求矩阵的秩:

合集下载

矩阵的秩及其求法-求秩的技巧

矩阵的秩及其求法-求秩的技巧

第五节:矩阵的秩及其求法之五兆芳芳创作一、矩阵秩的概念 1. k 阶子式 定义1 设 在A 中任取k 行k 列穿插处元素按原相对位置组成的阶行列式,称为A 的一个k 阶子式.例如共有个二阶子式,有 个三阶子式矩阵 A 的第一、三行,第二、四列相交处的元素所组成的二阶子式为 而为 A 的一个三阶子式.显然, 矩阵 A 共有 个k 阶子式.2. 矩阵的秩 定义2 设 有r 阶子式不为0,任何r +1阶子式(如果存在的话)全为0 ,称r 为矩阵A 的秩,记作R (A )或秩(A ).规则: 零矩阵的秩为 0 .注意:(1) 如 R ( A ) = r ,则 A 中至少有一个 r 阶子式所有 r + 1 阶子式为 0,且更高阶子式均为 0,r 是 A 中不为零的子式的最高阶数,是唯一的 .(2) 有行列式的性质,(3) R(A ) ≤m , R (A ) ≤n , 0 ≤R (A ) ≤min { m , n } .(4) 如果An ×n , 且 则 R ( A ) = n .反之,如 R()nm ij a A ⨯={}),min 1(n m k k ≤≤43334=C C 1015643213-=D nm ⨯()nm ij a A ⨯=0,r D ≠()().T R A R A =0,A ≠0.A ≠( A ) = n ,则因此,方阵 A 可逆的充分需要条件是 R ( A ) = n . 二、矩阵秩的求法 1、子式判别法(定义).例1 设 为阶梯形矩阵,求R (B ). 解 由于 存在一个二阶子式不为0,而任何三阶子式全为0,则R (B ) = 2.结论:阶梯形矩阵的秩=台阶数.例如 一般地,行阶梯形矩阵的秩等于其“台阶数”——非零行的行数. 例2 设 如果 求a .解 或例3则 2、用初等变换法求矩阵的秩定理2矩阵初等变换不改动矩阵的秩. 即则注: 只改动子行列式的符号. 是 A 中对应子式的k 倍.2021≠⎪⎪⎪⎭⎫ ⎝⎛=010*********A ⎪⎪⎪⎭⎫ ⎝⎛=001021B ⎪⎪⎪⎭⎫ ⎝⎛=100010011C 125034000D ⎛⎫ ⎪= ⎪ ⎪⎝⎭21235081530007200000E ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭⎪⎪⎪⎭⎫ ⎝⎛=a a a A 111111(),3<A R ()3<A R 1=∴a 2-=a ()3=A R =K 3-BA →)()(B R A R =ji r r ↔.1irk .2是行列式运算的性质.求矩阵A 的秩办法:1)利用初等行变换化矩阵A 为阶梯形矩阵B 2)数阶梯形矩阵B 非零行的行数即为矩阵A 的秩. 例4求 解R(A ) = 2例5三、满秩矩阵定义3A 为n 阶方阵时,称 A 是满秩阵,(非奇异矩阵) 称 A 是降秩阵,(奇异矩阵) 可见:对于满秩方阵A 施行初等行变换可以化为单位阵E ,又按照初等阵的作用:每对A 施行一次初等行变换,相当于用一个对应的初等阵左乘A,由此得到下面的定理. 定理3设A 是满秩方阵,则存在初等方阵 使得对于满秩矩阵A ,它的行最简形是n 阶单位阵 E . 例如A 为满秩方阵.关于矩阵的秩的一些重要结论:ji krr +.3().A R μλμλ,2,6352132111,求)(且设=⎪⎪⎪⎭⎫⎝⎛--=A R A (),n A R =(),n A R <()0≠⇔=A nA R EA P P P P s s =-121,定理5R (AB )R (A ),R (AB )R (B ),即R (AB )min{R (A ),R (B )}设A 是 矩阵,B 是 矩阵, 性质1性质2 如果 A B = 0 则性质3 如果 R (A )= n, 如果A B = 0 则 B = 0. 性质4 设A,B 均为矩阵,则例8 设A 为n 阶矩阵,证明R (A+E )+R (A-E )≥n 证: ∵ (A+E )+(E-A )=2E∴R (A+E )+ R ( E-A )≥ R (2E )=n而 R ( E-A )=R ( A-E ) ∴ R (A+E )+R (A-E )≥n≤nm ⨯tn ⨯).()()(AB R n B R A R ≤-+.)()(n B R A R ≤+nm ⨯).()()(B R A R B A R +≤±。

线性代数:矩阵秩的求法

线性代数:矩阵秩的求法
齐次线性方程组 Ax=0 总是有解的,x=0 就是一个解, 称为零解。 所以我们更关心的是它是否有非零解.
6/44
定理 Ax=0 的解的情况:
1.Ax=0 有非零解 r(A)<n 只有零解 r(A)=n
2.若A是方阵,Ax 0有非零解 A 0 只有零解 A 0
3.Ax 0,若m n,则一定有非零解。 m :方程个数 n :未知量个数
k
2
1 2
0
3 2
1
.
其中k1
,
k
为任意常数。
2
12/44
定理 3 线性方程组 Ax=b 有解 r(A)=r(Ab)
定理 4 设线性方程组 Ax=b 有解。 若A为方阵,
如果 r(A)=n,则它有唯一解; A 0,唯一解
如果
r(A)<n,则它有无穷多解。
A
0,无穷解
13/44
x1 x2 a1
a4
x5 x1 a5
RA RB
5
ai 0
i 1
15/44
5
方程组有解的充要条件是 ai 0.
i 1
x1 x2 a1
由于原方程组等价于方程组
x2 x3
x3 x4
a2 a3
例4
证明方
程组
x2 x3
x3 x4
a2 a3
x4
x5
a4
x5 x1 a5
有解的充要条件
是a1 a2 a3 a4 a5 0.在有解的情况下,
求出它的一切解.
解证 对增广矩阵B进行初等变换, 方程组的增广矩阵为
14/44
1 1 0 0 0 a1
0 1 1 0 0 a2
第十-十一次

矩阵的秩及其求法

矩阵的秩及其求法

第五节:矩阵的秩及其求法一、矩阵秩的概念1. k 阶子式定义1 设 在A 中任取k 行k 列交叉处元素按原相对位置组成的阶行列式,称为A 的一个k 阶子式。

例如 共有个二阶子式,有 个三阶子式 矩阵A 的第一、三行,第二、四列相交处的元素所构成的二阶子式为 而 为 A 的一个三阶子式。

显然, 矩阵 A 共有 个 k 阶子式。

2. 矩阵的秩定义2 设 有r 阶子式不为0,任何r +1阶子式(如果存在的话)全为0 , 称r 为矩阵A 的秩,记作R (A )或秩(A )。

规定: 零矩阵的秩为 0 .注意:(1) 如 R ( A ) = r ,则 A 中至少有一个 r 阶子式 所有 r + 1 阶子式为0,且更高阶子式均为 0,r 是 A 中不为零的子式的最高阶数,是唯一的 .(2) 有行列式的性质, (3) R(A ) ≤m , R (A ) ≤n , 0 ≤R (A ) ≤min { m , n } .(4) 如果 An ×n , 且 则 R ( A ) = n .反之,如 R ( A ) = n ,则 因此,方阵 A 可逆的充分必要条件是 R ( A ) = n .二、矩阵秩的求法1、子式判别法(定义)。

例1 设 为阶梯形矩阵,求R (B )。

解 由于 存在一个二阶子式不为0,而任何三阶子式全为0,则 R (B ) = 2.结论:阶梯形矩阵的秩=台阶数。

例如一般地,行阶梯形矩阵的秩等于其“台阶数”——非零行的行数。

()n m ij a A ⨯={}),m in 1(n m k k ≤≤⎪⎪⎪⎭⎫ ⎝⎛----=110145641321A 182423=C C 43334=C C 10122--=D 1015643213-=D n m ⨯k nk m c c ()n m ij a A ⨯=0,r D ≠()().T R A R A =0,A ≠0.A ≠⎪⎪⎪⎭⎫ ⎝⎛=000007204321B 02021≠⎪⎪⎪⎭⎫ ⎝⎛=010*********A ⎪⎪⎪⎭⎫ ⎝⎛=001021B ⎪⎪⎪⎭⎫ ⎝⎛=100010011C 125034000D ⎛⎫ ⎪= ⎪ ⎪⎝⎭21235081530007200000E ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭()3=A R ()2=B R ()3=C R ()2R D =()3R E =例2 设 如果求 a . 解或 例3 则2、用初等变换法求矩阵的秩定理2 矩阵初等变换不改变矩阵的秩。

矩阵的秩求法

矩阵的秩求法
定义2 在 m×n 矩阵 A 中任取 k 行、k 列(k ≤ m , k ≤ n ),位于这些行列交叉处的 k2 个元 素,不改变它们在 A 中所处的位置次序而得到的 k 阶行列式,称为矩阵 A 的 k 阶子式。 m×n 矩阵A 的 k 阶子式共有CmkCnk个。 定义2 设在矩阵A 中有一个不等于0的 r 阶子式 D,且所有 r +1 阶子式(如果有的话)全等于0,那 么 D 称为矩阵A 的最高阶非零子式,数 r 称为矩阵 A 的秩,记作R ( A ) = r 。规定零矩阵的秩等于 0 。
4 3 9 12
1 1 7 8
4 1 11 12
上页 下页
返回
1 0 0 0
6 4 12 16
4 3 9 12
1 1 7 8
4 1 11 12
1 r3 3r2 0 ~ 0 r4 4r2 0
6 4 0 0
4 3 0 0
1 1 4 4
4 1 8 8
上页 下页
返回
1 0 0 0 1 r4 3r3 0 ~ 0 0
6 4 0 0 6 4 0 0
4 3 0 0 4 3 0 0
1 1 4 4 1 1 4 0
2 0 0 1 3 0 3 2 24 0, 4
因此R(B)= 3 。
上页 下页 返回
从本例可知,由矩阵A 的秩的定义求秩,关键在 于找 A 中不等于 0 的子式的最高阶数。 一般当行数与列数都较高时,按定义求秩是很麻 烦的。 对于行阶梯形矩阵,显然它的秩就等于非零行的 行数。 因此自然想到用初等变换把矩阵化为行阶梯形矩 阵,但两个等价的矩阵的秩是否相等呢?
上页 下页 下页 返回 上页

矩阵的秩及其求法矩阵秩求法演示文稿

矩阵的秩及其求法矩阵秩求法演示文稿

5 3 6
0
8
5
4
1 1 1 2
0 3 4 4 0 5 1 0
R(A) 2, 5 0, 1 0
5, 1
三、满秩矩阵 定义3 A 为 n 阶方阵时,
RA n, 称 A 是满秩阵,(非奇异矩阵)
RA n, 称 A 是降秩阵,(奇异矩阵) 可见:RA n A 0
RA n A ~ E
RA n A ~ En
例如 1 A 2 3
2 1 1
3 2 2
1 0 0
2 3 2
3 1 4 0 3 0
0 1 2
0 1 3
1 0 0
0 0
1 0 E 0 1
RA 3
A为满秩方阵。
关于矩阵的秩的一些重要结论:
定理5
R(AB) R(A), R(AB) R(B),即
对于满秩方阵A施行初等行变换可以化为单位阵E, 又根据初等阵的作用:每对A施行一次初等行变换, 相当于用一个对应的初等阵左乘A, 由此得到下面的 定理
定理3 设A是满秩方阵,则存在初等方阵
P1, P2,, Ps. 使得 Ps Ps1 , P2P1A E
对于满秩矩阵A,它的行最简形是 n 阶单位阵 E .
2 1 所构成的二阶子式为 D2 0 1
12 3 而 D3 4 6 5 为 A 的一个三阶子式。
1 0 1
显然, m n 矩阵 A 共有 cmk cnk 个 k 阶子式。
2. 矩阵的秩
定义2 设 A aij mn ,有r 阶子式不为0,任何r+1阶
子式(如果存在的话)全为0 , 称r为矩阵A的秩,
0 1
2 3
4 6
求 RA.
1 1 1 2

求矩阵的秩的步骤

求矩阵的秩的步骤

矩阵秩的计算方法:将矩阵A按初等行数变换为梯形矩阵B,梯形矩阵B的非零行数即为矩阵A的秩。

在线性代数中,矩阵A的列秩是A的线性独立列数的最大值,类似地,行秩是A的线性独立的水平行数的最大值,一般说来,如果将矩阵看作行向量或列向量,则秩是这些行向量或列向量的秩,即包含在最大不相关群中的向量的个数。

矩阵秩的性质;
1.矩阵的行秩、列秩、秩均相等。

2.初等变换不改变矩阵的秩。

3.矩阵Rab<=min{Ra,Rb}乘积的秩。

4.如果p和q是可逆矩阵,则r(PA)=r(A)=r(AQ)=r(PAQ)。

5.当r(A)<=n-2时,最高阶非零子公式的阶数<=n-2,n-1阶子公式为零,而伴随矩阵中的每个元素都是n-1阶子公式加一个符号,所以伴随矩阵是零矩阵。

6.当r(A)<=n-1时,最高阶非零子公式的阶数为<=n-1,因此n-1
阶子公式可能不为零,因此伴随矩阵可能为非零(等号成立时伴随矩阵必须为非零)。

矩阵的秩求解方法

矩阵的秩求解方法

矩阵的秩求解方法作者:***来源:《文理导航》2019年第32期【摘要】矩阵的秩是線性代数中一类重要的问题。

以一道有关线性代数的数三考研题为例,对问题不同的看法所用到的求秩的方法不一样,但知识点之间都是相呼应的,本文从矩阵秩的定义、矩阵初等变换、分块矩阵、线性方程组等多个方面探讨求秩的方法。

【关键词】线性代数;矩阵的秩;求秩方法线性代数是一门比较抽象的学科,在线性代数的学习中,矩阵占据了十分重要的地位,对矩阵概念的理解是学习线性代数的重要基础任务。

J.Sylvester在1861年提出矩阵的秩的概念。

它是矩阵最重要的数字特征之一,也是《线性代数》教学中的一个难点,因此对于矩阵的秩的研究也是线性代数学习中的重要部分。

四、总结矩阵的秩是线性代数中一个非常重要的概念,对于矩阵秩的求解及其应用更是重中之重。

矩阵的秩是它的最高阶非零子式的阶数,这个概念是一个非常有力的工具,特别是对于后续线性方程组解的情况的判定、方阵的可逆性、向量的线性关系等问题有非常好的应用。

本文通过几种求解秩的方法,将线性代数中非常重要的几个知识点联系在一起,融会贯通,具有理论意义。

【参考文献】[1]黄廷祝,成孝予.线性代数与空间解析几何(第4版)[M].北京:高等教育出版社,2015[2]北京大学数学系几何与代数教研室代数小组.高等代数(第3版)[M].北京:高等教育出版社,2003[3]吴华安.矩阵多项式的逆矩阵的求法[J].大学数学,2004(20):89-91[4]陈梅香.矩阵多项式与可逆矩阵的确定[J].北华大学学报:自然科学版,2013(14):153-155[5]赵云河.线性代数:第2版[M].北京:科学出版社,2017:35-139。

求矩阵的秩的三种方法

求矩阵的秩的三种方法

求矩阵的秩的三种方法矩阵是线性代数中的一个重要概念,它由一个数域中的矩形阵列组成,是线性变换的一种表现形式。

矩阵的秩是矩阵的重要性质之一,它可以告诉我们矩阵中行向量或列向量之间的关系。

在实际应用中,求解矩阵的秩是非常常见的问题。

本文将介绍矩阵的三种求解秩的方法。

方法一:高斯消元法高斯消元法是求解矩阵秩的一种基础方法。

对于一个矩阵A,如果它的秩为r,则A必然存在一个大小为r的非零行列式。

我们可以通过对矩阵A进行初等行变换将矩阵转化为行简化阶梯矩阵,然后统计矩阵中非零行的个数来确定矩阵的秩。

具体步骤如下:1. 对矩阵A进行高斯列变换,将A转化为行简化阶梯矩阵形式。

2. 统计矩阵中非零行的个数,即为矩阵的秩。

对于下面的矩阵A,我们可以通过高斯消元法求解矩阵的秩:$$A=\begin{bmatrix}1 &2 & 3\\4 &5 & 6\\7 & 8 & 9\end{bmatrix}$$按照高斯消元法的步骤对A进行初等行变换,得到行简化阶梯矩阵:方法二:矩阵的列空间对于一个矩阵A,其列空间是由A中所有列向量所张成的向量空间。

矩阵的秩等于它的列空间的维度。

我们可以先求解矩阵A的列空间的维度,然后确定矩阵A的秩。

具体步骤如下:2. 取矩阵A中与非零列对应的列向量,将它们作为张成列空间的一组基。

3. 求解列空间的维度,即为矩阵A的秩。

阶梯矩阵中非零列的位置分别是1和2,因此取A中的第1列和第2列作为列空间的一组基。

可以看出,这组基中存在一个线性关系:第2列 = 2*第1列。

矩阵A的列空间实际上只由A中的第1列张成,其维度为1,因此矩阵A的秩为1。

总结:本文介绍了求解矩阵秩的三种方法:高斯消元法、矩阵的列空间和矩阵的行空间。

对于一般的矩阵,三种方法的求解结果并不一定相同。

但无论采用哪种方法,都能够有效地求解矩阵的秩。

还有一些特殊的矩阵,它们的秩具有一些特殊性质:1. 对于一个n阶矩阵A,如果它是一个可逆矩阵,那么它的秩为n。

矩阵的秩及其求法求秩的技巧

矩阵的秩及其求法求秩的技巧

第五节:矩阵的秩及其求法一、矩阵秩的概念1. k 阶子式定义1 设 在A 中任取k 行k 列交叉处元素按原相对位置组成的 阶行列式,称为A 的一个k 阶子式。

例如 共有 个二阶子式,有 个三阶子式 矩阵A 的第一、三行,第二、四列相交处的元素所构成的二阶子式为 而 为 A 的一个三阶子式。

显然, 矩阵 A 共有 个 k 阶子式。

2. 矩阵的秩定义2 设 有r 阶子式不为0,任何r+1阶子式(如果存在的话)全为0 , 称r为矩阵A的秩,记作R (A)或秩(A )。

规定: 零矩阵的秩为 0 .注意:(1) 如 R ( A ) = r ,则 A 中至少有一个 r 阶子式 所有 r + 1 阶子式为 0,且更高阶子式均为 0,r 是 A 中不为零的子式的最高阶数,是唯一的 .(2) 有行列式的性质, (3) R(A) ≤m , R (A ) ≤n , 0 ≤R (A ) ≤min { m , n } .(4) 如果 An ×n , 且 则 R( A ) = n .反之,如 R ( A ) = n ,则因此,方阵 A 可逆的充分必要条件是 R ( A ) = n .二、矩阵秩的求法1、子式判别法(定义)。

例1 设 为阶梯形矩阵,求R(B )。

解 由于 存在一个二阶子式不为0,而任何三阶子式全为0,则 R(B ) = 2.结论:阶梯形矩阵的秩=台阶数。

例如()n m ij a A ⨯={}),m in 1(n m k k ≤≤⎪⎪⎪⎭⎫ ⎝⎛----=110145641321A 182423=C C 43334=C C 10122--=D 1015643213-=D n m ⨯k n k m c c ()n m ij a A ⨯=0,r D ≠()().T R A R A =0,A ≠0.A ≠⎪⎪⎪⎭⎫ ⎝⎛=000007204321B 02021≠⎪⎪⎪⎭⎫ ⎝⎛=010*********A ⎪⎪⎪⎭⎫ ⎝⎛=001021B ⎪⎪⎪⎭⎫ ⎝⎛=100010011C 125034000D ⎛⎫ ⎪= ⎪ ⎪⎝⎭21235081530007200000E ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭()3=A R ()2=B R ()3=C R ()2R D =()3R E =一般地,行阶梯形矩阵的秩等于其“台阶数”—— 非零行的行数。

3.2 矩阵的秩

3.2 矩阵的秩

非零元为对角元素的3阶行列式
2 0 0 1 3 0 3 2 = 4
24 0,
B =
返回
2 0 0 0
1 3 0 0
下页
0 1 0 0
3 2 2 5 . 3 0

首页
上页
从例 1可知, 对于一般的矩阵, 当行数与列数
首页
上页
返回
下页
结束

二、初等行变换法求秩
1 3 1 2 例2.求矩阵 A= 2 1 2 3 的秩。 3 2 1 1 1 4 3 5 1 3 1 2 1 3 1 2 1 3 1 2 0 7 4 7 0 7 4 7 2 1 2 3 解:A= , 0 7 4 7 0 0 0 0 3 2 1 1 0 7 4 7 0 0 0 0 1 4 3 5 所以R(A)=2。
2 2 6
1

3
1
1 1
4 5 1

+3
8

r3 r 2
1 0 0
2 4 0
上页
1
+3
5
返回
4 1 1
下页 结束 铃
首页
因为R(A)=2,
所以
5 = 0, = 5, 即 1 = 0, = 1.
1 0 0
首页 上页 返回
2 4 0
下页
1
+3
5
结束
4 1 1

课堂练习 P58 29
30
首页
上页
返回
下页
结束

矩阵秩的本质
A 的秩 R(A) 就是 A 中不等于 0 的子式的最高阶数.

线性代数-1.矩阵的秩及其求法

线性代数-1.矩阵的秩及其求法

1
例2 设 A 为 n 阶方阵且 r (A)=n 2,求 r (A*).
解 由 r ( A) n 2 知:A的所有n 1阶子式全为零, 故 A* 0,从而r ( A*) 0.
a 1 例3 设A 1 1 1 1 1 a 1 1 ,若r ( A) 3,求a. 1 a 1 1 1 a
矩阵的秩及其求法
1. 利用定义求矩阵的秩
利用定义求矩阵的秩就是利用矩阵的子式或行列式是 否为零来确定矩阵的秩. 例1 设A (aij ) nn 为非零矩阵,Aij为aij的代数余子式,
若aij=Aij,求r ( A).
解 因为A 0,所以至少有一个元素aij 0;
将 | A | 按第 i 行展开,有
1 0 2 例5 设 A 为 4 3 阶矩阵且 r (A) 2 , B 0 2 0 . 求 r (AB). 1 0 3
r3 r1
解 因为 B
1 0 2 0 2 0 , 0 0 5
所以 r ( B) 3,即 B 为满秩阵,
2 | A | aij Aij aij 0, j 1 j 1 n n
故 r ( A) n.
注:我们一般在两个地方用到Aij;一是行列式按行(列)展开; 另一个是A *; 若在A *中用,这时题目常常与求逆有关.
A aij
33
* T O,aij Aij 0, A ____ . aij Aij A A .
-3 由于 A 的 3 阶子式 1 1
1 -3 1
1 1 =-16 0, r ( A) 3,故a 3. -3
一般地,若
a b b b b a b b An b b b a

矩阵的秩公式

矩阵的秩公式

矩阵的秩公式
矩阵的秩公式是一种数学工具,用于确定矩阵的秩。

秩是描述矩阵中非零行的最大数量的参数。

对于一个m×n的矩阵,使用高斯消元法可以将矩阵化为行最简形式。

在行最简形式矩阵中,所有非零行都位于零行之上,并且每个非零行的首个非零元素都为1。

根据矩阵的行最简形式,我们可以确定矩阵的秩。

矩阵的秩等于行最简形式中的非零行数量。

这个数量即为矩阵的秩。

对于一个m×n的矩阵,其秩可以表示为r(A),其中A为矩阵。

矩阵A的秩满足以下条件:
1. 如果m ≤ n,则r(A) ≤ m;
2. 如果m > n,则r(A) ≤ n;
3. 如果矩阵A的元素全为0,则r(A) = 0。

此外,我们可以使用矩阵的性质来进一步求解秩。

例如,可以使用行变换来简化矩阵,以便更轻松地计算秩。

矩阵的秩在线性代数和各个领域都有广泛应用,包括图论、线性方程组求解和最小二乘法等。

总结而言,矩阵的秩公式是一个用于确定矩阵秩的数学工具。

它可以通过高斯消元法和矩阵的行最简形式来计算。

秩在多个领域有广泛应用,是解决各种问题的重要参数。

矩阵的秩与运算

矩阵的秩与运算

矩阵的秩与运算
一·矩阵秩的求法
求矩阵的秩主要有三种方法;(1)定义
法,利用定义寻找矩阵中非零子式的最高
阶数。

(2)初等变换法,对矩阵实施初等行变
换,将其变成为行阶梯形矩阵,行阶梯形矩
阵中非零行的行数就是矩阵的秩;(3)标准
形法,求矩阵的标准形,l的个数即为矩阵
的秩。

二·矩阵的秩与行列式
对于一个方阵A,如何判断它是
否可逆,除了根据它的行列式是否为零,还
可以根据方阵秩的大小来判断。

比如方阵A(nn)
其秩R, ,若R < n,则显然矩阵行列式为零,不可逆;
若R = n ,则矩阵行列式不为零,矩阵可逆。

三·矩阵的秩与线性方程组
1齐次的
齐次线性方程组
●系数矩阵R = n ,则有且仅有一个0解
●系数矩阵R < n,则有无数个解。

2非齐次的
费齐次线性方程组,设系数矩阵A ,增广矩阵B
●若R(A) = R(B) = n ,则有且仅有一个解;
●若R(A) = R(B)<n,则有无数个解;
●若R(A)≠R(B) ,则方程组无解。

四·矩阵的秩与二次曲面
说二次曲面,其实就是与二次型的关系。

有定义知道,
二次型的秩定义为其矩阵的秩,这就为解决二次曲面问题找到了一个可转移的办法。

正所谓遇难则变,变则通。

道家之言,诚哉大哉!!
下面将具体举例阐述,二次型总可以经线性变换成CY化为标准形(比如合同变换),而且,同的非退化线性变换化为不同的标准形,但这些标准形中所含平方项的个数是相同的,所含平方项的个数就等于二次型的秩,也就是矩阵的秩。

求矩阵的秩的三种方法

求矩阵的秩的三种方法

求矩阵的秩的三种方法
计算矩阵的秩有三种常用的方法,分别是高斯消元法、矩阵的行列式和矩阵的特征值。

1. 高斯消元法:
- 将矩阵转换为行简化阶梯形矩阵。

- 统计非零行的个数即为矩阵的秩。

2. 矩阵的行列式:
- 计算原始矩阵的行列式。

- 将其中各个子阵的行列式相乘,并记下非零元素的数量。

- 非零元素的数量即为矩阵的秩。

3. 矩阵的特征值:
- 计算矩阵的特征值。

- 非零特征值的个数即为矩阵的秩。

这三种方法在计算矩阵的秩时都能够得到相同的结果。

2.5--矩阵的秩及其求法知识讲解

2.5--矩阵的秩及其求法知识讲解

例8 设A为n阶矩阵,证明R(A+E)+R(A-E)≥n 证: ∵ (A+E)+(E-A)=2E ∴ R(A+E)+ R(E-A)≥ R(2E)=n 而 R(E-A )=R( A-E) ∴ R(A+E)+R(A-E)≥n
17
作业
P109 1 2 3
18
子式(如果存在的话)全为0 , 称r为矩阵A的秩, 记作R(A)或秩(A)。
4
规定: 零矩阵的秩为 0 . 注意:(1) 如 R ( A ) = r,则 A 中至少有一个 r 阶子
式 Dr 0 , 所有 r + 1 阶子式为 0,且更高阶
子式均为 0,r 是 A 中非零的子式的最高阶数.
(2) 由行列式的性质,R(A)R(AT).
D
0
3
4
0 0 0
1 2
1 1 0
B 0 1 C 0 1 0
0 0
0 0 1
2 1 2 3 5
E
0
8
1
5
3
0 0 0 7 2
0
0
0
0
0
RA3 RB2 RC3 RD 2 R E 3
一般地,行阶梯形矩阵的秩等于其“台阶数”—— 非零行的行数。
7
例2

a A 1
R A nA ~ E
R A n A ~E n
例如 1
A 2 3
2 1 1
3 2 2
1 0 0
2 3 2
3 1 4 0 3 0
0 1 2
0 1 3
1 0 0 0 1 0 E
0 0 1
R A 3
A为满秩方阵。 15

矩阵的秩及其求法-求秩的技巧

矩阵的秩及其求法-求秩的技巧

第五节 【2 】:矩阵的秩及其求法一.矩阵秩的概念 1. k 阶子式界说1 设 在A 中任取k 行k 列交叉处元素按原相对地位构成的阶行列式,称为A 的一个k 阶子式.例如共有个二阶子式,有 个三阶子式 矩阵A 的第一.三行,第二.四列订交处的元素所构成的二阶子式为 而为 A 的一个三阶子式.显然, 矩阵 A 共有 个k阶子式. 2. 矩阵的秩界说2 设 有r 阶子式不为0,任何r +1阶子式(假如消失的话)全为0 ,称r 为矩阵A 的秩,记作R (A )或秩(A ). 划定: 零矩阵的秩为 0 .留意:(1) 如 R ( A ) = r ,则 A 中至少有一个 r 阶子式所有 r + 1 阶子式为 0,且更高阶子式均为 0,r 是 A 中不为零的子式的最高阶数,是独一的 .(2) 有行列式的性质,(3) R(A ) ≤m , R (A ) ≤n , 0 ≤R (A ) ≤min { m , n } .(4) 假如An ×n , 且 则 R ( A ) =n .反之,如 R ( A ) = n ,则 是以,方阵 A 可逆的充分必要前提是 R ( A ) = n . 二.矩阵秩的求法 1.子式判别法(界说).例1 设 为阶梯形矩阵,求R (B ). ()nm ij a A ⨯={}),m in 1(n m k k≤≤⎪⎪⎪⎭⎫⎝⎛----=110145641321A 182423=C C 43334=C C 10122--=D 1015643213-=D nm ⨯k n k m c c ()nm ij a A ⨯=0,r D ≠()().T R A R A =0,A ≠0.A ≠⎪⎫⎛4321因为 消失一个二阶子式不为0,而任何三阶子式全为0,则R (B ) = 2. 结论:阶梯形矩阵的秩=台阶数.例如一般地,行阶梯形矩阵的秩等于其“台阶数”——非零行的行数. 例2 设 假如 求a .解或例3则 2.用初等变换法求矩阵的秩定理2矩阵初等变换不转变矩阵的秩. 即则注: 只转变子行列式的符号.是A 中对应子式的k 倍. 是行列式运算的性质.求矩阵A 的秩办法:1)应用初等行变换化矩阵A 为阶梯形矩阵B 2)数阶梯形矩阵B 非零行的行数即为矩阵A 的秩.例4求解⎪⎪⎪⎭⎫ ⎝⎛=010*********A ⎪⎪⎪⎭⎫ ⎝⎛=001021B ⎪⎪⎪⎭⎫ ⎝⎛=100010011C 125034000D ⎛⎫ ⎪= ⎪ ⎪⎝⎭21235081530007200000E ⎛⎫⎪⎪= ⎪⎪⎝⎭()3=A R ()2=B R ()3=C R ()2R D =()3R E =⎪⎪⎪⎭⎫ ⎝⎛=a a a A 111111(),3<A R ()3<A R aa a A 111111=0)1)(2(2=-+=a a 1=∴a 2-=a ⎪⎪⎪⎪⎪⎭⎫⎝⎛=K K K K A 111111111111()3=A R =K 3-()311111113(1)(3)111111K A K K K KK=+=-+BA →)()(B R A R =j i rr ↔.1i rk .2j i krr +.3⎪⎪⎪⎭⎫ ⎝⎛-----=211163124201A ().A R −−→−-122r r A ⎪⎪⎪⎭⎫ ⎝⎛----211021104201⎪⎪⎪⎭⎫⎝⎛--→000021104201R(A ) = 2例5三.满秩矩阵界说3A 为n 阶方阵时,称 A 是满秩阵,(非奇怪矩阵) 称 A 是降秩阵,(奇怪矩阵) 可见: 对于满秩方阵A 施行初等行变换可以化为单位阵E ,又依据初等阵的感化:每对A 施行一次初等行变换,相当于用一个对应的初等阵左乘A,由此得到下面的定理. 定理3设A 是满秩方阵,则消失初等方阵 使得对于满秩矩阵A,它的行最简形是n 阶单位阵 E .例如A 为满秩方阵.关于矩阵的秩的一些主要结论:定理5R (AB )R (A ),R (AB )R (B ),即R (AB )min{R (A ),R (B )}设A 是 矩阵,B 是 矩阵, 性质1性质2 假如 A B = 0 则μλμλ,2,6352132111,求)(且设=⎪⎪⎪⎭⎫ ⎝⎛--=A R A ⎪⎪⎪⎭⎫ ⎝⎛--=6352132111μλA ⎪⎪⎪⎭⎫ ⎝⎛----+-→458044302111μλ⎪⎪⎪⎭⎫ ⎝⎛----+-→015044302111μλλ,2)(=A R 1,5==∴μλ01,05=-=-∴μλ(),n A R =(),n A R <()0≠⇔=A nA R .,,,21s P P P EA P P P P s s =-121, ()EA nA R ~= ()nE A n A R ~⇔=⎪⎪⎪⎭⎫ ⎝⎛=213212321A ⎪⎪⎪⎭⎫ ⎝⎛----→320430321⎪⎪⎪⎭⎫ ⎝⎛→320110001E=⎪⎪⎪⎭⎫⎝⎛→100010001()3=∴A R ≤≤≤nm ⨯tn ⨯).()()(AB R n B R A R ≤-+.)()(n B R A R ≤+性质3 假如 R (A )= n, 假如A B = 0 则 B = 0. 性质4 设A,B 均为矩阵,则例8 设A 为n 阶矩阵,证实R (A+E )+R (A-E )≥n 证: ∵ (A+E )+(E-A )=2E∴R (A+E )+ R ( E-A )≥ R (2E )=n 而 R ( E-A )=R ( A-E ) ∴ R (A+E )+R (A-E )≥nnm ⨯).()()(B R A R B A R +≤±。

求矩阵的秩的方法

求矩阵的秩的方法

求矩阵的秩的方法矩阵的秩啊,这可真是个有趣的东西!就好像是一座神秘城堡的钥匙,能打开很多奇妙的大门呢!要找到矩阵的秩,我们可以用行变换或者列变换呀。

这就像是给矩阵来一场华丽的变身,把它变得更加清晰明了。

比如说,我们可以通过不断地变换矩阵的行,让那些隐藏的规律和关系都浮现出来。

这就好比在黑暗中点亮一盏明灯,一下子就能看清周围的情况啦。

或者呢,我们也可以从列的角度去思考,把列进行巧妙的调整,就像给一幅画重新上色,让它呈现出不一样的精彩。

有时候啊,遇到一些复杂的矩阵,就像是遇到了一团乱麻,但别着急呀,只要耐心地去梳理,总能找到头绪的。

你想想看,一个庞大的矩阵,里面蕴含着多少信息呀!而我们要做的就是从这些信息中找到最关键的那部分,也就是矩阵的秩。

这可不是一件容易的事儿呢,但也正因为有挑战,才更有意思呀!就好像攀登一座高峰,虽然过程艰辛,但当你站在山顶俯瞰一切的时候,那种成就感简直无与伦比。

我们可以通过观察矩阵的行与行之间、列与列之间的关系,去发现那些隐藏的线索。

这就好像是侦探在破案,要从蛛丝马迹中找到真相。

而且哦,不同的矩阵可能需要不同的方法和技巧去求解它的秩。

这就像是每个人都有自己独特的性格,我们要因材施教呀。

有时候,可能一下子就找到了答案;有时候,可能要经过反复的尝试和探索。

但这又有什么关系呢?每一次的尝试都是一次成长,每一次的探索都是一次进步。

在求解矩阵的秩的过程中,我们也能锻炼自己的思维能力和逻辑推理能力。

这可不仅仅是数学上的收获,更是对我们自身能力的提升呀。

总之,求矩阵的秩是一个充满乐趣和挑战的过程,它就像一个神秘的宝藏等待着我们去发掘。

只要我们保持热情和耐心,就一定能找到属于我们自己的宝藏!。

矩阵秩的定义与求法

矩阵秩的定义与求法

矩阵秩的定义与求法
嘿,朋友们!今天咱来聊聊矩阵秩的定义与求法。

矩阵秩啊,就像是一个团队里核心成员的数量。

你想想看,一个团队里真正能挑大梁的有多少人,这是不是很关键呀?矩阵秩差不多就是这么个意思。

那怎么去理解矩阵秩的定义呢?简单来说,就是矩阵中线性无关的行向量或列向量的最大数目。

这就好比是一堆积木,有的积木能自己稳稳地立着,有的则需要依靠其他积木,那些能自己立住的积木就像是线性无关的向量呀。

那怎么求矩阵秩呢?这可有不少方法呢!比如说,咱可以通过对矩阵进行初等变换,把它变成一个阶梯形矩阵,然后数一下非零行的数目,这不就知道秩是多少啦!这就好像给矩阵来个大变身,让它露出真面目。

再比如说,还可以通过行列式的值来判断。

如果一个子矩阵的行列式不为零,那这个子矩阵对应的行向量或列向量就是线性无关的呀,这不就能找到秩了嘛。

哎呀,是不是觉得有点绕?但咱仔细想想,其实也不难嘛!就像咱平时做事,找到关键的点,问题不就迎刃而解啦?矩阵秩也是一样,找到了合适的方法,就能轻松搞定它。

你看啊,在很多数学问题里,矩阵秩都起着至关重要的作用呢。

要是咱不知道怎么求,那不是两眼一抹黑啦?就像你要去一个地方,不知道路怎么走,那多着急呀!
所以呀,咱可得好好把矩阵秩的定义和求法弄明白咯。

多做几道题,多实践实践,慢慢地就会发现其中的奥妙啦。

别嫌麻烦,别嫌难,等你掌握了,那感觉可棒啦!就像攻克了一座大山,特别有成就感。

反正啊,我觉得矩阵秩这玩意儿真的很有意思,也很有用。

咱可不能小瞧了它,得认真对待,好好钻研。

相信我,等你真正搞懂了,你会发现数学的世界更加精彩啦!这就是我对矩阵秩的看法,你们觉得呢?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档