人教版七年级数学上册《绝对值》课件

合集下载

人教版七年级数学上册 《绝对值》有理数PPT

人教版七年级数学上册 《绝对值》有理数PPT

第八页,共十八页。
第1课时 绝对值
(1)试指出哪件样品的直径最接近标准直径; (2)如果规定误差的绝对值小于 0.18 mm 的是正品,误差的 绝对值在 0.18 mm 和 0.22 mm 之间(包括 0.18 mm 和 0.22 mm)的 是次品,误差的绝对值超过 0.22 mm 的是废品,那么上述 5 件样 品中,哪些是正品,哪些是次品,哪些是废品?
第五页,共十八页。
第1课时 绝对值
【解析】(1)|+4|=4,|-4|=4,故绝对值等于 4 的数有两个, 为±4;(2)绝对值等于-3 的数不存在.任何数的绝对值都为非负 数;(3)一个正数的绝对值等于它本身,一个负数的绝对值等于它的 相反数,0 的绝对值是 0.
第六页,共十八页。
第1课时 绝对值
第三页,共十八页。
第1课时 绝对值
解:|-21|=21; +49=49; |0|=0; |-7.8|=7.8.
第四页,共十八页。
第1课时 绝对值
目标二 已知绝对值,会求原数
例 2 教材补充例题 填空: (1)绝对值等于 4 的数有___2___个,它们是__±_4___; (2)绝对值等于-3 的数有___0 ___个; (3)绝对值等于本身的数有__无__数____个,它们是___正_数__和_0_____.
总结反思
知识点一 绝对值的几何意义
绝对值:数轴上表示数 a 的点与原点的___距_离____叫做数 a
的绝对值,记作___|_a|____.
第十五页,共十八页。
第1课时 绝对值
知识点二 绝对值的代数意义
一 个 正 数 的 绝 对 值 是 ___它_本_身___ ; 一 个 负 数 的 绝 对 值 是 它__的_相_反_数___;0 的绝对值是____0____.

《绝对值》ppt课件

《绝对值》ppt课件
4
−21, ,0, − 7.8,21.
9
绝对值的性质一
正数的绝对值是它本身;负数的绝对值是它的相反数;
0的绝对值是0. 绝对值是一个非负数。
设计意图:借助问题情境,掌握计算绝对值的方法;并利用素材进行问题探究,
通过观察数据得出结论,并揭示绝对值的重要性质——非负性。
教学过程
二、积极思考,探究新知
追问:用“−”表示相反数,用| |表示绝对值,如果表
的学生设置了有创新思维的问题,以满足不同学生在数学发展方面的需要.
目录
CONTENTS
7
设计思路
设计思路
本节课引导学生通过数形结合的思想来理解绝对值概念。数轴
是为了描述物体的位置关系产生的,利用数轴上的点可以更直观的表
示有理数,理解相反数、绝对值之间的联系,如,“方向”与“符号
”对应,“绝对值”与“距离”对应,体现了数与形的结合与转化。
中心位置对应的有理数与企鹅馆对应的有理数有什么异同?
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
设计意图:延续上一节课的问题情境,激发学生兴趣,引出相反数。
教学过程
一、创设情境,引入新课
活动一:认识相反数
问题2:你能再找一找具有这样特征的点吗?请你在数轴上
描出这些点的位置。
追问:你有什么发现?
相反数概念:如果两个数只有符号不同,那么称其中一个数为另一个数
本节课先举例特殊数来介绍绝对值概念,再用分类讨论思想来归纳、
总结一般有理数的绝对值,容易使学生理解概念。在学习有理数的比
较大小时,用绝对值和数轴进行对比,形象、生动易于理解,便于培

绝对值_课件

绝对值_课件

练习
写出下列各数的绝对值: 16,-7,-2.4, , ,1000,0,
快问快答
快速说出下列数的相反数或绝对值 -5的绝对值是______ 100的相反数是______
的相反数是______ 的绝对值是______
3.5的绝对值是______
探究
2.05 1000
0
相反数 -2.05 -1000
总结
这节课我们学会了什么?
1、绝对值的几何意义:
数轴上表示数a的点与原点的距离叫做数a的绝对值,记作: |a|. 2、绝对值的代数意义:
小组讨论
(1)有没有绝对值等于-2的数? (2)一个数的绝对值会是负数吗?为什么? (3)不论有理数a取何值,它的绝对值总是什么数?
不论有理数a取何值, 它的绝对值总是正数或0(非负数),
即对任意有理数a,总有|a|≥0.
思考探究
招聘会
正数公司和负数公司招聘职员,要求是:经过绝对值符号“︱︱”这扇 大门后,结果为正就是正数公司职员,结果为负就是负数公司职员.
(2)绝对值是0的数有几个?各是什么? 答:绝对值是0的数有一个,就是0.
(3)绝对值小于3的整数一共有多少个? 答:绝对值小于3的整数一共有5个, 它们分别是-2,-1,0,1,2.
练习
求绝对值等于4的数.
练习
判断: (1)一个数的绝对值是 2 ,则这数是2 . (2)|-0.3|=|0.3|. (3)|3|>0. (4)|-1.4|>0. (5)有理数的绝对值一定是正数. (6)若a=b,则|a|=|b|. (7)若|a|=|b|,则a=b. (8)若|a|=-a,则a必为负数.
问题:这两只小狗在跑的过程中,有没有共同的地方?在数轴上的A、 B两点又有什么特征? 共同点:它们的跑动距离相等. 特征:关于原点对称.

人教版数学七年级上册绝对值完美课件

人教版数学七年级上册绝对值完美课件

2 的绝对值是 2,即| 2|= 2;
3
3
33
0的绝对值是0,即|0|=0;
人教版数学七年级上册1.2.4.1绝对值 课件( 共17张P PT)
人教版数学七年级上册1.2.4.1绝对值 课件( 共17张P PT)
-2.3的绝对值是2.3,即|-2.3|=2.3;
+0.56的绝对值是0.56,即|+0.56|=0.56;
-6的绝对值是6,即|-6|=6;
+6的绝对值是6 ,即|+6|=6;
21 的绝对值是 21,即| 21|=
2
2
2
21.
2
人教版数学七年级上册1.2.4.1绝对值 课件( 共17张P PT)
人教版数学七年级上册1.2.4.1绝对值 课件( 共17张P PT)
1.字母 a 表示一个数,-a 表示什 么?-a一定是负数吗?
2 , 2 , 0. 55 20 2
55
人教版数学七年级上册1.2.4.1绝对值 课件( 共17张P PT)
人教版数学七年级上册1.2.4.1绝对值 课件( 共17张P PT)
3.化简 5 _5__
5 _-_5_
21
2 1 __4_
4
人教版数学七年级上册1.2.4.1绝对值 课件( 共17张P PT)
人教版数学七年级上册1.2.4.1绝对值 课件( 共17张P PT)
绝对值的表示 数a的绝对值,记作:|a|.
│-5│=5
A
│4│=4
B
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
在数轴上表示-5的点与原点的距离是5, 即-5的绝对值是5,记作:|-5|=5.
11 3
的绝对值是1 1 3

1.2.4《绝对值》课件-2024-2025学年人教版(2024)数学 七年级上册

1.2.4《绝对值》课件-2024-2025学年人教版(2024)数学 七年级上册
-5.25
(3)绝对值等于5.25的负数是______;
2或-2
(4)绝对值等于2的数是_______。
【点睛】注意绝对值等于某个正数的数有两个,他们互为相反数,解题时不要遗
漏负值。
课堂练习
3. 如果| a |+| b-1 |=0,那么a = 0 ,b = 1

4. 已知x =30,y =-4,则| x | - 3 | y |= 18 。
B
-10
10
O
0
10
A
10
-10与10在数轴上所表示的点到原点的距离是 10个单位长度 ,它们
的 符号 不同。我们把这个距离10叫做+10和-10的 绝对值 。
新知探究
定义
距离不能是负数,所以任何
数的绝对值一定是非负数
( |a| ≥ 0)
一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,
记作|a|.
1. 求下列各数的绝对值.
12, - 3 , -7.5 , 0
5
解: | 12 | =12;
|- 3 |= 3
5
5
正数的绝对值等于它本身
负数的绝对值等于它的相反数
| -7.5 | = 7.5;
| 0 | = 0。
0的绝对值是0
随堂检测
2. 填一填:
0
(1)绝对值等于0的数是___;
5.25
(2)绝对值等于5.25的正数是_____;
(5) 绝对值等于同一个正数的数有两个,且这两个数互为相反数.(

)
新知探究
我们知道,互为相反数的两
个数(除0之外)只有符号不同,
这两个数的相同部分在数轴上表
示什么?

人教版七年级数学上册1.2.4《绝对值》课件 (13张PPT)

人教版七年级数学上册1.2.4《绝对值》课件  (13张PPT)
人民教育出版社七年级上册
1.2.4(1) 绝对值
1、数轴三要素
2、什么是互为相反数
谁离乒乓球网架远呢?
20 20
-20 -15 -10 -5 5 10 0 15 20 -20与+20在数轴上所表示的点到原点的距离都是 20个单位,距离20是-20和20的绝对值.
-20的绝对值表示-20的点到原点的距离,它的绝对值是20. -3的绝对值表示什么呢?它的绝对值是多少呢?
数轴原点表示的是0,0绝对值是0
绝对值性质:对于任意一个有理数a都有, 1、当a>0 时, |a|= _____ a ;
0 ; 2、当a=0 时, |a|= _____
3、当a<0 时, |a|= _____. -a
绝对值的代 数意义
1.填空:
1.7 |-1.7|_____ ; -4 ; -|-4|=____
-7 7
绝 对 值 发 生 器
7 7
、数轴原点右边表示的是什么数?该数的绝对值与这个数有什 么关系?
数轴原点右边表示的是正数,正数的绝对值是它本身
、数轴原点左边表示的是什么数?该数的绝对值与这个数有 什么关系?
数轴原点左边表示的是负数,负数的绝对值是它的相反数
、数轴原点表示的是什么数?该数的绝对值是多少?
1、绝对值的几何意义及表示方法 2、绝对值的代数意义 (1)一个正数的绝对值是它本身;
(2)零的绝对值是零;
(3)一个负数的绝对值是它的相反数;
1、必做题:习题1.2 第5、8题 2、选做题:绝对值评测训练
2的绝对值表示什么呢?它的绝对值是多少呢? 2 3 的绝对值表示什么呢?它的绝对值是多少呢?
2 3
-3 -2 -1
0

人教版七年级上册数学绝对值ppt课堂课件

人教版七年级上册数学绝对值ppt课堂课件

人教版七年级上册数学课件:1.2.4绝 对值
人教版七年级上册数学课件:1.2.4绝 对值
2.若|a|+ |b-3| =0.则a =__0___,
b= __3___. 3.如果一个数的绝对值等于4.53 ,
则这个数是__4_._5_3或__-__4_.5_3____. 4.如果|x-1|=2,则x=___3或__-__1___. 5.如果a 的相反数是-0.86,那么|a|
东、西方向行驶10km,到达A、B两处(图
1.2-5)。
方向不同, (正负性)
(1)它们的行驶路线的方向相同吗?距(不离。管相方同向,)
(2)它们行驶路程的距离(线段OA、OB的长 度)相同吗?
A
10
-10
O
10
B
0
10
人教版七年级上册数学课件:1.2.4绝 对值
人教版七年级上册数学课件:1.2.4绝 对值
人教版七年级上册数学课件:1.2.4绝 对值
1.2.4
人教版七年级上册数学课件:1.2.4绝 对值
人教版七年级上册数学课件:1.2.4绝 对值
学习目标
1. 初步理解绝对值的概念,能求一个
数的绝对值. 2.通过应用绝对值解决相关问题,体 会绝对值的意义和作用.
人教版七年级上册数学课件:1.2.4绝 对值

6本课的突出特点是拟人手法的运用, 把植物 和种子 分别当 作“妈 妈”和 “孩子 ”来写 。“妈 妈孩子 ”这样 的关联 ,易触 动儿童 的情感 世界, 易激发 想象、 引发思 考,读 起来亲 切、有 趣,易 于调动 小读者 的阅读 兴趣。

7学习这篇课文,应该重点引导学生运 用探究 式的学 习方式 ,注意 激发学 生了解 植物知 识、探 究大自 然奥秘 的兴趣 ,把向 书本学 习和向 大自然 学习结 合起来 ,引导 学生养 成留心 身边的 事物、 认真观 察的好 习惯。

人教版七年级数学上册 1.2.4.1 绝对值的定义及性质 教学课件(共28张PPT)

人教版七年级数学上册   1.2.4.1  绝对值的定义及性质    教学课件(共28张PPT)
练习1:判断并改错: (1)一个数的绝对值等于本身,则这个数一定是正数; (2)一个数的绝对值等于它的相反数,则这个数一定是负数; (3)如果两个数的绝对值相等,那么这两个数一定相等; (4)如果两个数不相等,那么这两个数的绝对值一定不相等; (5)有理数的绝对值一定是非负数;
课堂精练
练习2:写出下列各数的绝对值:
人教版七年级数学上册
第一章 有理数 1.2.4.1 绝对值的定义及性质
新课导入
1. 什么是数轴?数轴定义包含哪几层含义? 2. 数轴上的点与有理数间的关系是怎样的? 3. 什么是相反数? 4. 相反数的代数意义和几何意义分别是什么?
合作探究
问题1 看图回答问题: 两辆汽车从同一处O出发,分别向东、西方向行驶10 km,到达A,B两处, 它们的行驶路线相同吗?它们的行驶路程相同吗?
6,8,3.9, 5 , 2 ,100,0 2 11
3.口答:
6 = 0=
2 = 7
-3 =
8.2 =
-1 = 3
合作探究
问题1 结合上面口答题结果,一个数的绝对值与这个数有什么 关系?你能从中发现什么规律?
(1)一个正数的绝对值是它本身; (1)若a 0,则 a a;
(2)一个负数的绝对值是它的相反数;(2)若a 0,则 a -a;
(3)0的绝对值是0.
例如:上面的问题中在数轴上表示-3的点和表示3的点到原 点的距离都是3,所以3和-3的绝对值都是3,即|-3|=|3|=3. 你能说说-2和2吗?
合作探究
-3 -2 -1 0 1 2 3 4
大象离原点4个单位长度:|4|=4. 那么两只小狗呢?
合作探究
1.-2的绝对值是____,说明数轴上表示-2的点到____的距离是 ____个长度单位. 2.-0.8的绝对值是____ .

新版人教版七年级数学上册《绝对值》课件(17张)

新版人教版七年级数学上册《绝对值》课件(17张)
创设情境
两辆汽车从同一处O出发,分别向东、西方向行 驶了10千米,到达A、B两处.它们的行驶路线相同 吗? 行驶的路程分别是多少?
B
O
A
-10
0
10
10千米
10千米
做游戏
请两位同学分别站在老师的左右两边,两位同学 同时向东、西相反的方向走1米,把这两位同学所 站位置用数轴上的点表示出来.




是1
学生活动 2.互为相反数的两个数的绝对值有什么关系?
一对相反数虽然分别在原点两边,但它们 到原点的距离是相等的.所以互为相反数的两 个数的绝对值相等.
7 图1.2-7
学生活动
你能把14个气温从低到高排列吗?能把这14个数 用数轴上的点表示出来吗?观察这些点在数轴上的位 置,思考它们与温度的高低之间的关系,你觉得两个 有理数可以比较大小吗?
(B )
A.可以是负数 B.不可能是负数
C.必是正数
D.可以是正数也可以是负数
温馨提示: 认真完成作业是巩固知识的有效方法!!
12、首先是教师品格的陶冶,行为的教育,然后才是专门知识和技能的训练。 13、在教师手里操着幼年人的命运,便操着民族和人类的命运。2022/5/52022/5/5May 5, 2022 14、孩子在快乐的时候,他学习任何东西都比较容易。 15、人自身有一种力量,用许多方式按照本人意愿控制和影响这种力量,一旦他这样做,就会影响到对他的教育和对他发生作用的环境。
练习2:|-13 |的相反数是 ;若|a|=2,则a=±2 .
练习3:绝对值小于3.5的整数是-3,-2,-1,0,1,2,3 . 练习4:已知:x342y0,则x= -3 ,y= 2 .
课堂练习

人教版七年级数学上册1.2.4《绝对值》 课件(共23张ppt)

人教版七年级数学上册1.2.4《绝对值》 课件(共23张ppt)

课堂小结
3.不论有理数a取何值,它的绝对值总是正数或0(非负数), 即对任意有理数a,总有|a|≥0.
4.互为相反数的两个数的绝对值相等. 5.数轴上的数的排列规律是: 在数轴上表示有理数,它们从左到右的顺序,就是从 小到大的顺序,即左边的数小于右边的数.
课件PPT部编版课件统编版部编版人 教版七 年级数 学上册1.2.4《 绝对值 》 课件(共23张ppt)课件优质课课件免 费课件PPT
课件PPT部编版课件统编版部编版人 教版七 年级数 学上册1.2.4《 绝对值 》 课件(共23张ppt)课件优质课课件免 费课件PPT
课堂小结
6.有理数大小比较法则: (1)正数大于0,0大于负数,正数大于负数; (2)两个负数,绝对值大的反而小.

课件PPT部编版课件统编版部编版人 教版七 年级数 学上册1.2.4《 绝对值 》 课件(共23张ppt)课件优质课课件免 费课件PPT
21 21
77
又∵
8 <3 21 7
,即
- 8 <-3
21
7


- 8 >- 3
21
7

(3)化简,得:-(-0.3)=0.3,-
1 3

1 3
.
1 ∵0.3< 3 ,
∴-(-0.3)<
-1 3
.
课堂练习
1.比较大小:
(1)-2_<__5,
-7 2
_>__

3 8

-0.01_>__-1;
4 (2)- 5
合作探究
一个正数的绝对值是什么?0的绝对值是什么?负数呢?
归纳:一个正数的绝对值是它本身;一个负数的绝对值是它的相反 数;0的绝对值是0.

绝对值(课件)数学七年级上册(人教版)

绝对值(课件)数学七年级上册(人教版)
你能把这些数在数轴上表示出来吗?
数学中规定:在数轴上表示有理数,它们从左到右的顺序,
就是从小到大的顺序,即左边的数小于右边的数.
-4<-3 < -2 < -1 < 0 < 1 < 2
互动新授
思考
对于正数、0和负数这三类数,它们之间有什么大小关系?
两个负数之间如何比较大小?
一般地
(1)正数大于0,0大于负数,正数大于负数;
同号两数比较大小,要考虑它们的绝对值.
正数
负数
数值
越大
越小
绝对值
越大
越小
越大
越小
越小
越大
小试牛刀
1.比较下列各对数的大小,正确的是( A )
A.0>-2
C.-2.2<-|-2.25|
B.-3<-5
3 3
D.- <-
5 4
2.下面四个数中,比-|-3|小的数是( D )
A.-1
B.-2
C.-3
D.-4
(2)两个负数,绝对值大的反而小.
例如,1 > 0;0 > -1;1 > -1;-1 < -2.
典例精析
例2
比较下列各数的大小:
3
8
1


(1)-(-1)和-(+2); (2) 和
; (3)-(-0.3)和 3 .
7
21
解: (1)先化简-(-1)=1, -(+2)=-2
∵正数大于负数
∴1>-2
吗? 行驶的路程分别是多少?
B
-10
10
O
0
它们的行驶路线不同,A是向东,B是向西.
行驶的路程相等,即OA=OB=10.

《绝对值》PPT经典课件1

《绝对值》PPT经典课件1
人教版·数学·七年级上册第一章
1.2.4 绝对值
情境导入---六尺巷故事
经典故事 :清康熙年间,宰相张英的老家人与邻居吴家在宅
地的问题上发生了争执,谁也不肯相让。后来张家人千里传书到京 城求救。张英收书后批诗一首云:一纸书来只为墙,让他三尺又何 妨。长城万里今犹在,不见当年秦始皇。张家人豁然开朗,退让了 三尺。吴家见状深受感动,也让出三尺,形成了一个六尺宽的巷子。
再 见 任清后任后绝张绝 长思张任概0问 后懒后清思情人张((概负我任0任(张23的))何康来何来对英对城考英务念题来惰来康考境教英1念数们务务家当 当)绝有 熙 张 一 张 值 收 值万 : 收 一 : :张 象 张 熙 : 导 版 收 : 的 把 一 二 人aa(若对a=是理年家个家等书等 里一书:一观 家生家年一入·书一绝一::豁=数0|值0负x时数间人有人于后于 今个后探般察 人锈人间个-后般对个探理然)|-学是-数=,六的,千理千它批它 犹数批究地思 千一千,数批地值数究解开·0七时|尺绝宰里数里本诗本 在的诗绝,考 里样里宰的诗,是在绝绝朗,,年,a巷对相传的传身一身 ,绝一对数正 传,传相绝一数它数对对,但|则级|故值张书绝书的首的 不对首值轴数 书比书张对首轴的轴值值退0=x上不a事都英到对到数云数 见值云得上、 到操到英值云上相上的得让=|_册是_是的京值京一:一当等:概表负京劳京的大:表反对概意了=__第正正老城都城定一定 年于一念示数 城更城老小一示数应念义三____一数数家求是求是纸是 秦他纸及数、 求能求家与纸数的及尺__.章_人救非救正书正 始本书表救消救人什书点表。.0_aa;的;与。负。数来数 皇身来示。耗。与么来示的的绝 到邻数只。,只身邻有只..点点对 原居为这为体居关为!与与值 点吴墙个墙;吴?墙原原有 的家,数,家,点点什 距在让是让在让的的么 离宅他?他宅他距距特 叫地三三地三离离点 做的尺尺的尺叫叫? 这问又又问又做做个题何何题何数数数上妨妨上妨aa发。。发。的的的生生绝绝绝了了对对对争争值值值执执,,,,,用记记谁谁“作作也也|||aa不不|||..”表肯肯示相相.让让。。

人教版初中七年级上册数学《绝对值》精品课件

人教版初中七年级上册数学《绝对值》精品课件

Ⅲ.绝对值最小的数是1. ( × )
Ⅳ.任何有理数的绝对值都是正数. ( × )
0的绝对值是0,但0不是正数
互为相反数的两个数的绝对值有什么关系? 分析:一对相反数虽然分别在原点两边,但 它们到原点的距离是相等的.
结论:互为相反数的两个数的绝对值相等.
练习:写出下列各数的绝对值:
6,-8,-0.9,
D. 不能确定
2.下列说法中正确的有__③__④____.(填序号) ①符号相反的数互为相反数; ②一个数的绝对值越大,表示它的点在数轴 上越靠右; ③一个数的绝对值越大,表示它的点在数轴 上离原点越远; ④当a ≠ 0时,|a|总是大于0.

综合应用
3.若 |a| = -a ,则 a 一定是( C )
推进新课
知识点 绝对值
两辆汽车从同一处O出发,分别向东、西方 向行驶10 km,到达A,B两处,它们的行驶路线 相同吗?它们的行驶路程相同吗?
B
10
O
A
10
- 10
0
10
它们的行驶路线不同,行驶路程相同.
一般地,数轴上表示数 a 的点与原点的距离
叫做数 a 的绝对值,记作|a|.
这里的数a可以是 正数、负数和0.
B
10
O
A
10
- 10
0
10
A, B两点分别表示数10和-10,它们与原
点的距离都是10个单位长度,所以10和-10的绝
对值都是10,即 |10|=10,|-10|=10.
显然|0|=0.
由绝对值的定义可知: a.一个正数的绝对值是它本身; b.一个负数的绝对值是它的相反数; c.0的绝对值是0. 即 (1)若a > 0,则| a | = a; (2)若a < 0,则| a | = -a; (3)若a = 0,则| a | = 0;
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课堂练习
1.比较大小:
(1)-2_<__5,
-7 2
_>__

3 8

-0.01_>__-1;
4 (2)- 5


5 6
.
2.化简:
-|-5|= -5 ;
|-(-5)|= 5 ;
人教版七年级数学上册1.2.4《绝对值 》 课件(共23张ppt)
-+
1 2

1 __2_.
课堂练习
3.已知|x-2|+|y+2|=0,求x,y的值.
第一章 有理数
1.2有理数 1.2.4 绝对值
学习目标
1.借助数轴初步理解绝对值的概念,会求一个数的绝对值. 2.通过应用绝对值解决实际问题,体会绝对值的意义和作用.
创设情境
两辆汽车从同一处O出发,分别向东、西方向行驶10 km,到达A, B两处.它们的行驶路线相同嘛?它们行驶的路程相等吗?
10 A
解:∵|x-2|≥0,|y+2|≥0, 又|x-2|+|y+2|=0, ∴|x-2|=0,|y+2|=0, 即x-2=0,y+2=0. ∴x=2,y=-2.
课堂小结
1.绝对值的定义: 一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值, 记作│a│.
课堂小结
2.绝对值的意义: 一个正数的绝对值是它本身;一个负数的绝对值是它的相反数; 0的绝对值是0. 即:①如果a>0,那么│a│=a; ②如果a=0,那么│a│=0;
合作探究
(1)最低气温是-4,最高气温是9. (2)这七天中每天的最低气温按从低到高的顺序排列为: -4, -3, - 2, - 1,0,1 , 2. (3)数轴上的数的排列规律是: 在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序, 即左边的数小于右边的数.
人教版七年级数学上册1.2.4《绝对值 》 课件(共23张ppt)
10 B
到达A,B两处的行驶路线不相同,它们行驶的路程相等.
合作探究
-10与10是相反数,它们只有符号不同,它们什么相同呢?
+10与-10虽然符号不同,但表示这两个数的点到原点的距离都是10, 是相同的.我们把这个距离叫+10与-10的绝对值.
一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作│a│.
人教版七年级数学上册1.2.4《绝对值 》 课件(共23张ppt)
合作探究
对于正数,0和负数这三类数,它们之间有什么大小关系?两个负 数之间如何比较大小?
(1)正数大于0,0大于负数,正数大于负数; (2)两个负数,绝对值大的反而小.
人教版七年级数学上册1.2.4《绝对值 》 课件(共23张ppt)
人教版七年级数学上册1.2.4《绝对值 》 课件(共23张ppt)
人教版七年级数学上册1.2.4《绝对值 》 课件(共23张ppt)
合作探究
互为相反数的两个数的绝对值有什么关系? 互为相反数的两个数的绝对值相等.
人教版七年级数学上册1.2.4《绝对值 》 课件(共23张ppt)
人教版七年级数学上册1.2.4《绝对值 》 课件(共23张ppt)
合作探究
下图给出了未来一周中每天的最高气温和最低气温,看图回 答下面问题:
(1)最低气温是多少? 最高气温是多少?
(2)你能将这七天中 每天的最低气温按从低到高 的顺序排列吗?
(3)数轴上的数的排列规律是什么?
人教版七年级数学上册1.2.4《绝对值 》 课件(共23张ppt)
人教版七年级数学上册1.2.4《绝对值 》 课件(共23张ppt)
合作探究
一个正数的绝对值是什么?0的绝对值是什么?负数呢?
归纳:一个正数的绝对值是它本身;一个负数的绝对值是它的相反 数;0的绝对值是0.
即:①如果a>0,那么│a│=a; ②如果a=0,那么│a│=0; ③如果a<0,那么│a│=-a.
人教版七年级数学上册1.2.4《绝对值 》 课件(共23张ppt)
2
(3)原式=2; (4)原式=π - 3.
人教版七年级数学上册1.2.4《绝对值 》 课件(共23张ppt)
人教版七年级数学上册1.2.4《绝对值 》 课件(共23张ppt)
例题解析
例2 比较下列各对数的大小:
(1)-(-1)和-(+2);
(2)- 8 和 - 3 ;
21
7
(3)-(-0.3)和
又∵
8 <3 21 7
,即
- 8 <-3
21
7,Leabharlann ∴- 8 >- 3
21
7

(3)化简,得:-(-0.3)=0.3,-
1 3

1 3
.
1 ∵0.3< 3 ,
∴-(-0.3)<
-1 3
.
人教版七年级数学上册1.2.4《绝对值 》 课件(共23张ppt)
人教版七年级数学上册1.2.4《绝对值 》 课件(共23张ppt)
人教版七年级数学上册1.2.4《绝对值 》 课件(共23张ppt)
合作探究
人教版七年级数学上册1.2.4《绝对值 》 课件(共23张ppt)
人教版七年级数学上册1.2.4《绝对值 》 课件(共23张ppt)
例题解析
例1 求下列各数的绝对值: (1)|-1 1 |; (2) - | - 7 |;
2 (3)+| - 2 |; (4)| 3 - π |. 解:(1)原式=1 1 ; (2)原式= - 7;
-1 3
.
解:(1)化简,得:-(-1)=1,-(+2)=-2. ∵1>-2, ∴-(-1)>-(+2).
人教版七年级数学上册1.2.4《绝对值 》 课件(共23张ppt)
人教版七年级数学上册1.2.4《绝对值 》 课件(共23张ppt)
例题解析
(2)∵
- 8 = 8 , -3 =3
21 21
77
合作探究
人教版七年级数学上册1.2.4《绝对值 》 课件(共23张ppt)
人教版七年级数学上册1.2.4《绝对值 》 课件(共23张ppt)
合作探究
有没有绝对值等于-2的数?一个数的绝对值会是负数吗?不论有理 数a取何值,它的绝对值总是什么数?
没有绝对值等于-2的数,一个数的绝对值不会是负数;
不论有理数a取何值,它的绝对值总是正数或0(非负数),即对任意 有理数a,总有|a|≥0.
③如果a<0,那么│a│=-a.
课堂小结
3.不论有理数a取何值,它的绝对值总是正数或0(非负数), 即对任意有理数a,总有|a|≥0.
4.互为相反数的两个数的绝对值相等. 5.数轴上的数的排列规律是: 在数轴上表示有理数,它们从左到右的顺序,就是从 小到大的顺序,即左边的数小于右边的数.
课堂小结
6.有理数大小比较法则: (1)正数大于0,0大于负数,正数大于负数; (2)两个负数,绝对值大的反而小.


相关文档
最新文档