处理恒成立问题基本方法汇总
恒成立能成立问题总结(详细)
恒成立问题的类型和能成立问题及方法处理函数与不等式的恒成立、能成立、恰成立问题是高中数学中的一个重点、难点问题。
这类问题在各类考试以及高考中都屡见不鲜。
感觉题型变化无常,没有一个固定的思想方法去处理,一直困扰着学生,感到不知如何下手。
在此为了更好的准确地把握快速解决这类问题,本文通过举例说明这类问题的一些常规处理。
一、函数法(一)构造一次函数 利用一次函数的图象或单调性来解决 对于一次函数],[),0()(n m x k b kx x f ∈≠+=有:例1 若不等式m mx x ->-212对满足22≤≤-m 的所有m 都成立,求x 的范 围。
解析:将不等式化为:0)12()1(2<---x x m ,构造一次型函数:)12()1()(2---=x m x m g原命题等价于对满足22≤≤-m 的m ,使0)(<m g 恒成立。
由函数图象是一条线段,知应⎪⎩⎪⎨⎧<---<----⇔⎩⎨⎧<<-0)12()1(20)12()1(20)2(0)2(22x x x x g g解得231271+<<+-x ,所以x 的范围是)231,271(++-∈x 。
小结:解题的关键是将看来是解关于x 的不等式问题转化为以m 为变量,x 为参数的一次函数恒成立问题,再利用一次函数的图象或单调性解题。
练习:(1)若不等式01<-ax 对[]2,1∈x 恒成立,求实数a 的取值范围。
(2)对于40≤≤p 的一切实数,不等式342-+>+p x px x 恒成立,求x 的取值范围。
(答案:或)(二)构造二次函数 利用二次函数的图像与性质及二次方程根的分布来解决。
对于二次函数)0(0)(2≠>++=a c bx ax x f 有:(1)R x x f ∈>在0)(上恒成立00<∆>⇔且a ;(2)R x x f ∈<在0)(上恒成立00<∆<⇔且a(3)当0>a 时,若],[0)(βα在>x f 上恒成立⇔若],[0)(βα在<x f 上恒成立⎩⎨⎧<<⇔0)(0)(βαf f(4)当0<a 时,若],[0)(βα在>x f 上恒成立⎩⎨⎧>>⇔0)(0)(βαf f若],[0)(βα在<x f 上恒成立⎪⎩⎪⎨⎧<>-⎪⎩⎪⎨⎧<∆≤-≤⎪⎩⎪⎨⎧><-⇔0)(2020)(2βββαααf a ba b f a b 或或 例2若关于x 的二次不等式:01)1(2<-+-+a x a ax 的解集为R ,求a 的取值范围.解:由题意知,要使原不等式的解集为R ,即对一切实数x 原不等式都成立。
恒成立问题常见类型及其解法
设 f x x 3 x 7
可求得 f x 10
lg x 3 x 7 lg10 1
a 1
三. 变换主元法:
例5.对任意a [-1,1],不等式x 2 (a - 4) x 4 - 2a 0 恒成立,求 的取值范围 x . 解:原问题转化为对任 a [-1,1], 意
m - 2 0 0 (5) 4m ,解得1 m 2 2( m - 2) 0 f ( 0) 0 y
y
m - 2 0 (6) ,无解 f (0) 0
综上所述, a 3 1
O
x
x
4.已知函数f ( x) (m - 2) x 2 - 4mx 2m - 6的图像与 x轴的负半轴有交点,求 实数m的取值范围 .
不等式( x - 2)a x - 4 x 4 0恒成立
2
令f (a) ( x - 2)a x - 4 x 4
2
f (1) 0 解得x 1或x 3. f (-1) 0
x的取值范围为 ,1) (3,). (-
数形结合法 4.数形结合法
解:因为ax2 1 1,所以- 1 - x ax2 1 - x (1)当x 0时, 0 1恒成立. -1
1 1 a- 2 1 1 1 1 x x (2)当x (0,1]时, 2 - a 2 - , 即 在(0, ,1]上恒成立. x x x x a 1 - 1 x2 x 1 令t 1, x 1 1 1 1 - 2 - 化为关于t的函数u -t 2 - t -(t ) 2 ,u max -2 x x 2 4 1 1 1 2 1 2 - 化为关于t的函数v t - t (t - ) - ,vmin 0 2 x x 2 4 要是不等式恒成立,应 u max a vmin,故 - 1 a 0 有 综上所述,如果 [0,1]时, ( x) 1恒成立,则- 2 a 0 x f
高考数学解决不等式恒成立问题常用5种方法!最后一种很重要!
开篇语:不等式恒成立问题在高中数学是一类重点题型,高考也是必考内容。
由于不等式问题题型众多,题目也比较灵活。
所以在学习过程中,同学们要学会总结各种解题方法!方法一:分离参数法解析:分离参数法适用的题型特征:当不等式的参数能够与其他变量完全分离出来,并且分离后不等式其中一边的函数的最值或范围可求时,则将参数式放在不等式的一边,分离后的变量式放在另一边,将变量式看成一个新的函数,问题即转化为求新函数的最值或范围,若a≥f(x)恒成立,则a≥f(x)max,若a≤f(x)恒成立,则a≤f(x)min方法二:变换主元法(也可称一次函数型)解析:学生通常习惯把x当成主元(未知数),把另一个变量p看成参数,在有些问题中这样的解题过程繁琐,如果把已知取值范围的变量当成主元,把要求取值范围的变量看成参数,则可简便解题。
适用于变换主元法的题型特征是:题目有两个变量,且已知取值范围的变量只有一次项,这时就可以将不等式转化为一次函数求解。
方法三:二次函数法解析:二次函数型在区间的恒成立问题:解决这类问题主要是分析 1,判断二次函数的开口方向2,二次函数的判别式是大于0还是小于03,判断二次函数的对称轴位置和区间两端值的大小,即判断函数在区间的单调性 方法四:判别式法解析:不等式一边是分式,且分式的分子和分母的最高次项都是二次项时,利用判别式法可以快速的解题,分离参数将会使解题变得复杂。
方法五:最值法解析:不等式两边是两个函数,且含有参数时,我们可以分出出参数,构造新函数,求函数的导数来求得新函数的最值。
总结:在解不等式恒成立的问题时,应根据不等式的特点,选择适合的方式快速准确的解题。
平时练习过程中,应注意观察,总结!。
恒成立问题常见求解技巧
恒成立问题常见求解技巧“恒成立”问题是数学中常见的问题,涉及到一次函数、二次函数、指数函数、对数函数的性质、图象,渗透着换主元、化归、数形结合、函数与方程等思想方法,在培养思维的灵活性、创造性等方面起到了积极的作用.因此也成为历年高考的一个热点。
恒成立问题在解题过程中解法通常有:①变量分离法;②构造函数法;③变换主元法;④数形结合法(图像法).一、构造函数法:(一)一次函数法给定一次函数()(0)f x kx b k =+≠,若在在区间[],m n 上恒有()0f x >,则()0()0f m f n >⎧⎨>⎩; 若在在区间[],m n 上恒有()0f x <,则()0()0f m f n <⎧⎨<⎩. 例. 若不等式221(1)x m x ->-对[]2,2m ∈-恒成立,求实数x 的取值范围。
(二)二次函数法1. 20(0)ax bx c a ++>≠对x R ∈恒成立00a >⎧⇔⎨∆<⎩;20(0)ax bx c a ++<≠对x R ∈恒成立00a <⎧⇔⎨∆<⎩; 2. 若是二次函数在指定区间上的恒成立问题,还可以利用二次函数的图像求解。
例. 已知函数y =R ,求实数m 的取值范围.例. 不等式212x px p x ++>-对(1,)x ∈+∞恒成立,求实数p 的取值范围。
二.变量分离法若在等式或者不等式中出现两个变量,其中一个变量的范围已知,另一个变量的范围为所求,切容易通过恒等变形将两个变量分别置于等号或者不等号两边,则可将恒成立问题转化为函数的最值问题求解。
理论依据是:()a f x >恒成立max ()a f x ⇔>;()a f x <恒成立min ()a f x ⇔<.例. 当(1,2)x ∈时,不等式240x mx ++<恒成立,求实数m 的取值范围。
不等式恒成立问题的十种解法
一、判别式法若能把所给不等式转化为某个一元二次不等式,并且该一元二次不等式是对于一切实数x都恒成立,则可优先考虑判别式法.例l 设不等式,对于一切实数x都恒成立,求实数m的取值范围.解:因为所以原不等式可变为:因为该不等式对一切实数x都成立,必有整理得说明:若所给的区间并非一切实数时,切记不能使用判别式法.二、三角换元法通过适当的三角换元,把所给问题转化为含有的形式,再利用正弦函数的有界性来求出它的最值,从而使问题得到解决.例2 已知实数x、y满足时恒成立,则实数d的取值范围是( ))],则y的最大值为,要使x+y+d≥O恒成立,必须有d大于等于y的最大值,即d≥,故选择答案(A).三、分离参数对于含有参数的不等式,若能把所求的参数分离出来,应优先考虑实行参数分离,然后再在不等式的另一边进行其它变换,如使用均值不等式,或通过函数的单调性来求出它的最值,最后再通过参数与这个最值的关系来使问题得到解决.例3 对于任意恒成立,求实数m的取值范围.四、图象法如果所给不等式能够化为一边是我们熟悉的函数,那么我们可以通过它的图象,结合函数的单调性来求出它在所给区间上的最值,从而使问题得到解决.例4 若关于x的不等式对任意x∈[0,1]恒成立,则m的取值范围是( )(A)m≤一3 (B)m≥一3 (C)一3≤m≤0 (D)m≥一4解:考察函数的图象,当x∈[0,1]时,其函数的值域为y∈[一3,0],若使不等式对任意x∈[0,1]恒成立,则m必须小于等于它的最小值3,即m≤一3,故选择答案(A).五、变更主元法主元的选择要因题而异,在有些问题中一旦克服心理定势,标新立异地另选主元,那么问题的解决就会有峰回路转、柳暗花明的效果.例5 对于任意a∈[一l,1],函数的函数值恒为正数,则实数x的取值范围是( ) (A) (B) (C)分析:由a的取值范围恒成立,可采用分类讨论去寻找 x 的的取值范围,但是这是比较麻烦的,再看a 的取值范围已经知道了,变a为主元,x为参数,反其道而行之.六、几何法含有绝对值的不等式,可利用绝对值的几何意义这一直观使问题加以解决.例6 若不等式恒成立,求实数d的取值范围.解:设由绝对值的几何意义可知,d表示数轴上的点到实数l、4所对应两点距离的和,所以d≥3,要使恒成立,必须有a于等于d的最小值,即a≤3.七、均值不等式法运用均值不等式求出所给代数式的最值,然后再用所给的值与这个最值进行比较.例7 (第l1届希望杯试题)设a>b>c,恒成立,则自然数n的最大值为( ) (A)2 (B)3 (C)4 (D)5八、数学归纳法当不等式中含有自然数凡时,应优先考虑用数学归纳法来探求.由上可得:存在最大的自然数m=13.使不意大于等于2的自然数n都恒成立.九、放缩法把所给不等式进行适当的放缩,从而使问题得到解决.对所有的正整数恒成立.十、二项式定理展开法当不等式中含有所给数的凡次方时,可试着考虑使用二项式定理,通过二项式定理的展开式有选择地选取几项进行放缩,从而使问题得到解决.例l0 求证.对于任意大于等于2的自然数不等式恒成立.。
高中数学 恒成立汇总方法-教师版
恒成立问题——参变分离法一、基础知识:1、参变分离:顾名思义,就是在不等式中含有两个字母时(一个视为变量,另一个视为参数),可利用不等式的等价变形让两个字母分居不等号的两侧,即不等号的每一侧都是只含有一个字母的表达式。
然后可利用其中一个变量的范围求出另一变量的范围2、如何确定变量与参数:一般情况下,那个字母的范围已知,就将其视为变量,构造关于它的函数,另一个字母(一般为所求)视为参数。
3、参变分离法的适用范围:判断恒成立问题是否可以采用参变分离法,可遵循以下两点原则:(1)已知不等式中两个字母是否便于进行分离,如果仅通过几步简单变换即可达到分离目的,则参变分离法可行。
但有些不等式中由于两个字母的关系过于“紧密”,会出现无法分离的情形,此时要考虑其他方法。
例如:()21log a x x -<,111axx e x-+>-等 (2)要看参变分离后,已知变量的函数解析式是否便于求出最值(或临界值),若解析式过于复杂而无法求出最值(或临界值),则也无法用参变分离法解决问题。
(可参见”恒成立问题——最值分析法“中的相关题目)4、多变量恒成立问题:对于含两个以上字母(通常为3个)的恒成立不等式,先观察好哪些字母的范围已知(作为变量),那个是所求的参数,然后通常有两种方式处理(1)选择一个已知变量,与所求参数放在一起与另一变量进行分离。
则不含参数的一侧可以解出最值(同时消去一元),进而多变量恒成立问题就转化为传统的恒成立问题了。
(2)将参数与变量进行分离,即不等号一侧只含有参数,另一侧是双变量的表达式,然后按所需求得双变量表达式的最值即可。
例1:已知函数()x x f x e ae -=-,若'()f x ≥恒成立,则实数a 的取值范围是_______思路:首先转化不等式,'()x xf x e ae -=+,即x xa e e +≥a 与xe便于分离,考虑利用参变分离法,使,a x 分居不等式两侧,()2x x a e ≥-+,若不等式恒成立,只需()()2maxx xa e≥-+,令()()(223x xxg x ee =-+=-+(解析式可看做关于x e 的二次函数,故配方求最值)()max 3g x =,所以3a ≥ 答案:3a ≥例2:已知函数()ln a f x x x=-,若()2f x x <在()1,+∞上恒成立,则a 的取值范围是_________思路:恒成立的不等式为2ln ax x x-<,便于参数分离,所以考虑尝试参变分离法 解:233ln ln ln ax x x x a x a x x x x-<⇔-<⇔>-,其中()1,x ∈+∞ ∴只需要()3maxln a x x x >-,令()3ln g x x x x =-'2()1ln 3g x x x =+- (导函数无法直接确定单调区间,但再求一次导即可将ln x 变为1x,所以二阶导函数的单调性可分析,为了便于确定()'gx 的符号,不妨先验边界值)()'12g =-,()2''11660x g x x x x-=-=<,(判断单调性时一定要先看定义域,有可能会简化判断的过程) ()'gx ∴在()1,+∞单调递减,()()''10()g x g g x ∴<<⇒在()1,+∞单调递减()()11g x g ∴<=- 1a ∴≥- 答案:1a ≥-小炼有话说:求导数的目的是利用导函数的符号得到原函数的单调性,当导函数无法直接判断符号时,可根据导函数解析式的特点以及定义域尝试在求一次导数,进而通过单调性和关键点(边界点,零点)等确定符号。
高一不等式恒成立问题3种基本方法
高一不等式恒成立问题3种基本方法文章标题:探讨高一不等式恒成立问题的三种基本方法在高中数学学习中,不等式恒成立问题是一个很常见的题型。
学生们通常需要掌握多种方法来解决这类问题,而这些方法通常可以分为三种基本类型。
本文将会详细介绍这三种基本方法,帮助读者全面理解这一数学概念。
1. 方法一:代数法我们来介绍代数法。
这种方法是在不等式两边进行代数变换,使得不等式变成一个容易解决的形式。
代数法通常包括加减变形、乘除变形以及平方去根等技巧。
以不等式ax+b>0为例,我们可以通过移项得到ax>-b,然后再除以a的正负来确定不等式的方向,从而得到不等式的解集。
代数法在解决不等式恒成立问题中应用广泛,能够快速简便地找到解的范围和规律。
2. 方法二:图像法我们介绍图像法。
图像法是通过绘制不等式所代表函数的图像,来直观地找出不等式恒成立的区间。
对于一元一次不等式ax+b>0,我们可以画出函数y=ax+b的图像,从而通过观察图像的上升或下降趋势来确定不等式的解集。
图像法能够帮助我们更直观地理解不等式的性质和范围,提高我们的思维逻辑和空间想象能力。
3. 方法三:参数法我们介绍参数法。
参数法是通过引入一个或多个参数,将不等式转化为一个有参数的等式问题,进而进行求解。
参数法的典型应用包括辅助角法、二次函数法等。
以不等式ax²+bx+c>0为例,我们可以引入Δ=b²-4ac,然后根据Δ的正负来确定不等式的解集。
参数法在解决不等式问题中能够简化问题的复杂度,将不等式的求解转化为参数的求解,从而提高解题的效率和准确度。
总结回顾通过对以上三种基本方法的介绍,我们可以发现它们各有特点,应用范围和解题思路有所不同。
代数法能够利用代数变形快速求解不等式问题,图像法能够帮助我们直观地理解不等式的性质,而参数法则能够将问题转化为参数的求解,提高解题的效率。
个人观点和理解在实际解题中,我们应该根据具体情况灵活选用这三种方法,结合题目的特点和自身的掌握程度来选择合适的解题方法。
恒成立问题的方法
恒成立问题的方法
恒成立问题的解决方法取决于具体问题的性质和条件。
在解决恒成立问题时,以下是一些常见的方法:
1. 代入法:将问题中给定的条件代入待证明的恒等式中,以验证等式是否在所有可能的情况下都成立。
2. 推导法:通过逻辑推理和数学推导来证明等式的恒成立。
这可能涉及使用已知的数学定理、性质和规则,以及逻辑推理的方法(例如,归谬法、数学归纳法等)。
3. 反证法:假设待证明的等式不成立,然后通过逻辑推理和数学推导,推导出矛盾的结论。
这证明了原始的假设是错误的,从而证明了恒成立。
4. 直接证明法:对待证明的等式进行等式变换和运算,将其化简为其他已知的等式或恒等式。
通过逐步展示所有步骤的正确性,从而证明恒成立。
5. 归纳法:适用于需要对自然数(或其他递归结构)进行证明的问题。
通过首先证明基本情况,然后假设恒等式在某个特定情况下成立,最后证明在下一个情况下也成立,从而归纳论证恒成立。
6. 构造法:通过构造一个满足条件的例子或特殊情况,来证明待证明的等式的恒成立。
这些方法可以单独使用,或者在解决问题时结合使用。
同时,不同的问题可能需要使用不同的方法和技巧,因此在解决恒成立问题时,灵活、创造性和逻辑性是非常重要的。
不等式的恒成立问题基本解法9种解法
不等式的恒成立问题基本解法9种解法不等式的恒成立问题基本解法:9种解法导语:在数学中,我们经常会遇到不等式的问题,而不等式的恒成立问题则更加耐人寻味。
不等式的恒成立问题是指对于某个特定的不等式,是否存在一组解使得不等式始终成立。
解决这种问题需要灵活运用数学知识和技巧。
本文将介绍不等式的恒成立问题的基本解法,共包括9种方法。
一、置换法。
这是最简单的一种方法,即将不等式中的变量互相置换,然后观察不等式是否成立。
如果成立,则不等式恒成立。
对于x^2 +y^2 ≥ 0这个不等式,我们可以将x和y置换一下,得到y^2 + x^2 ≥ 0。
由于平方数是非负数,所以不等式始终成立。
二、加法法则。
这种方法是通过在不等式的两边同时加上相同的数来改变不等式的符号。
对于不等式2x + 3 ≥ x + 4,我们可以在两边同时加上-3,得到2x + 3 - 3 ≥ x + 4 - 3,即2x ≥ x + 1。
由于x的取值范围不限制,所以不等式恒成立。
三、减法法则。
与加法法则相似,减法法则是通过在不等式的两边同时减去相同的数来改变不等式的符号。
对于不等式2x + 3 ≥ x + 4,我们可以在两边同时减去x,得到x + 3 ≥ 4。
由于x的取值范围不限制,所以不等式恒成立。
四、乘法法则。
这种方法是通过在不等式的两边同时乘以相同的正数来改变不等式的符号。
对于不等式2x + 3 ≥ x + 4,我们可以在两边同时乘以2,得到4x + 6 ≥ 2x + 8。
由于x的取值范围不限制,所以不等式恒成立。
五、除法法则。
与乘法法则相似,除法法则是通过在不等式的两边同时除以相同的正数来改变不等式的符号。
对于不等式2x + 3 ≥ x + 4,我们可以在两边同时除以2,得到x + 3/2 ≥ 1 + x/2。
由于x的取值范围不限制,所以不等式恒成立。
六、平方法则。
这种方法是通过平方运算来改变不等式的符号。
对于不等式x^2 ≥ 0,我们可以将x^2展开为(x + 0)^2,得到x^2 + 0 ≥ 0。
破解含参不等式恒成立的5种常用方法
破解含参不等式恒成立的5种常用方法含参数不等式恒成立问题越来越受高考命题者的青睐,且由于对导数应用的加强,这些不等式恒成立问题往往与导数问题交织在一起,在近年的高考试题中不难看出这个基本的命题趋势。
对含有参数的不等式 恒成立问题,破解的方法有:分离参数法、数形结合法、单调性分析法、最值定位法、构造函数法等。
一 分离参数法分离参数法是解决含问题的基本思想之一。
对于含参不等式的问题,在能够判断出参数的系数正负的情况下,可以根据不等 式的性质将参数分离出来 ,得到一个一端是参数、另一端是变量表达式的不等式,只要研究变量表达式的性式就可以解决问题。
例1 已知函数a x f x x 421)(++=在(-∞,1]上有意义,试求的取值范围。
分析 :函数)(x f 在(-∞,1]上有意义,等价于0421≥++a x x 在区间(-∞,1]上恒成立,这里参数的系数04>x ,故可以分离参数。
解析:函数)(x f 在(-∞,1]上有意义,等价于0421≥++a x x 在区间(-∞,1]上恒成立,即⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-≥x x a 2141,∈x (-∞,1]恒成立,记)(x g a ≥,∈x (-∞,1],因此问题又等价于)(x g a ≥在)(x g a ≥上恒成立,)(x g 在(-∞,1]上是增函数,因此)(x g 的最大值为)1(g 。
)(x g a ≥在(-∞,1]上恒成等价于43)1()(max -==≥g x g a 。
于是工的取值范围为43-≥a 。
【点评】)(x f a ≥恒成立等价于max )(x f a ≥;)(x f a ≤恒成立等价于min )(x f a ≤。
如果函数)(x f 不存在最值,上面的最大值就替换为函数值域的右端点,最小值就替换为函数值域的左端点。
解这类问题时一定要注意区间的端点值。
二 数形结合法数形到结合法是一种重要的数学思想方法,其要点是“见数想形,以形助数”,从而达到解决问题的目的,数形结合法是破解含参数不等式恒成立问题的又一个主要方案。
恒成立问题常见类型和解法
答案:[ 1 , )
5
【措施技巧】不等式恒成立问题旳解题措施 1.不等式旳恒成立问题与函数最值有亲密旳关系,处理不等 式恒成立问题,一般先分离参数,再转化为最值问题来解: c≥f(x)恒成立 c≥f(x)max; c≤f(x)恒成立 c≤f(x)min. 2.高次函数或非基本初等函数旳最值问题,一般采用导数法 处理.
【理论阐释】 若把不等式进行合理旳变形后,能非常轻易地画出不等
号两边相应函数旳图象,这么就把一种极难处理旳不等式旳 问题转化为利用函数图象处理旳问题,然后从图象中寻找条 件,就能处理问题。
典例导悟
若不等式
loga
x
sin
2x
(a
0且a
1)
对于任意
x
∈
(0,
4
]
都成立,求
a
的取值范围.
【解析】作出函数 y sin 2x 的图 象,由题意知 在 x ∈(0, ]上,
则根据函数的图象(线段)可得
①
k
f
0 (m)
0
或②
k
f
0 (n)
0
,也可合并成
f f
(m) 0 (n) 0
,
同理,若在 [m,
n] 内恒有
f
(x)
0 ,则有
f f
(m) 0 .
(n) 0
y
y
x om n
x om n
典例导悟
若不等式 2 x 1> m x2 1 对一切 m2, 2 都成立,求实数 x 的取值范围。
【例3】设函数f(x)=ax2-2x+2,对于满足1<x<4旳一切x值都
有f(x)>0,求实数a旳取值范围.
【解题指南】解答本题能够有两条途径:(1)分a>0,a<0,a=0
恒成立问题及处理
恒成立问题及处理一、知识归纳1、恒成立问题是高中数学的一种重要问题类型,其涉及面广融合知识点多,一直是试题命制的宠儿。
其分类有:方程(等式)恒成立、不等式恒成立。
2、方程恒成立(1)几种常见叙述:对于任意的x 来说,方程f(x)=0都(恒、始终)成立。
关于x 的方程f(x)=0其解集为R 。
(2)处理方程恒成立问题的基本方法:比较系数法(据条件列整等式,令系数相等得所需)、赋值法(据条件恰当赋值得所需,赋值又分赋数值与赋变量值)。
(3)整式方程恒成立的结论:如关于x 的方程ax+b=0其解集为R ⇔a=b=0。
关于x 的方程ax 2+bx+c=0其解集为R ⇔a=b=c=0。
(4)掌握解决方程恒成立问题的基本方法:赋值法、比较系数法;能根据成题特点,合理选择最优解题策略;在解决方程(等式)恒成立问题的过程中,充分体会特殊与一般,函数与方程的数学思想方法。
3、不等式恒成立(1)几种常见叙述:对于任意的x 来说,不等式f(x)>0都(恒、始终)成立。
关于x 的不等式f(x)>0其解集为R 。
(2)处理不等式恒成立问题的基本方法:结论法(有时要注意讨论)、图象法、最值分析法(注意分离法的应用)。
(3)一元一次、二次不等式的恒成立结论:关于x 的不等式ax+b>0⇔a=0且b>0。
关于x 的不等式ax 2+bx+c>0⇔a>0且△<0。
(4)掌握解决不等式恒成立问题的基本方法:结论法、图象法、最值分析法;能根据题目的构成特征,合理选择解题最优策略;在解决不等式恒成立问题的过程中,充分体会数形结合,函数与方程,分类讨论的数学思想方法。
二、典例解析例1、已知f(x)是一次函数,且f(f(f(x)))=8x+7,求f(x) .例2、无论k 取何值,二次函数k k kx x k y --++=222)1(的图像总过一定点,求出这个定点。
例3、已知()x f 是定义域在R 上不恒为0的函数,且对任意的R b a ∈,都满足: ()()()a bf b af ab f +=(1)求()0f ,()1f 的值;(2)判断()x f 的奇偶性,并证明你的结论。
恒成立问题常见类型及解法
【解析】令 f (m) =( x2 1)m -2 x +1,则上述问题即可转化为关于 m 的
一次函数 y f (m) 在区间[-2,2]内函数值小于 0 恒成立的问题。考察区
间端点,只要
f f
(2)<0,解得 (2)<0
7 1<x< 2
3 1, 2
即 x 的取值范围是( 7 1 , 3 1 ).
范围是______.
【解题提示】将恒成立问题转化为最值问题.
【解析】因为x>0 ,所以 x 1 2(当且仅当x=1时取等
x
号),所以有
x2
x 3x
1
x
1 1
3
2
1
3
1 5
,即
x x2 3x 1
的最大值为 1,故a≥1 .
x
5
5
【方法技巧】不等式恒成立问题的解题方法 1.不等式的恒成立问题与函数最值有密切的关系,解决不等 式恒成立问题,通常先分离参数,再转化为最值问题来解: c≥f(x)恒成立 c≥f(x)max; c≤f(x)恒成立 c≤f(x)min. 2.高次函数或非基本初等函数的最值问题,通常采用导数法 解决.
x
恒成立, 2k , 4k k Z ,所以 k 不可能为 6。
2
五、 把不等式恒成立问题转化为函数图象问题
【理论阐释】 若把不等式进行合理的变形后,能非常容易地画出不等
号两边对应函数的图象,这样就把一个很难解决的不等式的 问题转化为利用函数图象解决的问题,然后从图象中寻找条 件,就能解决问题。
典例5
若不等式
loga
x
sin
2x
(a
0且a
1)
对于任意
x
∈
(0,
不等式的恒成立问题基本解法9种解法
不等式的恒成立问题基本解法9种解法在解决不等式的恒成立问题时,有多种基本解法可以选择,每种解法都有其独特的特点和适用场景。
在本文中,我们将深入探讨不等式的恒成立问题,并从不同的角度提出9种基本解法,帮助读者更全面、深入地理解这一主题。
1. 直接法直接法是解决不等式的恒成立问题最直接的方法。
通过对不等式的特定性质和条件进行分析,直接得出不等式恒成立的结论。
这种方法通常适用于简单的不等式,能够快速得到结果。
2. 间接法间接法是一种通过反证法或对立法解决不等式的恒成立问题的方法。
当直接法无法直接得出结论时,可以尝试使用间接法来推导不等式的恒成立条件。
这种方法通常适用于较为复杂的不等式,可以通过推翻假设得到结论。
3. 分类讨论法分类讨论法是一种将不等式的条件分为多种情况进行分析的方法。
通过将不同情况进行分类讨论,找出每种情况下不等式的恒成立条件,从而得出综合结论。
这种方法适用于不等式条件较为复杂的情况,能够全面考虑不同情况下的特殊性。
4. 代入法代入法是一种通过代入特定的数值进行验证的方法。
通过选择合适的数值代入不等式中,可以验证不等式在特定条件下是否恒成立。
这种方法通常适用于验证不等式的特定性质或条件。
5. 齐次化法齐次化法是一种将不等式中的不定因子统一化的方法。
通过将不等式中的不定因子进行统一化,可以简化不等式的表达形式,从而更容易得出不等式的恒成立条件。
这种方法通常适用于不等式较为复杂的情况,能够简化问题的复杂度。
6. 几何法几何法是一种通过几何形象进行分析的方法。
通过将不等式转化为几何图形,可以直观地理解不等式的恒成立条件。
这种方法通常适用于具有几何意义的不等式问题,能够通过几何图形进行直观分析。
7. 递推法递推法是一种通过递归关系进行推导的方法。
通过建立递推关系,可以得出不等式的递推解,从而得出恒成立条件。
这种方法通常适用于递推关系较为明显的不等式问题,能够通过递推求解不等式问题。
8. 极限法极限法是一种通过极限的性质进行分析的方法。
解决恒成立问题的方法
恒成立问题不等式恒成立问题是高中数学中的一类重要题型,它散见于许多知识版块中,载体较多,而且不少情况下题意较为隐含,由于其设计内容较广、表现形式多样、思维层次较高,因而备受命题者的青睐. 解题的一般原理是利用等价转化思想将其转化为函数的最值或值域问题,常用的方法主要有三种:必要探路法、分离参数法、直接讨论法(不分离参数).一.必要探路法:指对一类函数恒成立问题,可以通过取函数定义域中某一个数,缩小参数的讨论范围,之后在此范围内继续讨论进而解决问题,这样的好处是降低思考的成本,缩小讨论的范围.(有效点缩小参数范围是关键点)范例:若不等式)1(ln 2+<+-x a x x x 对),0(+∞∈x 恒成立,求实数a 的取值范围. 解:令1=x ,则不等式)1(ln 2+<+-x a x x x 即为02>a ,得0>a .当0,0>>a x 时,x x x x x x x a -+->-+-+22ln ln )1(,要证0ln )1(2>-+-+x x x x a ,即证0ln 2≥-+-x x x ,由熟悉的不等式1ln -≤x x 得0)1(1ln 222≥-=-+-≥-+-x x x x x x x , 因此),0(+∞∈a .二.分离参数法:将参数从表达式中分离出来,将会使问题变得明朗,便于建立关于参数的不等式(组),从而顺利求出参数的取值范围,就可以把参数问题转化为求函数值域问题.三.直接讨论法:指恒成立问题中的函数结构并不是很复杂,可以通过求导得到极值点,再对极值点直接讨论的办法,其关键是求得极值点的过程,常用手段为因式分解法、求根公式法以及观察法;如果无法求出极值点,可以利用函数零点存在性定理讨论,进而研究原函数的单调性.范例:若不等式x a a e e x x 2)(≥-恒成立,求实数a 的取值范围. 解:设x a ae ex f x x 22)(--=,则))(2(2)(22a e a e a ae e x f x x x x -+=--=',当0=a 时,0)(2>=x e x f 恒成立,当0>a 时,由0)(='x f 得:a x ln =,∴)(x f 在)ln ,(a -∞单调递减,在),(ln +∞a 单调递增,∴0ln )(ln )(2min ≥-==a a a f x f ,解得10≤<a ;当0<a 时,由0)(='x f 得:⎪⎭⎫ ⎝⎛-=2ln a x ,∴)(x f 在)2ln ,(⎪⎭⎫ ⎝⎛--∞a 单调递减,在),2(ln +∞⎪⎭⎫ ⎝⎛-a 单调递增,∴02ln 43)2(ln )(2min ≥⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛-=a a a f x f ,解得0243<≤-a e ;综上,⎥⎦⎤⎢⎣⎡-∈1,243e a .尝试用多种方法求解下列题:1. 已知)1ln(4)(2--=x ax x f ,若对一切]1,2[+∈e x ,1)(≤x f 恒成立,求实数a 的取值范围.2. 设函数)()(,)(2d cx e x g b ax x x f x +=++=,若曲线)(x f y =和曲线)(x g y =都过点)2,0(P ,且在点P 处有相同的切线24+=x y .(1)求实数d c b a ,,,的值;(2)若当2-≥x 时,)()(x kg x f ≤恒成立,求实数k 的取值范围.3. 关于x 的不等式a x x ax x x +->22ln 4ln 2在),1[+∞上恒成立,求实数a 的取值范围.。
处理有关恒成立问题基本方法
处理有关“恒成立”的思路方法一.恒成立问题的基本类型按区间分类可分为:①在给定区间某关系的恒成立问题;②在全体实数集上某关系的恒成立问题。
二.处理恒成立问题的基本思路处理与恒成立有关的问题大致可分以下两种方法①变量分离思路处理;②利用函数的性质,图象思路处理。
若不等式中出现两个变量,其中一个变量的范围已知,另一个的范围为所求,且容易通过恒等变形将两个变量分别置于不等号的两边,则可将恒成立问题转化为函数的最值问题求解。
在不等式的恒成立问题中,以下充要条件应细心思考,甄别差异,性质使用。
≥∈--∈∴≥=--=+∴≥- 21例2:若不等式x2+ax+10对一切x (0,]成立,则a 的取值范围为( )25A. 0B. -2C. -D.-32111解析:由于x (0,],a 21115()在(0,]上单调递增,在x=取得最小值2225,故选2方法2:利用函数的性质,图象 其主要体现在:1,利用一次函数的图象性质 x x x x f x x x a C≠≥≤≥≥∈⇔≥≤≤∈⇔≤若原题可化为一次函数类型,则由数形结合给定一次函数f(x)=ax+b (a 0).若y=f(x)在[m,n]内恒有f(x)0(或f(x)0),则 根据函数的图象可得:f(m)0 f(x)0,x [m,n]恒成立{f(n)0f(m)0f(x)0,x [m,n]恒成立{f(n)0 2,利用二次函数的图象性质:>≠⇔∆<≤∈220若 f(x)=ax +bx+c (a 0)大于0恒成立{若二次函数在给定区间上恒成立则可利用根的分布和韦达 定理求解。
例1: 函数f(x)是奇函数,且在[-1,1]单调递增,又f(-1)=-1,若 f(x)t -2at+1对所有的a [-1,1]都成立,求t 的取值范围 解析: 不等式中有三个变元,通过逐步消元a ≤∈⇔≥∈≥∈⇔≥ 22max 22法处理。
首先选 定主元x ,()在[-1,1]递增 f(x)t -2at+1 a [-1,1]恒成立t -2at+1(x )[-1,1] 即t -2at+11,a [-1,1]上恒成立t -2at 0f x f x≥⇔≥∈∈≤⇔≤∈≥⇔≥∈max min min 1.不等式m f(x)在区间D 上恒成立m f(x),x D 或f(x)的上确界(若f(x)在x D 的值域为[a,b],则a 称 为f(x)的上确界,b 称为f(x)的下确界)2.不等式m f(x)在区间D 上恒成立m f(x),x D 或f(x)的下确界注释: 1.不等式m f(x)在区间D 上有解m f(x),x D 或f(x)的下确界≤⇔≤∈≥≥max 2.不等式m f(x)在区间D 上有解m f(x),x D 或f(x)的上确界那么,如何求函数g(x)在区间D 上的最大值(上确界)或最小值(下确界)呢?通常可以采取利用函数的单调性,图象,二次函数在区间上的最值,判别式法,三角函数的有解性,均值定理,函数求导例1:若函数f(x)=(x+1)ln(x+1),对所有的x 0都有f(x)成立, 求实数a 的取值ax ≥≥∈≤∞ 2范围解析:由f(x)=(x+1)ln(x+1),对所有的x 0恒成立可得: (1) 当x=0时,a R(x+1)ln(x+1)(x+1)ln(x+1)(2) 当x>0时,a ,设g(x) =则问题转化为求该函数在开区间(0,+)的最小值(下确界),又x-ln(x+1)gh(x)=x-ln(x+1),ax x xx >>+∞>>∞=1h'(x)=1-,0,故h'(x)0,则函数h(x)1在(0,+)为增函数,即h(x)h(0)=0,从而g'(x)0,则函数g(x)在(0,+)也为增函数,故g(x)无最小值.此时,由于g(0)无意义,g(x)的下确界一时也难确定,但运用极限的知识可得g(x)>limg(x),然而求此极(x+1)ln(x+1)限又超出了所学范围,事实上采用洛比达法则可得limg(x) =x x x+=>>≤∞lim[ln(x+1)1]1,故0时,()1,因而1。
八种解法解决不等式恒成立问题
八种解法解决不等式恒成立问题1最值法例1.已知函数)0(ln )(44>-+=x c bx x ax x f 在1=x 处取得极值c --3,其中c b a ,,为常数.(I )试确定b a ,的值;(II )讨论函数)(x f 的单调区间;(III )若对于任意0>x ,不等式22)(c x f -≥恒成立,求c 的取值范围.分析:不等式22)(c x f -≥恒成立,可以转化为2min 2)(c x f -≥解:(I )(过程略)3,12-==b a .(II )(过程略)函数)(x f 的单调减区间为)1,0(,函数)(x f 的单调增区间为),1(+∞. (III )由(II )可知,函数)(x f 在1=x 处取得极小值c f --=3)1(,此极小值也是最小值.要使22)(c x f -≥(0>x )恒成立,只需223c c -≥--,解得23≥c 或1-≤c . 所以c 的取值范围为),23[]1,(+∞⋃--∞.评注:最值法是我们这里最常用的方法.a x f ≥)(恒成立a x f ≥⇔)(min ;a x f ≤)(恒成立a x f ≤⇔)(max .2分离参数法例2.已知函数x x x x f +-+=1)1(ln )(22(I )求函数)(x f 的单调区间;(II )若不等式e n a n ≤++)11(对于任意*∈N n 都成立(其中e 是自然对数的底数),求a 的最大值.分析:对于(II )不等式e na n ≤++)11(中只有指数含有a ,故可以将函数进行分离考虑. 解:(I )(过程略)函数)(x f 的单调增区间为)0,1(-,)(x f 的单调减区间为),0(+∞(II )不等式e n a n ≤++)11(等价于不等式1)11ln()(≤++n a n ,由于111>+n ,知1)11ln()(≤++na n n n a -+≤⇔)11ln(1;设x x x g 1)1ln(1)(-+= ]1,0(∈x ,则221)1(ln )1(1)(x x x x g +++-=')1(ln )1()1(ln )1(2222x x x x x x ++-++=. 由(I )知,01)1(ln 22≤+-+x x x ,即0)1(ln )1(22≤-++x x x ;于是,0)(<'x g ]1,0(∈x ,即)(x g 在区间]1,0(上为减函数.故)(x g 在]1,0(上的最小值为12ln 1)1(-=g . 所以a 的最大值为12ln 1-. 评注:不等式恒成立问题中,常常先将所求参数从不等式中分离出来,即:使参数和主元分别位于不等式的左右两边,然后再巧妙构造函数,最后化归为最值法求解.3 数形结合法例3.已知当]2,1(∈x 时,不等式x x a log )1(2≤-恒成立,则实数a 的取值范围是___.直角坐标系内作出函数2)1()(-=x x f x x g a log )(=在]2,1(∈x 观、简捷求解.解:在同一平面直角坐标系内作出函数2)1()(-=x x f 与函数x x g a log )(=在(∈x 图象(如右),从图象中容易知道:当0<a )(x g 上方,不合题意;当1>a 且]2,1(∈x 或部分点重合,就必须满足12log ≥a ,即21≤<a .故所求的a 的取值范围为]2,1(.评注:对不等式两边巧妙构造函数,数形结合,直观形象,是解决不等式恒成立问题的一种快捷方法. 4 变更主元法例4.对于满足不等式11≤≤-a 的一切实数a ,函数)24()4(2a x a x y -+-+=的值恒大于0,则实数x 的取值范围是___.分析:若审题不清,按习惯以x 为主元,则求解将非常烦琐.应该注意到:函数值大于0对一定取值范围的谁恒成立,则谁就是主元.解:设)44()2()(2+-+-=x x a x a f ,]1,1[+-∈a ,则原问题转化为0)(>a f 恒成立的问题. 故应该有⎩⎨⎧>>-0)1(0)1(f f ,解得1<x 或3>x . 所以实数x 的取值范围是),3()1,(+∞⋃-∞.评注:在某些特定的条件下,若能变更主元,转换思考问题的角度,不仅可以避免分类讨论,而且可以轻松解决恒成立问题.5 特殊化法例5.设0a 是常数,且1123---=n n n a a (*∈N n ).(I )证明:对于任意1≥n ,012)1(]2)1(3[51a a n n n n n n ⋅-+⋅-+=-. (II )假设对于任意1≥n 有1->n n a a ,求0a 的取值范围.分析:常规思路:由已知的递推关系式求出通项公式,再根据对于任意1≥n 有1->n n a a 求出0a 的取值范围,思路很自然,但计算量大.可以用特殊值探路,确定目标,再作相应的证明.解:(I )递推式可以化归为31)3(32311+-=--n n nn a a ,]51)3[(3251311--=---n n n n a a ,所以数列}513{-n n a 是等比数列,可以求得对于任意1≥n ,012)1(]2)1(3[51a a n n n n n n ⋅-+⋅-+=-. (II )假设对于任意1≥n 有1->n n a a ,取2,1=n 就有⎩⎨⎧>=->-=-0603101201a a a a a a 解得3100<<a ; 下面只要证明当3100<<a 时,就有对任意*∈N n 有01>--n n a a 由通项公式得011111215)1(2)1(332)(5a a a n n n n n n n ⋅⋅⋅-+⋅-⋅+⋅=------当12-=k n (*∈N k )时,02523322152332)(511101111=⋅-⋅+⋅>⋅⋅-⋅+⋅=--------n n n n n n n n a a a当k n 2=(*∈N k )时,023*********)(51101111=⋅-⋅>⋅⋅+⋅-⋅=-------n n n n n n n a a a ,可见总有1->n n a a . 故0a 的取值范围是)31,0(评注:特殊化思想不仅可以有效解答选择题,而且是解决恒成立问题的一种重要方法. 6分段讨论法例6.已知2)(--=a x x x f ,若当[]0,1x ∈时,恒有()f x <0,求实数a 的取值范围. 解:(i )当0x =时,显然()f x <0成立,此时,a R ∈(ii )当(]0,1x ∈时,由()f x <0,可得2x x -<a <2+x x , 令 (](]22(),(0,1);()(0,1)g x x x h x x x x x=-∈=+∈ 则221)(xx g +='>0,∴()g x 是单调递增,可知[]max ()(1)1g x g ==- 221)(xx h -='<0,∴()h x 是单调递减,可知[]min ()(1)3h x h == 此时a 的范围是(—1,3)综合i 、ii 得:a 的范围是(—1,3) .例7.若不等式032>+-ax x 对于]21,21[-∈x 恒成立,求a 的取值范围. 解:(只考虑与本案有关的一种方法)解:对x 进行分段讨论,当0=x 时,不等式恒成立,所以,此时R a ∈; 当]21,0(∈x 时,不等式就化为x x a 3+<,此时x x 3+的最小值为213,所以213<a ; 当)0,21[-∈x 时,不等式就化为x x a 3+>,此时x x 3+的最大值为213-,所以213->a ; 由于对上面x 的三个范围要求同时满足,则所求的a 的范围应该是上三个a 的范围的交集即区间)213,213(- 说明:这里对变量x 进行分段来处理,那么所求的a 对三段的x 要同时成立,所以,用求交集的结果就是所求的结果.评注:当不等式中左右两边的函数具有某些不确定的因素时,应该用分类或分段讨论方法来处理,分类(分段)讨论可使原问题中的不确定因素变化成为确定因素,为问题解决提供新的条件;但是最后综合时要注意搞清楚各段的结果应该是并集还是别的关系.7单调性法例8.若定义在),0(+∞的函数)(x f 满足)()()(xy f y f x f =+,且1>x 时不等式0)(<x f 成立,若不等式)()()(22a f xy f y x f +≤+对于任意),0(,+∞∈y x 恒成立,则实数a 的取值范围是___.解:设210x x <<,则112>x x ,有0)(12<x x f .这样,0)()()()()()()()(121112111212<=-+=-⋅=-x x f x f x f x x f x f x x x f x f x f ,则)()(12x f x f <,函数)(x f 在),0(+∞为减函数. 因此)()()(22a f xy f y x f +≤+⇔)()(22xy a f y x f ≤+⇔xy a y x ≥+22xy y x a 22+≤⇔;而2222=≥+xy xyxy y x (当且仅当y x =时取等号),又0>a ,所以a 的取值范围是]2,0(.评注:当不等式两边为同一函数在相同区间内的两个函数值时,可以巧妙利用此函数的单调性,把函数值大小关系化归为自变量的大小关系,则问题可以迎刃而解.8判别式法例9.若不等式012>++ax ax 对于任意R x ∈恒成立.则实数a 的取值范围是___. 分析:此不等式是否为一元二次不等式,应该先进行分类讨论;一元二次不等式任意R x ∈恒成立,可以选择判别式法.解:当0=a 时,不等式化为01>,显然对一切实数恒成立; 当0≠a 时,要使不等式012>++ax ax 一切实数恒成立,须有⎩⎨⎧<-=∆>0402a a a ,解得40<<a .综上可知,所求的实数a 的取值范围是)4,0[.不等式恒成立问题求解策略一般做法就是上面几种,这些做法是通法,对于具体问题要具体分析,要因题而异,如下例.例10.关于x 的不等式ax xx x ≥-++232525在]12,1[∈x 上恒成立,求 实数a 的取值范围.通法解:用变量与参数分离的方法,然后对变量进行分段处理;∵]12,1[∈x ,∴不等式可以化为a x x x x ≥-++5252;下面只要求x x xx x f 525)(2-++=在]12,1[∈x 时的最小值即可,分段处理如下.当]5,1[∈x 时,x x x x f 256)(2++-=,223225622562)(x x x x x x f -+-=-+-=',再令2562)(231-+-=x x x f ,0126)(21=+-='x x x f ,它的根为2,0;所以在区间)2,1[上有0)(1>'x f ,)(x f 递增,在区间]5,2(上有0)(1<'x f ,)(x f 递减,则就有2562)(231-+-=x x x f 在]5,1[∈x 的最大值是017)2(1<-=f ,这样就有0)(<'x f ,即)(x f 在区间]5,1[是递减.同理可以证明)(x f 在区间]12,5[是递增;所以,x x xx x f 525)(2-++=在]12,1[∈x 时的最小值为10)5(=f ,即10≤a . 技巧解:由于]12,1[∈x ,所以,25225≥+xx ,052≥-x x 两个等号成立都是在5=x 时;从而有10525)(2≥-++=x x x x x f (5=x 时取等号),即10≤a . 评注:技巧解远比通法解来得简单、省力、省时但需要扎实的数学基本功.。
常见 “恒成立问题” 的解决办法
常见 “恒成立问题” 的解决办法在数学问题研究中经常碰到在给定条件下某些结论恒成立问题.这类问题涉及到一次函数、二次函数的性质、图象,渗透着换元、化归、数形结合、函数与方程等思想方法,有利于考查学生的综合解题能力,在培养思维的灵活性、创造性等方面起到了积极的作用.因此也成为历年高考的一个热点.下面本人就高考中常出现的恒成立问题谈一谈自己的解法. 一 变量分离法变量分离法主要通过两个基本思想解决“恒成立问题”思路1、max )]([)(x f m D x x f m ≥⇔∈≥上恒成立在 思路2、min )]([)(x f m D x x f m ≤⇔∈≤上恒成立在例1.已知函数f (x )=2x -12|x |若不等式2t f (2t )+m f (t )≥0对于t ∈[1,2]恒成立,求实数m 的取值范围解:本题可通过变量分离来解决. 当[1,2]t ∈时,22112(2)(2)022t ttt t m -+-≥ 即24(21)(21)ttm -≥--,2210t->∵,2(21)tm ≥-+∴[1,2]t ∈∵,2(21)[17,5]t -+∈--∴故m 的取值范围是[5,)-+∞例2.设f x n n anx x x x x ()lg ()=++++-+1231Λ,其中a 为实数,n 为任意给定的自然数,且n ≥2,如果f x ()当x ∈-∞(],1时有意义,求a 的取值范围.解:本题即为对于x ∈-∞(],1,有1210xxxxn n a ++-+>Λ()恒成立. 这里有三种元素交织在一起,结构复杂,难以下手,若考虑到求a 的范围,可先将a 分离出来,得a n nn nn xxx>-+++-≥[()()()]()1212Λ,对于x ∈-∞(],1恒成立. 构造函数g x n n n nx x x()[()()()]=-+++-121Λ,则问题转化为求函数g x ()在x ∈-∞(],1上的值域,由于函数u x k nk n x()()()=-=-121,,,Λ在x ∈-∞(],1上是单调增函数,则g x ()在(]-∞,1上为单调增函数.于是有g x ()的最大值为g n ()()1121=--,从而可得a n >--121(). 如何在区间D 上求函数f(x)的最大值或者最小值问题,我们可以通过习题的实际,采取合理有效的方法进行求解,通常可以考虑利用函数的单调性、函数的图像、二次函数的配方法、三角函数的有界性、均值定理、函数求导等等方法求函数f (x )的最值. 二 赋值法——利用特殊值求解等式中的恒成立问题,常常用赋值法求解,特别是对解决填空题、选择题能很快求得.例3.由等式x 4+a 1x 3+a 2x 2+a 3x+a 4= (x+1)4+b 1(x+1)3+ b 2(x+1)2+b 3(x+1)+b 4 定义映射f :(a 1,a 2,a 3,a 4)→b 1+b 2+b 3+b 4,则f :(4,3,2,1) → ( ).7 C略解:取x=0,则 a 4=1+b 1+b 2+b 3+b 4,又 a 4=1,所以b 1+b 2+b 3+b 4 =0 ,故选D 例4.如果函数y=f(x)=sin2x+acos2x 的图象关于直线x=8π-对称,那么a=( ). B .-1 C .2 D . -2. 略解:取x=0及x=4π-,则f(0)=f(4π-),即a=-1,故选B. 此法体现了数学中从一般到特殊的转化思想.三 构造函数法 1、一次函数型若原题可化为一次函数型,则由数形结合思想利用一次函数知识求解,十分简捷.给定一次函数y=f(x)=ax+b(a≠0),若y=f(x)在[m,n]内恒有f(x)>0,则根据函数的图象(直线)可得上述结论等价于0)(0)(>>n f m f 同理,若在[m,n]内恒有f(x)<0, 则有)(0)(<<n f m f例5.对于满足|a|≤2的所有实数a,求使不等式x 2+ax+1>2a+x 恒成立的x 的取值范围.分析:在不等式中出现了两个字母:x 及a,关键在于该把哪个字母看成是一个变量,另一个作为常数.显然可将a 视作自变量,则上述问题即可转化为在[-2,2]内关于a 的一次函数大于0恒成立的问题.解:原不等式转化为(x-1)a+x 2-2x+1>0在|a|≤2时恒成立,设f(a)= (x-1)a+x 2-2x+1,则f(a)在[-2,2]上恒大于0,故有:⎩⎨⎧>>-)2(0)2(f f 即⎪⎩⎪⎨⎧>->+-0103422x x x 解得:⎩⎨⎧-<><>1113x x x x 或或 ∴x<-1或x>3. 即x ∈(-∞,-1)∪(3,+∞)此类题本质上是利用了一次函数在区间[m,n]上的图象是一线段,故只需保证该线段两端点均在x 轴上方(或下方)即可. 2、二次函数型若二次函数y=ax 2+bx+c(a≠0)大于0恒成立,则有00<∆>且a ;若是二次函数在指定区间上的恒成立问题,可以利用韦达定理以及根的分布知识求解. 例6. 若函数12)1()1()(22++-+-=a x a x a x f 的定义域为R ,求实数 a 的取值范围. 分析:该题就转化为被开方数012)1()1(22≥++-+-a x a x a 在R 上恒成立问题,并且注意对二次项系数的讨论.解:依题意,当时,R x ∈012)1()1(22≥++-+-a x a x a 恒成立, 所以 ①当,1,01,01{,0122=≠+=-=-a a a a 时,即当此时.1,0112)1()1(22=∴≥=++-+-a a x a x a ②当时,时,即当012)1(4)1(,01{012222≤+---=∆>-≠-a a a a a 有,91,09101{22≤<⇒≤+->a a a a综上所述,f(x)的定义域为R 时,]9,1[∈a例7.已知函数2()3f x x ax a =++-,若[]2,2x ∈-时,()0f x ≥恒成立,求a 的取值范围.分析:要使[]2,2x ∈-时,()0f x ≥恒成立,只需)(x f 的最小值0)(≥a g 即可.解:22()324a a f x x a ⎛⎫=+--+ ⎪⎝⎭,令()f x 在[]2,2-上的最小值为()g a .⑴当22a -<-,即4a >时,()(2)730g a f a =-=-≥ 73a ∴≤ 又4a >Q a ∴不存在.⑵当222a-≤-≤,即44a -≤≤时,2()()3024a a g a f a ==--+≥ 62a ∴-≤≤ 又44a -≤≤Q 42a ∴-≤≤⑶当22a->,即4a <-时,()(2)70g a f a ==+≥ 7a ∴≥- 又4a <-Q 74a ∴-≤<- 综上所述,72a -≤≤.对于二次函数在R 上恒成立问题往往采用判别式法(如例6),而对于二次函数在某一区间上恒成立问题往往转化为求函数在此区间上的最值问题(如例7). 四 数形结合法若把等式或不等式进行合理的变形后,能非常容易地画出等号或不等号两边函数的图 象,则可以通过画图直接判断得出结果.例8.设]40(,∈x ,若不等式ax x x >-)4(恒成立,求a 的取值范围. 解:若设)4(1x x y -=,则()()x y y -+=≥2402121为上半圆.设y ax 2=,为过原点,a 为斜率的直线.在同一坐标系内 作出函数图象,依题意,半圆恒在直线上方时,只有a <0时成立,即a 的取值范围为a <0.利用数形结合解决恒成立问题,应先构造函数,作出符合已知条件的图形,再考虑在给定区间上函数与函数图象之间的关系,得出答案或列出条件,求出参数的范围. 五 换元引参法例9.对于所有实数x ,不等式x a a x a a a a22222241221140log ()log log ()+++++>恒成立,求a 的取值范围. 解:因为log 221a a +的值随着参数a 的变化而变化,若设t aa =+log 221, 则上述问题实质是“当t 为何值时,不等式()32202-+->t x tx t 恒成立”. 这是我们较为熟悉的二次函数问题,它等价于求解关于t 的不等式组:3028302->=+-<⎧⎨⎩t t t t ∆()(). 解得t <0,即有log 2210aa +<,易得01<<a . 通过换元引参,把把问题变成熟悉的二次函数问题,使问题迎刃而解. 六 变更主元法例10.若对于01≤≤m ,方程x mx m 2210+--=都有实根,求实根的范围.解:此题一般思路是先求出方程含参数m 的根,再由m 的范围来确定根x 的范围,但这样会遇到很多麻烦,若以m 为主元,则m x x ()()-=-212,由原方程知x ≠2,得m x x =--122 又01≤≤m ,即01212≤--≤x x 解之得--≤≤-11321x 或11132≤≤-+x . 利用变更主元法解决恒成立问题,应先把主元变更,然后结合两者之间的关系,得出正确答案.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
处理有关“恒成立”的思路方法乐山市井研县马踏中学廖德俊与“恒成立”有关的问题一直是中学数学的重要内容,它是函数,数列,不等式,三角等内容交汇处的一个非常活跃的知识点,特别是导数的引入,成为我们更广泛更深入的研究函数,不等式的有利工具,更为我们研究恒成立问题提供了保障。
对恒成立问题的考察不仅涉及到函数,不等式等有关的传统知识和方法,而且考察极限,导数等新增内容的掌握和灵活运用。
它常与数学思想方法紧密结合,体现了能力立意的原则。
恒成立问题涉及到一次函数,二次函数的性质,图象渗透和换元,化归,数形结合,函数与方程等思想方法,有利于考察学生的综合解题能力,培养学生思维的灵活性,创造性,所以是历年高考的热点。
一.恒成立问题的基本类型按区间分类可分为:①在给定区间某关系的恒成立问题;②在全体实数集上某关系的恒成立问题。
二.处理恒成立问题的基本思路处理与恒成立有关的问题大致可分以下两种方法①变量分离思路处理;②利用函数的性质,图象思路处理。
若不等式中出现两个变量,其中一个变量的范围已知,另一个的范围为所求,且容易通过恒等变形将两个变量分别置于不等号的两边,则可将恒成立问题转化为函数的最值问题求解。
在不等式的恒成立问题中,以下充要条件应细心思考,甄别差异,性质使用。
≥∈--∈∴≥=--=+∴≥-21例2:若不等式x2+ax+10对一切x (0,]成立,则a 的取值范围为( )25A. 0B. -2C. -D.-32111解析:由于x (0,],a 21115()在(0,]上单调递增,在x=取得最小值2225,故选2方法2:利用函数的性质,图象其主要体现在:1,利用一次函数的图象性质 x x x x f x x x a C≠≥≤≥≥∈⇔≥≤≤∈⇔≤若原题可化为一次函数类型,则由数形结合给定一次函数f(x)=ax+b (a 0).若y=f(x)在[m,n]内恒有f(x)0(或f(x)0),则 根据函数的图象可得:f(m)0f(x)0,x [m,n]恒成立{f(n)0f(m)0f(x)0,x [m,n]恒成立{f(n)02,利用二次函数的图象性质:>≠⇔∆<≤∈220若 f(x)=ax +bx+c (a 0)大于0恒成立{若二次函数在给定区间上恒成立则可利用根的分布和韦达 定理求解。
例1: 函数f(x)是奇函数,且在[-1,1]单调递增,又f(-1)=-1,若 f(x)t -2at+1对所有的a [-1,1]都成立,求t 的取值范围 解析: 不等式中有三个变元,通过逐步消元a ≤∈⇔≥∈≥∈⇔≥22max22法处理。
首先选 定主元x ,()在[-1,1]递增f(x)t -2at+1a [-1,1]恒成立t -2at+1(x )[-1,1]即t -2at+11,a [-1,1]上恒成立t -2at 0f x f x≥⇔≥∈∈≤⇔≤∈≥⇔≥∈max min min 1.不等式m f(x)在区间D 上恒成立m f(x),x D 或f(x)的上确界(若f(x)在x D 的值域为[a,b],则a 称 为f(x)的上确界,b 称为f(x)的下确界)2.不等式m f(x)在区间D 上恒成立m f(x),x D 或f(x)的下确界注释: 1.不等式m f(x)在区间D 上有解m f(x),x D 或f(x)的下确界≤⇔≤∈≥≥max 2.不等式m f(x)在区间D 上有解m f(x),x D 或f(x)的上确界那么,如何求函数g(x)在区间D 上的最大值(上确界)或最小值(下确界)呢?通常可以采取利用函数的单调性,图象,二次函数在区间上的最值,判别式法,三角函数的有解性,均值定理,函数求导例1:若函数f(x)=(x+1)ln(x+1),对所有的x 0都有f(x)成立, 求实数a 的取值ax ≥≥∈≤∞2范围解析:由f(x)=(x+1)ln(x+1),对所有的x 0恒成立可得: (1) 当x=0时,a R(x+1)ln(x+1)(x+1)ln(x+1)(2) 当x>0时,a ,设g(x) =则问题转化为求该函数在开区间(0,+)的最小值(下确界),又x-ln(x+1)g?(x) = ,要想求出g?(x) = 0困难重重,可换元令h(x)=x-ln(x+1),ax x xx>>+∞>>∞=1h'(x)=1-,0,故h'(x)0,则函数h(x)1在(0,+)为增函数,即h(x)h(0)=0,从而g'(x)0,则函数g(x)在(0,+)也为增函数,故g(x)无最小值.此时,由于g(0)无意义,g(x)的下确界一时也难确定,但运用极限的知识可得g(x)>limg(x),然而求此极(x+1)ln(x+1)限又超出了所学范围,事实上采用洛比达法则可得limg(x) =x x x+=>>≤∞lim[ln(x+1)1]1,故0时,()1,因而1。
综合(1)(2)知a 的取值范围为(-,1]x g x a{}∈≥≥≥⇔⇔≥≥⇒∈-∞-+∞222a [-1,1]恒成立,即g(a)=-2at+t 0,[-1,1]恒成立g(-1)0-2t+t 0{{g(1)0-2t+t 0 (,2]0[2,)t-+-++≥∈-+-+≥+-=-=⇒+≠-+-+22222。
222例2:若函数R,求实数a 的取值范围.2解析:该题就转化为被开方数(1)(1)10在R 上恒成立,注意对二次系数的讨论。
解:依题意,当x R 时,2(1)(1)0恒成立,1101 当10时,即当{时a=1,此时102(1)(1)a x a x a a x a x a a a a a x a x ≥∴+->-≠∆≤>⇒⇒<≤-+>∈2。
2220a=1成立1102当10时,即当{1{191090综上可得,()的定义域为时,[1,9] 方法三:直接根据函数图象判断若把等式或不等式进行合理的变形后,能非常容易地画出等式或不等式两边函数的图象,则可以通过画图直接判断得出结果a a a a a a a f x R a∈12例:设x (0,4],恒成立,求a 的取值范围解析:若设y ,设y =ax 为过原点且斜率为a 的直线.在同一坐标系中作出函数 图象,如下右依题意,半圆恒在直线上时,只有 a<0,即其取值范围为a<0++++>+++222222222三.在恒成立问题中,主要是求函数的取值范围问题,其处理方法 有以下几种1.换元处理法例:对于所有实数x,不等式 4(1)2(1)x log 2log log 0恒成立,求14的取值范围.22解析:因为log 的值随a 的变化而变化,t=log ,则11上述问题实质是当t 取何值时,不等式(3-t)x +2tx-2t>0恒成立它等价于,求解关于t a a a x a aa aa aa a ->⇒<∆<<⇒<<+230的不等式组{0,02即log 0011t t aa a∈a a 2.选定主元法例:a,不等式(a-3)x<4a-2 都成立,求实数的取值范围.解析:按常规理解,要解以x 为主元,为a 常数的一元一次不等式,但 比较烦琐,若选a 为主变元,则可利用函数的性质解出x 的取 值范围.:0<a<5设f(a)=(x-4)a-(3x-2),则由题意知,对任意的a (0,5),都≤≤≤≤++++-+≥∈∞∈∞++++-+>(0)0有f(a)<0恒成立,由一次函数的性质得{(5)02解之得 933.构造法123(1)例:设f(x)=lg其中a 为实数,为任意给定的自然数且n 2,若x (-,1]时有意义,求a 的取值 范围.解析:本题即为对于x (-,1],123(1)0恒成立先x x x x x x x x x x f f x n n an nn n a -≥∈-∞-≥-∞=-∈-∞-∞x x xx x xx121变量分离得:对a>-[()+()++()], (n 2)对于(,1]恒成立121 构造函数g(x)=-[()+()++()], (n 2)则问题转化为求该函数在(,1]上的值域.由于函数u(x)=-()(1,21),(,1]上是单调递增的,则g(x)在(,1]n n n nx n n n nk k n x n1为单调递增函数,于是g(x)的最大值为g(1)=-(n-1),21从而可知:a>-(n-1),2-++≥>-++≥⇔∆≤>⇒⇒<≤-+≤≤≤224.分类讨论例:若函数R,则的 取值范围是( )由题意6(8)0恒成立 (1).若,符合题意0 (2).若,6(8)0恒成立{{013624(8)0综上可得: 01在处理恒成立kx kx k k kx kx k k k k k k k 问题时,并非单一的使用某一种思路方法,而是各种思路方法相互渗透,解决这类问题是各种思路和方法的综合运用,且要求较高难度较大.正所谓"万变不离其中",只要我们在平时的学习中把基本思路和方法理解,掌握透彻,一切问题都会 迎刃而解.“恒成立问题”解决的基本策略一、恒成立问题的基本类型在数学问题研究中经常碰到在给定条件下某些结论恒成立的命题.函数在给定区间上某结论成立问题,其表现形式通常有: 在给定区间上某关系恒成立; 某函数的定义域为全体实数R;●某不等式的解为一切实数;❍某表达式的值恒大于a 等等… 恒成立问题,涉及到一次函数、二次函数的性质、图象,渗透着换元、化归、数形结合、函数与方程等思想方法,有利于考查学生的综合解题能力,在培养思维的灵活性、创造性等方面起到了积极的作用。
因此也成为历年高考的一个热点。
恒成立问题在解题过程中大致可分为以下几种类型:①一次函数型;②二次函数型;③变量分离型;④根据函数的奇偶性、周期性等性质;⑤直接根据函数的图象。
二、恒成立问题解决的基本策略(一)两个基本思想解决“恒成立问题” 思路1、max )]([)(x f m D x x f m ≥⇔∈≥上恒成立在思路2、min )]([)(x f m D x x f m ≤⇔∈≤上恒成立在如何在区间D 上求函数f(x)的最大值或者最小值问题,我们可以通过习题的实际,采取合理有效的方法进行求解,通常可以考虑利用函数的单调性、函数的图像、二次函数的配方法、三角函数的有界性、均值定理、函数求导等等方法求函数f (x )的最值。
这类问题在数学的学习涉及的知识比较广泛,在处理上也有许多特殊性,也是近年来高考中频频出现的试题类型,希望同学们在日常学习中注意积累。
(二)、赋值型——利用特殊值求解等式中的恒成立问题,常常用赋值法求解,特别是对解决填空题、选择题能很快求得.例1.由等式x4+a1x3+a2x2+a3x+a4= (x+1)4+b1(x+1)3+ b2(x+1)2+b3(x+1)+b4 定义映射f :(a1,a2,a3,a4)→b1+b2+b3+b4,则f :(4,3,2,1) → ( ) A.10 B.7 C.-1 D.0略解:取x=0,则 a4=1+b1+b2+b3+b4,又 a4=1,所以b1+b2+b3+b4 =0 , 故选D例2.如果函数y=f(x)=sin2x+acos2x 的图象关于直线x=8π-对称,那么a=( ).A.1B.-1 C .2 D. -2.略解:取x=0及x=4π-,则f(0)=f(4π-),即a=-1,故选B.此法体现了数学中从一般到特殊的转化思想.(三)分清基本类型,运用相关基本知识,把握基本的解题策略 1、一次函数型:若原题可化为一次函数型,则由数形结合思想利用一次函数知识求解,十分简捷给定一次函数y=f(x)=ax+b(a≠0),若y=f(x)在[m,n]内恒有f(x)>0,则根据函数的图象(直线)可得上述结论等价于0)(0)(>>n f m f 同理,若在[m,n]内恒有f(x)<0, 则有 0)(0)(<<n f m f例2.对于满足|a|≤2的所有实数a,求使不等式x2+ax+1>2a+x 恒成立的x 的取值范围.分析:在不等式中出现了两个字母:x 及a,关键在于该把哪个字母看成是一个变量,另一个作为常数.显然可将a 视作自变量,则上述问题即可转化为在[-2,2]内关于a 的一次函数大于0恒成立的问题.解:原不等式转化为(x-1)a+x2-2x+1>0在|a|≤2时恒成立, 设f(a)= (x-1)a+x2-2x+1,则f(a)在[-2,2]上恒大于0,故有:⎩⎨⎧>>-)2(0)2(f f 即⎪⎩⎪⎨⎧>->+-0103422x x x 解得:⎩⎨⎧-<><>1113x x x x 或或∴x<-1或x>3. 即x ∈(-∞,-1)∪(3,+∞)此类题本质上是利用了一次函数在区间[m,n]上的图象是一线段,故只需保证该线段两端点均在x 轴上方(或下方)即可.2、二次函数型涉及到二次函数的问题是复习的重点,同学们要加强学习、归纳、总结,提炼出一些具体的方法,在今后的解题中自觉运用。