第5章快速热处理

合集下载

第5章淬火介质添加剂和回火油

第5章淬火介质添加剂和回火油

第5章淬火介质添加剂和回火油297水性淬火剂添加剂F【简介】该产品为德润宝水性淬火介质添加剂F。

普通碳素钢和低合金钢用纯水进行淬火热处理时,常产生软点、变形或开裂等现象,过去经常采用的解决方法是换用盐水或碱水如Nacl和NaOH,使用Nacl溶液,对淬火后工件及淬火槽的腐蚀相当严重,NaOH水溶液由于逐渐吸收空气中的C02变质,会降低冷却速度,而且碱水的飞溅与蒸汽对人体有害。

①在自来水中加入10%~15%的该介质,能有效的消除蒸气膜,大大提高水的高、中温冷速,使工件得到快速而均匀的冷却,获得理想的硬度与淬硬层深。

②该介质浓度从5%到15%变化时,其快速冷却能力基本不变。

该特点适合实际生产需要,即使生产中溶液浓度失控,也不会影响工件淬火质量。

③该介质的工作温度范围很宽。

生产使用证明,该介质溶液即使在60℃时,依然具有良好的爆裂作用,保持快速的高温冷速,更适合于批量生产的需要。

④该介质具有极佳的防锈性能,对设备及淬火工件无腐蚀性,并且不含有毒物质,对人体无害。

⑤该介质废弃时可直接排放,不会造成污染。

【主要用途】①适用于普通碳素钢和低合金钢的淬火处理。

②该介质溶液专用于直接加热或保护气氛下加热的工件。

③由于工件上残留的盐分混进淬火溶液,会使防锈性能大为下降,盐浴中有害成分也会破坏该介质的使用性能,故该舟质不适用于盐浴加热的工件。

【使用注意事项】①淬火槽为一般的铁制容器即可,无需涂层。

该介质可提供足够的防锈保护。

油槽一般应安装冷却设备,如果油槽足够大,使淬火液的温度不会显著升高的话,则不需安装冷却设备。

如果需要预热低温下的淬火溶液.可安装加热管。

淬火槽以及淬火液浸泡的设备,不能有铜制的组件,金属铜会引起电化学腐蚀,而且在高温的情况下,轻合金会被严重腐蚀。

②配制时按比例称出PETROFER AQUARAPID F的所需量,边搅拌边加入水中,待其完全溶解,淬火溶液即配制完成。

③该介质淬火液最佳的工作温度为20~50℃。

金属材料与热处理课后习题答案

金属材料与热处理课后习题答案
A、α—Fe B、γ—Fe C、δ—Fe
4、γ—Fe转变为α—Fe时,纯铁体积会( )。
A、收缩 B、膨胀 C、不变
四、名词解释
1、晶格与晶包
2、晶粒与晶界
3、单晶体与多晶体
五、简述
1、生产中细化晶粒的常用方法有哪几种为什么要细化晶粒
2、如果其他条件相同,试比较下列铸造条件下铸铁晶粒的大小。
(1)金属模浇注与砂型浇注
4、金属的实际结晶温度均低于理论结晶温度。( )
5、金属结晶时过冷度越大,结晶后晶粒越粗。( )
6、一般说,晶粒越细小,金属材料的力学性能越好。( )
7、多晶体中各晶粒的位向是完全相同的。( )
8、单晶体具有各向异性的特点。( )
9、在任何情况下,铁及其合金都是体心立方晶格。( )
10、同素异构转变过程也遵循晶核形成与晶核长大的规律。( )
5、渗碳体的含碳量为( )%。
A、 B、 C、
6、珠光体的平均含碳量为( )%。
A、 B、 C、
7、共晶白口铸铁的含碳量为( )%。
A、 B、 C、
8、铁碳合金共晶转变的温度是( )℃。
A、727 B、1148 C、1227
9、含碳量为%的铁碳合金,在室温下的组织为( )。
A、珠光体 B、珠光体加铁素体 C、珠光体加二次渗碳体
11、金属材料抵抗 载荷作用而 的能力,称为冲击韧性。
12、填出下列力学性能指标的符号:屈服点 ,抗拉强度 ,洛氏硬度C标尺 ,伸长率 ,断面收缩率 ,冲击韧性 ,疲劳极限 。
二、判断(正确打“√”,错误打“×”,下同)
1、弹性变形能随载荷的去除而消失。( )
2、所有金属材料在拉伸试验时都会出现显着的屈服现象。( )

微电子工艺技术 复习要点答案(完整版)

微电子工艺技术 复习要点答案(完整版)

第四章晶圆制造1.CZ法提单晶的工艺流程。

说明CZ法和FZ法。

比较单晶硅锭CZ、MCZ和FZ三种生长方法的优缺点。

答:1、溶硅2、引晶3、收颈4、放肩5、等径生长6、收晶。

CZ法:使用射频或电阻加热线圈,置于慢速转动的石英坩埚内的高纯度电子级硅在1415度融化(需要注意的是熔硅的时间不宜过长)。

将一个慢速转动的夹具的单晶硅籽晶棒逐渐降低到熔融的硅中,籽晶表面得就浸在熔融的硅中并开始融化,籽晶的温度略低于硅的熔点。

当系统稳定后,将籽晶缓慢拉出,同时熔融的硅也被拉出。

使其沿着籽晶晶体的方向凝固。

籽晶晶体的旋转和熔化可以改善整个硅锭掺杂物的均匀性。

FZ法:即悬浮区融法。

将一条长度50-100cm 的多晶硅棒垂直放在高温炉反应室。

加热将多晶硅棒的低端熔化,然后把籽晶溶入已经熔化的区域。

熔体将通过熔融硅的表面张力悬浮在籽晶和多晶硅棒之间,然后加热线圈缓慢升高温度将熔融硅的上方部分多晶硅棒开始熔化。

此时靠近籽晶晶体一端的熔融的硅开始凝固,形成与籽晶相同的晶体结构。

当加热线圈扫描整个多晶硅棒后,便将整个多晶硅棒转变成单晶硅棒。

CZ法优点:①所生长的单晶的直径较大,成本相对较低;②通过热场调整及晶转,坩埚等工艺参数的优化,可以较好的控制电阻率径向均匀性。

缺点:石英坩埚内壁被熔融的硅侵蚀及石墨保温加热元件的影响,易引入氧、碳杂质,不易生长高电阻率单晶。

FZ法优点:①可重复生长,提纯单晶,单晶纯度较CZ法高。

②无需坩埚、石墨托,污染少③高纯度、高电阻率、低氧、低碳④悬浮区熔法主要用于制造分离式功率元器件所需要的晶圆。

缺点:直径不如CZ法,熔体与晶体界面复杂,很难得到无位错晶体,需要高纯度多晶硅棒作为原料,成本高。

MCZ:改进直拉法优点:较少温度波动,减轻溶硅与坩埚作用,降低了缺陷密度,氧含量,提高了电阻分布的均匀性2.晶圆的制造步骤【填空】答:1、整形处理:去掉两端,检查电阻确定单晶硅达到合适的掺杂均匀度。

2、切片3、磨片和倒角4、刻蚀5、化学机械抛光3. 列出单晶硅最常使用的两种晶向。

热处理工艺

热处理工艺

3、不完全退火: 亚共析钢在Ac1~Ac3之间或过共析钢在Ac1~
4、球化退火:是使钢中的碳化物球化,获 得粒状珠光体的ቤተ መጻሕፍቲ ባይዱ种热处理工艺。



用途:主要应用于共析钢、过共析钢和高碳合金工具钢。 目的:降低硬度、均匀组织、改善切削加工性能,为淬 火做准备。 工艺参数: 加热温度:Ac1+20~30℃;过高-过低过共析钢球化退火后的组织:铁素体和球状渗碳体的混 合物,叫做球状珠光体或粒状珠光体,用P粒表示; 加热时间:一般为2~4小时或按公式计算 冷却速度:炉冷或Ar1以下〒20℃长时间等温,600 ℃ Q 8 .5 以后出炉空冷。 4
二、钢的正火(正常化或常化)
1、定义:是指将钢加热到Ac3(或ACcm)以上约 30~50℃,保温,完全A化后,从炉中取出空冷以得 到珠光体类型组织的热处理工艺,称为正火。 2、应用: ①改善切削加工性能:预备热处理 (含碳低于0.25%的---HB140-190)低碳钢 ②消除热加工缺陷,为淬火做组织准备:(中碳结构钢 铸、锻、轧件、焊接件的魏氏组织、粗大晶粒、带状 组织) ③消除过共析钢中的Fe3CⅡ,有利于球化退火的进行 (抑制二次碳化物的析出,获得伪共析体。) ④提高普通结构件的机械性能:作为最终热处理,代替 调质处理,力学性能要求不高的 中低碳钢和中低合金钢件
过共析钢的室温平衡组织为: P+Fe3CⅡ,不 仅硬度高,而且增大了钢的脆性,所以切削加 工困难,淬火时易变形、开裂;; 加热温度为Ac1以上20~30℃,在A中保留大 量的未溶渗碳体质点,并造成A的碳浓度分布 不均匀,在随后的缓冷过程中,或以原有的渗 碳体质点为核心,或在A富碳区产生新的核心, 均匀的形成颗粒状渗碳体; 球化退火前,若二次渗碳体网较厚,可先正火。

钢的热处理作业题答案

钢的热处理作业题答案

解: 下料
正火
机加工 (粗)
调质
机加工 (精)
第五章 作业题答案-11
⑶:用20CrMnTi钢制作某汽车传动齿轮,要求表面
高硬度高耐磨性,表面HRC58~63 ,硬化层深
0.8mm。
解 下料
锻造
正火
机加工 (粗)
铣齿
渗碳
淬火+低温回火
去碳机械加工
磨齿 或
淬火+低温回火
第五章 作业题答案-11

下料 或选用锻4造0Cr:热正处火理工艺方机法加如工下 (粗)
机加工 (精)
高频表面淬火+低温回火
磨齿
拉花键孔

第五章 作业题答案-11
⑷ :用38CrMoTiAl钢制作某高精度镗床镗杆,要 求表面高硬度大于800HV。
下料
锻造
退火
机加工(粗) 调质
机加工(半精)
低温退火
精车
低温退火
磨削
磁力探伤
氮化
磁力 探伤
半精 磨
油煮定性(140~ 160℃、18 ~20h)
第五章 作业题答案-5
解:
热处理 名称
含义
淬火
将钢加热到Ac3 (亚共析钢)或A c1 (过共析钢) 以上一定温度,保温后快速冷却,以获得马氏
体或下贝氏体的一种热处理工艺方法。
如共析钢过冷奥氏体连续转变曲线-3 图:曲线1
回火
将淬火钢加热A c1 以下一定温度,保温后以适 当方式冷却的一种热处理工艺方法。
第五章 作业题答案-4
解: ⑶:板条状马氏体M板与片状马氏体M片。
组织
板条状马氏体马氏体呈板条状,板条内 存在高密度位错,片状马氏体马氏体呈片状, 片内存大量孪晶。

工程材料 第2版课件PDF 版05

工程材料 第2版课件PDF 版05

钛 合 金 中 的 魏 氏 组 织

素 体 魏 氏 组 织
共 析 碳 钢 中 片 状

5.4 钢的普通热处理
5.4.1 退火与正火
2 完全退火
将亚共析钢加热到Ac3以上30~50℃, 保 温 后 随 炉 缓 冷 到 600℃ 出 炉 空 冷 。 组 织为α+P 。
目的
利用相变细化晶粒; 利用高温扩散消除组织缺陷; 利用缓冷去除应力; 降低硬度,改善加工性能。
均匀、且未过分长大。
组 织
工程材料学——第5章 钢的热处理
5.4 钢的普通热处理
AC3 AC1
5.4.2 淬火
淬火介质
理想的淬火介质应具有在中温区 冷却快,低温区冷却慢的特性。
温度
Ms


时间(对数)
工程材料学——第5章 钢的热处理
淬火介质
成分
特点
过饱和硝酸 盐水溶液
Na2CO3、 NaOH、KNO3
5.3 钢在冷却时的组织转变 5.3.2 过冷A连续冷却转变曲线
温度
Ps Pf
K' K
水冷
vk 油冷
vk′
临界点A1
炉冷
空冷
Ms
Mf
时间
工程材料学——第5章 钢的热处理
注意
KK′线为P转变终止线 Pf线为P转变终了线
共析碳钢连续冷却 时没有贝氏体形成(无 贝氏体转变区) 。
5.3 钢在冷却时的组织转变 5.3.3 过冷奥氏体转变
分级 淬火
在Ms点附近的热 减小了应力,防止变形、开
态介质中保温, 裂。适用于尺寸较小而形状
取出空冷或油冷。
复杂的高碳工具钢。
等温 淬火

热处理工艺方法600种

热处理工艺方法600种

热处理工艺方法600种1.完全退火2.亚共析钢钢锭的完全退火3.亚共析钢锻轧钢材的完全退火4.冷拉钢材料坯的完全退火5.不完全退火6.过共析钢及莱氏体钢钢锭的不完全退火7.过共析钢锻轧钢材的不完全退火8.亚共析钢冷拉坯料的不完全退火9.均匀化退火(扩散退火)10.低温退火11.钢锭的低温退火12.热锻轧钢材的低温退火13.中间退火(软化退火)14.冷变形加工时的中间退火15.热锻轧钢材的中间退火16.再结晶退火17.低碳钢的再结晶退火18.不锈钢的再结晶退火19.去应力退火.20.热锻轧材及工件的去应力退火21.冷变形钢材的去应力退火22.奥氏体不锈钢的去应力退火23.铸铁的去应力退火24.软磁材料的去应力退火25.非铁金属及耐热合金的去应力退火26.预防白点退火(去氢退火)(消除白点退火)27.碳钢及低合金钢的去氢退火28.中合金钢的去氢退火29.高合金钢的去氢退火30.晶粒粗化退火31.等温退火32.球化退火33.低温球化退火34.一次球化退火35.等温球化退火36.来去球化退火37.正火球化退火38.高速钢快速球化退火39.钠燃烧无氧化光亮退火40.快速连续光亮退火41.盐浴退火42.装箱退火43.普通真空退火44.真空-保护气体退火45.部分退火46.两次处置惩罚快速退火47.高速钢的循环退火48.石墨钢的石墨化退火49.脱碳退火50.可锻化退火51.快速可锻化退火52.球墨铸铁的低温石墨化退火53.球墨铸铁的高温石墨化退火54.球墨铸铁的高-高温石墨化退火55.球状石墨化退火56.高温石墨化退火57.余热退火58.普通正火59.亚温正火60.等温正火61.水冷正火62.风冷正火63.喷雾正火64.多次正火65.球墨铸铁完全奥氏体化正火66.球墨铸铁不完整奥氏体化正火67.球墨铸铁快速正火68.球墨铸铁的余热正火第二章团体热处置惩罚——淬火69.完全淬火70.不完全淬火71.中碳钢的亚温淬火72.低碳钢双相区淬火73.低碳钢双相区二次淬火74.灰铸铁的淬火75.球墨铸铁的淬火76.高速钢部分淬火77.高速钢高温淬火78.余热淬火(直接淬火)79.二次(从头)加热淬火80.两次淬火81.正火-淬火82.高温回火-淬火83.预热淬火(门路式加热淬火)84.延时淬火(降温淬火、提早淬火)85.部分淬火86.薄层淬火87.短时加热淬火88.“零”保温淬火89.快速加热淬火90.可控气氛加热淬火91.氮基氛围干净淬火92.滴注式保护氛围光明淬火93.涂层淬火94.包装淬火95.硼酸防护光明淬火96.真空淬火97.真空高压气体淬火98.轮回加热淬火99.淬火-抛光-淬火(Q-P-Q)处理100.流态炉加热淬火101.石墨流态炉加热淬火102.流态炉淬火冷却103.脉冲加热淬火104.感到穿透加热淬火105.通电加热淬火106.盐浴加热淬火107.盐浴静止加热淬火108.单液淬火109.压缩空气淬火(空淬及风淬) 110.动液淬火222.喷液淬火112.双液淬火(双介质淬火) 113.大型锻模水-气夹杂物淬火114.大锻件水-气夹杂物淬火115.单槽双液淬火116.三液淬火117.悬浮液淬火118.间断淬火119.磁场冷却淬火120.超声波淬火121.浅冷淬火122.超低温淬火(液氮淬火)123.冰冷处理124.液氮气体深冷处理125.模具钢的深冷处理126.高速钢刀具的深冷处理127.马氏体分级淬火128.马氏体等温淬火129.等温分级淬火130.贝氏体等温淬火131.灰铸铁的贝氏体等温淬火132.球墨铸铁的贝氏体等温淬火133.球墨铸铁亚温加热贝氏体等温淬火134.分级等温淬火135.二次贝氏体等温淬火136.珠光体等温淬火137.预冷等温淬火138.预淬等温淬火139.微变形淬火140.无变形淬火141.碳化物微细化淬火142.碳化物微细化四步处理143.晶粒超细化淬火144.晶粒超细化轮回淬火145.晶粒超细化的高温形变淬火146.晶粒超细化的室温形变处置惩罚147.GCr15钢双细化淬火148.低碳钢激烈淬火149.中碳钢高温淬火150.中碳钢过热淬火151.过共析钢高温淬火152.渗碳件四步处理法153.渗碳冷处理154.自回火淬火155.马氏体等温-马氏体分级淬火复合处理156.反淬火157.预应力淬火158.修复淬火159.固溶化淬火(固溶处理)160.水韧处置惩罚161.锻造余热水韧处置惩罚162.进步初始硬度的水韧163.水韧-时效处置惩罚164.细化晶粒水韧实时效处置惩罚第三章整体热处理——回火与时效165.低温回火166.中温回火167.高温回火168.调质处置惩罚169.盘条的调质处理170.球墨铸铁的调质处理171.调质球化172.冷挤压用钢的调质球化173.高速钢的低高温回火174.修复回火175.带温回火176.振动回火177.通电加热回火178.快速回火179.渗碳二次硬化处理180.多次回火181.淬回火182.自回火183.感应回火184.去氢回火185.去应力回火186.压力回火187.局部回火188.自然时效189.回归处理190.人工时效191.分级时效192.分区时效193.两次时效194.振动时效195.磁致伸缩消除刀具残余应力处理196.铸铁稳定化处理197.合金钢稳定化时效(残余奥氏体稳定化处理)198.奥氏体稳定化处理199.奥氏体调治处置惩罚第四章表面淬火200.感应加热表面淬火201.高频加热外表淬火202.高频预正火淬火203.高频无氧化淬火204.渗碳感应表面淬火205.渗氮感应表面淬火206.高频加热浴炉处置惩罚207.中频加热表面淬火208.工频加热外表淬火209.感应表面淬火时的加热方法210.喷液及浸液表面淬火211.埋油外表淬火212.埋水表面淬火213.大功率脉冲感应淬火214.超音频感应加热淬火215.双频感应淬火216.混合加热表面淬火217.火焰加热外表淬火218.电接触加热表面淬火219.电解液加热外表淬火220.盐浴加热表面淬火221.高速钢的激光加热表面淬火222.布局钢的激光外表淬火223.有色金属的激光表面淬火224.激光表面淬火代替局部渗碳225.电子束外表淬火226.空气电子束重熔淬火227.电子束表面合金化228.电火花表面强化及合金化229.强白光源表面淬火第五章化学热处理230.渗碳231.固体渗碳232.分段固体渗碳233.无箱固体渗碳234.固体气体渗碳235.气体固体渗碳236.粉末放电渗碳237.膏剂渗碳238.高频加热膏剂渗碳239.盐浴渗碳240.通俗(含氰)盐浴渗碳241.低氰盐浴渗碳242.原料无氰盐浴渗碳243.无毒盐浴渗碳244.通气盐浴渗碳245.超声波盐浴渗碳246.高温盐浴渗碳247.盐浴电解渗碳248.高频加热液体渗碳249.液体放电渗碳250.铸铁浴渗碳251.间接通电液体渗碳252.气体渗碳253.滴注式气体渗碳254.通气式气体渗碳255.分段气体渗碳256.高压气体渗碳257.感应加热气体渗碳258.火焰渗碳259.部分渗碳260.不均匀奥氏体渗碳261.碳化物弥散渗碳262.二重渗碳263.真空渗碳264.一段式真空渗碳265.脉冲式真空渗碳266.摆动式真空渗碳267.真空离子渗碳268.高温离子渗碳269.流态炉渗碳270.流态炉高温渗碳271.稀土催化渗碳272.稀土低温渗碳273.高含量渗碳274.离子轰击过饱和渗碳275.过分渗碳276.等离子渗碳277.修复渗碳278.深层渗碳279.穿透渗碳280.相变超塑性渗碳281.中碳及高碳钢的渗碳282.高速钢的低温渗碳283.渗碳后硼-稀土共渗复合处置惩罚284.渗氮285.气体等温渗氮286.气体二段渗氮287.气体三段渗氮288.短时渗氮289.不锈钢渗氮290.铸铁渗氮291.局部渗氮292.退氮处置惩罚293.抗蚀渗氮294.纯氨渗氮295.氨氮夹杂气体渗氮296.液氨滴注渗氮297.流态炉渗氮298.压力渗氮299.包装渗氮300.盐浴渗氮301.无毒盐浴渗氮302.压力盐浴渗氮303.渗氮亚温淬火复合处理304.离子渗氮305.高温离子渗氮306.氨气预处置惩罚离子渗氮307.快速深层离子渗氮308.热循环离子渗氮309.离子束渗氮310.真空渗氮311.离子渗氮及淬火两重处置惩罚312.化学催化渗氮313.稀土催化渗氮314.钛催化渗氮315.电解气相催化渗氮316.高频加热气体渗氮317.磁场中渗氮318.激光渗氮319.激光预处置惩罚及渗氮320.碳氮共渗321.高温分段气体碳氮共渗322.高温厚层气体碳氮共渗323.高频加热气体碳氮共渗324.高频加热膏剂碳氮共渗325.石墨粒子流态炉高温碳氮共渗326.中温碳氮共渗327.通气式中温气体碳氮共渗328.滴注通气式中温气体碳氮共渗329.滴注式中温气体碳氮共渗330.分阶段式中温气体碳氮共渗331.高含量(浓度)中温气体碳氮共渗332.真空中温碳氮共渗333.中温液体碳氮共渗(盐浴氰化)334.无毒盐浴碳氮共渗335.高频加热盐浴碳氮共渗336.高频加热液体碳氮共渗337.双浴液体碳氮共渗338.中温固体碳氮共渗339.中温膏剂碳氮共渗340.低中温碳氮共渗341.高温碳氮共渗(软氮化)342.高温气体碳氮共渗343.氮基氛围高温碳氮共渗344.稀土低温碳氮共渗345.铸铁的低温气体碳氮共渗346.高温碳氮共渗后淬火复合处置惩罚347.高温碳氮共渗渗碳复合处置惩罚348.低温液体碳氮共渗349.低温固体碳氮共渗350.低温无毒固体碳氮共渗351.快速低温固体碳氮共渗352.辉光离子低温碳氮共渗353.加氧高温碳氮共渗354.真空加氧高温碳氮共渗355.低温短时碳氮共渗356.低温薄层碳氮共渗357.稀土离子低温碳氮共渗358.分级淬火-低温碳氮共渗359.低温碳氮共渗-重新加热淬火360.中低温碳氮共渗复合处理361.碳氮共渗-镍磷镀复合处理362.氧氮处置惩罚363.渗硼364.低温固体渗硼365.固体渗硼-等温淬火复合处理366.粉末渗硼367.膏剂渗硼368.辉光放电膏剂渗硼369.深层膏剂渗硼370.自保护膏剂渗硼371.盐浴渗硼372.盐浴电解渗硼373.铸铁渗硼374.气体渗硼375.辉光放电气体渗硼376.硼锆共渗377.渗碳渗硼378.渗氮渗硼379.液体稀土钒硼共渗380.膏剂硼铝共渗381.超厚渗层硼铝共渗382.硼钛共渗383.镀镍渗硼384.硼碳氮三元共渗385.渗硼复合处理386.渗硼感应加热复合处理387.感应加热渗硼388.激光加热渗硼389.稀土渗硼390.不锈钢硼氮共渗391.渗硫392.离子渗硫393.气相渗硫394.铸铁渗硫395.硫氮共渗396.离子硫氮共渗397.离子氧氮硫三元共渗398.高温硫氮碳三元共渗399.硫氮碳三元共渗400.离子硫氮碳共渗401.高温电解硫钼复合渗镀402.蒸汽处理403.渗氮蒸汽处置惩罚404.硫氮共渗蒸汽处置惩罚405.氧化处置惩罚406.氧氮共渗407.氧碳氮三元共渗408.磷化409.粉末渗铝410.低温粉末渗铝411.熔铝热浸渗铝412.高频感应加热渗铝413.气体渗铝414.喷镀散布渗铝415.熔盐电解渗铝416.直接通电加热粉末渗铝417.铝稀土共渗418.渗铬419.散布渗铬420.辉光离子渗铬421.双层辉光离子渗铬422.真空渗铬423.稀土硅镁-三氧化二铬-硼砂盐浴渗铬424.铬稀土共渗425.渗铬后渗碳或渗氮426.铬铝共渗427.铬硅共渗428.铸铁的固-气法硅铬共渗429.铬铝硅三元共渗430.渗钛431.固体渗钛432.盐浴渗钛433.气体渗钛434.双层辉光离子渗钛435.钛铝共渗436.硼砂浴渗钒437.中性盐浴渗钒438.硼钒连续渗439.铬钒共渗440.渗钒真空淬火441.渗硅442.熔盐电解渗硅443.离子渗硅444.硼硅共渗445.激光硼硅共渗446.钼合金渗硅-离子渗氮复合处置惩罚447.渗锌448.渗锰449.渗锡450.离子钨钼共渗451.铸渗合金452.热循环化学热处理453.离子注入454.氮离子注入455.硼砂浴覆层(TD)法第六章形变热处理456.高温形变淬火457.锻热淬火458.锻热预冷淬火459.辊锻余热淬火460.锻后余热浅冷淬火自回火461.轧热淬火462.轧后余热控冷处理463.罗纹钢筋轧后余热处置惩罚464.挤压余热淬火465.高温形变正火466.高温形变等温淬火467.亚温形变淬火468.低温形变淬火469.珠光体区等温形变淬火470.低温形变等温淬火471.连续冷却形变处理472.珠光体温形变473.珠光体冷形变474.引发马氏体的形变时效475.马氏体室温形变时效476.回火马氏体室温形变时效477.贝氏体室温形变时效478.马氏体及铁素体双相构造室温形变强化479.过饱和固溶体形变时效480.屡次形变时效481.形变分级时效482.外表冷形变强化483.外表高温形变淬火484.使用形变强化结果遗传性的形变热处置惩罚485.预先形变热处置惩罚486.多边化强化处理487.复合形变淬火488.超塑形变处理489.9SiCr钢超塑形变处理490.低温形变淬火与马氏体形变时效相结合的形变热处理491.高温形变淬火与马氏体形变时效相结合的形变热处理492.奥氏体钢的热形变处理493.冷形变渗碳494.冷形变渗氮495.冷形变碳氮共渗496.冷形变渗硼497.形变渗钛498.低温形变淬火渗硫499.锻热渗碳淬火500.锻热淬火渗氮501.渗碳表面形变时效502.高温形变淬火高温碳氮共渗503.预冷形变外表形变热处置惩罚504.外表形变时效505.化学热处置惩罚后的冷外表形变强化506.化学热处置惩罚后外表高温形变淬火507.多边化处置惩罚后的化学热处置惩罚508.表面纳米化后的化学热处理509.晶粒超细化处理第七章非铁金属的热处置惩罚510.铝合金的形变热处理511.铜合金的形变热处理512.变形铝合金的去应力退火513.变形铝合金的再结晶退火514.变形铝合金的匀称化退火515.变形铝合金的时效516.变形铝合金的形变热处理517.变形铝合金的稳定化处理518.铸造铝合金的退火519.锻造铝合金的固溶处置惩罚实时效520.工业纯铜的热处理521.黄铜的热处理522.锡青铜的热处理523.铝青铜的热处理524.铍青铜的固溶处理525.铍青铜的时效处置惩罚526.铍青铜的去应力退火处理527.弹性青铜的热处理528.硅青铜的热处置惩罚529.铬青铜、锆青铜的热处理530.白铜的热处理531.钛合金的去应力退火532.钛合金的完整退火533.钛合金的等温退火和双重退火534.钛合金的固溶处置惩罚535.钛合金的时效536.钛合金的形变热处置惩罚537.镁合金的退火处理538.镁合金的固溶淬火处置惩罚539.镁合金的时效处置惩罚540.镁合金的固溶淬火及野生时效处置惩罚541.镍和镍合金的热处置惩罚542.钨合金的热处置惩罚543.钼合金的热处理544.直生式渗碳545.高温渗碳546.稀土催渗化学热处置惩罚547.高压气淬真空热处置惩罚548.低压渗碳技术549.燃气真空热处理技术550.铁基粉末冶金件的淬火与回火处置惩罚551.铁基粉末冶金资料的时效处置惩罚552.铁基粉末冶金材料的渗碳和碳氮共渗553.铁基粉末冶金材料的气体渗氮和气体氮碳共渗554.铁基粉末冶金材料的蒸汽处理(氧化处理)555.铁基粉末冶金材料的渗硫处理556.铁基粉末冶金资料的渗锌处置惩罚557.铁基粉末冶金资料的渗铬处置惩罚558.铁基粉末冶金资料的渗硼处置惩罚559.钢结硬质合金的退火560.钢结硬质合金的淬火561.钢结硬质合金的回火562.钢结硬质合金的时效硬化563.钢结硬质合金的沉积硬化合物层564.粉末高速钢的热处理565.硬质合金的退火566.硬质合金的淬火567.硬质合金的时效硬化568.电工用纯铁的野生时效569.电工用纯铁的高温净化退火570.电工用纯铁的去应力退火571.热轧硅钢片的热处置惩罚572.冷轧无取向硅钢片的热处置惩罚573.冷轧取向硅钢片的热处理574.铁镍合金的中央退火575.铁镍合金的高温退火576.铁镍合金的磁场退火577.低收缩合金(因瓦合金)坯料的热加工和热处置惩罚578.低收缩合金(因瓦合金)的制品热处置惩罚579.高温用因瓦合金的热处置惩罚580.热双金属的热处理581.高弹性合金的淬火、回火处置惩罚582.高弹性合金的形变热处置惩罚583.镍基高弹性合金的热处置惩罚584.钴基高弹性合金的热处理585.铜基高弹性合金的热处置惩罚586.恒弹性合金的热处理587.TiNi合金单程形状记忆热处理588.TiNi合金双程形状记忆热处理589.锻造镁合金基复合资料强化热处置惩罚590.变形镁合金基复合资料强化热处置惩罚591.钛合金的热处置惩罚592.高温化学气相沉积技术(简称HT-CVD)593.中温化学气相沉积(MT-CVD)技术594.低温化学气相沉积技术595.活性回响反映离子镀手艺596.空心阴极离子镀手艺(HCD)597.热丝阴极离子镀技术598.电弧离子镀技术599.磁控溅射手艺600.化学气相沉积复合超硬涂层技术601.物理气相沉积复合超硬涂层技术仅供小我用于进修、研讨;不得用于贸易用处。

热处理组织转变

热处理组织转变
二、长大速度G
奥氏体的线生长速度为相界面的推移速度,
式中,“-”表示向减小浓度梯度的下坡扩散;k—常数; —C在奥氏体中的扩散系数; —相界面处奥氏体中C的浓度梯度; —相界面浓度差。
等温转变时: 、 (由相图决定 )均为常数, 为珠光体片间距,平衡冷却时,平均片间距与每一片间距相同。
则: 。(1)由于忽略碳在铁素体的扩散,此计算值与实际速度偏小;(2)对粒状珠光体亦适用。
2.奥氏体晶格改组:(1)一般认为,平衡加热过热度很小时,通过Fe原子自扩散完成晶格改组。(2)也有人认为,当过热度很大时,晶格改组通过Fe原子切变完成。
3.奥氏体晶核的长大速度:奥氏体晶核向F和Fe3C两侧的推移速度是不同的。根据公式:
式中,K—常数; —C在奥氏体中的扩散系数; —相界面处奥氏体中C的浓度梯度; —相界面浓度差;“-”表示下坡(高浓度向低浓度处)扩散。向F一侧的推移速度与向Fe3C一侧的推移速度之比:
二、奥氏体的形核
以共析钢为例,讨论钢中奥氏体形成。
奥氏体晶核主要在F和Fe3C的相界面
形核,其次在珠光体团界、F亚结构(嵌镶块)
界面形核。这样能满足:(1)能量起伏;(2)结构起伏;(3)成分起伏三个条件。
三、奥氏体的长大
α+ Fe3Cγ
晶体结构:体心立方复杂斜方面心立方
含碳量:0.0218% 6.67% 0.77%
讨论:(1)温度T升高, 呈指数增加,长大速度G增加,(2)温度T升高,C1-C2增加, 增加,速度G增加;(3)温度T升高, =C2-C4下降,长大速度G增加。
综上:温度T升高,长大速度及形核率均整大。
三、等温形成动力学曲线
转变量与转变时间的关系曲线—等温动力学曲线,信息少。

第5章 模具钢料的热处理-模具表面处理技术

第5章 模具钢料的热处理-模具表面处理技术

第二节模具表面处理工艺概述模具是现代工业之母。

随着社会经济的发展,特别是汽车、家电工业、航空航天、食品医疗等产业的迅猛发展,对模具工业提出了更高的要求。

如何提高模具的质量、使用寿命和降低生产成本,成为各模具厂及注塑厂当前迫切需要解决的问题。

模具在工作中除了要求基体具有足够高的强度和韧性的合理配合外,其表面性能对模具的工作性能和使用寿命至关重要。

这些表面性能指:耐磨损性能、耐腐蚀性能、摩擦系数、疲劳性能等。

这些性能的改善,单纯依赖基体材料的改进和提高是非常有限的,也是不经济的,而通过表面处理技术,往往可以收到事半功倍的效果;模具的表面处理技术,是通过表面涂覆、表面改性或复合处理技术,改变模具表面的形态、化学成分、组织结构和应力状态,以获得所需表面性能的系统工程。

从表面处理的方式上,又可分为:化学方法、物理方法、物理化学方法和机械方法。

在模具制造中应用较多的主要是渗氮、渗碳和硬化膜沉积。

◆提高模具的表面的硬度、耐磨性、摩擦性、脱模性、隔热性、耐腐蚀性;◆提高表面的高温抗氧化性;◆提高型腔表面抗擦伤能力、脱模能力、抗咬合等特殊性能;减少冷却液的使用;◆提高模具质量,数倍、几十倍地提高模具使用寿命。

减少停机时间;◆大幅度降低生产成本与采购成本,提高生产效率和充分发挥模具材料的潜能。

◆减少润滑剂的使用;◆涂层磨损后,还退掉涂层后,再抛光模具表面,可重新涂层。

在模具上使用的表面技术方法多达几十种,从表面处理的方式上,主要可以归纳为物理表面处理法、化学表面处理法和表面覆层处理法。

模具表面强化处理工艺主要有气体氮化法、离子氮化法、点火花表面强化法、渗硼、TD法、CVD化学气相淀积、PVD物理气相沉积、PACVD离子加强化学气相沉积、CVA铝化化学气相沉积、激光表面强化法、离子注入法、等离子喷涂法等等。

下面综述模具表面处理中常用的表面处理技术:一、物理表面处理法:表面淬火是表面热处理中最常用方法,是强化材料表面的重要手段,分高频加热表面淬火、火焰加热表面淬火、激光表面淬火。

机械工程材料与热处理-精品

机械工程材料与热处理-精品

第一章金属材料的力学性能•工程上将材料抵抗弹性变形的能力称为刚度。

•强度是指金属材料在静力作用下,抵抗永久变形和断裂的性能。

•抗拉强度。

b是材料在破断前所承受的最大应力值。

•塑性是指金属材料在静力作用下,产生塑性变形而不破坏的能力。

•塑性指标:伸长率和断面收缩率。

•硬度是衡量金属材料软硬程度的指标。

•硬度包括:布氏硬度(HBW)、维氏硬度(HV)、洛氏硬度(HRA、HRB、HRC)第二章金属与合金的晶体结构•在晶体中,原子(或分子)按一定的几何规律作周期性地排列。

•这种抽象的、用于描述原子在晶体中排列形式的几何空间格架,简称晶格。

•能够完全反应晶格特征的、最小的几何单元称为晶胞。

•原子半径:晶胞中原子密度最大方向上相邻原子间距地一半。

•配位数:晶格中与任一原子距离最近且相等的原子数目。

•致密度:K二箸(n为原子个数)V照•晶面指数确定方法:(工)设坐标(2)求截距(3)取倒数(4)化整数(5)列括□•晶向指数确定方法:(1)设坐标(2)求坐标值(3)化整数(5)列括号•晶体缺陷包括:点缺陷(空位、间隙、置换)、线缺陷(刃型位错、螺型位错)、面缺陷(晶界、亚晶界)第三章金属与合金的结晶•金属的实际结晶温度Tn低于理论结晶温度T。

的现象,称为过冷现象。

理论结晶温度与实际结晶温度的差4T称为过冷度,过冷度△!'二To・Tn•实践证明,金属总是在一定的过冷度下结晶的,过冷是结晶的必要条件。

同一金属,结晶时冷却速度越大,过冷度越大,金属的实际结晶温度越低。

•纯金属的结晶过程是在冷却曲线上平台所经历的这段时间内发生的。

它是不断形成晶核和晶核不断长大的过程。

•细化晶粒的方法:在增加过冷度②变质处理③附加振动•共晶反应和a+B相互转化(恒温下由一个液相同时结晶出两个成分结构不同的固相)⑦渗碳体+奥氏体一莱氏体•共析反应:、和a+B相互转化(恒温下由一个固相同时析出两个成分结构不同的固相)/铁素体+渗碳体一珠光体•包晶反应:L+a和B相互转化(恒温下由一个液相包着一个固相生成另一个新的固相)•过冷度与冷却速度有何关系?它对金属结晶过程有何影响?对铸件晶粒大小有何影响?答:过冷度和冷却速度是两个不同的概念。

金属材料热处理原理 第五章 马氏体转变

金属材料热处理原理 第五章 马氏体转变

二、马氏体转变的主要特点 1. 切变共格和表面浮凸现象
钢因马氏体转变而产生的表面浮凸
马氏体形成时引起的表面倾动
马氏体是以切变方式形成的,马氏体与奥氏体 之间界面上的原子既属于马氏体,又属于奥氏体, 是共有的;并且整个相界面是互相牵制的,这种界 面称之为“切变共格”界面。
马氏体和奥氏体切变共格交界面示意图
4. 马氏体转变是在一个温度范围内完成的
马氏体转变量与温度的关系
Ms—马氏体转变开始温度;Mf—马氏体转变终了点; A、B—残留奥氏体。
5. 马氏体转变的可逆性
在某些铁合金中,奥氏体冷却转 变为马氏体,重新加热时,已形成的 马氏体又可以逆马氏体转变为奥氏体, 这就是马氏体转变的可逆性。一般将 马氏体直接向奥氏体转变称为逆转变。 逆转变开始点用As表示,逆转变终了 点用Af表示。通常As温度比Ms温度高。
2. 马氏体转变的无扩散性
马氏体转变的无扩散性有以下实验证据:
(1) 碳钢中马氏体转变前后碳的浓度没有 变化,奥氏体和马氏体的成分一致,仅发生晶 格改组:
γ-Fe(C) → α-Fe(C)
面心立方 体心正方
(2) 马氏体转变可以在相当低的温度范围 内进行,并且转变速度极快。
3. 具有一定的位向关系和惯习面
西山关系示意图
③ G-T关系
{111}γ∥{110}α′ 差1°;<110>γ∥<111>α′ 差2°。
(2) 惯习面
马氏体转变时,新相总是在母相的某个晶面族上 形成,这种晶面称为惯习面。在相变过程中从宏观上 看,惯习面是不发生转动和不畸变的平面,用它在母 相中的晶面指数来表示。
钢中马氏体的惯习面随碳含量及形成温度不同而 异,常见的有三种:(1) 含碳量小于0.6%时,为{111}γ; (2) 含碳量在0.6%~1.4%之间时,为{225}γ;(3) 含碳 量高于1.4%时,为{259}γ。随马氏体形成温度下降, 惯习面有向高指数变化的趋势。

第五章钢的热处理(含答案)

第五章钢的热处理(含答案)

第五章钢的热处理(含答案)一、填空题(在空白处填上正确的内容)1、将钢加热到________,保温一定时间,随后在________中冷却下来的热处理工艺叫正火。

答案:Ac3或Accm以上50℃、空气2、钢的热处理是通过钢在固态下________、________和________的操作来改变其内部________,从而获得所需性能的一种工艺。

答案:加热、保温、冷却、组织3、钢淬火时获得淬硬层深度的能力叫________,钢淬火时获得淬硬层硬度的能力叫________。

答案:淬透性、淬硬性4、将________后的钢加热到________以下某一温度,保温一定时间,然后冷却到室温,这种热处理方法叫回火。

答案:淬火、Ac15、钢在一定条件下淬火时形成________的能力称为钢的淬透性。

淬透层深度通常以工件________到________的距离来表示。

淬透层越深,表示钢的________越好。

答案:马氏体(M)、表面、半马氏体区、淬透性6、热处理之所以能使钢的性能发生变化,其根本原因是由于铁具有________转变,从而使钢在加热和冷却过程中,其内部________发生变化的结果。

答案:同素异构、组织7、将钢加热到________,保温一定时间,随后在________中冷却下来的热处理工艺叫正火。

答案:Ac3或Accm以上30℃~50℃、空气8、钢的渗碳是将零件置于________介质中加热和保温,使活性________渗入钢的表面,以提高钢的表面________的化学热处理工艺。

答案:渗碳、碳原子、碳含量9、共析钢加热到Ac1以上时,珠光体开始向________转变,________通常产生于铁素体和渗碳体的________。

答案:奥氏体(A)、奥氏体晶核、相界面处10、将工件放在一定的活性介质中________,使某些元素渗入工件表面,以改变化学成分和________,从而改善表面性能的热处理工艺叫化学热处理。

第五章植物脱毒快繁技术

第五章植物脱毒快繁技术

(2)培养条件
在茎尖培养中,光下培养的效果通常比暗培养效果 好,如马铃薯茎尖培养时,当茎已长到1cm高时,光 照强度便增加到4000lx。
(3)外植体的生理状态
茎尖最好要由活跃生长的芽上切取。 取芽的时间也很重要,一般选萌动期较好。否则 采用适当的处理,打破休眠才能进行。
(三)茎尖与热处理相结合方法
2、酶缺乏。茎尖中缺乏病毒合成所需的酶系, 存在高水平内源激素,可抑制病毒的增殖。
• 3、能量竞争。当植物细胞分裂DNA复制 时,病毒DNA随着复制。因此,植物细 胞分裂和病毒繁殖之间存在相互竞争。 在旺盛分裂的分生组织中,代谢活动很 高,正常核蛋白合成占优势,使病毒无 法进行复制。
• 4、抑制因子存在。在植物体内存在有一 种“病毒钝化系统”(抑制因子假说), 在分生组织中的活性最高,因而使分生 组织不受侵染。
愈伤组织的某些细胞不带病毒原因: 1、病毒的复制速度赶不上细胞的增殖速度; 2、有些细胞通过突变获得了抗病毒的抗性。 愈伤组织脱毒的缺陷是植株遗传性不稳定,可 能会产生变异植株。
2、茎尖微体嫁接
木本植物茎尖培养难以生根成植株,将实生苗砧 木在人工培养基上种植培育,再从成年无病树枝上切 取0.4-1mm茎尖,在砧木上进行试管微体嫁接,以获 得无病毒幼苗。
即:叶片包被严紧的芽,如菊花、兰花,只 须75%酒精中浸蘸一下,而叶片包被松散的芽, 如香石竹、马铃薯等,则要用0.1%次氯酸钠表 面消毒10min。
切取茎尖越小脱毒效果越好,但太小不易成 活,过大又不能保证完全除去病毒,所以茎尖 大小要合适。
离体茎尖大小对马铃薯脱毒效果的影响
茎尖长 叶原基数 小植株数 脱毒植株
• (一)离体繁殖的一般技术 1.外植体的选择 (1)根据培养目的选择

《热处理控制程序[大全5篇]》

《热处理控制程序[大全5篇]》

《热处理控制程序[大全5篇]》第一篇:热处理控制程序热处理控制程序1、目的为外包的热处理的质量控制做出规定,以保证达到预期的热处理效果。

2、使用范围适用于公司压力管道安装工程零部件消除应力热处理和改善力学性能的热处理。

3、职责焊接热处理责任工程师对外包的热处理的质量负全责,并负责对外包的热处理单位进行定期评价。

4、工作程序4、1热处理工艺试验对于新材料、新工艺及特殊要求的热处理工序,应按规定的程序进行热处理工艺试验。

经焊接热处理责任工程师审核的热处理工艺试验报告,应作为编制热处理工艺的依据。

4、2热处理工艺编制(1)热处理工艺的编制依据a热处理工艺试验报告b焊接工艺指导书的热处理规定(2)热处理工艺由技术部负责编制,焊接热处理质控系统责任工程师审核批准。

(3)热处理工艺的修改,由技术部按规定的程序进行。

4.3热处理外包控制(1)对外包单位的评价a、热处理的外包单位必须取得有关部门颁发的热处理资格证书或取得同级及以上锅炉压力管道安装许可的单位。

外包单位的热处理操作工应进行配需,合格后上岗,能够熟练掌握热处理设备的性能和操作规程。

b、热处理的外包单位的热处理设备和热点仪表、测量仪器等应完好,其能力必须适应本公司的热处理产品的要求。

所有使用的测量记录仪表的精度、灵敏度、量程都应满足有关规定要求,且经检定合格并在有效期内。

(2)外包单位必须按照本单位所提供的热处理工艺指示书和热处理规程进行热处理。

(3)对外包单位所提供的热处理报告和热处理曲线图,必须经焊接热处理质控系统责任工程师签字确认。

(4)热处理记录及实验报告由质检部归入产品技术档案。

5、相关文件与记录《焊缝热处理工艺指示书》《焊缝热处理检验报告书》《焊缝热处理记录表》第二篇:热处理1.退火:指金属材料加热到适当的温度,保持一定的时间,然后缓慢冷却的热处理工艺。

常见的退火工艺有:再结晶退火、去应力退火、球化退火、完全退火等。

退火的目的:主要是降低金属材料的硬度,提高塑性,以利切削加工或压力加工,减少残余应力,提高组织和成分的均匀化,或为后道热处理作好组织准备等。

碳钢的热处理

碳钢的热处理
①转变开始与转变终了的时间不同 ②转变后产物的组织与性能不同
精选
一、珠光体型转变——高温转变(A1~550℃) 1、转变过程及特点 过冷奥氏体在A1~550℃温度范围内,将 分解为珠光体类组织。
精选
当奥氏体被过冷至A1以下温度时,在奥氏体晶界 处(含碳量高)优先产生渗碳体的核心,然后依靠奥 氏体不断供应碳原子(随着冷却,奥氏体溶解碳的能 力下降,碳从奥氏体内向晶界扩散),渗碳体沿一定 方向逐渐长大,而随着渗碳体的长大,又使其周围的 奥氏体碳浓度下降,这就促使贫碳的奥氏体局部区域 转变成铁素体(即渗碳体两侧出现铁素体晶核),在 渗碳体长大的同时,铁素体也不断长大,而随着铁素 体的长大,必然将多余的碳排挤出去,这就有利于形 成新的渗碳体晶核。最终形成了相互交替的层片状渗 碳体和铁素体——珠光体。
为了减少残余奥氏体的含量,可将淬火零件 继续冷却到零下几十度——冷处理,使残余奥氏 体转变为马氏体。
精选
残余奥氏体
精选
d、奥氏体转变为马氏体,体积增大 奥氏体比容 < 珠光体比容 < 马氏体比容 比容:单位重量的体积值 这个特点,使马氏体内部存在较大的 内应力,易导致零件淬火变形、开裂。
精选
第三节 过冷奥氏体转变曲线图
精选
第一节 钢在加热时的组织转变
一、奥氏体的形成
大多数热处理工艺的加热温度都高于钢 的临界点(A1 或 A3),使钢具有奥氏体组 织,然后以一定的冷却速度冷却,以获得所 需的组织和性能。
精选
铁碳合金缓慢加热时奥氏体的形成可以 从Fe-Fe3C相图中反映出来,珠光体向奥氏体 的转变属于扩散型相变。以共析钢为例,珠 光体组织在A1(727℃)以下,组织保持不变 (α相中碳的溶解度及Fe3C的形状稍有变化); 当加热到A1点以上时,珠光体全部转 变为奥 氏体。

热处理名词解释

热处理名词解释

第一章金属的加热1、对流传热:热量的传递依靠发热体与工件之间流体的流动进行。

2、辐射传热:温度大于绝对零度的物体从表面放出波长为(0.4~40)×10-6m范围内的辐射能被另一物体吸收后变为热能。

3、传导传热:热量的传递仅靠传热物质质点间的相互碰撞。

4、强迫流动:用外加动力强制流体运动。

5、层流:强迫流动时流体沿着工件表面一层层有规则的流动。

6、紊流:流体的不规则运动。

7、随炉加热:即工件装入炉中后,随着炉子升温而加热,直至所需加热温度。

8、预热加热:即工件现在已升温至较低温度的炉子中加热,到温后再转移至预定工件加热温度的炉中加热至工件达到所要求的温度。

9、到温入炉加热:又称热炉装料加热,即先把炉子升到工件要求的加热温度,然后再把工件装入炉中进行加热。

10、高温入炉加热:即工件装入较工件要求加热温度高的炉内进行加热,直至工件达到要求温度。

11、内氧化:氧沿晶界或其他通道向内扩散,与晶界附近的Si、Mn等元素结合成氧化物的现象。

12、碳势:纯铁在一定温度下于加热炉气中加热时达到既不增碳也不脱碳并与炉气保持平衡时表面的含碳量。

13、露点:气氛中水蒸气开始凝结成雾的温度,即在一个大气压力下,气氛中水蒸气达到饱和状态时的温度。

14、半脱碳层:碳钢脱碳层组织自表面至中心,由铁素体加珠光体组织逐渐过渡到珠光体,再至相当于钢原始含碳量的退火组织。

15、全脱碳层:碳钢脱碳层区碳浓度分布曲线有突变,碳层组织表面为单一的铁素体区,向里为铁素体加珠光体逐渐过渡到相当于钢原始含碳量缓冷组织。

16、光亮热处理:工件热处理后,不因氧化等原因使工件表面颜色变暗,光洁度降低,而仍保持热处理前原来工件表面光亮状态。

17、保护气氛:在工件加热时保持其表面不氧化、脱碳的气氛。

18、吸热式气氛:用天然气、丙烷气、城市煤气及其他有机物质为原料,以一定的比例与空气混合,在装有镍触媒的高温(930~1050℃)炉内进行不完全燃烧而得的一种混合气体。

热处理原理与工艺课后习题

热处理原理与工艺课后习题

热处理原理与工艺课后习题第一章一.填空题1.奥氏体形成的热力条件()。

只有在一定的()条件下才能转变为奥氏体。

()越大,驱动力越大,奥氏体转变速度越快。

2.共析奥氏体形成过程包括()()()和()四个阶段。

3.( )钢加热时奥氏体晶粒长大的倾向小,而()钢加热时奥氏体晶粒长大的倾向小。

4.本质晶粒度是钢的热处理工艺性能之一,对于()钢可有较宽的热处理加工范围,对于()钢则必须严格控制加热温度,以免引起晶粒粗化而是性能变坏。

5.()晶粒度对钢件冷却后的组织和性能影响较大。

6.控制奥氏体晶粒长大的途径主要有()()( )( )和()。

7.()遗传对热处理工件危害很大,它强烈降低钢的强韧性,使之变脆,必须避免和消除。

、二、判断正误并简述原因1.奥氏体晶核是在珠光体中各处均匀形成的。

()2.钢中碳含量越高,奥氏体转变速度越快,完全奥氏体化所需时间越短。

()3.同一种钢,原始组织越细,奥氏体转变速度越慢。

()4.本质细晶粒钢的晶粒在任何加热条件下均比本质粗晶粒钢细小。

()5.在一定加热的温度下,随温度时间延长,晶粒将不断长大。

()6.所有合金元素都可阻止奥氏体晶粒长大,细化奥氏体晶粒。

()三、选择题1.Ac1、A1、Ar1的关系是__________。

A..Ac1>A>1Ar1 B. Ar1>A1>Ac1 C.A1>Ar1>Ac1 D.A1>Ac1>Ar12. Ac1、Ac3、Ac cm是实际()时的临界点。

A. 冷却B.加热C.平衡D.保温3.本质晶粒度是指在规定的条件下测得的奥氏体晶粒()A.长大速度B. 大小C. 起始尺寸D. 长大极限4.实际上产中,在某一具体加热条件下所得到的奥氏体晶粒大小称为()A. 起始晶粒度B.本质晶粒度C.实际晶粒度D.名义晶粒度四、简答题1.以共析碳钢为例,说明:1.奥氏体的形成过程;2. 奥氏体晶核为什么优先在铁素体和渗碳体相界面上形成;3. 为什么铁素体消失后还有部分渗碳体未溶解。

工程材料与热处理第5章作业题参考答案

工程材料与热处理第5章作业题参考答案

1.奥氏体晶粒大小与哪些因素有关?为什么说奥氏体晶粒大小直接影响冷却后钢的组织和性能?奥氏体晶粒大小是影响使用性能的重要指标,主要有以下因素影响奥氏体晶粒大小。

〔1〕加热温度和保温时间。

加热温度越高,保温时间越长,奥氏体晶粒越粗大。

〔2〕加热速度。

加热速度越快,过热度越大,奥氏体的实际形成温度越高,形核率和长大速度的比值增大,那么奥氏体的起始晶粒越细小,但快速加热时,保温时间不能过长,否那么晶粒反而更加粗大。

〔3〕钢的化学成分。

在一定含碳量范围内,随着奥氏体中含碳量的增加,碳在奥氏体中的扩散速度及铁的自扩散速度增大,晶粒长大倾向增加,但当含碳量超过一定限度后,碳能以未溶碳化物的形式存在,阻碍奥氏体晶粒长大,使奥氏体晶粒长大倾向减小。

〔4〕钢的原始组织。

钢的原始组织越细,碳化物弥散速度越大,奥氏体的起始晶粒越细小,一样的加热条件下奥氏体晶粒越细小。

传统多晶金属材料的强度与晶粒尺寸的关系符合Hall-Petch关系,即σs=σ0+kd-1/2,其中σ0和k是细晶强化常数,σs是屈服强度,d是平均晶粒直径。

显然,晶粒尺寸与强度成反比关系,晶粒越细小,强度越高。

然而常温下金属材料的晶粒是和奥氏体晶粒度相关的,通俗地说常温下的晶粒度遗传了奥氏体晶粒度。

所以奥氏体晶粒度大小对钢冷却后的组织和性能有很大影响。

奥氏体晶粒度越细小,冷却后的组织转变产物的也越细小,其强度也越高,此外塑性,韧性也较好。

2.过冷奥氏体在不同的温度等温转变时,可得到哪些转变产物?试列表比较它们的组织和性能。

3.共析钢过冷奥氏体在不同温度的等温过程中,为什么550℃的孕育期最短,转变速度最快?因为过冷奥氏体的稳定性同时由两个因素控制:一个是旧与新相之间的自由能差ΔG;另一个是原子的扩散系数D。

等温温度越低,过冷度越大,自由能差ΔG也越大,那么加快过冷奥氏体的转变速度;但原子扩散系数却随等温温度降低而减小,从而减慢过冷奥氏体的转变速度。

高温时,自由能差ΔG起主导作用;低温时,原子扩散系数起主导作用。

热处理操作规程

热处理操作规程

温馨小提示:本文主要介绍的是关于热处理操作规程的文章,文章是由本店铺通过查阅资料,经过精心整理撰写而成。

文章的内容不一定符合大家的期望需求,还请各位根据自己的需求进行下载。

本文档下载后可以根据自己的实际情况进行任意改写,从而已达到各位的需求。

愿本篇热处理操作规程能真实确切的帮助各位。

本店铺将会继续努力、改进、创新,给大家提供更加优质符合大家需求的文档。

感谢支持!(Thank you for downloading and checking it out!)阅读本篇文章之前,本店铺提供大纲预览服务,我们可以先预览文章的大纲部分,快速了解本篇的主体内容,然后根据您的需求进行文档的查看与下载。

热处理操作规程(大纲)一、热处理概述1.1热处理定义及分类1.2热处理的目的和作用1.3常见热处理工艺简介二、热处理设备与材料2.1热处理设备种类及选用2.2热处理炉及其结构特点2.3热处理辅助设备2.4常见热处理材料及其性能三、热处理工艺参数3.1加热温度3.2保温时间3.3冷却速度3.4热处理工艺曲线的制定四、热处理操作流程4.1工件表面处理4.2装炉与摆放4.3加热与保温4.4冷却与出炉五、热处理质量控制5.1热处理质量检验方法5.2常见热处理缺陷及其原因5.3热处理质量控制措施六、热处理安全与环保6.1热处理安全操作规程6.2热处理过程中的环境保护6.3热处理事故应急处理措施七、热处理技术在各领域的应用7.1热处理在钢铁行业中的应用7.2热处理在机械制造中的应用7.3热处理在其他行业中的应用八、热处理发展趋势与展望8.1热处理技术发展趋势8.2热处理新技术介绍8.3热处理行业的发展前景一、热处理概述热处理操作规程中的热处理概述部分:1.1热处理定义及分类热处理是一种通过加热和冷却的方式改变材料性能的无损加工技术。

根据加热温度和冷却方式的不同,热处理可以分为以下几类:退火、正火、淬火、回火和表面硬化。

退火是通过加热到一定温度并缓慢冷却来改善材料的塑性和韧性;正火是在低于淬火温度的温度下加热并快速冷却,以提高材料的硬度和强度;淬火是将材料加热到较高温度,然后迅速浸入冷却介质中,以获得高硬度和高强度的组织;回火是在淬火后,将材料加热到低于淬火温度的一定温度,然后缓慢冷却,以减轻淬火应力和提高韧性;表面硬化是通过加热和快速冷却的方式,使材料表面获得高硬度的工艺。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
总的辐出度有斯忒潘-波尔兹蔓公式给出:
M(Tε)σT4
= 5.6710-8W/cm2K4 为波尔兹曼常数,可见,热辐 射比热传导对温度的依赖高三个数量级。高温下,热 辐射是主要传热机制,也是RTP的主要传热机制。
净传输能量计算
辐射能量最大处的波长可由下式给出:
b 0.289K 8()cm
λTb λmaxT
热传导时要把气流考虑进去。这种由外加气压梯度造
成的气流热传导成为强制热流。有效传热量为:

qh(TT)
T--远离硅片的气温; h—有效传热系数
热辐射
黑体热辐射的辐出度有普朗克辐射定律确定:
Mλ(T)ε(λλ5 )(ec2c/1λT1)
式中,()是黑体的辐射率,c1=3.714210-16 Wm2,为第一辐射常数;c2=1.438810-2mK为第 二辐射常数。对绝对黑体 =1, 0< <1 为灰体。
RTP 设备的加热元件大部分采用钨-卤灯或惰 性气体长弧放电灯,一般充氪或氙。 用灯光加热有明显的好处: 1.无污染,主要利用辐射; 2.可以快速升、降温; 3.省电,无电阻元件; 4.体积小。
高强度光源和加热腔体设计
钨卤灯:Halogen lamp, 白炽灯的加强版 与白炽灯的区别
钨卤灯的玻璃外壳中充有一些卤族元素气体(通常是碘或溴) 其工作原理为
第二篇 单项工艺1
第五章 快速热处理(RTP)
内蒙草原
快速热处理
集成电路制造工艺的某些工序需要高温,如扩 散、氧化、离子注入后的退火、薄膜淀积等。
但是高温会使已经进入硅片的杂质发生不希望的 再分布,对小尺寸器件的影响特别严重。
减小杂质再分布的方法是快速热处理,即在极短 的时间内使硅片表面加热到极高的温度,从而在 较短的时间(10–3 ~ 102 s)内完成热处理。
5.传热方式为:热 传导、热对流、强制热流和热辐射。当一段静止的 气体或液体,截面积为A,流过它的热量为:

q(T)kth(T)AT kth是材料的热导率
快速热处理中,大部分光能由硅片表面几微米内吸
收,然后由热传导进入深处。另外,当考虑气体中的
等温型:宽束辐射加热,采用非相干光源,如钨-卤灯 加热数秒,横向、纵向的温度梯度都很小 现行的商用RTP都采用这种类型,本章重点介绍
北极狐
北极狐
主要内容
5.1 灰体辐射、热交换和热吸收; 5.2 高强度光源和反应腔设计; 5.3 温度均匀性; 5.4 热塑应力; 5.5 几种典型的RTP工艺应用; 5.6 其他快速热处理系统.
因此,不但要缩短保温时间,还要减小升温、降温时间
引入,快速热处理,RTP, Rapid Thermal Processing
降低温度和缩短时间,或者只缩短时间(快速)
离子注入后 杂质激活 晶格损伤修复
Page 3
本章的两个关键问题
1. 温度的均匀性
晶圆片加热、冷却过程中,如何保持温度均匀
2. 晶圆片温度的测量
输能量:s q •1 2 q •2 1 σ1 T ( 1 4 ε ε 2 T 2 4)1 A F A A 1 2
式中,A1、A2分别为物体1,2的面积,FA1-A2是位置 因子,即表面A2对着A1的全部立体角的百分比:
FA 1A2A 11 A2A1caoaaβ πs1rc2oβs2
5.2 高强度光源和反应腔设计
当灯丝发热时,钨原子被蒸发后向玻璃管壁方向移动,当接近 玻璃管壁时,钨蒸气被冷却到大约800℃并和卤素原子结合在一 起,形成卤化钨(碘化钨或溴化钨)。
卤化钨因热流向玻璃管中央继续移动,又重新回到被氧化的灯 丝上,由于卤化钨是一种很不稳定的化合物,其遇热后又会重 新分解成卤素蒸气和钨,这样钨又在灯丝上沉积下来,弥补被 蒸发掉的部分。
问题引出
问题:杂质在高温下再分布,如何解决?
方案一:降低温度,减小扩散; 方案二:缩短保温时间,减小扩散
方案一,降低温度
矛盾1:离子注入后,为消除晶格损伤,需要高温,低温效果不好
矛盾2:为完全激活杂质,需要高温1000℃退火
因此,不得不使用高温
方案二,缩短保温时间
升温、降温速率的考量
传统的管式加热,从外向内,温度变化太快,形成温度梯度很大, 容易导致晶圆片翘曲,所以需要缓慢升温和降温→导致明显扩散
Page 4
快速热处理最初的开发是用于离子注入 后的退火,现在已扩展到氧化、化学汽相 淀积、外延、硅化物生长等。
Page 5
快速热处理的分类
根据加热类型进行分类 绝热型、热流型、等温型
绝热型:宽束相干光源,如准分子激光器 加热时间最短 温度、退火时间难于控制,纵向的温度梯度大,成 本高
热流型:高强度点光源,如电子束、聚焦激光 对晶圆片扫描加热,横向温度不均匀,不适用于IC
T
可以利用上式由辐射波长确定RTP的温度。
当辐射入射圆片表面时,可发生反射、吸收或透射。 若(,T)为反射率,(,T)为透射率,则 根据基尔霍夫定律,能量吸收率为:
ε(T λ 1 ),ρT ( λτ ),(T λ),
对不透明材料, (,T)=0,有:ε(Tλ,)1ρ(Tλ),
当知道两个物体的辐射率,就可计算它们之间的净传
RTP 升温速度有多快
Rapid thermal processing (RTP) provides a way to rapidly heat wafers to an elevated temperature to perform relatively short processes, typically less than 1-2 minutes. up to 1,200oC or greater, at the rate of 20250oC/sec
通过这种再生循环过程,灯丝的使用寿命不仅得到了大大延长 (几乎是白炽灯的4倍),同时由于灯丝可以工作在更高温度下, 从而得到了更高的亮度,更高的色温和更高的发光效率。
Page 15
高强度光源和加热腔体设计
惰性气体弧光灯(nobel gas arc lamp) 弧光灯:这种灯有两个电极,通常是以熔点高的金 属_钨制成,在电极之间,电离气体,发光。 在灯泡中充填的气体,通常分成氖、氩、氪、氙、 钠、卤化物及水银等。 一般的日光灯, 充填了低压水银气体的弧光灯。
相关文档
最新文档