案】4【解析】分析:把x与y的值代入方程计算即可求出a的值.详解:把代入方程得:9﹣2a=1,解得:a=4,故答案为:4.点睛:此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.29.【湖北省襄阳市2018年中考数学试卷】我国古代数学著作《九章算术》中有一道阐述“盈不足术”的问题,译文为:“现有几个人共同购买一个物品,每人出8元,则多3元;每人出7元,则差4元.问这个物品的价格是多少元?”该物品的价格是_____元.【答案】53【解析】【分析】设该商品的价格是x元,共同购买该物品的有y人,根据“每人出8元,则多3元;每人出7元,则差4元”,即可得出关于x、y的二元一次方程组,解方程组即可得出结论.【详解】设该商品的价格是x元,共同购买该物品的有y人,根据题意得:,解得:,故答案为:53.【点睛】本题考查了二元一次方程组的应用,弄清题意,找出等量关系列出方程组是解题的关键.30.【四川省内江市2018年中考数学试题】已知关于x的方程ax2+bx+1=0的两根为x1=1,x2=2,则方程a(x+1)2+b (x+1)+1=0的两根之和为__________.【答案】1点睛:本题考查根与系数的关系,解题的关键是熟练运用根与系数的关系,本题属于基础题型.31.【四川省内江市2018年中考数学试题】关于x的一元二次方程x2+4x﹣k=0有实数根,则k的取值范围是__________.【答案】k≥﹣4【解析】分析:根据方程的系数结合根的判别式△≥0,即可得出关于k的一元一次不等式,解之即可得出结论.详解:∵关于x的一元二次方程x2+4x-k=0有实数根,∴△=42-4×1×(-k)=16+4k≥0,解得:k≥-4.故答案为:k≥-4.点睛:本题考查了根的判别式,牢记“当△≥0时,方程有实数根”是解题的关键.32.【四川省内江市2018年中考数学试卷】已知关于的方程的两根为,,则方程的两根之和为___________.【答案】1【解析】分析:设t=x+1,则方程a(x+1)2+b(x+1)+1=0化为at2+at+1=0,利用方程的解是x1=1,x2=2得到t1=1,t2=2,然后分别计算对应的x的值可确定方程a(x+1)2+b(x+1)+1=0的解.详解:设x+1=t,方程a(x+1)2+b(x+1)+1=0的两根分别是x3,x4,∴at2+bt+1=0,由题意可知:t1=1,t2=2,∴t1+t2=3,∴x3+x4+2=3故答案为:1点睛:本题考查根与系数的关系,解题的关键是熟练运用根与系数的关系,本题属于基础题型.33.【四川省内江市2018年中考数学试】关于的一元二次方程有实数根,则的取值范围是__________.【答案】k≥﹣4.点睛:此题考查了根的判别式,总结:一元二次方程根的情况与判别式△的关系:(1)△>0,方程有两个不相等的实数根;(2)△=0,方程有两个相等的实数根;(3)△<0方程没有实数根.34.【山东省威海市2018年中考数学试题】用若干个形状、大小完全相同的矩形纸片围成正方形,4个矩形纸片围成如图①所示的正方形,其阴影部分的面积为12;8个矩形纸片围成如图②所示的正方形,其阴影部分的面积为8;12个矩形纸片围成如图③所示的正方形,其阴影部分的面积为__.【答案】44﹣16.【解析】分析:图①中阴影部分的边长为=2,图②中,阴影部分的边长为=2;设小矩形的长为a,宽为b,依据等量关系即可得到方程组,进而得出a,b的值,即可得到图③中,阴影部分的面积.【解答】解:由图可得,图①中阴影部分的边长为=2,图②中,阴影部分的边长为=2;设小矩形的长为a,宽为b,依题意得:,解得,∴图③中,阴影部分的面积为(a﹣3b)2=(4﹣2﹣6+6)2=44﹣16,故答案为:44﹣16.点睛:本题主要考查了二元一次方程组的应用以及二次根式的化简,当问题较复杂时,有时设与要求的未知量相关的另一些量为未知数,即为间接设元.无论怎样设元,设几个未知数,就要列几个方程.35.【山东省威海市2018年中考数学试题】关于x的一元二次方程(m﹣5)x2+2x+2=0有实根,则m的最大整数解是__.【答案】m=4.点睛:考查了根的判别式,总结:一元二次方程根的情况与判别式△的关系:(1)△>0,方程有两个不相等的实数根;(2)△=0,方程有两个相等的实数根;(3)△<0方程没有实数根.36.【湖南省张家界市2018年初中毕业学业考试数学试题】关于x的一元二次方程有两个相等的实数根,则______.【答案】【解析】分析:根据题意可得△=0,进而可得k2-4=0,再解即可.详解:由题意得:△=k2-4=0,解得:k=±2,故答案为:±2.点睛:此题主要考查了根的判别式,关键是掌握一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.37.【新疆自治区2018年中考数学试题】某商店第一次用600元购进2B铅笔若干支,第二次又用600元购进该款铅笔,但这次每支的进价是第一次进价的倍,购进数量比第一次少了30支.则该商店第一次购进的铅笔,每支的进价是_____元.【答案】4详解:设该商店第一次购进铅笔的单价为x元/支,则第二次购进铅笔的单价为x元/支,根据题意得:,解得:x=4,经检验,x=4是原方程的解,且符合题意.答:该商店第一次购进铅笔的单价为4元/支.故答案为:4.点睛:本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.38.【山东省聊城市2018年中考数学试卷】若为实数,则表示不大于的最大整数,例如,,等. 是大于的最小整数,对任意的实数都满足不等式. ①,利用这个不等式①,求出满足的所有解,其所有解为__________.【答案】或1.【解析】分析: 根据题意可以列出相应的不等式,从而可以求得x的取值范围,本题得以解决.详解: ∵对任意的实数x都满足不等式[x]≤x<[x]+1,[x]=2x-1,∴2x-1≤x<2x-1+1,解得,0<x≤1,∵2x-1是整数,∴x=0.5或x=1,故答案为:x=0.5或x=1.点睛:本题考查了解一元一次不等式组,解答本题的关键是明确题意,会解答一元一次不等式.39.【山东省聊城市2018年中考数学试卷】已知关于的方程有两个相等的实根,则的值是__________.【答案】点睛:本题考查了根的判别式以及一元二次方程的定义,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.三、解答题40.【湖南省郴州市2018年中考数学试卷】郴州市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买A、B两种奖品以鼓励抢答者.如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元.(1)A、B两种奖品每件各多少元?(2)现要购买A、B两种奖品共100件,总费用不超过900元,那么A种奖品最多购买多少件?【答案】(1)A种奖品每件16元,B种奖品每件4元.(2)A种奖品最多购买41件.【解析】【分析】(1)设A种奖品每件x元,B种奖品每件y元,根据“如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设A种奖品购买a件,则B种奖品购买(100﹣a)件,根据总价=单价×购买数量结合总费用不超过900元,即可得出关于a的一元一次不等式,解之取其中最大的整数即可得出结论.(2)设A种奖品购买a件,则B种奖品购买(100﹣a)件,根据题意得:16a+4(100﹣a)≤900,解得:a≤,∵a为整数,∴a≤41,答:A种奖品最多购买41件.【点睛】本题考查了一元一次不等式的应用以及二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据不等关系,正确列出不等式.41.【北京市2018年中考数学试卷】关于的一元二次方程.(1)当时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的,的值,并求此时方程的根.【答案】(1)原方程有两个不相等的实数根.(2),,.【解析】分析:(1)求出根的判别式,判断其范围,即可判断方程根的情况.(2)方程有两个相等的实数根,则,写出一组满足条件的,的值即可.详解:(1)解:由题意:.∵,∴原方程有两个不相等的实数根.(2)答案不唯一,满足()即可,例如:解:令,,则原方程为,解得:.点睛:考查一元二次方程根的判别式,当时,方程有两个不相等的实数根.当时,方程有两个相等的实数根.当时,方程没有实数根.42.【湖北省随州市2018年中考数学试卷】己知关于x的一元二次方程x2+(2k+3)x+k2=0有两个不相等的实数根x1,x2.(1)求k的取值范围;(2)若=﹣1,求k的值.【答案】(1)k>﹣;(2)k=3.【解析】【分析】(1)根据方程的系数结合根的判别式△>0,即可得出关于k的一元一次方程,解之即可得出k的取值范围;(2)根据根与系数的关系可得出x1+x2=﹣2k﹣3、x1x2=k2,结合=﹣1即可得出关于k的分式方程,解之经检验即可得出结论.【点睛】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当△>0时,方程有两个不相等的实数根”;(2)根据根与系数的关系结合=﹣1找出关于k的分式方程.43.【湖北省孝感市2018年中考数学试题】已知关于的一元二次方程.(1)试证明:无论取何值此方程总有两个实数根;(2)若原方程的两根,满足,求的值.【答案】(1)证明见解析;(2)-2.【解析】分析:(1)将原方程变形为一般式,根据方程的系数结合根的判别式,即可得出△=(2p+1)2≥0,由此即可证出:无论p取何值此方程总有两个实数根;(2)根据根与系数的关系可得出x1+x2=5、x1x2=6-p2-p,结合x12+x22-x1x2=3p2+1,即可求出p值.点睛:本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当△≥0时,方程有两个实数根”;(2)根据根与系数的关系结合x12+x22-x1x2=3p2+1,求出p值.44.【山东省东营市2018年中考数学试题】关于x的方程2x2﹣5xsinA+2=0有两个相等的实数根,其中∠A是锐角三角形ABC的一个内角.(1)求sinA的值;(2)若关于y的方程y2﹣10y+k2﹣4k+29=0的两个根恰好是△ABC的两边长,求△ABC的周长.【答案】(1)sinA=;(2)△ABC的周长为或16.【解析】分析:(1)利用判别式的意义得到△=25sin2A-16=0,解得sinA=;(2)利用判别式的意义得到100-4(k2-4k+29)≥0,则-(k-2)2≥0,所以k=2,把k=2代入方程后解方程得到y1=y2=5,则△ABC是等腰三角形,且腰长为5.分两种情况:当∠A是顶角时:如图,过点B作BD⊥AC于点D,利用三角形函数求出AD=3,BD=4,再利用勾股定理求出BC即得到△ABC的周长;当∠A是底角时:如图,过点B作BD⊥AC于点D,在Rt△ABD中,AB=5,利用三角函数求出AD得到AC的长,从而得到△ABC的周长.详解:(1)根据题意得△=25sin2A-16=0,∴sin2A=,∴sinA=±,∵∠A为锐角,∴sinA=;分两种情况:当∠A是顶角时:如图,过点B作BD⊥AC于点D,在Rt△ABD中,AB=AC=5,∵sinA=,∴AD=3,BD=4∴DC=2,∴BC=2.∴△ABC的周长为10+2;当∠A是底角时:如图,过点B作BD⊥AC于点D,在Rt△ABD中,AB=5,∵sinA=,∴AD=DC=3,∴AC=6.∴△ABC的周长为16,综合以上讨论可知:△ABC的周长为10+2或16.点睛:本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.也考查了解直角三角形.45.【湖北省黄石市2018年中考数学试卷】已知关于x的方程x2﹣2x+m=0有两个不相等的实数根x1、x2(1)求实数m的取值范围;(2)若x1﹣x2=2,求实数m的值.【答案】(1)m<1;(2)0.(2)由根与系数的关系得:x1+x2=2,即,解得:x1=2,x2=0,由根与系数的关系得:m=2×0=0.点睛:本题考查了根与系数的关系和根的判别式、一元二次方程的解,能熟记根与系数的关系的内容和根的判别式的内容是解此题的关键.46.【江苏省盐城市2018年中考数学试题】一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年四川省南充市初中学业水平考试数学试题考试时间:120分钟 满分:120分{题型:1-选择题}一、选择题:本大题共 10小题,每小题3分,合计30分. {题目}1. (2019年南充)如果16=a ,那么a 的值为( )A .6B .61C .-6D .61-{答案} B{}本题考查了倒数的定义,根据乘积为1的数互为倒数即可判断,16=16⨯,因此本题选B . {分值}3{章节:[1-1-4-2]有理数的除法} {考点:倒数} {类别:常考题} {难度:1-最简单}{题目}2. (2019年南充)下列各式计算正确的是( )A .32x x x =+B .532)(x x = C .326x x x =÷ D .32x x x =⋅{答案}D{}本题考查了合并同类项以及同底数幂的乘除运算,A .x +x 2,无法合并,故此选项错误;B .(x 2)3=x 6,故此选项错误;C .x 6÷x 2=x 4,故此选项错误;D .x •x 2=x 3,故此选项正确.因此本题选D .{分值}3{章节:[1-14-1]整式的乘法} {考点:整式加减}{考点:同底数幂的乘法} {考点:幂的乘方}{考点:同底数幂的除法} {类别:常考题} {难度:2-简单}{题目}3. (2019年南充)如图是一个几何体的表面展开图,这个几何体是( )A .B .C .D .{答案} C{}本题考查了几何体的展开图,由平面图形的折叠及三棱柱的展开图的特征可知,这个几何体是三棱柱,因此本题选C .{分值}3{章节:[1-4-4]课题学习 设计制作长方体形状的包装纸盒} {考点:几何体的展开图} {类别:发现探究} {难度:2-简单}{题目}4. (2019年南充)在2019年南充市初中毕业升学体育与健康考试中,某校九年级(1)班 体育委员对本班50名同学参加球类自选项目做了统计,制作出扇形统计图(如图),则该班选考乒 乓球人数比羽毛球人数多( )A .5人B .10人C .15人D .20人{答案}B{}本题考查了扇形统计图的应用,∵选考乒乓球人数为50×40%=20人,选考羽毛球人数为7250360 oo=10人,∴选考乒乓球人数比羽毛球人数多20﹣10=10人,,因此本题选B .{分值}3{章节:[1-10-1]统计调查} {考点:扇形统计图} {类别:常考题} {难度:2-简单}{题目}5. (2019年南充)如图,在△ABC 中,AB 的垂直平分线交AB 于点D ,交BC 于点E ,若BC = 6,AC =5,则△ACE 的周长为( )A .8B .11C .16D .17{答案}B{}本题考查了线段垂直平分线的性质:线段垂直平分线上点到线段两端点的距离相等,由DE 垂直平分线AB ,可得AE =BE ,所以△ACE 的周长=AC+EC+AE =AC+EC+BE =AC+BC =11,因此本题选B . {分值}3{章节:[1-13-1-2]垂直平分线} {考点:垂直平分线的性质} {类别:常考题} {难度:2-简单}{题目}6. (2019年南充)关于x 的一元一次方程2x a -2+m =4的解为x =1,则a +m 的值为( ) A .9B .8C .5D .4{答案}C{}本题考查了一元一次方程的定义和一元一次方程解的定义,所以a ﹣2=1,2+m =4,所以a =3,m =2,所以a +m =3+2=5,因此本题选C .{分值}3{章节:[1-3-1-1]一元一次方程} {考点:一元一次方程的定义} {考点:方程的解} {类别:易错题} {难度:2-简单}{题目}7. (2019年南充)如图,在半径为6的⊙O 中,点A ,B ,C 都在⊙O 上,四边形OABC 是平行四边形,则图中阴影部分的面积为( )A .6πB .33πC .32πD .2π{答案}A{}本题考查了平行四边形的性质、扇形面积的计算,连接OB ,根据平行四边形的性质得到AB =OC ,推出△AOB 是等边三角形,得到∠AOB =60°,所以S △AOB =S △ABC ,再根据扇形的面积公式即可求解,S 阴影=S 扇形OAB =2606360π⋅⋅=6π,因此本题选A .{分值}3{章节:[1-24-4]弧长和扇形面积} {考点:平行四边形边的性质} {考点:平行四边形角的性质} {考点:扇形的面积}{考点:等边三角形的判定与性质} {类别:思想方法} {难度:3-中等难度}{题目}8. (2019年南充)关于x 的不等式2x +a ≤1只有2个正整数解,则a 的取值范围为( ) A .﹣5<a <﹣3 B .﹣5≤a <﹣3 C .﹣5<a ≤﹣3 D .﹣5≤a ≤﹣3{答案}C{}本题考查了一元一次不等式(组)及应用,首先解不等式不等式可得12ax -≤ ,再根据不等式有两个正整数解,一定是1和2,所以1232a-≤<,解得:﹣5<a ≤﹣3.因此本题选C . {分值}3{章节:[1-9-2]一元一次不等式}{考点:解一元一次不等式}{考点:一元一次不等式的整数解} {类别:易错题} {难度:3-中等难度}{题目}9. (2019年南充)如图,正方形MNCB 在宽为2的矩形纸片一端,对折正方形MNCB 得到折痕AE ,再翻折纸片,使AB 与AD 重合,以下结论错误的是( )A .AB 2=10+B.CD BC C .BC 2=CD •EHD .sin ∠AHD{答案}A{}本题考查了矩形、正方形、菱形的性质与判定.首先证明四边形ABHD 是菱形,利用勾股定理求出AB ,AD ,CD ,EH ,AH ,即可判断. 解:在Rt △AEB 中, AB∵AB ∥DH ,BH ∥AD , ∴四边形ABHD 是平行四边形, ∵AB =AD ,∴四边形ABHD 是菱形, ∴AD =AB∴CD =AD =AD1,∴12CD BC =,故选项B 正确, ∵BC 2=4,CD •EH1+1)=4, ∴BC 2=CD •EH ,故选项C 正确, ∵四边形ABHD 是菱形, ∴∠AHD =∠AHB , ∴sin ∠AHD =sin ∠AHB =AEAH,因此本题选A . {分值}3{章节:[1-18-2-2]菱形}{考点:矩形的性质} {考点:菱形的性质} {考点:菱形的判定} {考点:正方形的性质} {考点:几何选择压轴} {考点:折叠问题} {类别:发现探究} {难度:4-较高难度}{题目}10.(2019年南充)抛物线y =ax 2+bx +c (a ,b ,c 是常数),a >0,顶点坐标为(12,m ), 给出下列结论:①若点(n ,y 1)与)223(2y n ,-在该抛物线上,当n <12时,则y 1<y 2;②关于x 的一元二次方程ax 2﹣bx +c ﹣m +1=0无实数解,那么( ) A .①正确,②正确B .①正确,②错误C .①错误,②正确D .①错误,②错误{答案}A{}本题考查了二次函数图象及其性质,①根据二次函数的增减性进行判断便可;②先把顶点坐标代入抛物线的式,求得m ,再把m 代入一元二次方程ax 2﹣bx +c ﹣m +1=0的根的判别式中计算,判断其正负即可判断正误. 解:①∵顶点坐标为(12,m ),n <12, ∴点(n ,y 1)关于抛物线的对称轴x =12的对称点为(1﹣n ,y 1), ∴点(1﹣n ,y 1)与(322n -,y 2)在该抛物线上, ∵(1﹣n )﹣(322n -)=n ﹣12<0, ∴1﹣n <322n -, ∵a >0, ∴当x >12时,y 随x 的增大而增大, ∴y 1<y 2,故①正确; ②把(12,m )代入y =ax 2+bx +c 中,得m =1142a b c ++, ∴一元二次方程ax 2﹣bx +c ﹣m +1=0中,△=b 2﹣4ac +4am ﹣4a =b 2﹣4ac +4a (1142a b c ++)﹣4a =(a +b )2﹣4a <0,∴一元二次方程ax 2﹣bx +c ﹣m +1=0无实数解,故②正确; 因此本题选A .{分值}3{章节:[1-22-2]二次函数与一元二次方程} {考点:二次函数y =ax2+bx+c 的性质} {考点:抛物线与一元二次方程的关系} {类别:易错题} {难度:4-较高难度}{题型:2-填空题}二、填空题:本大题共6个小题,每小题3分,合计18分.{题目}11.(2019年南充)原价为a 元的书包,现按8折出售,则售价为 元.{答案}0.8a{}本题考查了整式的基本概念,能根据题意列出代数式是解题的关键,因此本题答案为0.8a . {分值}3{章节:[1-2-1]整式} {考点:列代数式} {类别:常考题} {难度:1-最简单}{题目}12.(2019年南充)如图,以正方形ABCD 的AB 边向外作正六边形ABEFGH ,连接DH ,则∠ADH = °{答案}15{}本题考查了正方形和等腰三角形的性质,根据正方形的性质得到AB =AD ,∠BAD =90°,在正六边形ABEFGH 中,求得AB =AH ,∠BAH =120°,于是得到AH =AD ,∠HAD =360°﹣90°﹣120°=150°,根据等腰三角形的性质即可得到结论,因此本题答案为15. {分值}3{章节:[1-13-2-1]等腰三角形} {考点:正方形的性质} {考点:等腰直角三角形} {类别:常考题} {难度:2-简单}{题目}13.(2019年南充)计算:=-+-xx x 1112 .{答案} x +1{}本题考查了分式的加减运算,先化为同分母分式,利用同分母分式的减法法则:同分母分式相加减,分母不变,分子相加减,计算即可得到结果,因此本题答案为x +1. {分值}3{章节:[1-15-2-2]分式的加减} {考点:两个分式的加减} {类别:常考题}{难度:2-简单}{则只鸡质量的中位数为 .{答案}1.4kg{}本题考查了中位数的基本概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.因此本题答案为1.4kg . {分值}3{章节:[1-20-1-2]中位数和众数} {考点:中位数} {类别:常考题} {难度:2-简单}{题目}15.(2019年南充)在平面直角坐标系xOy 中,点)2,3(n m A 在直线1+-=x y 上,点),(n m B 在双曲线xky =上,则k 的取值范围为 .{答案}124k ≤且0≠k {}本题考查了一次函数与反比例函数图象及其应用,根据一次函数图象上点的特征求得312m n -+=,即可得到B (m ,312m -+),根据反比例函数图象上点的特征得到k 关于m 的函数,k =m •312m -+=23112624m ⎛⎫--+ ⎪⎝⎭,根据二次函数的性质即可求得k 的取值范围,注意0≠k .因此本题答案为124k ≤且0≠k .{分值}3{章节:[1-26-1]反比例函数的图像和性质} {考点:反比例函数与一次函数的综合} {考点:二次函数y =ax2+bx+c 的性质} {类别:易错题} {难度:4-较高难度}{题目}16.(2019年南充)如图,矩形硬纸片ABCD 的顶点A 在y 轴的正半轴及原点上滑动,顶点B 在x 轴的正半轴及原点上滑动,点E 为AB 的中点,AB =24,BC =5.给出下列结论:①点A 从点O 出发,到点B 运动至点O 为止,点E 经过的路径长为12π;②△OAB 的面积的最大值为144;③当OD 最大时,点D 的坐标为)2626125,262625(.其中正确的结论是 (填写序号).{答案}②③{}本题考查了直角三角形的性质、矩形的性质、相似三角形的判定和性质等知识,关键是学会添加常用辅助线,构造相似三角形解决问题,①由条件可知AB =24,则AB 的中点E 的运动轨迹是圆弧,最后根据弧长公式即可计算出点E 所经过的路径长;②当△OAB 的面积最大时,因为AB =24,所以△OAB 为等腰直角三角形,即OA =OB ,可求出最大面积为144;③当O 、E 、D 三点共线时,OD 最大,过点D 作DF ⊥y 轴于点F ,可求出OD =25,证明△DFA ∽△AOB 和△DFO ∽△BOA ,可求出DF 长,则D 点坐标可求出.因此本题答案为②③. 解:∵点E 为AB 的中点,AB =24, ∴OE =12AB =12, ∴AB 的中点E 的运动轨迹是以点O 为圆心,12为半径的一段圆弧, ∵∠AOB =90°, ∴点E 经过的路径长为9012180π⨯=6π,故①错误; 当△OAB 的面积最大时,因为AB =24,所以△OAB 为等腰直角三角形,即OA =OB , ∵E 为AB 的中点, ∴OE ⊥AB , OE =12AB =12, ∴S △AOB =124122⨯⨯=144,故②正确; 如图,当O 、E 、D 三点共线时,OD 最大,过点D 作DF ⊥y 轴于点F , ∵AD =BC =5,AE =12AB =12, ∴DE 22AD AE +22512+ =13,∴OD =DE +OE =13+12=25, 设DF =x ,∴OF 22OD DF -2225x - ∵四边形ABCD 是矩形, ∴∠DAB =90°, ∴∠DFA =∠AOB , ∴∠DAF =∠ABO ,∴△DFA ∽△AOB ∴DF DAOA AB =, ∴524x OA =, ∴245xOA =, ∵E 为AB 的中点,∠AOB =90°, ∴AE =OE , ∴∠AOE =∠OAE , ∴△DFO ∽△BOA , ∴OD OFAB OA=,∴25245=,解得x,x舍去, ∴OF∴D故答案为:②③.{分值}3{章节:[1-18-2-1]矩形} {考点:三角形综合题}{考点:相似三角形的判定(两角相等)} {考点:相似三角形的性质} {难度:5-高难度}{题型:4-解答题}三、解答题:本大题共9个小题,合计72分.{题目}17.(2019年南充)计算:12112|32|)1(-⎪⎭⎫ ⎝⎛+--+-π{}本题考查了实数的混合计算,关键在于计算要准确,不能漏掉符号.{答案}解:原式=232)23(1+--+ ----------------------------------- 4分=232231+--+ ------------------------------------------------------------ 5分=31- --------------------------------------------------- 6分 {分值}6{章节:[1-6-3]实数} {难度:3-中等难度} {类别:常考题}{考点:负指数参与的运算} {考点:算术平方根} {考点:绝对值的性质} {考点:零次幂}{题目}18.(2019年南充)如图,点O 是线段AB 的中点,OD ∥BC 且OD =BC . (1)求证:△AOD ≌△OBC ; (2)若∠ADO =35°,求∠DOC 的度数.{}本题考查了全等三角形的判定和性质,平行线的性质,(1)根据线段中点的定义得到AO =BO ,根据平行线的性质得到∠AOD =∠OBC ,根据全等三角形的判定定理即可得到结论;(2)根据全等三角形的性质和平行线的性质即可得到结论.{答案}解: (1)证明:∵点O 线段AB 的中点,∴AO =BO . -------------------------------------- 1分 ∵OD ∥BC ,∴∠AOD =∠OBC . -------------------------------------------------------------------------- 2分在△AOD 和△OBC 中,⎪⎩⎪⎨⎧=∠=∠=BC OD OBC AOD BO AO ,∴△AOD ≌△OBC (SAS ) ---------------------------------------------------- 4分 (2)解:∵△AOD ≌△OBC ,∴∠ADO =∠OCB =35°. ----------------------------------------- 5分 ∵OD ∥BC ,∴∠DOC =∠OCB =35°. ------------------------------------------------------------------ 6分 {分值}6{章节:[1-12-2]三角形全等的判定} {难度:2-简单} {类别:常考题}{考点:全等三角形的性质}{考点:全等三角形的判定SAS} {考点:平行线的性质与判定}{题目}19.(2019年南充)现有四张完全相同的不透明卡片,其正面分别写有数字-2,-1,0,2,把这四张卡片背面朝上洗匀后放在桌面上.(1)随机抽取一张卡片,求抽取的卡片上的数字为负数的概率;(2)先随机抽取卡片,其上的数字作为点A 的横坐标;然后放回并洗匀,再随机抽取一张卡片,其上的数字作为点A 的纵坐标,试用画树状图或列表的方法求出点A 在直线y =2x 上的概率.{}本题考查了树状图法或列表法求概率、概率公式、一次函数图象上点的坐标特征,(1)由概率公式即可得出结果;(2)直接利用树状图法列举出所有可能进而得出答案.{答案}解:(1)∵抽取的负数可能为-2,-1,∴抽取出数字为负数的概率为P =2142= ---------- 2分----------------------- 4分∵共有16种等可能结果,其中点A 在直线y =2x 上的结果有2种 -------------------------------- 5分 ∴点A 在直线y =2x 上的概率为21168P '== ------------------------------------6分 {分值}6{章节:[1-25-2]用列举法求概率} {难度:3-中等难度} {类别:常考题}{考点:一次函数的图象} {考点:两步事件放回}{题目}20.(2019年南充)已知关于x 的一元二次方程03)12(22=-+-+m x m x 有实数根.(1)求实数m 的取值范围;(2)当m =2时,方程的根为21,x x ,求代数式)24)(2(222121+++x x x x 的值.{}本题考查了一元二次方程的解以及一元二次方程根与系数的关系:两根之和等于ba-,两根之积等于ca”.(1)根据△≥0,解不等式即可;(2)将m =2代入原方程可得:x 2+3x +1=0,计算两根和与两根积,化简所求式子,可得结论.{答案}解: (1)△=(2m ﹣1)2﹣4(m 2﹣3)=﹣4m +13, ------------------------------------ 2分 由题意知原方程有实根,∴△=﹣4m +13≥0, --------------------------------------------------------- 3分 ∴m ≤134.-------------------------------------------------------------------------------------------------------- 4分 (2)当m =2时,方程为x 2+3x +1=0, ------------------------------------------------------------------- 5分 ∴x 1+x 2=﹣3,x 1x 2=1, ------------------------------------------------------------------------------------- 6分∵方程的根为x 1,x 2,∴x 12+3x 1+1=0,x 22+3x 2+1=0, ∴(x 12+2x 1)(x 22+4x 2+2)=(x 12+2x 1+x 1﹣x 1)(x 22+3x 2+x 2+2) =(﹣1﹣x 1)(﹣1+x 2+2) =(﹣1﹣x 1)(x 2+1) =﹣x 2﹣x 1x 2﹣1﹣x 1 =﹣x 2﹣x 1﹣2 =3﹣2=1. --------------------------------------------------------------------------------------------------------------- 8分 {分值}8{章节:[1-21-3] 一元二次方程根与系数的关系} {难度:3-中等难度} {类别:常考题} {考点:根的判别式} {考点:根与系数关系}{题目}21.(2019年南充)双曲线xky =(k 为常数,且0≠k )与直线b x y +-=2交于1(,2)2A m m --,(1,)B n 两点.(1)求k 与b 的值;(2)如图,直线AB 交x 轴于点C ,交y 轴于点D ,若点E 为CD 的中点,求△BOE 的面积.{}本题考查了待定系数法求反比例函数式、反比例函数与一次函数的图象与性质.(1)将A 、B 两点的坐标代入一次函数式可得b 和n 的值,则求出点B (1,﹣2),代入反比例函数式可求出k 的值.(2)先求出点C 、D 两点的坐标,再求出E 点坐标,则S △BOE =S △ODE +S △ODB =()12B E OD x x ⋅-,可求出△BOE 的面积. {答案}解:(1)∵点)2,21(--m m A 在直线b x y +-=2上, ∴12()22m b m --+=-,∴b =﹣2 -------------------------------------------------------------------- 2分 ∴22--=x y ,∵点B (1,n )在直线22--=x y 上,∴4212-=-⨯-=n ------------ 3分∴B (1,-4),∵B (1,-4)在双曲线xky =上,∴4)4(1-=-⨯=k ----------------------- 4分 (2)直线22--=x y 交x 轴于C (-1,0),交y 轴于D (0,-2) --------------------------------- 5分 ∴S △COD =1|2||1|21=-⨯-⨯ ∵点E 为CD 的中点,∴S △COE =21S △COD =21-------------------------------------------------------------- 6分 ∵S △COB =2|4||1|21=-⨯-⨯ -------------------------------------------------------------------------------- 7分 ∴S △BOE =S △COB -S △COE =2-2321=. ----------------------------------------------- 8分{分值}8{章节:[1-26-1]反比例函数的图像和性质} {难度:3-中等难度} {类别:常考题}{考点:反比例函数与一次函数的综合}{题目}22.(2019年南充)如图,在△ABC 中,以AC 为直径的⊙O 交AB 于点D ,连接CD ,∠BCD =∠A .(1)求证:BC 是⊙O 的切线;(2)若BC =5,BD =3,求点O 到CD 的距离.{}本题考查了切线的判定和性质、圆周角定理、相似三角形的判定和性质、垂径定理、三角形的中位线的性质.(1)根据圆周角定理得到∠ADC =90°,得到∠A +∠ACD =90°,求得∠ACB =90°,于是得到结论;(2)过O 作OH ⊥CD 于H ,根据相似三角形的性质得到AB =253,根据垂径定理得到CH =DH ,根据三角形的中位线的性质即可得到结论.{答案}解:(1)证明:∵AC 是⊙O 的直径,∴∠ADC =90°. --------------------- 1分 ∴∠A +∠ACD =90°,∵∠BCD =∠A ,∴∠BCD +∠ACD =90° ---------------------- 2分 ∴OC ⊥BC ,∵OC 是⊙O 的半径,∴BC 是⊙O 的切线. -------------------------- 3分(2)解:过点O 作OE ⊥CD 于点E ,如图所示 ---------------------------------- 4分 在Rt △BCD 中,∵BC =5,BD =3,∴CD =4 --------------------------------------- 5分∵∠ADC =∠CDB =90°,∠BCD =∠A . ∴Rt △BDC ∽Rt △CDA .∴43==CD BD AD CD ,∴316=AD-------------------------- 6分 ∵OE ⊥CD ,∴E 为CD 的中点 ------------------------------------------------ 7分 又∵点O 是AC 的中点,∴OE =3821=AD --------------------------------------8分 {分值}8{章节:[1-24-2-2]直线和圆的位置关系} {难度:4-较高难度} {类别:常考题} {考点:切线的性质} {考点:切线的判定} {考点:三角形中位线} {考点:直径所对的圆周角} {考点:垂径定理}{题目}23.(2019年南充)在“我为祖国点赞”征文活动中,学校计划对获得一、二等奖的学生分别奖励一支钢笔,一本笔记本.已知购买2支钢笔和3个笔记本共38元,购买4支钢笔和5个笔记本共70元.(1)钢笔、笔记本的单价分别为多少元?(2)经与商家协商,购买钢笔超过30支时,每增加一支,单价降低0.1元;超过50支,均按购买50支的单价销售.笔记本一律按原价销售.学校计划奖励一、二等奖学生共计100人,其中一等奖的人数不少于30人,且不超过60人,这次奖励一等学生多少人时,购买奖品金额最少,最少为多少元?{}本题考查了二次函数的应用,二元一次方程组的应用.(1)钢笔、笔记本的单价分别为x 、y 元,根据题意列方程组即可得到结论;(2)设钢笔的单价为a 元,购买数量为b 元,支付钢笔和笔记本的总金额w 元,①当30≤b ≤50时,求得w =﹣0.1(b ﹣35)2+722.5,于是得到700≤w ≤722.5;②当50<b ≤60时,求得w =8b +6(100﹣b )=2b +600,700<w ≤720,于是得到当30≤b ≤60时,w 的最小值为700元,即可得到答案.{答案}解:(1)设钢笔、笔记本的单价分别为x 、y 元.根据题意可得⎩⎨⎧=+=+70543832y x y x -- 2分解得:⎩⎨⎧==610y x . ------------------------------------------------------------- 4分答:钢笔、笔记本的单价分别为10元,6元.(2)设钢笔单价为a 元,购买数量为b 支,支付钢笔和笔记本总金额为W 元.①当30≤b ≤50时,131.0)30(1.010+-=--=b b a ------------------------------------------------- 5分5.722)35(1.060071.0)100(6)131.0(22+--=++-=-++-=b b b b b b W ------------- 7分 ∵当30=b 时,W =720,当b =50时,W =700∴当30≤b ≤50时,700≤W ≤722.5 ----------------------------------------------------------------------------- 8分 ②当50<b ≤60时,a =8,720700,6002)100(68≤<+=-+=W b b b W ------------------- 9分 ∴当30≤b ≤60时,W 的最小值为700元∴当一等奖人数为50时花费最少,最少为700元. ---------------------------------------------------- 10分 {分值}10{章节:[1-22-3]实际问题与二次函数} {难度:3-中等难度} {类别:常考题}{考点:商品利润问题}{考点:简单的列二元一次方程组应用题} {考点:二次函数y =ax2+bx+c 的性质}{题目}24.(2019年南充)如图,在正方形ABCD 中,点E 是AB 边上的一点,以DE 为边作正方形DEFG ,DF 与BC 交于点M ,延长EM 交GF 于点H ,EF 与GB 交于点N ,连接CG .(1)求证:CD ⊥CG ;(2)若tan ∠MEN =31,求EMMN 的值;(3)已知正方形ABCD 的边长为1,点E 在运动过程中,EM 的长能否为21?请说明理由.{}本题考查了全等三角形的判定和性质,相似三角形的判定和性质.(1)由正方形的性质得出∠A =∠ADC =∠EDG =90°,AD =CD ,DE =DG ,即∠ADE =∠CDG ,由SAS 证明△ADE ≌△CDG 得出∠A =∠DCG =90°,即可得出结论;(2)先证明△EDM ≌△GDM 得出∠DME =∠DMG ,又∠DMG =∠NMF ,得出∠DME =∠NMF ,所以△DME ∽△FMN ,得出DM FM ME MN =,由DE ∥HF ,得出DMFMED HF =,又ED =EF ,所以EF HF ME MN =,在Rt △EFH 中,tan ∠HEF =31=EF HF ,即可得出结果;(3)设AE =x ,则BE =1-x ,CG =x ,设CM =y ,在Rt △BEM 中,222EM BM BE =+,得出11+-=x xy ,112++=+=x x y x EM ,若21=EM ,则21112=++x x ,方程无解,即可得出结论.{答案}解:(1)证明:在正方形ABCD ,DEFG 中, DA =DC ,DE =DG ,∠ADC =∠EDG =∠A =90° ------------------------------------ 1分∴∠ADC -∠EDC =∠EDG -∠EDC ,即∠ADE =∠CDG ,∴△ADE ≌△CDG (SAS ) ---- 2分 ∴∠DCG =∠A =90°,∴CD ⊥CG ---------------------------------------------- 3分 (2)解:∵CD ⊥CG ,DC ⊥BC ,∴G 、C 、M 三点共线.∵四边形DEFG 是正方形,∴DG =DE ,∠EDM =∠GDM =45°,又∵DM =DM∴△EDM ≌△GDM ,∴∠DME =∠DMG ----------------------------------------- 4分 又∠DMG =∠NMF ,∴∠DME =∠NMF ,又∵∠EDM =∠NFM =45° ∴△DME ∽△FMN ,∴DMFMME MN =. ----------------------------------------------------------------- 5分 又∵DE ∥HF ,∴DM FM ED HF =,又∵ED =EF ,∴EFHFME MN =. -------------------------------- 6分 在Rt △EFH 中,tan ∠HEF =31=EF HF ,∴31=ME MN . ---------------------------------------------- 7分 (3)设AE =x ,则BE =1-x ,CG =x ,设CM =y ,则BM =1-y ,EM =GM =x +y ------------- 8分 在Rt △BEM 中,222EM BM BE =+,∴222)()1()1(y x y x +=-+-, 解得11+-=x xy . ------------------------------------------------------------------------------------------------ 9分 ∴112++=+=x x y x EM ,若21=EM ,则21112=++x x , 化简得:0122=+-x x ,△=-7<0,∴方程无解,故EM 长不可能为21. ---------- 10分 {分值}10{章节:[1-18-2-3] 正方形} {难度:5-高难度} {类别:发现探究}{考点:全等三角形的性质}{考点:全等三角形的判定SAS} {考点:相似三角形的性质}{考点:相似三角形的判定(两角相等)} {考点:根的判别式} {考点:几何综合}{题目}25.(2019年南充)如图,抛物线c bx ax y ++=2与x 轴交于点A (-1,0),点B (-3,0),且OB =OC .(1)求抛物线的式;(2)点P 在抛物线上,且∠POB =∠ACB ,求点P 的坐标;(3)抛物线上两点M ,N ,点M 的横坐标为m ,点N 的横坐标为m +4.点D 是抛物线上M ,N 之间的动点,过点D 作y 轴的平行线交MN 于点E .①求DE 的最大值.②点D 关于点E 的对称点为F .当m 为何值时,四边形MDNF 为矩形?{}本题考查了待定系数法求二次函数式、求二次函数最大值,等腰三角形的性质,相似三角形的判定和性质,一元二次方程的解法,二元一次方程组的解法,矩形的性质.(1)已知抛物线与x 轴两交点坐标,可设交点式y =a (x +1)(x +3);由OC =OB =3得C (0,﹣3),代入交点式即求得a =﹣1.(2)由∠POB =∠ACB 联想到构造相似三角形,因为求点P 坐标一般会作x 轴垂线PH 得Rt △POH ,故可过点A 在BC 边上作垂线AG ,构造△ACG ∽△POH .利用点A 、B 、C 坐标求得AG 、CG 的长,由相似三角形对应边成比例推出12PH AG OH CG ==.设点P 横坐标为p ,则OH 与PH 都能用p 表示,但需按P 横纵坐标的正负性进行分类讨论.得到用p 表示OH 与PH 并代入OH =2PH 计算即求得p 的值,进而求点P 坐标.(3)①用m 表示M 、N 横纵坐标,把m 当常数求直线MN 的式.设D 横坐标为d ,把x =d 代入直线MN 式得点E 纵坐标,D 与E 纵坐标相减即得到用m 、d 表示的DE 的长,把m 当常数,对未知数d 进行配方,即得到当d =m +2时,DE 取得最大值.②由矩形MDNF 得MN =DF 且MN 与DF 互相平分,所以E 为MN 中点,得到点D 、E 横坐标为m +2.由①得d =m +2时,DE =4,所以MN =8.用两点间距离公式用m 表示MN 的长,即列得方程求m 的值.{答案}解:(1)∵OB =OC ,B (-3,0),∴C (0,-3) --------------------------- 1分又题意可得:⎪⎩⎪⎨⎧-==+-=+-30390c c b a c b a ------------------------------------------------ 2分解得:3,4,1-=-=-=c b a .∴342---=x x y . --------------------------------------------------------- 3分(2)过点A 作AG ⊥BC 于点G ,如图所示,BG =AG =AB ·sin45°=2. ------------- 4分 ∵BC =232=OB ,∴CG =BC -BG =22,∴tan ∠ACG =21=CG AG .--------------- 5分 设P (34,2---t t t ),过点P 作PQ ⊥x 轴于Q ,tan ∠POQ =tan ∠ACG =21. ①当P 在x 轴上方时,034,02>---<t t t则PQ =t OQ t t -=---,342,tan ∠POQ =0672,213422=++=----=t t t t t OQ PQ 解得23,221-=-=t t ,∴)43,23(),1,2(21--P P . ---------------------------------- 6分 ②当点P 在第三象限时,0692,213422=++=-++t t t y t , 解得:4339,433943--=+-=t t ∴)8339,4339(),8339,4339(43+-+-+-+-P P . -------------------------- 7分 ③当点P 在第四象限时,∠POB >90°,而∠ACB <90°,∴点P 不在第四象限 故点P 坐标为),1,2(-或)43,23(-或)8339,4339(+-+-或)8339,4339(+-+- (3)①由已知,)3)4(4)4(,4(),34,(22-+-+-+---m m m N m m m M 即)3512,4(2---+m m m N ,设直线MN 为n kx y +=得:⎪⎩⎪⎨⎧---=++---=+3512)4(3422m m n m k m m n km 解得:⎩⎨⎧-+=--=34822m m n m k故MN 为)34()8(2-++--=m m x m y . --------------------------------------- 8分 设)34,(2---t t t D ,))34()82(,(2-++--m m t m t E ∴DE =----)34(2t t )]34()82[(2-++--m m t m=[]4)2()4()2(2222++--=+-++-m t m m t m t ,当2+=m t 时,DE 最大值为4. ----------------------------------------------- 9分 ②当DE 最大时,点)198,2(2---+m m m E 为MN 的中点.由已知,点E 为DF 的中点,∴当DE 最大时,四边形MDNF 为平行四边形. 如果□MDNF 为矩形,则,4222DE DF MN ==故22244)328(4⨯=++m , 化简得,43)4(2=+m ,故234±-=m .当234+-=m 或234--时,四边形MDNF 为矩形. --------------------------- 10分 {分值}10{章节:[1-22-1-1]二次函数} {难度:5-高难度}{类别:高度原创}{类别:发现探究} {考点:代数综合}{考点:二次函数与平行四边形综合} {考点:二次函数中讨论相似} {考点:二次函数的三种形式} {考点:矩形的性质}。