证明函数不等式的六种方法

合集下载

不等式验证的常用方法

不等式验证的常用方法

不等式验证的常用方法除了取反外,验证不等式结果正确性的方法还有多种。

这些方法可以根据不等式的性质和题目的具体条件来灵活运用。

以下是一些常用的验证方法:1. 代数验证●代入法:选择一个或多个满足条件的数值代入不等式,检查不等式是否成立。

这种方法虽然不全面,但可以作为一种快速检查的手段。

●化简与比较:通过代数运算化简不等式,然后直接比较两边的数值或表达式大小,从而验证不等式的正确性。

2. 图形验证●函数图像:如果不等式与函数有关,可以绘制函数的图像,通过观察图像在特定区间内的变化趋势来验证不等式的正确性。

例如,对于一元一次不等式ax+b>0,可以绘制直线y=ax+b,并观察其与x轴的交点,从而确定不等式的解集。

●数轴表示:在数轴上表示不等式的解集,通过观察数轴上的区间分布来验证不等式的正确性。

这种方法特别适用于解决含有绝对值或分段函数的不等式问题。

3. 逻辑推理●利用不等式的性质:根据不等式的基本性质(如传递性、加法性质、乘法性质等)进行逻辑推理,从而验证不等式的正确性。

●反证法:假设不等式不成立,然后通过逻辑推理推导出矛盾或错误的结果,从而证明原不等式成立。

这种方法在解决一些复杂的不等式问题时特别有用。

4. 利用已知结论或定理●数学定理:利用已知的数学定理或结论来验证不等式的正确性。

例如,利用三角函数的性质、均值不等式等定理来解决相关的不等式问题。

●已知条件:如果题目中给出了其他已知条件或结论,可以尝试将这些条件与不等式相结合,通过逻辑推理来验证不等式的正确性。

5. 数值分析软件●使用计算机软件:对于一些复杂的不等式问题,可以使用数值分析软件(如MATLAB、Python的NumPy库等)进行验证。

这些软件能够快速地计算出不等式的解集或进行大量的数值实验,从而验证不等式的正确性。

在实际应用中,可以根据题目的具体条件和个人的知识储备来选择合适的验证方法。

有时候,多种方法结合使用可以更加全面地验证不等式的正确性。

2022考研数学:不等式证明的7种方法总结

2022考研数学:不等式证明的7种方法总结

2022考研数学:不等式证明的7种方法总结
不等式证明的7种方法总结
1. 拉格朗日中值定理适用于已知函数导数的条件,证明涉及函数(值)的不等式;
2. 泰勒公式适用于已知函数的高阶导数的条件,证明涉及函数(值)或低阶导函数(值)的不等式;
3. 应用函数的单调性定理证明:(1)对于证明数的大小比较的不等式,转化为同一函数在区间两端点函数(或极限)值大小的比较,利用函数在区间上的单调性进行证明;(2)对于证明函数大小比较的不等式,转化为同一个函数在区间内的任意一点函数值与区间端点函数(或极限)值大小的比较,利用函数在区间上的单调性进行证明;
4. 利用函数最大值、最小值证明不等式。

把待证的不等式转化为区间上任意一点函数值与区间上某点x出的函数值大小的比较,然后证明(fx)为最大值或最小值,即可证不等式成立;
5. 利用函数取到唯一的极值证明不等式。

把待证的不等式转化为区间上任意一点函数值与区间内某点x处的函数值大小的比较,然后证明(fx)为唯一的极值且为极大值或极小值,即(fx)为最大值或最小值,即可证不等式成立;
6. 用柯西中值定理证明不等式;
7. 利用曲线的凹凸性证明不等式。

高考数学证明不等式的基本方法

高考数学证明不等式的基本方法
讲末复习
知识网络
要点归纳
题型研修
知识网络
要点归纳
题型研修
1.比较法证明不等式 作差比较法是证明不等式的基本方法,其依据 是:不等式的意义及实数大小比较的充要条件. 证明的步骤大致是:作差——恒等变形——判 断结果的符号.
知识网络
要点归纳
题型研修
2.综合法证明不等式 综合法证明不等式的依据是:已知的不等式以及逻辑推理 的基本理论.证明时要注意的是:作为依据和出发点的几个 重要不等式(已知或已证)成立的条件往往不同,应用时要先 考虑是否具备应有的条件,避免错误,如一些带等号的不 等式,应用时要清楚取等号的条件,即对重要不等式中 “当且仅当……时,取等号”的题型研修
例 1 若 x,y,z∈R,a>0,b>0,c>0.求证:b+a cx2+c+b a
y2+a+c bz2≥2(xy+yz+zx).
证明 ∵b+a cx2+c+b ay2+a+c bz2-2(xy+yz+zx)
=bax2+aby2-2xy+bcy2+bcz2-2yz+acz2+acx2-2zx=
∴0< (n+1)n22+ +11+ +( n n+1)<1,即CCn+n1<1,
从而有 Cn+1<Cn.
知识网络
要点归纳
题型研修
跟踪演练 2 若 a,b,m,n 都为正实数,且 m+n=1, 试证: ma+nb≥m a+n b. 证明 ∵a,b,m,n 均为正数,且 m+n=1, ∴( ma+nb)2-(m a+n b)2 =ma+nb-m2a-n2b-2mn ab =m(1-m)a+n(1-n)b-2mn ab =mn( a- b)2≥0,又 ma+nb>0,m a+n b>0, ∴ ma+nb≥m a+n b.
知识网络

不等式证明基本方法

不等式证明基本方法

不等式证明基本方法一、数学归纳法数学归纳法是证明自然数性质的一种基本方法,对于与整数有关的不等式,我们也可以利用数学归纳法进行证明。

其基本思路是先证明当n=1时不等式成立,再假设当n=k时不等式成立,然后通过数学推理证明当n=k+1时不等式也成立。

二、反证法当我们尝试利用数学归纳法证明不等式时,有时可能会遇到困难,这时我们可以尝试使用反证法。

反证法的证明过程是:先假设不等式不成立,然后推导出与已知条件或已证明的定理矛盾的结论,从而证明原不等式的正确性。

三、插值法插值法也是一种常见的不等式证明方法。

其基本思路是在待证不等式的两边加入适当的不等式,并利用不等式的传递性和可加减性进行推导,最终得到待证不等式的真假结论。

四、绝对值法对于涉及绝对值的不等式,我们可以利用绝对值的性质进行证明。

例如,对于,a-b,>c这样的绝对值不等式,我们可以根据绝对值的定义将其拆分为两个不等式,再分别进行证明。

另外,利用绝对值不等式的性质,我们还可以进行变量替换等操作,将原不等式化简为更简单的形式进行证明。

五、特殊化方法特殊化方法是指将不等式中的一些变量或参数取特殊值,从而达到简化不等式的目的。

例如,对于含有幂函数的不等式,我们可以通过取特殊值使得幂函数变为常数或者线性函数,从而将原不等式化简为更简单的形式。

综上所述,不等式证明的基本方法包括数学归纳法、反证法、插值法、绝对值法和特殊化方法等。

在具体的证明过程中,我们需要根据待证不等式的特点选择合适的方法,并灵活运用各种数学工具和技巧,从而得到准确的证明结论。

构造函数证明不等式的八种方法

构造函数证明不等式的八种方法

构造函数证明不等式的八种方法下面将介绍构造函数证明不等式的八种常见方法:1.特殊赋值法:这种方法通过为变量赋特殊的值来构造函数,使得不等式成立。

例如,对于不等式a^2>b^2,可以构造函数f(x)=x^2,当a=2,b=1时,即f(2)>f(1),从而得到a^2>b^22.梯度法:这种方法通过构造一个变化率为正(或负)的函数来推导出不等式。

例如对于不等式a^2>b^2,可以构造函数f(x)=(x-a)^2-(x-b)^2,当x>(a+b)/2时,即f'(x)>0,从而得到a^2>b^23.极值法:这种方法通过构造一个函数的极大值(或极小值)来证明不等式。

例如对于不等式a^2>b^2,可以构造函数f(x)=x^2-b^2,当x=a时,f(x)>0,从而得到a^2>b^24.差的平方法:这种方法通过构造一个差的平方形式的函数来证明不等式。

例如对于不等式a^2>b^2,可以构造函数f(x)=(x+a)^2-(x+b)^2,当x>(a+b)/2时,即f(x)>0,从而得到a^2>b^25.相似形式法:这种方法通过构造一个与要证明的不等式形式相似的函数来证明不等式。

例如对于不等式(a+b)^4 > 8(ab)^2,可以构造函数f(x) = (x+1)^4- 8(x-1)^2,令x = ab,当x > 1时,即f(x) > 0,从而得到(a+b)^4 > 8(ab)^26.中值定理法:这种方法通过应用中值定理来证明不等式。

例如对于不等式f(a)>f(b),可以构造函数g(x)=f(x)-f(b),当a>b时,存在c∈(b,a),使得g'(c)>0,从而得到f(a)>f(b)。

7.逼近法:这种方法通过构造一个逼近函数序列来证明不等式。

例如对于不等式a > b,可以构造一个逼近函数序列f_n(x) = (a+x)^n - (b+x)^n,当n 趋近于正无穷时,即lim(n→∞)(a+x)^n - (b+x)^n = ∞,从而得到a > b。

不等式证明的几种方法

不等式证明的几种方法

不等式证明的几种方法1.直接证明法直接证明法是最常用的证明方法之一、该方法是通过运用数学定义、公理和已知条件,直接推导出要证明的不等式。

例如,要证明a+b≥2√ab,我们可以通过平方两边的方式将不等式变形为(a-b)^2≥0的形式,再通过数学运算的方式得出结论。

2.反证法反证法是常用的证明方法之一,尤其适用于不等式证明。

该方法是先假设要证明的不等式为假,然后通过推导得出与已知条件矛盾的结论,从而证明所假设的不等式为真。

例如,要证明3√ab≥2(a+b)不成立,我们可以先假设不等式成立,然后通过运算推导出与已知条件不符的结果。

由此可知,不等式不成立。

3.数学归纳法数学归纳法适用于一类特殊的不等式,即对于其中一自然数n,当n=1时不等式成立,且当n=k时不等式成立,则当n=k+1时不等式也成立。

通过反证法证明。

例如,要证明n^2<2^n,首先当n=1时,不等式成立。

假设当n=k时,不等式也成立,即k^2<2^k成立。

我们需要证明当n=k+1时,不等式也成立,即(k+1)^2<2^(k+1)成立。

通过反证法推导出与已知条件矛盾的结果,即可证明不等式成立。

4.几何法几何法可以通过将不等式转化为几何问题来证明。

例如,要证明a^2+b^2≥2ab,可以将不等式转化为平面上两点的距离的问题。

通过建立几何模型,可以直观地看出不等式成立的原因。

例如,可以将两个正方形的面积进行比较,或者使用勾股定理来解决问题。

5.代数方法代数方法是通过将不等式转化为代数方程或函数的性质来证明。

例如,要证明3a^2+3b^2+2c^2≥4ab+4bc+4ca,可以通过将不等式整理为一个二次函数的形式,然后通过对函数进行研究来得出结论。

以上是几种常见的不等式证明方法,其中每种方法都有其独特的适用范围和优势。

在实际应用中,根据具体的题目和情况选择合适的证明方法可以更高效地解决问题。

构造函数法证明不等式的八种方法

构造函数法证明不等式的八种方法

构造函数法证明不等式的八种方法一、构造函数法是一种常用的数学证明方法,通过巧妙地构造函数,并对其性质进行分析,可以证明各种数学不等式。

下面就列举八种常用的构造函数法证明不等式的方法。

1.构造平方函数法:对于形如x^2≥0的不等式,可以构造f(x)=x^2,然后通过分析f(x)的性质,来证明不等式的成立。

2.构造递增函数法:对于形如a≥b的不等式,可以构造f(x)=x,然后通过分析f(x)的性质,来证明不等式的成立。

3.构造递减函数法:对于形如a≤b的不等式,可以构造f(x)=-x,然后通过分析f(x)的性质,来证明不等式的成立。

4.构造两个函数之差法:对于形如a-b≥0的不等式,可以构造f(x)=x^2和g(x)=(x-a)(x-b),然后通过分析f(x)和g(x)的性质,来证明不等式的成立。

5. 构造函数的和法:对于形如(a+b)^2≥0的不等式,可以构造f(x)=x^2和g(x)=a^2+b^2+2ab,然后通过分析f(x)和g(x)的性质,来证明不等式的成立。

6.构造函数的积法:对于形如(a·b)^2≥0的不等式,可以构造f(x)=x^2和g(x)=a^2·b^2,然后通过分析f(x)和g(x)的性质,来证明不等式的成立。

7.构造函数的倒数法:对于形如1/(a·b)≥0的不等式,可以构造f(x)=1/x和g(x)=a·b,然后通过分析f(x)和g(x)的性质,来证明不等式的成立。

8.构造指数函数法:对于形如e^x≥1的不等式,可以构造f(x)=e^x 和g(x)=1,然后通过分析f(x)和g(x)的性质,来证明不等式的成立。

以上就是八种常用的构造函数法证明不等式的方法。

在实际证明过程中,需要注意选择合适的函数,并结合函数的性质进行分析,以确定不等式的成立情况。

此外,还需要注意构造的函数在给定范围内是否满足所要求的性质,以确保证明的正确性。

证明函数不等式的六种方法

证明函数不等式的六种方法
例 4 试证明当 x > 0 时, ( x 2 - 1) lnx \ ( x - 1) 2。
证明 对 lnx 在 1 与 x 之间用微分中值定理, 有
ln x x- 1
=
lnx x-
ln1 1
=
( ln x )c | x = N =
1N。
其中, 1 < N< x 或 x < N< 1。
所以, 总有 0 <
e - 2 是唯一驻点, 且 f c 在这点由正变负, x = e -
2 是极大点也是最大点, 故 f ( x ) 在[ 0, e- 1] 上的
收稿日期: 2004-07-08
50
北京 印刷学院学 报
2004 年
最小值必在端点取得: f min( x ) = f ( 0) = f ( e - 1) = 0。
利用泰勒公式证明函数不等式, 主要有两步:
( 1) 找一个函数 f ( x ) , 选一个展开点 x 0, 然后 写出 f ( x ) 在 x 0 处的带有拉格朗日余项的泰勒公 式;
( 2) 对 N I ( a, b) 进行放缩。 例 7 设函数 f ( x ) 在[ 0, 1] 上具有二阶导数,
且满足条件
( 上接第 31 页) 参考文献:
[ 1] X u X iuhua, Xie Xukai. Eigenst ructure A ssignment by Out put Feedback in Dexcript or Syst ems[ J] . JM A Journal of M at hemat ical Cont rol & Inf ormation; 1995, 12: 127~ 132. [ 2] 徐秀花, 王艺霏. 广义线性系统的特征值配置[ J] . 北京印刷学院学报, 1999, 7( 3) : 36~ 40. [ 3] 甘特马赫尔#柯召. 矩阵论[ M ] . 北京: 高等教育出版社, 1955.

构造函数法证明不等式的八种方法冷世平整理

构造函数法证明不等式的八种方法冷世平整理

构造函数法证明不等式的八种方法冷世平整理1.构造多项式函数法:通过构造一个多项式函数来证明不等式。

例如,要证明当$x>0$时,$x^3+x^2+x+1>0$,我们可以构造多项式$f(x)=x^3+x^2+x+1$,然后证明$f(x)$的系数全为正数,从而得到结论。

2. 构造变形函数法:通过构造一个特定的变形函数来证明不等式。

例如,要证明当$x>0$时,$x+\frac{1}{x}>2$,我们可以构造变形函数$f(x)=x+\frac{1}{x}-2$,然后证明$f(x)$的取值范围为正数,从而得到结论。

3. 构造反函数法:通过构造一个特定的反函数来证明不等式。

例如,要证明当$x>0$时,$\frac{1}{x}+\frac{1}{1-x}>2$,我们可以构造反函数$f(x)=\frac{1}{x}+\frac{1}{1-x}-2$,然后证明$f(x)$的取值范围为正数,从而得到结论。

4. 构造积分函数法:通过构造一个特定的积分函数来证明不等式。

例如,要证明当$x>0$时,$\int_{0}^{x}\sqrt{t}dt<x$,我们可以构造积分函数$f(x)=\int_{0}^{x}\sqrt{t}dt-x$,然后证明$f(x)$的取值范围为负数,从而得到结论。

5. 构造递推函数法:通过构造一个特定的递推函数来证明不等式。

例如,要证明$n$个正实数的算术平均数大于等于它们的几何平均数,我们可以构造递推函数$f(n)=\frac{a_1+a_2+\dots+a_n}{n}-\sqrt[n]{a_1a_2\dots a_n}$,然后证明$f(n)$关于$n$的递推关系为非负数,从而得到结论。

6. 构造交换函数法:通过构造一个特定的交换函数来证明不等式。

例如,要证明当$x,y,z>0$时,$(x+y)(y+z)(z+x)\geq 8xyz$,我们可以构造交换函数$f(x,y,z)=(x+y)(y+z)(z+x)-8xyz$,然后证明$f(x,y,z)$在$x,y,z$的任意交换下都保持不变或增加,从而得到结论。

第2节证明不等式的基本方法

第2节证明不等式的基本方法

第2节证明不等式的基本方法证明不等式的基本方法总结如下:一、利用数学分析中的中值定理、极值、单调性等性质进行证明。

1.利用中值定理:利用连续函数介值定理或拉格朗日中值定理,根据函数的一些性质,可以推出不等式的成立。

例如,证明一个凸函数在区间上的函数值不小于端点的函数值。

2.利用极值:通过求导或其他方法,找到函数的极值点,然后证明这些极值点就是不等式的最小(最大)值点。

例如,证明两数之积不大于它们的平方和,可以通过求导得到函数的极值点,然后通过证明这个极值点为最小值点来完成。

3.利用单调性:如果已知函数在一些区间上是严格递增(递减)的,可以通过证明不等式在一些特殊点成立,并通过函数的单调性推出在整个区间上成立。

例如,证明一个正数的倒数小于它自己,则可以先证明在0到1之间成立,然后利用单调性推出在整个正数范围内成立。

二、利用数学归纳法进行证明。

如果不等式中的变量是正整数,可以利用数学归纳法进行证明。

首先证明当n=1时不等式成立,然后假设当n=k时不等式成立,再证明当n=k+1时不等式也成立。

例如,证明n个正数的平均值不小于它们的几何平均值,可以先证明当n=1时成立,然后假设当n=k时成立,再证明当n=k+1时也成立,最后利用数学归纳法推出结论。

三、利用代数方法。

1.利用等价变形:对于一个复杂的不等式,可以通过进行等价变形来简化证明。

通过将不等式的两边同时加上或减去一些式子,或者将不等式两边同时乘以或除以一些式子,可以得到一个等价的不等式,然后证明这个等价的不等式。

例如,证明正数的n次方大于等于它的平方,可以将不等式两边同时开方,然后证明这个等价的不等式。

2. 利用加减法、乘除法不等式:对于一个分式或多项式不等式,可以通过利用加减法、乘除法的不等式性质,将不等式化简为更简单的形式,再进行证明。

例如,证明a+b≤2ab,则可以将两边同时减去a+b再加上2,利用不等式的性质简化后得到ab≥1,再证明这个等价的不等式。

证明不等式的基本方法

证明不等式的基本方法

恒成立,求实数a的取值范围”提出各自的解题思路.
甲说:“只须不等式左边的最小值不小于右边的最大值”; 乙说:“把不等式变形为左边含变量x的函数,右边仅含常 数,求函数的最值”; 丙说:“把不等式两边看成关于x的函数,作出函数图象”;
参考上述解题思路,你认为他们所讨论的问题的正确结论,
即a的取值范围是________. [答案] a≤10
[点评与警示] 论证过程中,执果索因与由因导果总是不
断变化,交替出现.尤其综合题推理较盲目时,利用分析法从
要证的问题入手,逐步推求,再用综合法逐步完善,最后找到 起始条件为止.
(人教版选修 4—5 第 30 页第 1 题)已知 a, b, c∈(0,1), 1 求证:(1-a)b,(1-b)c,(1-c)a 不同时大于4.
[证明]
(反证法)假设(1-a)b,(1-b)c,(1-c)a 都大于 ①
1 1 (1-b)c· (1-c)a>64 4,则(1-a)b· 1 即[a(1-a)· b(1-b)· c(1-c)]>64
a+1-a 2 1 而 0<a(1-a)≤[ ]= , 2 4
1 1 0<b(1-b)≤ ,0<c(1-c)≤ 4 4 1 ∴[a(1-a)][b(1-b)][c(1-c)]≤ 与①矛盾 64 1 ∴(1-a)b,(1-b)c,(1-c)a 不同时大于 . 4
) B.a2>b2 1a 1b D.(2) <(2)
1 2 .若 a > b > 1 , P = lga· lgb , Q = (lga + lgb) , R = 2 a+b lg( ),则( 2 A.R<P<Q C.Q<P<R
[解析]
) B.P<Q<R
D.P<R<Q 1 ∵lga>lgb>0,∴ (lga+lgb)> lga· lgb,即 Q 2

证明不等式的方法

证明不等式的方法

证明不等式的方法1.比较法。

在证明不等式的方法中,比较法是最基本、最重要的方法。

比较法是利用不等式两边的差是正还是负来证明不等关系的。

利用不等式的性质对不等式进行变形,变形目的在于判断差的符号,而不考虑值是多少。

2.综合法。

综合法是由已知条件出发,推导出所要证明的不等式成立,即由已知逐步推演不等式成立的必要条件得到结论。

综合法是“由因导果”。

3.分析法。

分析法也是证明不等式的一种常用的基本方法,当证题不知从何入手时,有时可以用分析法获得解决。

分析法是和综合法对立统一的两种方法,它是由结果步步寻求不等式成立的充分条件,找寻已知,是“执果索因”。

分析法和综合法常常是不能分离的,如果使用综合法证明不等式,难以入手时常用分析法探索证题的途径,之后用综合法形式写出它的证明过程。

4.作商法。

将不等式左右两端作商、变形化简商式到最简形式,判断商与1的大小,应用范围一般是被证式的两端都是正数,被证式子两端都是乘积形式或指数形式时常用此法。

5.判别式法,对于含有两个或两个以上字母的不等式,在使用比较法无效时,若能整理成一边为零,而另一边为某个字母的二次式时,这时候可用判别式法。

6.代换法。

代换法中常用的有两种:一种是三角代换法,一种是增量代换法。

三角代换法多用于条件不等式的证明,当所给条件较复杂,一个变量不易用另一个变量表示,这时候可考虑三角代换,将两个变量都用同一个参数表示。

此法可以把复杂的代数问题转化为三角问题。

要注意的是可能对引入的角有一定的限制,这一点要根据已知来定。

增量代换法一般是在对称式(任意互换两个字母,代数式不变)和给定字母顺序的不等式,常用增量法进行代换,代换的目的是通过代换达到减元的目的,使问题化难为易,化繁为简。

7.构造函数法。

函数思想是中学数学重要的思想方法之一,有些数学问题只要将其中某些变化的量建立起联系,构造出函数,再利用函数的性质,就能解决问题。

8.反证法。

用直接法证明不等式困难时,可考虑用反证法。

微积分证明不等式方法

微积分证明不等式方法

微积分证明不等式方法1.极限证明法极限证明法是一种常用的证明不等式的方法。

首先,我们可以取两边的极限,然后通过极限的性质进行推导。

例如,假设我们要证明不等式:$\lim\limits_{x \to +\infty}(f(x)-g(x)) \geq 0$,那么我们可以取两边的极限,得到:$\lim\limits_{x \to +\infty}f(x) \geq\lim\limits_{x \to +\infty}g(x)$,然后通过极限的性质,将不等式推广到更一般的情况。

2.导数证明法导数证明法是一种常用的证明不等式的方法。

我们可以通过计算函数的导数来研究函数的变化趋势,然后判断函数的变化趋势是否与不等式的方向相符。

例如,假设我们要证明不等式:$f(x) \geq g(x)$,那么我们可以计算$f(x)$和$g(x)$的导数,然后通过导数的符号判断函数的变化趋势是否与不等式的方向相符。

3.反证法反证法是一种常用的证明不等式的方法。

假设我们要证明不等式:$f(x) > g(x)$,我们可以假设存在一个$x_0$使得$f(x_0) \leq g(x_0)$,然后通过对$f(x)$和$g(x)$进行一些操作,推导出一个矛盾的结论。

这样就证明了原来的假设是错误的,从而得到了不等式的证明。

4.积分证明法积分证明法是一种常用的证明不等式的方法。

我们可以通过计算函数的积分来研究函数的变化情况,然后判断函数的变化情况是否与不等式的方向相符。

例如,假设我们要证明不等式:$\int_{a}^{b} f(x) dx \geq \int_{a}^{b} g(x) dx$,我们首先通过求积分,得到$\int_{a}^{b}[f(x)-g(x)] dx \geq 0$,然后通过对$f(x)-g(x)$的性质进行分析,判断积分结果的符号是否为非负。

以上介绍的是微积分证明不等式的几种常用方法,每种方法都有其适用的范围和优缺点。

构造函数法证明不等式的八种方法.doc

构造函数法证明不等式的八种方法.doc

构造函数法证明不等式的八种方法.doc构造函数法是一种证明不等式的有效方法。

构造函数法是通过构造函数来证明不等式的真实性。

构造函数是函数的一种特殊形式,它是根据不等式中的条件和限制而构造出来的函数。

构造函数法的基本思路是,通过构造函数将原不等式转化为更容易证明的形式,进而通过对构造函数的研究来证明原不等式的真实性。

本文将介绍构造函数法证明不等式的八种方法。

一、线性函数法线性函数法是基于线性函数的构造函数法,它是构造函数法中最简单的方法之一。

线性函数法的思路是,构造一个线性函数,使得该函数在不等式限制下达到最大值或最小值。

例如,证明如下不等式:$$\frac{a}{b+1}+\frac{b}{c+1}+\frac{c}{a+1}\geq\frac{3}{2}$$将不等式两边都乘以$2(b+1)(c+1)(a+1)$得:$$2a(c+1)(b+1)+2b(a+1)(c+1)+2c(b+1)(a+1)\geq 3(a+1)(b+1)(c+1)$$此时,可以构造如下的线性函数$f(x,y,z)$:容易发现,$f(x,y,z)$在限制条件$x,y,z\geq 0$,$xy+yz+zx=3$下,达到最大值$\frac{3}{2}$。

因此,原不等式成立。

二、对数函数法对数函数法是基于对数函数的构造函数法,它常用于证明形如$a^x+b^y+c^z\geq k$的不等式,其中$a,b,c,x,y,z,k$均为正实数。

对数函数法的思路是,构造一个对数函数,使得该函数满足$g(x,y,z)\leq\ln(a^x+b^y+c^z)$,进而证明$g(x,y,z)\leq\ln k$,从而得到原不等式的证明。

例如,证明如下不等式:考虑构造如下的对数函数:$$g(x)=\ln\left(\frac{4a^3x+6}{5a^2x+2ax+5}\right)-\frac{3}{4}\ln x$$不难证明,$g(x)$在$x\geq 1$时单调递减且$g(1)=0$,因此$g(x)\leq 0$。

高三数学 不等式的证明(比较法、综合法、分析法、反证法、放缩法);不等式的应用知识精讲

高三数学  不等式的证明(比较法、综合法、分析法、反证法、放缩法);不等式的应用知识精讲

高三数学不等式的证明(比较法、综合法、分析法、反证法、放缩法);不等式的应用知识精讲(一)不等式的证明1. 实数大小的性质(1)a b a b ->⇔>0;(2)a b a b -=⇔=0;(3)a b a b -<⇔<0。

2. 比较法证明的步骤(1)求差比较法步骤:作差——变形——判别差的符号,在运用求差比较法证明时其关键是变形,通常变形方法是分解因式、配方、利用判别式及把差化为若干个非负数的和。

(不能分解时证明有恒定符号可配方)(2)求商比较法步骤:作商——变形——判别商与1的大小,在运用求商比较法证明不等式时要根据已知条件灵活采用函数的单调性及基本不等式进行放缩。

3. 基本不等式定理1:如果a b R ,∈,那么a b ab 222+≥(当且仅当a b =时取等号)。

定理2:如果a b c R ,,∈+,那么a b c abc 3333++≥(当且仅当a b c ==时取等号)。

推论1:如果a b R ,∈+,那么a b ab +≥2(当且仅当a b =时取“=”号)。

推论2:如果a b c R ,,∈+,那么a b c abc ++≥33(当且仅当a b c ==时取“=”号)。

4. 综合法:利用某些已经证明过的不等式作为基础,再运用不等式的性质推导出所要求证的不等式,这种证明方法叫做综合法。

综合法的证明思路是:由因导果,也就是从一个(组)已知的不等式出发,不断地用必要条件替代前面的不等式,直到推导出要证的不等式。

5. 分析法:从求证的不等式出发分析这个不等式成立的充分条件,把证明这个不等式的问题转化为这些条件是否具备的问题,如果能够肯定这些条件都已具备,那么就可以判定所证的不等式成立。

这种证明方法叫做分析法。

分析法的证明思路是:“执果索因”,即从求证的不等式出发,不断地用充分条件来代替前面的不等式,直至找到已知不等式为止。

用分析法证明不等式要把握以下三点:(1)寻找使不等式成立的充分条件时,往往是先寻找使不等式成立的必要条件,再考虑这个必要条件是否充分。

不等式证明的基本方法 经典例题透析

不等式证明的基本方法 经典例题透析

经典例题透析类型一:比较法证明不等式1、用作差比较法证明下列不等式:(1);(2)(a,b均为正数,且a≠b)思路点拨:(1)中不等号两边是关于a,b,c的多项式,作差后因式分解的前途不大光明,但注意到如a2, b2, ab这样的结构,考虑配方来说明符号;(2)中作差后重新分组进行因式分解。

证明:(1)当且仅当a=b=c时等号成立,(当且仅当a=b=c取等号).(2)∵a>0, b>0, a≠b,∴a+b>0, (a-b)2>0,∴,∴.总结升华:作差,变形(分解因式、配方等),判断差的符号,这是作差比较法证明不等式的常用方法。

举一反三:【变式1】证明下列不等式:(1)a2+b2+2≥2(a+b)(2)a2+b2+c2+3≥2(a+b+c)(3)a2+b2≥ab+a+b-1【答案】(1)(a2+b2+2)-2(a+b)=(a2-2a+1)+(b2-2b+1)=(a-1)2+(b-1)2≥0∴a2+b2+2≥2(a+b)(2)证法同(1)(3)2(a2+b2)-2(ab+a+b-1)=(a2-2ab+b2)+(a2-2a+1)+(b2-2b+1)=( a-b)2+(a-1)2+(b-1)2≥0 ∴2(a2+b2)≥2(ab+a+b-1),即a2+b2≥ab+a+b-1【变式2】已知a,b∈,x,y∈,且a+b=1,求证:ax2+by2≥(ax+by)2【答案】ax2+by2-(ax+by)2=ax2+by2-a2x2-b2y2-2abxy=a(1-a)x2+b(1-b)y2-2abxy=abx2+aby2-2abxy=ab(x-y)2≥0∴ax2+by2≥(ax+by)22、用作商比较法证明下列不等式:(1)(a,b均为正实数,且a≠b)(2)(a,b,c∈,且a,b,c互不相等)证明:(1)∵a3+b3>0, a2b+ab2>0.∴,∵a, b为不等正数,∴,∴∴(2)证明:不妨设a>b>c,则∴所以,总结升华:当不等号两边均是正数乘积或指数式时,常用这种方法,目的是约分化简. 作商比较法的基本步骤:判定式子的符号并作商变形判定商式大于1或等于1或小于1结论。

证明函数不等式的六种方法

证明函数不等式的六种方法

证明函数不等式的六种方法在高中数学中,函数的不等式是一个重要的主题。

证明函数不等式是一个基本的技能,它可以帮助学生更好地理解函数的性质并提高数学思维能力。

下面我们介绍六种证明函数不等式的方法。

1. 代数法这种方法是最常用的方法之一。

我们可以将不等式两边的函数展开,并进行简单的代数计算,以确定不等式的正确性。

例如,我们要证明:f(x) > g(x)其中f(x) = x^2 + 2x + 1g(x) = x^2 + x我们可以将f(x)和g(x)展开,然后将它们相减,得到:f(x) - g(x) = x + 1因此,f(x) > g(x) 当且仅当 x > -12. 消元法这种方法通常适用于含有多个变量的不等式。

我们可以将其中一个变量消去,从而使不等式简化。

例如,我们要证明:f(x, y) > g(x, y)其中f(x, y) = x^2 + y^2g(x, y) = x^2 - y^2我们可以将y消去,得到:f(x, y) - g(x, y) = 2y^2因此,f(x, y) > g(x, y) 当且仅当 y ≠ 03. 极限法这种方法通常适用于连续函数的不等式。

我们可以将不等式两边取极限,以确定不等式的正确性。

例如,我们要证明:f(x) > g(x)其中f(x) = x^2 + 2x + 1g(x) = x^2 + x我们可以将f(x)和g(x)的极限计算出来,得到:lim (f(x)) = +∞x→+∞lim (g(x)) = +∞x→+∞因此,f(x) > g(x) 当 x → +∞4. 导数法这种方法通常适用于在区间内单调的函数不等式。

我们可以计算函数的导数,以确定函数的单调性和不等式的正确性。

例如,我们要证明:f(x) > g(x)其中f(x) = x^3 + 3x^2 + 3x + 1g(x) = x^2 + 2x + 1我们可以计算f(x)和g(x)的导数,得到:f'(x) = 3x^2 + 6x + 3g'(x) = 2x + 2由于f'(x) > g'(x) 在 [-1, +∞) 上成立,并且f(-1) > g(-1) ,因此,f(x) > g(x) 在 [-1, +∞) 上成立。

高二数学证明不等式的基本方法

高二数学证明不等式的基本方法
abcd. 即 ab cd
1 a b c d 2 abd bca cba dac
例4 已知a,b是实数,求证 a b a b . 1 ab 1 a 1 b
证明: 0 a b a b
ab

1
1
1
若 在 上 述 溶 液 中 再 添 加mkg白 糖, 此 时 溶 液 的 浓 度
增加到a m ,将这个事实抽象为数学问题,并给出证明. bm
解 : 可以把上述事实抽象成如下不等式问题:
已知a,b, m都是正数,并a b且,则 a m a bm b
解 : 可以把上述事实抽象成如下不等式问题:

a
a a
abcd abd ab
b
b b
abcd bca ab
c
c c
abcd cdb cd
d
d d
abcd dac cd
把 以 上 四 个 不 等 式 相 加得
abcd a b c d abcd abd bca cbd dac
abc 故 a2b2 b2c2 c2a2 abc
abc
三、反证法与放缩法
(1)反证法
先假设要证的命题不成立,以此为出发点,结合已知条 件,应用公理,定义,定理,性质等,进行正确的推理,得到 和命题的条件(或已证明的定理,性质,明显成立的事实 等)矛盾的结论,以说明假设不正确,从而证明原命题成 立,这种方法称为反证法.对于那些直接证明比较困难 的命题常常用反证法证明.
证明: 假设a,b,c不全是正数,即其中至少有一个不是正数, 不妨先设a 0,下面分a 0和a 0两种情况讨论. (1)如果a 0,则abc 0,与abc 0矛盾, a 0不可能. (2)如果a 0,那么由abc 0可得bc 0, 又a b c 0, b c a 0,于是ab bc ca a(b c) bc 0, 这和已知ab bc ca 0相矛盾. a 0也不可能. 综上所述a 0,同理可证b 0,c 0, 所以原命题成立.

构造函数法证明不等式的八种方法

构造函数法证明不等式的八种方法

导数之构造函数法证明不等式 1、移项法构造函数 【例1】已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有【解】1111)(+-=-+='x xx x f ∴当01<<-x 时,0)(>'x f ,即)(x f 在)0,1(-∈x 上为增函数 当0>x 时,0)(<'x f ,即)(x f 在),0(+∞∈x 上为减函数 故函数()f x 的单调递增区间为)0,1(-,单调递减区间),0(+∞于是函数()f x 在),1(+∞-上的最大值为0)0()(max ==f x f ,因此,当1->x 时,0)0()(=≤f x f ,即0)1ln(≤-+x x ∴x x ≤+)1ln( (右面得证), 现证左面,令111)1ln()(-+++=x x x g , 22)1()1(111)(+=+-+='x x x x x g 则 当0)(,),0(;0)(,)0,1(>'+∞∈<'-∈x g x x g x 时当时 , 即)(x g 在)0,1(-∈x 上为减函数,在),0(+∞∈x 上为增函数, 故函数)(x g 在),1(+∞-上的最小值为0)0()(min ==g x g ,∴当1->x 时,0)0()(=≥g x g ,即0111)1ln(≥-+++x x ∴111)1ln(+-≥+x x ,综上可知,当x x x x ≤+≤-+->)1ln(111,1有时2、作差法构造函数证明 【例2】已知函数.ln 21)(2x x x f +=求证:在区间),1(∞+上,函数)(x f 的图象在函数332)(x x g =的图象的下方; 【解】设)()()(x f x g x F -=,即x x x x F ln 2132)(23--=, 则xx x x F 12)(2--='=x x x x )12)(1(2++-当1>x 时,)(x F '=xx x x )12)(1(2++-从而)(x F 在),1(∞+上为增函数,∴061)1()(>=>F x F∴当1>x 时 0)()(>-x f x g ,即)()(x g x f <, 故在区间),1(∞+上,函数)(x f 的图象在函数332)(x x g =的图象的下方。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

"#
# #
若 =2-( ! ")+ > ,则 ( ! ")+ > 。 若 =.I( ! "), > ,则 ( ! "), > 。 例 E# 试证明当 > & " & 1 K ! 时, ’( ! ’ ") $ " 。 1 K! " , 1 K!
因此, ( ! ")在 ( > ,’ H )上单调减少, 由
证明 (
由于 !’ ( ")在闭区间 [$, ,]上连续, !’ ( ")
在 [$, ,]上的最大值一定存在, 即 ) 一定存在。 ($, ,] , 由微分中值定理有 任取 " & ( ! ")& ( ! $ ) # !’ ( !) ",! & ($, ") 。 ! $ ) # $ ,故 ( ! ") # !’ ( !) "," & ($, ,] 。 因为 ( 于是, ( ! ") ." #
$ ,
由于 ( ! ")在 [$, ’ ]上具有二阶导数, ( ! ")
+ !( !) ( " & 0) 。 ( $) +!
), ,其中 ) # !/0 !’ ( ") 。 $ ,",, +
+
在 " # 0 点可展开到一阶泰勒公式: ( ! ") # ( ! 0)+ !’ ( 0) ( " & 0)+
# #
函数不等式的证明题是一类常见的题型, 不
例 "# 证明 #
设 ) $ * $ 1, 试证明 * ) $ ) * 。 ’-" , # "& ( 1,’ H )。 "
管本科高等数学考试、 市级高等数学竞赛, 还是研 究生入学考试, 都少不了这类试题。 为此, 特归纳出 证明函数不等式的六种方法。
设( ! ") #
续, 且( ! !) , !, 试证明
!
( &, ’) , ) + *, 以及任意的 ", (!, ") , #& " " # , ", 都有 ( ! ") " #*) + "( ! ))" #( ! *) , ( $) 则称 ( ! ))在 ( &, ’)是凹的; 若式 ( $)中不等号相 反, 则称 ( ! ))是凸的。 例 &% 证明 % 即 设 ), * - !, ", # - ! 且 " " # , ", " # 试证明 ) * + ") " #*。
" +’ $ ’。 于是, ! " +’ & ’] + $。 !
用微分中值定理证明不等式, 难点在于取什么 函数使用微分中值定理。 若能找到适当函数, 那么 是比较方便的。 ! ") 的导函数 !’ ( ") 在 [$, ,] 连 例 -( 设函数( 续, 且( ! $) # $, 试证明 ! ") ." , !(
$ ,
其中, , $ % # % ’。 ! # 0+( # " & 0) 在式 ( $)中令 " # $ , 则有 ( ! $) # ( ! 0)+ !’ ( 0) ( $ & 0)+
+ !( !’ ) ( $ & 0) , +!
!
,
( !) "." , ! !’ ) ( !) "." , )! "." # , 。 ! !’ +
证明函数不等式的六种方法
孟赵玲, 叶侠娟
( 北京印刷学院 基础部,北京 !>"C>> )
# # 摘# 要:证明函数不等式有多种方法, 主要讨论了利用函数增减性、 函数的最值、 微分中 值定理、 泰勒公式、 函数的凹凸性及牛顿—莱布尼兹公式证明等方法, 可供教学参考。 关键词:高等数学; 函数不等式; 教学研究 中图分类号: F!A" ; 8C$"G ># # # # 文献标识码: 0
,#" ,#" & ,#’ # #( ,#") ’* " &’ " &’ ’ % ! % " 或 " % ! % ’。 其中, 所以, 总有 $ % ! % ’ + ", 即 当 " $ $ 时, 有
+ + ,#" & ( " & ’) #( " & ’) [ ( "+ & ’ )
’ # 。 !
利用泰勒公式证明函数不等式, 主要有两步: (’)找一个函数( ! ") , 选一个展开点 "$ , 然后写 ! ")在 "$ 处的带有拉格朗日余项的泰勒公式; 出( ( + )对 ! & ( ,, /)进行放缩。 例 2( 设函数( ! ") 在 [$, ’] 上具有二阶导数, 且满足条件 ( ! ") , ,, !( ") , /, / 都是非负常数, 0是 ($, ’ )内任意一点, 试 其中 ,, 证明 !’ ( 0) , + , + 证明 ( / 。 +
I- JH
证明 #
设( ! ") # ’( ! ’ ")(
’2= ( ! ") # ’2= [ ’(! ’
I- JH
!% ( ") # 那么,
! ! ( 1 K " )( " ( # 。 ! ’ " 1 ( ! ( 1 K !) ( ! ’ ")
可见, 对于任意 > & " & ’ H , ( ! ") $ > , 即 ’(! ’
# # 收稿日期: ">>$@>A@>B
!% 在 (>, 1 K ! )不保持同一符号, 即 ! 不单调。 " # 1 K " 是唯一驻点, 且 !% 在这点由正变负, " # 1 K"是 ! ")在 [>, 1 K ! ]上的最小 极大点也是最大点, 故(
! ! )$ 。 " ! ’"
-$
北 京 印 刷 学 院 学 报
, ,
( ! )) , /)。 于是,
!
)
!
!( ( .) *. ,
!
)
!
!( ( .) *. ,
! /*.
! #
)
,
只要证 % ’( ( ) * ) + ’( ( ") " # * ) ( ") " # * ) 。 "’) " #’(* + ’(
!
&
!
( ! )) *) ,
!
&
!
( ! )) *) ,
" #
&
!
( ! )) *) ,
/ &# , % 其中 / , ,-. !( ( )) 。 ! ,),& #
证明 %
设)& [!, &] , 由牛顿 — 莱布尼兹公式及 ( .) *. , ( ! ))$ ( ! !) , ( ! )) , ! !(
! )
( ! !) , ! 知
由积分基本性质, 并考虑到 / , ,-. !( 有 ( )) , ! ) &
+ ,#" + ( " & ’) 。 ( "+ & ’ )
# $ 的二阶泰勒公式 ( 带有拉格朗日余项)为 ( ! ") # ( ! $ )+ !’ ($) " + # 即
对 ,#" 在 ’ 与 " 之间用微分中值定理, 有
"#!
’ ( ! ( !) ") % $ , )! ( ! ") % $ , ( ( 当"& ($, ’) 。 ( (
( .) ! ( !) . ( " & "$ ) ( ! 在 " 与 "$ 之间) 。 .!
’ + [ !( !+ ) ( ’ & 0) & !( !’ ) 0+ ] , ( ! ’) + +!
第O期
% % % % % % % % % % % 孟赵玲, 叶侠娟:证明函数不等式的六种方法
$"
( ! !) "
+$$* 年
值必在端点取得: ! !"# ( ") # ( ! $) # ( ! % & ’) # $。 因此, ( ! ")+ $ ( ( $ , " , % & ’ ) , ( ! ") $ $ ( $ % " % % & ’ ) 。
例 1( 证明 (
设"& ($, ’) , 试证明
+ ,#( ’ + " ) % "+ 。 ( ’ + ")
’- ) * & ’-* ) 。 * ) $ ) * # ( ) $ * $ 1) 。 用函数单调性证明不等式, 有规范操作步骤: ( ! )找一个函数 ( ! ") , 研究 !% ( ")的正负; ! ")的起点或终点时的值。 ( " )找 ( ( 当函数不单调时) 利用函数最值判定
相关文档
最新文档