D类功放原理与设计
D 类放大高效率音频功率放大器电路图原理
D类放大高效率音频功率放大器电路图原理为提高功放效率,以适应现代社会高效、节能和小型化的发展趋势,以D类功率放大器为核心,以单片机89C51和可编程逻辑器件(FPGA)进行控制及时数据的处理,实现了对音频信号的高效率放大。
系统最大不失真输出功率大于1W,可实现电压放大倍数1~20连续可调,并增加了短路保护断电功能,输出噪声低。
系统可对功率进行计算显示,具有4位数字显示,精度优于5%。
传统的音频功率放大器主要有A类(甲类)、B类(乙类)和AB(甲乙类)。
A类功率放大器在整个输入信号周期内都有电流连续流过功率放大器件,它的优点是输出信号的失真比较小,缺点是输出信号的动态范围小、效率低,理想情况下其最高效率为50%.B类功率放大器在整个输入信号周期内功率器件的导通时间为50%,它的优点是在理想情况下效率可达78.5%,但缺点是会产生交越失真,增加噪声。
AB类(甲乙类)功率放大器是以上两种放大器的结合,每个功率器件的导通时间在50%~100%之间,兼有甲类失真小和乙类效率高的特点,其工作效率介于二者之间。
传统音频功率放大器效率偏低,体积偏大的缺点与音频功率放大高效、节能和小型化的发展趋势的矛盾,催生了D类(丁类)音频功率放大器出现和发展。
本系统即采用D类功率放大实现,并用单电源供电,符合现代社会对电源小巧、便携要求的实际需要。
1系统方案论证与选择1.1整体方案方案①:数字方案。
输入信号经前置放大调理后,即由A/D采入单片机进行处理,三角波产生及与音频信号的比较均由软件部分完成,然后由单片机输出两路完全反向的PWM 波给入后级功率放大部分,进行放大。
此种方案硬件电路简单,但会引入较大数字噪声。
方案②:硬件电路方案。
三角波产生及比较、PWM产生仍由硬件电路实现,此方案噪声较小、且幅值能做到更大,效果较好,故采用此方案。
1.2三角波产生电路设计方案①:利用NE555产生三角波。
该电路的特点是采用恒流源对电容线性冲、放电产生三角波,波形线性度较好、频率控制简单,信号幅度可通过后加衰减电位器控制。
D类功放原理与设计
D类功放原理与设计D类功放是一种利用数字技术来增强音频信号的功率的放大器。
它是一种以数字方式来放大音频信号的功放,以取代传统的A、B、AB类功放。
相较于传统的类A、B、AB功放,D类功放具有更高的效能和更小的体积。
它的设计原理基于PWM(脉宽调制)技术和一个能将模拟信号转换为数字信号的模拟-数字转换器(ADC)。
D类功放工作在开关状态,将输入的模拟音频信号转换为数字信号。
这个数字信号经过时钟和滤波器的处理,输出的是一个PWM波形。
PWM波形有两个状态,即高电平和低电平。
这两个状态之间的切换频率即为PWM频率。
高电平和低电平的占空比(高电平的时间占总周期的比例)根据输入音频信号的幅度进行调整。
PWM波形输出通过一个低通滤波器进行平滑处理,得到放大后的音频信号。
在这个过程中,由于D类功放开关状态的工作,功率损耗很小,效率非常高,达到了90%以上,远高于传统功放的30%~60%。
D类功放的优势不仅体现在效率上,还包括尺寸小、重量轻、发热量少等。
这使得D类功放非常适合应用在便携式电子设备、汽车音响和家庭影院等领域。
另外,由于D类功放的输出波形是PWM波形,因此它对输出的音频信号几乎没有非线性失真,能够提供高保真的音质。
在设计D类功放时,需要考虑以下几个方面:首先,要选择合适的ADC和PWM控制器。
ADC应具有高精度和高采样率,能够准确地将模拟信号转换为数字信号。
PWM控制器应具有稳定的时钟频率,能够产生高质量的PWM波形。
其次,要设计合适的滤波器。
滤波器的作用是平滑PWM波形,去除其中的高频成分。
设计滤波器时需要考虑的参数有截止频率、阶数和选择合适的滤波器类型(如二阶有源滤波器)。
另外,还需要设计适当的保护电路。
因为D类功放工作在高频开关状态,过电流、过压和过热都可能对电路造成严重损害。
因此,需要设计过电流保护电路、过压保护电路和过热保护电路来确保功放的稳定运行和安全性能。
最后,输出级的功率管选取也是设计D类功放时需要考虑的关键问题。
D类功放原理与设计
编辑课件
26
1、功率MOS管驱动芯片的选择: 上升,下降时间短,死区时间较短的驱动芯片
2、功率MOS管的选择: RDSON小,Qg较小MOS管
编辑课件
27
编辑课件
2
1.1 功率放大电路分类
电路中晶体管的工作状态(按一个周期导通的角度大小划分)
甲类(class-A): 360 乙类(class-B): 180 甲乙类(class-AB): >180 丙类(class-C): <180 丁类(class-D): 开关状态
编辑课件
3
工作波形
iC
2π
IC
编辑课件
16
编辑课件
17
Functional Block Diagram
编辑课件
18
Typical Connection
充电二极管:肖课件
19
3.5 输出滤波电路设计
输出滤波器通常选择二阶巴特沃斯LC低通滤波器。 归一化传递函数
(1) 半桥LC滤波器设计
编辑课件
π
3π
A类
效率低 ≤50% 。
O
ωt
iC
O
B类
ωt
效率 ≤78.5% 。
iC
AB类
IC O
ωt
效率 接近乙类
i C
C类
O
ωt
iC
效率 最高。
D类
O
ωt
编辑课件
4
1.2 D类功率放大电路
D类功放是放大元件处于开关工作状态的一种放大模式。
放大元件要么处于截止状态,要么导通状态,晶体管相当于一 个理想开关而不消耗能量。在理想情况下,效率为100%。
D类音频放大器设计:概念、原理和方法(上)
D类放大器首次提出于1958年,近些年已逐渐流行起来。
那么,什么是D类放大器?它们与其它类型的放大器相比如何? 为什么D类放大器对于音频应用很有意义?设计一个“优质”D类音频放大器需要考虑哪些因素? 美国模拟器件公司(简称ADI公司)D类放大器产品的特点是什么? 本文中试图回答上述所有问题。
D类放大器的优点在传统晶体管放大器中,输出级包含提供瞬时连续输出电流的晶体管。
实现音频系统放大器许多可能的类型包括A类放大器,AB类放大器和B类放大器。
与D类放大器设计相比较,即使是最有效的线性输出级,它们的输出级功耗也很大。
这种差别使得D类放大器在许多应用中具有显著的优势,因为低功耗产生热量较少,节省印制电路板(PCB)面积和成本,并且能够延长便携式系统的电池寿命。
线性放大器、D类放大器和功耗线性放大器输出级直接连接到扬声器(有些情况下通过电容器连接)。
如果输出级使用双极结晶体管(BJT),它们通常工作在线性方式下,具有大的集射极电压。
输出级也可以用互补金属氧化物半导体(CMOS)晶体管实现,如图1所示。
图1 CMOS线性输出级功率消耗在所有线性输出级,因为产生输出电压VOUT的过程中不可避免地会在至少一个输出晶体管内造成非零的IDS和VDS。
功耗大小主要取决于对输出晶体管的偏置方法。
A类放大器拓扑结构使用一只晶体管作为直流(DC)电流源,能够提供扬声器需要的最大音频电流。
A类放大器输出级可以提供优良的音质,但功耗非常大,因为通常有很大的DC偏置电流流过输出级晶体管(这是我们不期望的),而没有提供给扬声器(这是我们期望的)。
B类放大器拓扑结构没有DC偏置电流,所以功耗大大减少。
其输出晶体管是以推拉方式独立控制,从而允许高端晶体管为扬声器提供正电流,而低端晶体管吸收负电流。
由于只有信号电流流过晶体管,因而减少了输出级功耗。
但是B类放大器电路的音质较差,因为当输出电流过零点和晶体管在通断状态之间切换时会造成线性误差(交越失真)。
D类功放的设计原理
D类功放的设计原理D类功放,全称为“数字功率放大器”,是一种电子功率放大器的类型,它的设计原理基于数字信号的处理和模拟功率放大电路的协同工作。
相比于传统的A类、B类、AB类功放,D类功放具有更高的功率效率,更小的尺寸和重量,更好的线性度,以及更低的功率损耗。
下面将详细介绍D类功放的设计原理。
1.PWM调制原理D类功放的核心设计原理是采用脉宽调制(PWM)技术。
PWM是一种通过调整信号的脉冲宽度来控制平均输出功率的方法。
D类功放通过将原始的模拟音频信号转换为数字信号,并通过比较器产生一个与模拟信号频率相同的矩形波,然后根据输入音频信号的幅值调整矩形波的脉宽,最后通过滤波器将调制后的PWM信号转换为模拟音频信号输出。
2.数字信号处理D类功放的设计中需要进行数字信号处理。
首先,输入的模拟音频信号需要经过模数转换器(ADC)转换为数字信号,然后通过数字信号处理器(DSP)进行数字信号的滤波、均衡、增益控制等处理,最后再经过数字模数转换器(DAC)转换回模拟信号。
3.比较器比较器是D类功放中的一个关键组件,用于将模拟音频信号与产生的PWM矩形波进行比较。
比较器的作用是根据输入信号的幅值调整PWM信号的脉宽,从而控制输出功率。
比较器通常由操作放大器和参考电压产生器组成。
4.滤波器在PWM调制之后,需要通过滤波器将调制后的PWM信号转换为模拟音频信号输出。
滤波器的作用是去除PWM信号中的高频分量,保留音频信号的低频成分。
常见的滤波器类型包括低通滤波器和带通滤波器。
5.输出级D类功放的输出级通常采用开关管(如MOSFET)构成。
开关管的特点是具有较低的开通电阻和较高的关断电阻,从而实现更小的功率损耗和更高的功率效率。
输出级通常由多个开关管组成,根据功率需求可以并联或串联排列。
输出级的设计需要考虑电压和电流的控制,包括过电压和过电流的保护。
6.反馈控制为了提高D类功放的线性度和稳定性,通常需要采用反馈控制。
通过对输出信号与输入信号进行比较,调整PWM信号的脉宽和幅值,以使输出信号尽可能接近输入信号。
D类功放的原理
D类开关放大器的概念源于50年前,但因其工作频率至少应为音频信号上限频率(20kHz)的4~5倍,早期采用电子管、晶体管的电路在功率、效率等方面还不能充分体现其优越性。
20世纪80年代出现了开关速度和导通损耗满足要求的MOSFET,近年来又出现了集成前置驱动电路,如Harris公司的HIP4080,从而推动了D类功放的实用发展。
D类功放所用的MOSFET为N沟道型,因为N型沟道MOSFET的导通损耗仅为相应规格的P沟道MOSFET的1/3。
传统的音频功率放大器有A类、AB类、B类、C类等几种,其功率放大器件(电子管、晶体管、场效应管、集成电路等)均工作于线性放大区域,属线性放大器,其效率普遍不高,通常AB类放大器的效率不会超过60%。
采用D类开关放大电路可明显提高功放的效率。
D类功放将音频信号转变为宽度随信号幅度变化的高频脉冲,控制功率管以相应的频率饱和导通或截止,功率管输出的信号经低通滤波器驱动扬声器发声。
因功率管大部分时间处于饱和导通和截止状态,功率损耗很小,其效率可达90%以上。
典型的D类功放可提供200W输出,效率达94%,谐波失真在1%~2.8%。
D类功放保真度不如线性放大器,但在很多场合已能满足要求,例如汽车音响系统只要求低功率输出时失真小于2%,满功率输出时小于5%,而且经过改进D类功放的性能还将有所提高。
另外,D类功放不存在交越失真。
D类开关放大器由积分器、占空比调制器、开关驱动电路及输出滤波器组成,图1(a)所示的电路为采用半桥驱动的D类功放,它采用了固定频率的占空比调制器,功率管输出的方波信号与音频信号混合作为负反馈信号送入积分器。
积分器兼有滤波作用,输出修正信号送占空比调制器,占空比调制器由比较器和三角波发生器组成[图1(b)],用修正信号对三角波进行调制产生调制输出,推动功率管工作。
负反馈应取自低通滤波器之前,否则因滤波后的信号与输入的信号有相位差(二阶滤波器可能引起180°的相位差),可能引起电路自激,需采用复杂的相位补偿电路。
11.D类功率放大器
D类功率放大器一.原理D类功放也称为数字功放,与模拟功放的主要差别在于功放管的工作状态。
传统模拟放大器有甲类、乙类、甲乙类和丙类等。
一般的小信号放大都是甲类功放,即A类,放大器件需要偏置,放大输出的幅度不能超出偏置范围,所以,能量转换效率很低,理论效率最高才25%。
乙类放大,也称B类放大不需要偏置,靠信号本身来导通放大管,理想效卒高达78 5%。
但因为这样的放大,小信号时失真严重实际电路都要略加一点偏置,形成甲乙类功放,这么一来效率也就随之下降。
虽然高频发射电路中还有一种丙类,即C类放大,效率可以更高,但电路复杂、音质更差,音频放大中一般都不采用。
这几种模拟放大电路的共同特点是晶体管都工作在线性放大区域中,它按照输入音频信号的大小控制输出的大小,就像串在电源与输出间的一只可变电阻,控制输出,但同时自身也在消耗电能。
D类功放采用脉宽调制(PWM)原理设计,其功放管工作在开关状态。
在理想情况下,功放管导通时内阻为零,两端没有电压,因此没有功率损耗;而截止时,内阻无穷大,电流又为零,也没有功率损耗。
它在实际的工作中的功率消耗所示:主要由两部分构成:转换损耗和I2R损耗。
转换损耗如图1-1当开关式放大器输出在接通和断开之间切换,或断开和接通之间切换时通过线性区域而消耗功率。
在D类功放中开关管如果采用的是金属氧化物半导体场效应晶体管(MOSFET管),它的开关导通电阻较小一般远远小于1Ω,所以I2R损耗相对来说还是很小的。
当达到最大额定功率时,D类放大器的效率在80%到90%的范围内。
在典型的听音条件下,效率也可达到65%到80%左右,约为AB类放大器的两倍以上。
D类放大器可分为数字D类放大器与模拟D类放大器两类,数字D类放大器一般用于数字音响领域,如CD信号的功率放大。
模拟D类放大器一般可分为前置放大级、PWM调制、功率放大与低通滤波四个部分。
其中PWM调制和功率放大是D类放大器的核心,PWM调制的一般方案有:(1)采用PWM调制芯片产生PWM信号,此类芯片可方便的产生PWM信号,但一般对电源有要求,不利于整机单5v供电,并且很多情况下产生的PWM型号为方波。
单通道d类功放
单通道d类功放
单通道D类功放指的是一种音频功放(放大器),采用D类放大技术,也称为PWM(脉冲宽度调制)放大技术。
D类功放相对于传统的A类、B类功放而言,在功率效率上有很大的提高。
以下是一些关于单通道D类功放的特点和工作原理:
高效能:D类功放以其高效的能量转换而著称。
由于其工作原理,D类功放几乎不会在没有输出信号时消耗能量,使其在功率放大方面更为高效。
脉冲宽度调制(PWM):D类功放使用PWM技术,即通过调整脉冲的宽度来控制输出信号的幅度。
这样的技术使得功率放大器在不同功率需求下能够更有效地工作。
小型轻便:相对于传统的A类、B类功放,D类功放通常更小巧轻便,适合在有空间限制的环境中使用。
适用于低频信号:D类功放在处理低频信号方面表现出色,适合用于音响系统和低音炮等需要高功率低频放大的场合。
应用领域:D类功放常用于汽车音响、家庭影院、音响音箱、低音炮等音频应用。
其高效能和小型化的特点使其在一些应用中得到广泛应用。
需要注意的是,尽管D类功放在功率效率上有很多优势,但在一些对音质要求非常高的专业音响应用中,一些人可能更倾向于使用A 类或AB类功放,这是因为D类功放在一些情况下可能引入一些数字失真。
1。
d类功放的原理及电路设计
d类功放的原理及电路设计
D类功放是一种数字功放,采用全数字化的技术来放大音频信号。
它的工作原理是将输入的模拟音频信号转换为数字信号,然后利用PWM(脉宽调制)技术将数字信号转换为高频的数字脉冲信号,接着利用低通滤波器将高频信号滤除,得到放大后的模拟音频信号。
D类功放的电路设计包含以下主要组成部分:
1. 输入级:负责将模拟音频信号输入功放电路,通常采用差分输入,以提高抗干扰能力和动态范围。
2. ADC(模数转换器):将输入的模拟音频信号转换为数字信号。
通常采用高速的Σ-Δ调制器,将音频信号转换为高速脉冲流。
3. PWM(脉宽调制器):接收ADC输出的数字信号,并将其转换为一系列高频的数字脉冲信号。
脉宽的宽度根据输入信号的幅度来调节。
4. 输出级:将PWM输出的高频脉冲信号进行滤波处理,恢复为模拟音频信号。
一般采用低通滤波器,滤除高频信号,保留放大后的音频信号。
5. 功率放大器:将输出级的模拟音频信号放大到足够的电平,以驱动扬声器。
D类功放相比于传统的A类、B类功放具有高效率、低热量、小尺寸等优势,适用于各种音频放大应用,如音响系统、汽车音响、无线通信等。
D类音频功放电路原理分析
D类音频功放电路原理分析D类音频功放电路原理分析【摘要】本文从电路的基本理论出发,结合相关电路图及波形对D类音频功放电路的组成、工作原理进行详细的分析和阐述。
【关键词】音频功放;调制器;低通滤波器D类音频功率放大器与A类、B类功率放大器相比它最大的优点是效率高,功率放大管工作在开关状态,在理想情况下电路的效率可以达到100%。
因此,有着广泛的应用。
D类音频功放电路由调制器、开关功率放大器及低通滤波器三部分电路组成,如图1所示,其工作原理是:音频信号经过调制器进行脉宽调制后转换成脉宽调制信号,脉宽调制信号由开关功率放大器进行放大,放大后的脉宽调制信号通过低通滤波器滤波后还原成放大了的音频信号送入扬声器。
图1 D类音频功放电路组成框图下面结合如图2所示D类音频功率放大电路,对其电路组成及工作原理进行分析。
电路中运放A1、A2、A3、A4及外围元件构成调制器,场效应管T1、T2构成开关功率放大器,电感L和电容C5构成低通滤波器。
图2 D类音频功率放大电路图3 方波与三角波变换波形图一、调制器调制器由三角波发生器、音频前置放大器、电压比较器三部分电路组成。
调制器的作用是将音频信号对三角波信号进行脉宽调制,产生脉宽调制信号。
其电路工作原理如下:1.三角波发生器三角波发生器由滞回电压比较器A1、积分电路A2组成,其中滞回电压比较器产生方波,方波通过积分电路转换成三角波。
滞回电压比较器由运放NE5532的A1,正反馈电路R1、R2,限幅电路R3、DZ构成,该电路产生幅值为±UZ=±6V的方波。
积分电路由运放A2、电阻R4和电容C1组成,积分电路将方波转换成三角波输出。
D类功放原理与设计
D类功放原理与设计D类功放(Class-D Amplifier)是一种高效率的功放设计,它通过将输入信号转换为数字形式,然后使用PWM(脉宽调制)技术将数字信号转换为模拟音频信号,以驱动扬声器。
相比传统的A类、AB类功放,D类功放无论从效率、体积还是发热量都有着显著的优势。
下面将详细介绍D 类功放的工作原理与设计。
D类功放的工作原理主要有两个关键步骤:数字调制和输出滤波。
首先,输入音频信号经过采样、量化和编码等过程,转换为数字信号。
接下来,这个数字信号经过PWM调制,通过高频的开关器件(例如MOSFET)产生PWM信号。
PWM信号的占空比由输入信号的幅度决定,即信号越大,占空比越大。
PWM信号经过滤波器后,得到模拟音频信号。
滤波器主要起到去除PWM信号中的高频成分和输出重建滤波的作用。
滤波器采用带通滤波器,其截止频率一般设置在音频范围内。
在滤波器的设计中,为了保持D类功放的高效率,需注意滤波器的带宽不能太宽,否则会引起部分高频PWM成分通过滤波器,导致功放的效率下降。
D类功放的设计中,一般会用到两种反馈:输出滤波器反馈和比较器反馈。
输出滤波器反馈是将滤波器的输出信号与输入信号进行比较,从而实现在输出负载变化时的自动控制。
比较器反馈则是将滤波器输出的模拟信号与一个参考电压进行比较,并产生PWM信号。
这两种反馈的作用是保证输出信号的准确性和稳定性。
在D类功放的设计中,要考虑音频信号的失真问题。
由于PWM信号的存在,会引起PWM谐波失真。
这种失真一般通过PWM的频率设置和滤波器的设计进行抑制。
此外,功放电路中还需考虑开关器件的驱动问题,对于MOSFET等器件,要确保其能够快速地开关。
总的来说,D类功放通过将输入信号进行数字调制,并通过PWM技术转化为模拟音频信号,以驱动扬声器。
它具有高效率、小体积、低发热量等优势,在音频应用中广泛使用。
然而,D类功放的设计也面临一些挑战,如PWM谐波失真、滤波器选择等,需要借助合适的设计技巧和辅助电路来解决。
d类功放共地
D类功放共地技术D类功放共地是一个重要的技术,它涉及到音频信号的处理和放大。
下面将详细介绍D类功放共地的原理、优势、实现方法以及应用场景。
一、D类功放共地的原理D类功放(D类放大器)是一种基于开关晶体管的音频功率放大器。
它通过将音频信号转换为PWM(脉冲宽度调制)信号,然后驱动开关晶体管进行放大,最终输出大功率的音频信号。
共地是指多个电路或系统共用一个参考地。
在D类功放中,共地技术可以使多个电路或系统共享同一个参考地,从而减少干扰和噪声。
二、D类功放共地的优势1.提高音质:共地技术可以减少干扰和噪声,提高音频信号的纯净度,从而提高音质。
2.节省空间:通过共地技术,可以减少电路板的空间占用,使功放更加紧凑。
3.降低成本:共地技术可以减少电路板和元件的数量,从而降低成本。
4.提高稳定性:共地技术可以提高功放的稳定性,减少因干扰或噪声引起的故障。
三、D类功放共地的实现方法1.电路设计:在电路设计阶段,需要将各个电路或系统共享同一个参考地。
这可以通过在电路板上设计公共地线来实现。
2.元件选择:在选择元件时,需要选择具有低噪声和低失真的元件,以减少干扰和噪声。
3.屏蔽措施:对于关键的电路或系统,可以采用屏蔽措施来进一步减少干扰和噪声。
4.接地处理:在接地处理方面,需要确保接地点的稳定性和可靠性,以避免因接地不良引起的干扰和噪声。
四、D类功放共地的应用场景1.汽车音响:汽车音响系统需要高质量的音频输出,因此D类功放共地技术被广泛应用于汽车音响系统中。
通过共地技术,可以减少干扰和噪声,提高音质,同时节省空间和降低成本。
2.家庭影院:家庭影院系统需要高保真的音频输出,因此D类功放共地技术也被广泛应用于家庭影院系统中。
通过共地技术,可以减少干扰和噪声,提高音质,同时节省空间和降低成本。
3.专业音响:专业音响系统需要高质量的音频输出,因此D类功放共地技术也被广泛应用于专业音响系统中。
通过共地技术,可以减少干扰和噪声,提高音质,同时节省空间和降低成本。
D类音频功率放大器设计
D类音频功率放大器设计本文首先就D类音频放大器的基本概念进行了一定的分析,然后简要的阐述了其系统结构,最后根据这些概念综合性的给出D类音频功率放大器的设计要素及解决方案,供相关人士做参考。
标签:功率放大器;调制器;拓扑结构1 引言从整体上对音频放大器进行划分可以分为四种,其中D类放大器占据的优势性比較大,是比较理想的应用型音频放大器。
D类功率放大器主要优势在于其功耗较小,在器件的组合上D类放大器绝大多数情况下只是充当一个开关的作用,其最主要的额外功耗在于晶体管的阻抗所致,由于其对散热装置的需求很低,因此D类放大器能够在很大程度上增加电池的使用寿命。
2 D类音频功率放大器的分析(1)D类音频功放和其他音频功放的比较。
1)AB类放大器。
AB类放大器的主要特点可以从两个方面出发,一个是B 类放大器的交越失真,另外一个是AB类放大器消除交越失真的情况,二者主要形成一个对比的作用。
由于AB类放大器在其晶体管的导通时间上有一定的特殊性,这段导通时间通常情况下会比半周期持续的时间要长,因此在两管推挽的特点之下AB类放大器交替失真的特性能够在很大程度上消除交越失真的影响。
2)D类放大器。
D类放大器在性能上和AB类放大器有着明显的区别,在PWM和PDM的作用之下D类放大器能够将输入进来的模拟音频信号通过一定的转换作用而形成相应的脉冲信号。
由于D类放大器在作用上大部分是充当一个开关的作用,因此也被称之为开关放大器。
相比较其他放大器而言,D类放大器的效率非常高,除此之外,其体积小的特点能够为设备提供更大的空间,而在失真方面其概率低的特点使得D类放大器在调试和应用上都能够保持很大的稳定性。
(2)D类音频功放的工作原理。
D类音频放大器在工作中主要的功能是在于将输入的部分信号进行一定的转换,经过相关的滤波处理之后能够有效的使得电平进行转移。
振荡器在D类音频放大器中的作用至关重要,其振荡周期在发生变化的情况下对整个采样周期的影响都是非常大的。
d类功放 共地干扰
d类功放共地干扰一、引言随着电子技术的不断发展,D类功放因其高效率、小体积等优点在各类电子设备中得到广泛应用。
然而,共地干扰问题一直是D类功放设计中的难题。
本文将从共地干扰的现象、来源、影响因素等方面进行分析,并提出解决方法,以期为广大电子工程师提供参考。
二、D类功放的共地干扰现象1.定义及原理D类功放的工作原理是将输入信号进行脉宽调制,然后通过开关晶体管进行放大。
在脉宽调制过程中,开关晶体管的导通与截止会产生高频脉冲,这些脉冲会在共地上产生电磁辐射,从而形成共地干扰。
2.干扰来源D类功放共地干扰的来源主要有以下几点:(1)开关晶体管产生的高频脉冲;(2)电源变压器产生的磁场干扰;(3)电路板上的杂散电容和电感;(4)外部电磁环境的影响。
3.影响因素共地干扰的影响因素主要包括:(1)共地电容的选取;(2)电路板的布局与布线;(3)接地方式的选择;(4)元件参数的选择。
三、共地干扰的解决方法1.优化电路设计(1)合理布局:将高频元件尽量远离共地平面,减小高频信号对共地的干扰;(2)屏蔽与滤波:对高频信号进行屏蔽,选用合适的滤波器对干扰信号进行抑制;2.选择合适的元件(1)电容值与电阻值的选择:选用合适的电容值与电阻值,以降低共地电阻;(2)采用专用共地电容:选用高品质的共地电容,以减小共地电阻带来的干扰。
3.接地处理(1)单点接地:将电源地、模拟地、数字地等统一接至电源地,减小接地环路产生的干扰;(2)多点接地:针对不同频率的信号,采用多点接地方式,以减小高频信号对低频信号的干扰;(3)混合接地:根据实际情况,采用单点接地与多点接地相结合的方式。
4.布线技巧(1)避免长距离共地连线:长距离共地连线容易产生共地电位差,引入干扰;(2)减小线间耦合:尽量减小导线间的耦合,降低干扰传播;(3)合理选择线宽和间距:根据信号频率选择合适的线宽和间距,以减小电磁耦合。
四、实践中的应用与总结1.实际操作中的注意事项在解决共地干扰问题时,还需注意以下几点:(1)避免使用过长的导线;(2)减少地线与其他线路的交叉;(3)合理规划地线的宽度;(4)选用高品质的电子元件。
D类功率放大器设计报告
D类功率放大器设计报告设计报告:D类功率放大器1.引言2.设计原理2.1开关管的选择开关管是D类功率放大器关键的组成部分,常用的开关管有MOSFET (金属氧化物半导体场效应晶体管)和IGBT(绝缘栅双极性晶体管)。
选择合适的开关管需要考虑功率、速度、成本和可靠性等因素。
2.2PWM调制电路PWM调制电路用于将音频信号转化为脉冲信号。
常用的PWM调制电路有比较器、计数器和DAC(数字模拟转换器)等组成。
PWM调制电路的设计需要考虑信号的动态范围、信噪比和失真等因素。
2.3输出滤波电路输出滤波电路用于滤除脉冲信号中的高频成分,以得到放大后的音频信号。
常用的输出滤波电路有LC滤波电路和RC滤波电路等。
滤波电路的设计需要考虑频率响应、衰减系数和阻抗匹配等因素。
3.参数设计在设计D类功率放大器时,需要确定一些关键参数,包括输出功率、工作电压、负载阻抗和失真程度等。
3.1输出功率输出功率是D类功率放大器的重要参数,决定了放大器可以驱动的音箱的大小和音量。
输出功率的选择应考虑实际应用场景和预算因素。
3.2工作电压工作电压直接影响到D类功率放大器的功率效率和失真程度。
工作电压越高,功率效率越高,但是也容易引起更大的功率损耗和失真。
3.3负载阻抗负载阻抗是D类功率放大器输出端连接的音箱或扬声器的特性参数。
负载阻抗的选择应根据音箱或扬声器的要求和放大器的输出功率来确定。
3.4失真程度失真程度是评估D类功率放大器性能的重要指标。
常见的失真包括谐波失真、交调失真和互调失真等。
为了提高放大器的音质,失真程度应尽量小。
4.结论D类功率放大器是一种高效率和低失真的功率放大器,广泛应用于音频功率放大领域。
在设计D类功率放大器时,需要选择合适的开关管并设计PWM调制电路和输出滤波电路。
关键参数的选择包括输出功率、工作电压、负载阻抗和失真程度。
通过合理的设计和优化,可以实现高质量的音频放大效果。
D类功放电路介绍
D类功放电路介绍D类功放电路是一种高效率的功放电路,其名称源自于D(Digital)音频信号使用数字编码,通过PWM(Pulse Width Modulation)来调制输出波形。
D类功放电路由于其高效率和低功耗的特点,逐渐得到了广泛应用,尤其在便携式音频设备和汽车音响系统中得到了大量使用。
D类功放电路的基本原理是将输入信号进行数字编码,然后使用PWM 技术将数字信号转换为脉冲宽度可变的PWM信号,最后经过滤波电路得到与输入信号相同的模拟输出信号。
D类功放电路的核心是PWM模块,该模块负责将数字信号转换为PWM信号。
通常,在D类功放电路中,数字信号是由模数转换器(DAC)产生的。
DAC将模拟输入信号转换为数字信号,并经过数字处理器进行编码和处理,得到PWM信号。
PWM信号的脉冲宽度由数字信号的幅值决定,脉冲的周期由输入信号的频率决定。
D类功放电路的优点主要体现在高效率和低功耗方面。
相比于传统的A类、B类和AB类功放电路,D类功放电路的功耗更低,效率更高。
这是因为在D类功放电路中,输出级别只有两种,即高电平和低电平,不需要通过传统的功率输出级别来调整功率,因此功率损耗更小。
另外,由于D 类功放电路采用PWM技术,输出信号的失真较小,可以更精确地还原输入信号,因此音质更好。
除了高效率和低功耗之外,D类功放电路还具有体积小、重量轻、成本低等优点。
这使得D类功放电路特别适合在便携式音频设备和汽车音响系统中使用。
在便携式音频设备中,D类功放电路能够提供足够的音量输出,并且由于低功耗,可以延长电池的使用寿命。
在汽车音响系统中,D 类功放电路可以大大减小安装空间和散热问题,使得整个系统更加紧凑和可靠。
虽然D类功放电路具有许多优点,但也存在一些缺点。
其中最主要的缺点是输出信号的PWM调制频率可能会干扰到其他电子设备。
为了解决这个问题,需要在D类功放电路中增加输出滤波电路,以降低PWM调制频率的干扰。
此外,由于D类功放电路在调制过程中需要频繁地开关输出级,因此在低频段的输出波形可能会出现失真和噪声。
D类音频功率放大器设计基础
D类音频功率放大器设计基础D功放是基于脉冲宽度调制技术的开关放大器,包括脉冲宽度调制器(几百千赫兹开关频率),功率桥电路,低通滤波器。
本文从构成、拓扑结构对比、MOSFET的选择与功率损耗、失真和噪音产生、音频性能等D类音频功率放大器设计有关的基础问题作分析,并例举D类功率放大器参考设计。
1.D类功放基本构成目前有很多种不同种类的功放,如:A类、B类、AB类等。
但D类功放与其不同的是基本是一个开关功放或者是脉宽调制功放。
为此,主要将对说明这类D类功放作以说明。
在这种D类功放中,器件要么完全导通,要么完全关闭,大幅度减少了输出器件的功耗,效率达90-95%都是可能的。
音频信号是用来调制PWM载波信号,其载波信号可以驱动输出器件,用最后的低通滤波器去除高频PWM载波频率。
众所周知, A类、B类和AB类功放均是线形功放,那么D类功放与它们究竟有什么不同?我们首先应作讨论。
图1是D功放原理框图,在一个线性功放中信号总是停留在模拟区,输出晶体管(器件)担当线性调整器来调整输出电压。
这样在输出器件上存在着电压降,其结果降低了效率。
而D类功放采用了很多种不同的形式,一些是数字输入,还有一些是模拟输入,在这里我们将集中讨论一下模拟输入。
上面图1显示的是半桥D类功放的基本功能图,其中给出了每级的波形。
电路运用从半桥输出的反馈来补偿母线电压的变化。
那末D类功放是如何工作的呢?D类功放的工作原理和PWM的电源是相同的,我们假设输入信号是一个标准的音频信号,而这个音频信号是正弦波,典型频率从20Hz到20kHz范围。
这个信号和高频三角或锯齿波形相比可以产生PWM信号,见图2a中所示。
这个PWM信号被用来驱动功率级,产生放大的数字信号,最后一个低通过滤波器被用在这个信号上来滤掉PWM载波频率,重新得到正弦波音频信号,见图2b中所示。
2、从拓扑结构对比-看线性和D类不同值此将讨论线性功放(A类和AB类)和D类数字功放的不同之处。
D类音频功率放大器设计报告
D类音频功率放大器设计报告设计报告:D类音频功率放大器1.引言2.设计目标本次设计的目标是设计一个能够输出15W功率的D类音频功放。
其特点是高效率、低功耗和优质的音质。
3.设计原理D类音频功率放大器的工作原理是将音频信号进行脉冲宽度调制(PWM),并通过一个输出滤波电路转换为模拟音频信号。
具体来说,音频信号首先经过一个比较器,将其与一个高频三角波进行比较,然后产生一个脉冲宽度与音频信号幅度相关的脉冲序列。
这个脉冲序列经过一个电源级输出滤波器,将其转换为模拟音频信号。
4.设计步骤(1)根据设计目标和所选用的功放IC,确定所需的电源电压和电流。
(2)根据音频信号的功率要求,计算所需的输出功率和负载阻抗。
(3)选择合适的比较器和三角波发生器。
(4)设计输出滤波器,使其能够满足所需的频率响应和阻抗匹配。
(5)进行仿真和调试,验证设计的正确性。
(6)根据实际的电路布局和元件参数,进行实际的电路实现。
(7)测试和优化电路性能,确保其能够满足设计要求。
5.设计结果根据上述的设计步骤,设计了一个D类音频功率放大器。
采用了TDA7498E功放IC,输入电压为20V,输出功率为15W,负载阻抗为8Ω。
比较器和三角波发生器选用LM311和LM555、输出滤波器采用LC型,频率响应为20Hz-20kHz。
经过实际制作和测试,该D类音频功率放大器满足了设计要求。
输出功率稳定在15W,失真度低于1%,频率响应平坦度高于±0.5dB。
同时,该功放具有高效率和低功耗的特点,整体性能优良。
6.结论本次设计成功地实现了一个输出功率为15W的D类音频功率放大器。
其设计思路清晰,步骤明确,且实际测试结果良好。
该功放具有高效率、低功耗和优质的音质,适用于各种音频放大场景。
然而,设计中的元件选型、电路布局和参数调整等方面还有待进一步优化和改进。
同时,考虑到市场需求和技术发展,未来的设计可以进一步加入保护电路和调音控制等功能,以提高产品竞争力和用户体验。
D类功放设计
D类功放设计2.1PWM脉宽调制图2.PWM调制波形图PWM调制原理:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。
模拟信号的具体调制方式即用三角波与输入信号作比较,将输入信号的幅值变化转换成幅值相等的脉冲宽度变化,形成PWM波。
类似,对数字信号调制就将数字信号与双向计数器作比较。
由于功率放大部分采用全桥输出,所以需要双路PWM脉冲,可采用对称PWM调制和差分PWM调制。
图3.对称PWM调制电路原理图图4.对称PWM调制在输入为零时波形图图3为对称PWM调制,工作时两路PWM波对称反相,无信号输入时,BTL输出的电压电流波形如图4示。
由图可以看到,采用这种方案零输入时的BTL输出的电压是垒加变大的,即使经过滤波后在零输入时的负载电流还是比较大,在滤波器设计不好时,则流过负载的电流就更大。
可见采用这种方案零输入时的负载电流较大,导致负载上的损耗大,降低了放大器效率。
图5.差分PWM调制电路原理图图6.差分PWM调制在输入为零时波形图图5为差分PWM调制,差分调制可以补偿直流偏置,对三角波要求不是很高。
静态时两路PWM波几乎是同相(由于很难做到同相,所以总会存在一定的相移),这时加在滤波器上的电压为就几乎为0。
经滤波器输出到负载(扬声器)的电流波形如图示。
由图6可以看到,由于两路同相输出,加载到滤波器的电压近似为0,此时负载电流极小,从而静态功耗很小。
输入信号为正时,输出的电压电流波形如图7示。
当输入信号为负时,则输出的电压电流波开形如图8所示。
从中我们可以看到采用“反宽度”的PWM作为D类放大器的BTL驱动信号其最大的好处是,抑制的零信号输入时静态损耗,进一步提高了放大器的效率。
图7.差分PWM调制在输入为正时波形图图8.差分PWM调制在输入为负时波形图2.2PWM功率放大及低通滤波本设计采用H形全桥作为PWM脉冲功率放大,电路见图9,与半桥相比,有如下优点:1,在电源、负载相同的情况下,全桥的额定输出功率是半桥额定输出功率的4倍,额定输出功率的计算公式如下:式中,P为额定输出功率,V(p-p)为额定输出峰峰值:全桥为电源值,半桥为电源值的一半,R为负载等效电阻,由此可见,在电源、负载不变的情况下,全桥额定输出是半桥的4倍。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、功率MOS管驱动芯片的选择: 上升,下降时间短,死区时间较短的驱动芯片
2、功率MOS管的选择: RDSON小,Qg较小MOS管
精品课件
2.3 输出PWM信号频谱与低通滤波器
(1) 输出PWM信号的频谱
精品课件
(2) 二阶巴特沃斯低通滤波器
fc=1KHz
fc=8KHz
精品课件
3 D类功放单元电路设计
3.1 D类功放总体架构
精品课件
3.2 PWM调制电路
三角波产生电路: 专用芯片 运放构成的三角波产生电路
三角波频率:300KHz~600KHz
式。放大元件要么处于截止状态,要么导通状态,晶体管相
当于一个理想开关而不消耗能量。在理想情况下,效率为
100%。
D类功放的特点:
优点:
高效; 散热小; 体积小; 适合大功率放大器。
缺点:
信号失真较为严重。 图1 400W D类功放模块
精品课件
2 D类功放电路结构与工作原 理
2.1 D类功放电路结构
(1) 信号调制电路:模拟信号转换为脉宽与信号幅度成正比 的方波(PWM)。 (2) 开关放大电路:将输入方波进行功率放大。 (3) 低通滤波电路:滤除高次谐波,将放大后的信号加到负 载上。。
精品课件
2.2 D类功放工作原理
简化的D类功放电路结构
精品课件
精品课件
fs=1KHz; fT=20KHz
D类功放原理与设计
Wu Yangbo Faculty of information science & technology
Ningbo university 2011年7月
精品课件
1 概述
能够向负载提供足够信号功率的放大电路称为功 率放大电路,简称功放。
功放既不是单纯追求输出高电压,也不是单纯 追求输出大电流,而是追求在电源电压确定的情况下, 输出尽可能大的功率。
比较器:集成电压比较器LM311
精品课件
3.2 功率输出电路
(1) 半桥功率输出电路
精品课件
(2) 全桥功率输出电路
精课件
(3) 实验室现有的功率MOSFET
IRF540
IRF640
IRF3710
精品课件
3.4 MOSFET驱动电路
通常采用专用的驱动芯片。实验室现有IR公司 的驱动芯片,具体型号: IR2104, IR2110, IR2111…….. 以IR2104为例说明使用方法。
功放电路的要求: Pomax 大,三极管极限工作 = Pomax / PV 要高
失真要小
精品课件
1.1 功率放大电路分类
电路中晶体管的工作状态(按一个周期导通的角度大小划分)
甲类(class-A): 乙类(class-B): 甲乙类(class-AB): 丙类(class-C): 丁类(class-D):
(2) 全桥LC滤波器设计
精品课件
给定RL和fc, L 、C 参数表
精品课件
(3) 实际的全桥LC滤波器
这两个小电容用来滤除高频噪声,取值为20%的CL。
精品课件
4 性能分析与改善
(1)
(3)
(5)
(2)
(4)
精品课件
功率MOS管栅极驱动信号的时序误差是输出信号非线性 失真的主要来源。
驱动信号的死区时间是其中最主要的因素。
精品课件
精品课件
Functional Block Diagram
精品课件
Typical Connection
充电二极管:肖特基二极管
自举电容:钽电解
20
精品课件
3.5 输出滤波电路设计
输出滤波器通常选择二阶巴特沃斯LC低通滤波器。 归一化传递函数 (1) 半桥LC滤波器设计
精品课件
精品课件
360 180 >180 <180
开关状态
精品课件
工作波形
iC
2π
IC
π
O iC
O iC
IC O i
C
O iC
O
3π
A类
ωt
效率低 ≤50% 。
B类
ωt
效率 ≤78.5% 。
AB类
ωt
效率 接近乙类
C类
ωt
D类
ωt
精品课件
效率 最高。
1.2 D类功率放大电路
D类功放是放大元件处于开关工作状态的一种放大模