直线电机工艺的研究

合集下载

直线电机拖动机构的研究

直线电机拖动机构的研究

s 工程电磁场有限元分析软件进行分析的正确 o t f 性 ;2 仿真结果为改进优化 设计指 出方 向; 3 () () 从双线圈的三种主要控制方式中得出了最优的控
制方 法 。
1 直线 电机 拖动 机构 的 电磁 场有 限
兀 分 析
气隙磁导计算的准确与否 , 将严重影响整个 磁 系统的计算精度 。因为各种磁系统中都不可 J 避免地存在气 隙 ( 工作气 隙和 非工作 气隙 ) 含 。 由于空气的磁导率远远小于铁磁材料的磁 导率 ,
场强度及 电磁 力进行仿真 , 电磁力的仿真 结果与试验数 据进行比对 , 将 并分析 了误差产生 的原因 。 结果表明 : 与试验数 据趋向一致 , 仿真 在双线 圈的三种主 要控制方式 中得 出了最优的控制 方法 , 此 结果对 以后的直线 电机拖动机构设计有很重 要的 参考仿真
拖动机构的磁场 强度及 电磁力进行仿真 , 并且将 仿真结果与试验数据进行比对 :1 验证利用 A — () n
收稿 日期 : 0 - — . 2 7 31 0 0 5 赵春云 女
定可靠、 精确度高的突出优点。 直线电机拖动机构 电磁力的计算是进行 结构 设计的基础 , 其结构参数的变化将会影响 电磁场 的分布。以往设计中的计算公式往往进行了较多 的简化 , 通常是采用解析方法给出定性的实用公 式, 而优化设计则是通过大量试验数据进行摸索 和总结¨ 。这些传统计算的误差较大。本文应用 J Ast no 工程电磁场 有限元 分析软件 , f 对直线 电机
中图分类号 T 5 . 文献标识码 A 文章编号 10 M39 4 0 8—78 (0 7 o —0O 0 2 1 2 0 ) 3 0 6— 5
S u y o wi g M e h ns fLi e r M o o t d fTo n c a im o n a t r

现代直线电机关键控制技术及其应用研究

现代直线电机关键控制技术及其应用研究

现代直线电机关键控制技术及其应用研究一、本文概述随着科技的不断进步和工业领域的快速发展,现代直线电机及其关键控制技术已经成为现代工业自动化领域的重要研究内容。

直线电机以其高效、高精度、高速度等显著优点,在高速交通、精密机械、电子设备等多个领域得到了广泛应用。

然而,直线电机的控制技术作为影响其性能的关键因素,一直是研究的热点和难点。

本文旨在深入探讨现代直线电机的关键控制技术,并分析其在实际应用中的研究现状和发展趋势,为相关领域的科研工作者和工程师提供有益的参考。

本文首先简要介绍了直线电机的基本原理和分类,阐述了直线电机在现代工业中的重要地位。

随后,重点分析了直线电机的关键控制技术,包括位置控制、速度控制、力控制等方面,并详细探讨了各种控制技术的原理、特点以及适用场景。

在此基础上,本文还综述了直线电机在高速交通、精密机械、电子设备等领域的应用案例,分析了这些应用中的技术难点和解决方案。

本文展望了现代直线电机关键控制技术的发展趋势,探讨了未来可能的研究方向和应用前景。

通过本文的研究,旨在为推动现代直线电机控制技术的进步和实际应用的发展提供有益的借鉴和指导。

二、直线电机基本原理与分类直线电机,又称线性电机,是一种能够实现直线运动的特殊电机。

其基本原理与传统的旋转电机相似,都是基于电磁感应原理进行工作。

但与传统电机不同的是,直线电机不需要通过旋转运动转化为直线运动,而是直接产生直线运动。

直线电机的基本结构主要包括定子、动子和支撑结构。

定子通常由铁心和绕组构成,负责产生磁场;动子则负责在磁场中运动,其结构形式多样,可以是磁铁,也可以是带有绕组的导体。

当定子中的电流变化时,产生的磁场也会随之变化,进而驱动动子在直线方向上运动。

根据动子与定子之间的相对运动关系,直线电机可以分为动磁式和动圈式两类。

动磁式直线电机中,动子是磁体,定子是线圈,电流在定子线圈中产生磁场,从而驱动动子做直线运动。

而动圈式直线电机则相反,动子是线圈,定子是磁体,电流在动子线圈中产生磁场,与定子磁场相互作用,驱动动子直线运动。

直线电机的原理

直线电机的原理

1.最大电压( max. voltage ph-ph) ———最大供电线电压,主要与电机绝缘能力有关;2.最大推力(Peak Force) ———电机的峰值推力,短时,秒级,取决于电机电磁结构的安全极限能力;3.最大电流(Peak Current) ———最大工作电流,与最大推力想对应,低于电机的退磁电流;4.最大连续消耗功率(Max. Continuous Power Loss) ———确定温升条件和散热条件下,电机可连续运行的上限发热损耗,反映电机的热设计水准;5.最大速度(Maximum speed) ———在确定供电线电压下的最高运行速度,取决于电机的反电势线数,反映电机电磁设计的结果;6.马达力常数(Motor Force Constant) ———电机的推力电流比,单位N/A或KN/A,反映电机电磁设计的结果,在某种意义上也可以反映电磁设计水平;7.反向电动势(Back EMF) ———电机反电势(系数),单位Vs/m,反映电机电磁设计的结果,影响电机在确定供电电压下的最高运行速度;8.马达常数(Motor Constant) ———电机推力与功耗的平方根的比值,单位N/√W,是电机电磁设计和热设计水平的综合体现;9.磁极节距NN(Magnet Pitch) ————电机次级永磁体的磁极间隔距离,基本不反映电机设计水平,驱动器需据此由反馈系统分辨率解算矢量控制所需的电机电角度;10.绕组电阻/每相(Resistance per phase)———电机的相电阻,一般情况下给出的往往是线电阻,即Ph-Ph,与电机发热关系较大,在一定意义下可以反映电磁设计水平;11.绕组电感/每相(Induction per phase) ———电机的相电感,一般情况下给出的往往是线电感,即Ph-Ph,与电机反电势有一定关系,在一定意义下可以反映电磁设计水平;12.电气时间常数(Electrical time constant) ———电机电感与电阻的比值,L/R;13.热阻抗(Thermal Resistance) ———与电机的散热能力有关,反映电机的散热设计水平;14.马达引力(Motor Attraction Force) ———平板式有铁心结构直线电机,尤其是永磁式电机,次极永磁体对初级铁心的法向吸引力,一般高于电机额定推力一个数量级,直接决定采用直线电机的直线运动轴的支撑导轨的承载能力和选型。

国内外直线电机技术的发展与应用综述

国内外直线电机技术的发展与应用综述

国内外直线电机技术的发展与应用综述一、直线电机技术的发展直线电机是一种能够直接产生直线运动的电机,它是融合了电磁学、力学和控制理论的高新技术产品。

随着工业自动化和智能制造的发展,直线电机技术在国内外得到了广泛的应用和推广。

在这样的背景下,直线电机技术的发展也迅速走向成熟,实现了快速、精密、高效的直线运动控制。

1. 直线电机技术的起源直线电机技术的起源可以追溯到20世纪初,当时的工业生产需要更高效的动力传动设备,传统的旋转电机在直线运动控制方面存在较大的局限性。

由此,人们开始研究和开发能够直接产生直线运动的电机,而直线电机应运而生。

2. 直线电机技术的发展历程20世纪50年代,磁悬浮直线电机技术开始初露头角,但由于材料、加工工艺等方面的限制,当时的直线电机技术仍处于萌芽阶段。

随着硬磁材料和控制技术的不断改进,直线电机技术逐渐成熟,应用领域也不断拓展。

3. 直线电机技术在国际上的发展状况在国际上,直线电机技术已经得到了广泛的应用和研究。

欧美国家在直线电机技术方面具有较强的研发实力和生产能力,其在航空航天、高铁、机器人等领域的应用取得了显著的成绩。

而在亚洲地区,日本和韩国也在直线电机技术领域拥有一定的技术积累和市场份额。

二、直线电机技术的应用直线电机技术作为一种先进的动力传动技术,其在工业生产和科学研究领域得到了广泛的应用,并且在特定领域具有独特的优势。

1. 工业自动化领域在工业生产中,直线电机技术可以实现高速、高精度的直线运动控制,广泛应用于数控机床、激光切割设备、半导体生产设备等领域。

直线电机可以实现电磁直接驱动,避免了传统传动系统中的机械传动链路和间隙,提高了系统的动态响应性能和定位精度。

2. 航空航天领域直线电机技术在航空航天领域的应用也日益广泛。

在卫星姿态控制系统中,直线电机可以实现对姿态控制器的精确调整,提高了卫星的姿态控制精度和灵活性。

在航空器的起落架和飞行控制系统中,直线电机也可以实现更加稳定和精密的动力传递。

直线电机定子背板加工变形分析

直线电机定子背板加工变形分析

直线电机定子背板加工变形分析摘要:公司近年来大力开发新产业新产品,承包了直线电机的项目,直线电机是一种将电能直接转换成直线运动机械能,而不需要任何中间转换机构的传动装置。

本文重点介绍了直线电机定子背板的加工,分析定子背版的结构以及相关加工难点,重点分析了加工变形并提出解决方法,保证产品的加工精度和加工效率,为产品转型升级储备技术打下坚实的基础。

关键词:直线电机;定子背板;加工变形;引言公司为了开拓市场转型升级首次承包军工直线电机项目,其中定子背板为关键部件,结构负责数量多并且加工难度大,其加工任务是否能圆满完成关系到整个项目周期和交货节点。

从结构上看定子背版属于薄壁镂空件,形状复杂,以往没有加工过该类型的产品,缺少该类型薄板工件的加工经验,如果按照以往的加工经验进行加工,加工表面光洁度差并且平面变形大达到1mm,变形较大尺寸无法保证,难以保证最终产品质量。

为了保证项目顺利完成、提高产品质量,我们必须攻克定子背版的各种加工难点。

1分析定子背版的加工难点对于直线电机定子背版,其结构设计不仅厚度薄,而且要求形位公差严格,尺寸精度高。

在满足使用性能的前提下,为了减轻重量,其厚度尽可能的薄。

在这类薄壁零件的制造过程中,通常较难用铸造等整体成形方法实现,同时由于其尺寸精度高。

对此类零件,一般采用铣削加工成形。

刀具常采用立铣刀,工件材料为轧制钢板,加工后的厚度最小处10mm,工件外形尺寸600x450mm。

由于使用钢板加工时材料去除量大,厚度薄,在加工后常出现相当大的变形。

若没有有效的措施,零件将因翘曲而精度降低,甚至无法使用。

对于此类零件,在制定工艺方案时,应重点考虑控制变形问题。

对于不同的零件,分析变形的特点,找到相应措施,经过多次的加工实验,总结一套解决该技术难题的工艺方法。

关于定子背版其产生变形的主要因素可分为以下三种,若没有有效的控制措施,零件将因翘曲而精度降低,甚至无法使用。

1.1定子背版毛坯采用40厚不锈钢板材料进行加工,材质为06Cr19Ni10奥氏体不锈钢,在加工时最薄的位置达到10mm,同时有很多方形通孔,因此在加工时工件材料去除量大,由于材料存在内应力,在去除大量材料后内应力得到释放后会出现较大变形;1.2由于产品结构设计原因,工件最终厚度很薄,随着加工不断去除余量,工件越来越薄,由于装夹力的原因会引起工件的变形,因此如果装夹力度过大、装夹方式不当也会产生较大变形;1.3工件在切削过程中会受到切削力,由于刀具与工件挤压摩擦会引起工件产生应力变形,而工件因加工去除材料变薄后的强度无法抗衡切削变形应力,因此会造成工件上拱变形。

例子-永磁直线同步电动机关键技术的研究

例子-永磁直线同步电动机关键技术的研究

永磁直线同步电动机关键技术的研究第1章绪论1.1课题的背景与意义随着科学技术进步,高效率、高精度、高柔化和绿色化成为机械加工的重要发展方向。

切削加工的发展方向是高速切削加工。

一方面,高速加工不仅极大提高了机械加工生产效率,而且可降低切削力 30%以上,尤其径向切削力大幅度减小,同时 95%-98%的切削热被切屑带走,加工零件的热变形小,振荡频率高,工作平稳,有利于提高加工零件的光洁度,从而极大地提高了加工零件的质量及互换性;另一方面,超微细加工及科学实验对精密加工提出了越来越高的要求。

实现高速、精密加工的基本条件是:要有性能优良的高速精密机床。

为了保证进给量不变,确保零件的加工精度,表面质量和刀具耐用度,驱动系统的速度也必须相应提高;同时,进给系统的行程一般比较小,也要求驱动系统具有高的加(减)速度,以缩短启动、变速、停止的过渡时间。

因此,研制新型高速精密驱动系统是国内外的研究热点。

在工业发达国家,高速切削技术正成为切削加工的主流技术。

根据 1992年国际生产工程研究会(CLRP)年会主题报告的定义,高速切削通常指切削速度超过传统切削速度5-10倍的切削加工。

目前,多数数控机床的进给系统,采用旋转伺服电机驱动滚珠丝杠。

为了适应高速精密加工的要求,一些厂商采用了不同的措施不断改进滚珠丝杠的结构和性能,如日本MAZAK公司的FF66O卧式加工中心采用高速滚珠丝杠副驱动系统,其速度达 1.5m/s,加速度为1.5g,重复精度达0.002mm 。

但滚珠丝杠驱动系统需中间环节(如联轴器、滚珠丝杠、螺母等)传动,存在很多缺点,如存在反向死区、螺距误差引起误差传递、由于摩擦磨损而导致的精度渐变、附加惯量大、弹性变形引起爬行,以及位置、速度、加速度受限于丝杠的机械特性(刚度、临界速度)等,进一步改进高速精密滚珠丝杠驱动系统,有着不可克服的困难。

所以机床上传统的“旋转电机+滚珠丝杠”进给传动方式,由于受自身结构的限制,在进给速度、加速度、快速定位精度等方面很难有突破性的提高,已无法满足超高速切削、超精密加工对机床进给系统伺服性能提出的更高要求。

直线电机铁芯制作方法

直线电机铁芯制作方法

直线电机铁芯制作方法1. 引言直线电机是一种将电能转化为机械能的设备,广泛应用于工业自动化、机械制造和交通运输等领域。

铁芯是直线电机的重要组成部分,它承担着导磁、传递力量和支撑定子线圈等功能。

本文将介绍直线电机铁芯的制作方法,包括铁芯材料的选择、加工工艺和质量控制等方面内容。

2. 铁芯材料的选择直线电机铁芯的材料选择对于其性能和寿命具有重要影响。

常见的铁芯材料包括硅钢片、铁氧体和软磁合金等。

以下是各种材料的特点和适用场景:•硅钢片:具有低磁滞、低铁损和高导磁性能的特点,适用于频率较低的直线电机。

•铁氧体:具有高磁导率和低磁滞特性,适用于高频直线电机。

•软磁合金:具有高饱和磁感应强度和低磁滞特性,适用于高性能直线电机。

在选择铁芯材料时,需要综合考虑直线电机的工作频率、磁场强度和成本等因素。

3. 铁芯加工工艺直线电机铁芯的加工工艺主要包括下列几个步骤:3.1 材料切割根据设计要求,将选定的铁芯材料切割成适当尺寸的片材。

切割时需要注意刀具的选择和切割速度,以避免切割过程中产生过多的热量和应力。

3.2 铁芯片堆叠将切割好的铁芯片按照设计要求进行堆叠。

在堆叠过程中,需要保证各个铁芯片之间的间隙均匀,并采取适当的固定措施,以确保铁芯的整体稳定性。

3.3 硅钢片涂漆如果选择了硅钢片作为铁芯材料,还需要对硅钢片进行涂漆处理,以减少铁芯的铁损。

涂漆时需要选择合适的漆料,并控制涂漆的厚度和均匀性。

3.4 铁芯热处理为了提高铁芯的磁导率和磁饱和感应强度,可以对铁芯进行热处理。

热处理的工艺参数需要根据具体材料和要求进行选择,并控制好热处理的温度和时间。

3.5 表面处理为了提高铁芯的抗腐蚀性能和表面光洁度,可以对铁芯进行表面处理。

常见的表面处理方法包括镀锌、镀镍和喷涂等。

4. 铁芯质量控制直线电机铁芯的质量控制是制造过程中的重要环节。

以下是常用的质量控制方法和指标:•外观检查:检查铁芯表面是否平整、无裂纹和变形等缺陷。

•尺寸测量:测量铁芯的尺寸是否符合设计要求。

直线电机无杆采油工艺在特殊井型油井试验与应用

直线电机无杆采油工艺在特殊井型油井试验与应用

直线电机无杆采油工艺在特殊井型油井试验与应用X王 薇(工程技术研究院采油采气工艺研究所,河南郑州 450006) 摘 要:为解决鄂尔多斯南部中浅层定向井、水平井常规有杆泵举升工艺面临的抽油杆偏磨、泵效低、能耗大等突出问题,提出将直线电机与抽油泵结合起来置于井下,由直线电机直接驱动抽油泵做直线运动,省去中间传动转换装置的无杆泵采油工艺。

通过在镇泾油田以及富县工区的试验应用,有效解决了杆管偏磨问题,满足采油工艺自动控制与适应恶劣工作环境的要求,且在节能、降耗等方面效果显著,具有较好的应用前景。

关键词:举升工艺;杆管偏磨;直线电机;节能增效 中图分类号:T E 357 文献标识码:A 文章编号:1006—7981(2012)14—0007—02 随着鄂尔多斯南部区块产能建设的需求及钻井技术水平的提高,针对具有潜力的中浅层油藏技术开发,各类斜井、大位移定向井、水平井应运而生。

由于受储层地理位置及埋藏深度的限制(300-1800m),形成了鄂南油区特有的“中浅层定向井、中浅层水平井”这一井眼状况,即斜井段的长度远大于直井段,且井斜角及井斜变化程度远高于普通定向井。

这一特点造成了常规有杆泵举升工艺面临抽油杆偏磨严重、泵效低、能耗大等突出问题,在已投入开发的镇泾1井区、镇泾3井区,井斜角一般大于25o ,有些可达37o ,水平位移最大可达750m ,受井斜限制及满足水平位移的要求,使得造斜段上移,平均在500m 左右进入斜井段,抽油泵不可避免的需下入斜井段生产,加之井区内地层水矿化度高,油井工作环境恶劣,统计2011年1-11月份两井区共作业57井次,平均每两个月作业一次,平均检泵周期53天;而在富县新投入开发的一口中浅层水平井,造斜点665m ,最大井斜角90.06°,水平位移1310m ,狗腿度7.67?/30m,井眼弯曲复杂,若采用常规有杆举升工艺,也将面临同样的问题。

为使此类特殊井型油井获得经济有效的举升,开展直线电机无杆采油工艺技术试验,为此类油井开采提供了一个重要技术思路。

直线电机设计及其控制技术研究

直线电机设计及其控制技术研究

直线电机设计及其控制技术研究随着科技的不断发展,直线电机已经成为现代机械工业不可或缺的一部分。

直线电机主要应用在各种机动装置中,例如高速平面,精密定位等等。

直线电机的设计与极化方式作为电机的一种工业开发方向,已经受到了越来越多技术专家的关注。

在这篇文章中,我们将探讨直线电机的设计和控制技术。

一、直线电机的设计直线电机一般是由磁场线圈和移动部件组成。

在磁场带中心时,可以是线圈产生等力线,但线圈之前的空间间隔较大时就不能产生等力线。

在这种情况下,直线电机的性能就会受到影响。

因此,为了更好地解决这个问题,我们需要对直线电机进行设计。

直线电机的设计中,需要特别关注线圈的制造。

目前,常用的生产设备有线圈拉伸机,是许多制造商所使用的主要工具。

使用线圈拉伸机,可以生产出更加优质的线圈,提高直线电机的整体性能。

此外,在设计直线电机时,还需要考虑其散热问题,合理规划空间结构,以降低温度,同时保证电机运行的可靠性和稳定性。

除此之外,直线电机的设计还需要考虑各种电气元件的选配,例如传感器、控制器等。

在设计中,还要采用优化设计方式,不断完善设计流程,提高其性能和可靠性。

二、直线电机控制技术的研究在直线电机的控制技术研究中,我们首先要考虑如何精确地控制电机的运动。

直线电机电动力学的研究表明,当磁极以直线运动时,电机有效电动力矢量的大小与方向会随着其位置改变而发生变化。

如何克服这一问题,需要对电机的控制进行研究。

在直线电机的控制技术中,我们还需要考虑如何有效地防止电机的“抖动”现象。

这个问题的解决需要运用复杂的控制技术和算法,例如模糊控制算法、神经网络控制算法等等。

在实际应用中,这些技术可以有效地减少电机的抖动现象,提高其运行效率和稳定性。

在直线电机的控制中还需要考虑如何有效地监测和控制电机的温度。

随着电机的运行,温度会逐渐升高,如果超过一定的范围就会影响电机的性能和寿命。

因此,在控制技术中,需要考虑如何通过温度传感器实时检测电机的温度,并通过控制器进行准确的控制,保证电机的稳定运行。

直线电机的制作方法

直线电机的制作方法

直线电机的制作方法直线电机是一种近年来逐渐普及的电机类型,由于其结构简单、效率高、速度快、噪声小等优点,在工业生产线及自动化产线的应用中越来越广泛。

本文将介绍直线电机的制作方法。

一、选材和制作工具的准备1. 选材:选择电磁铁线圈、磁铁柱(也可以选择磁铁块)、铁芯、导轨板、导向轮、紧定轮、外壳等材料。

2. 制作工具:电钻、电锤、电焊机、钳子、扳手、锤子等工具。

二、制作磁极1. 制作磁铁柱:将磁铁柱削成所需长度,铁芯内、外面各缠绕一圈漆包线。

再用电磁铁丝绕制导线,放入磁铁柱内,用电焊枪焊牢。

2. 安装磁铁柱:将磁铁柱安装在铁芯上,顶部也接上漆包线。

三、制作线圈1. 制作线圈前准备工作:要根据铁芯的长度和直径,挑选适合的漆包线,还要根据需要制作的线圈匝数计算出所需线圈长度。

2. 绕制线圈:首先在绕线轮上仔细绕制线圈,然后通过一定的方式使线圈与铁芯上的磁铁柱连接起来。

四、安装导轨板、导向轮、紧定轮1. 安装导轨板: 首先需要确认导轨板的尺寸,然后安装导轨板,使其垂直于铁芯。

2. 安装导向轮:将导向轮固定在导轨板下方,与电机直线运动方向垂直。

3. 安装紧定轮:将紧定轮安装在导轨板的末端,用特定的材料和结构将其固定在电机上。

五、安装外壳1. 测量尺寸:首先需要测量导向轮和紧定轮之间的距离,以确定外壳的大小。

2. 制作外壳:将外壳材料剪成适当尺寸,按照一定顺序焊接。

3. 安装外壳:将制作好的外壳安装在电机上,与紧定轮、导向轮完美结合。

六、组装调试1. 固定零件:对所有部件加固,确保其稳定性和牢固度。

2. 进行联通:连接电源,确保电机能够正常运行。

3. 相关检查:通过实验检查性能是否达到要求,并进行相应的调整。

4. 拆解和更换:如果组装失败,需要拆卸、更换零部件,直到电机能够正常工作。

综上所述,制作直线电机需要一定的工具和材料,在制作过程中需要严格按照工艺流程进行操作,以确保电机的性能稳定、寿命长久。

同时,我们需要注意安全问题,在操作过程中需要佩戴相关防护用品,保证人身安全。

直 线 电 机.

直 线 电 机.

长定子与短定子
短定子磁悬浮线路的造价远低于长定子磁悬浮线路。 电机绕组在车内,动力电源也装在车内,动力电源从 地面供电轨取得电能,地面与磁悬浮列车之间必须安 装受流器。
由于在高速时受流性能恶化,所以这种磁悬浮列车 的运行速度不能很高,一般在中低速范围内运行。日 本的中低速磁浮列车(HSST)采用了这种驱动方式
直线电机
概 述
• • • • • • • 发展历史 基本工作原理 分类 在磁浮列车上的应用 磁悬浮系统中电机法向力的研究 边缘效应 应用于轨道交通的评价
发展历史
直线电机经历了三个时期:
• (1)1840~1955年的116年间,直线电机经历了从设想 到实验到部分实验性应用的过程。其中最著名的是英 国皇家飞机制造公司利用双边扁平型直线电机制成了 发射导弹的装置,其速度达到1600km/h。 • (2) 1956~1970年是直线电机的开发应用阶段。这一时 期的直线电机的实用设备有 MHD泵、自动绘图仪、磁 头定位驱动装置、电唱机、缝纫机、空气压缩机、输 送装置等。 • (3) 1971年以后,进入了实用商品阶段。这一时期直 线电机应用于磁浮列车、液态金属的输送和搅拌等项 目,终于在满足人类需求的过程中求得自己的发展。
• 如果在结构上初级和次级设计得一样长,当初 级和次级作相对直线运动后。则它们相对着的 部分逐渐减少,相对作用力也越来越小,以致 最后消失。 • 因而产生了长初级或短初级型直线电机。
长定子与短定优点是功率大,功率因 数高,适用于高速、超高速磁悬浮铁路。 日本的超导超高速磁浮列车(MLX)和德国的常 导超高速磁浮列车(TR)采用的都是驱动方式。
超导推斥型
• 在超导磁浮系统中,超导线圈装在车上,而与其相互 作用产生推进、悬浮、导向功能的各种线圈都装在地 面轨道内。借助这些线圈的作用,使车上超导线圈产 生推进、悬浮、导向力。

直线电机的原理及应用(实例图)

直线电机的原理及应用(实例图)

直线电机的原理及应⽤(实例图)最完整版——包括直线电机原理,基础知识,优缺点,应⽤场合,国内主要⽣产⼚家,直线电机发展史,现在国内的技术等。

看完这个你就是直线电机专家了直线电机原理直线电机是⼀种将电能直接转换成直线运动机械能,⽽不需要任何中间转换机构的传动装置。

它可以看成是⼀台旋转电机按径向剖开,并展成平⾯⽽成。

对应旋转电机定⼦的部分叫初级,对应转⼦的部分叫次级。

在初级绕组中通多相交流电,便产⽣⼀个平移交变磁场称为⾏波磁场。

在⾏波磁场与次级永磁体的作⽤下产⽣驱动⼒,从⽽实现运动部件的直线运动。

各系列直线电机分类及其特征■⽆铁芯直线电机⽆铁芯电机的线圈内部不存在铁芯,线圈继续在双磁路中间运⾏,典型形状如图1.⽆齿槽效应,容易实现更安定的运动,实现更⾼精度2.体积⼩重量轻,易实现⾼加速度运⾏实物图:■有铁芯直线电机有铁芯电机的线圈缠绕在铁芯上,可以产⽣更⼤的推⼒。

1.推⼒密度⾼,在同等尺⼨下提供更⾼的推⼒,可提供最⼤上万⽜顿推⼒2.磁性吸引⼒,动⼦定⼦间会产⽣较⼤的磁性吸引⼒实物图:■圆筒状直线电机圆筒状直线电机采⽤两端⽀撑机构,能简洁地替换丝杆机构。

=========================================直线电机与旋转电机相⽐,主要有如下⼏个特点:⼀是结构简单,由于直线电机不需要把旋转运动变成直线运动的附加装置,因⽽使得系统本⾝的结构⼤为简化,重量和体积⼤⼤地下降;⼆是定位精度⾼,在需要直线运动的地⽅,直线电机可以实现直接传动,因⽽可以消除中间环节所带来的各种定位误差,故定位精度⾼,如采⽤微机控制,则还可以⼤⼤地提⾼整个系统的定位精度;三是反应速度快、灵敏度⾼,随动性好。

直线电机容易做到其动⼦⽤磁悬浮⽀撑,因⽽使得动⼦和定⼦之间始终保持⼀定的空⽓隙⽽不接触,这就消除了定、动⼦间的接触摩擦阻⼒,因⽽⼤⼤地提⾼了系统的灵敏度、快速性和随动性;四是⼯作安全可靠、寿命长。

直线电机可以实现⽆接触传递⼒,机械摩擦损耗⼏乎为零,所以故障少,免维修,因⽽⼯作安全可靠、寿命长。

关于永磁同步直线电机控制新方法的研究

关于永磁同步直线电机控制新方法的研究
O 引 言 . 对永磁 同步直线 电机伺服控 制系统这类 快速变化 的非线性 复杂 系统 . 稳定性 与鲁 棒性是该 系统 的重 要性能指 标 . 人们 已提 出了各 种 控制方案优化系统性能 。 常规 PD控制 。 I 虽然结构简单 , 系统获得 能使 良好的稳态精 度 .但是对 系统参数 变化及外部 扰动 的鲁 棒性不够 理 想 。本文针对直线伺服系统对速度 的要求 . 设计 了基于模型参 考 自适 应的模糊滑模控制器 。通过对 系统 的实 际模 型和参考模型 的比较 , 将




() 1 () 2
() 3
Ri p + A一 q
其 a ; 中一 6 = 蔷 户 鲁 s 鲁+ + )
, 由动子质量 和粘滞 摩擦力 的改变 而引起 的不 确定 的有界 扰 是 动。
A = + P £ AM
滑模控 制的基本 原理是 . 当系统运动 点进入滑动模态 时 . 系统状 ( 4) 而是沿着滑模线 向 其 中, 为 d q轴 动子 电压 ,dA 为 d q轴 动子磁链 , 为动 态 的变 化不 随系统参 数和外 界扰动的变化而改变 . , . A , . 这时状态变量 以指数形式衰减 。 在本设 计中 , 服系统速 度 伺 子 电阻 , 为定子永 磁体产生 的励 磁磁链 , 线速度 , A 为 r为极距 ,= 原点运 动。 p 偏 差 在 滑 模 状 态 时会 自动 的 以指 数 形 式 衰 减 . 而 达 到 了响 应 速 度 快 从 d d。 / z 和鲁 棒 性 强 的特 点 。 电磁推力表达式为 : 滑模面与控制量 的推导 。根据状态 变量取 滑模线 为 : [ + L- A (eL) ( ) 5 f‘
◇高教论述◇
科 技 嚣向导

直线电机研究报告

直线电机研究报告

直线电机研究报告直线电机是一种通过电流产生的磁场来驱动直线运动的电机,其工作原理和传统的旋转电机有很大的不同。

本文将介绍直线电机的结构、工作原理、应用领域以及未来发展方向。

一、结构直线电机主要由定子和滑台两部分组成。

定子是由一组电磁线圈组成,安装在机器床的底座上。

而滑台则是负责直线运动的部分,它上面有一组永磁体,与定子的电磁线圈相互作用,从而实现直线运动。

二、工作原理直线电机的工作原理基于洛伦兹力的作用。

当电流通过定子的电磁线圈时,会产生一个磁场。

而滑台上的永磁体则会受到该磁场的作用力,从而产生直线运动。

根据电流的方向和大小,可以控制滑台的速度和方向。

三、应用领域直线电机具有速度快、精度高、响应快等优点,因此在许多领域有广泛的应用。

其中最常见的应用是在工业自动化设备中,如数控机床、印刷机械等。

直线电机还广泛应用于交通运输领域,如高速列车、磁悬浮列车等,以及航空航天领域的飞行器推进系统。

四、未来发展方向随着科技的不断进步,直线电机在结构和性能上都有了很大的提升空间。

未来的直线电机将更加小型化、高效化和智能化。

例如,采用新材料和新工艺制造的直线电机可以实现更小的体积和更高的功率密度。

同时,随着人工智能和物联网的发展,直线电机可以与其他设备进行无线通信和协同工作,实现更智能的控制和运行。

总结:直线电机是一种通过电流产生的磁场来驱动直线运动的电机。

它的工作原理基于洛伦兹力的作用,通过控制电流的方向和大小来控制滑台的运动。

直线电机在工业自动化、交通运输和航空航天等领域有广泛的应用。

未来的直线电机将更加小型化、高效化和智能化。

通过不断的技术创新和发展,直线电机将在各个领域发挥更重要的作用。

直线电机的概述

直线电机的概述

直线电机的基本结构与工作原理一直线电机的基本结构图1-1所示的a和b分别表示了一台旋转电机和一台直线电机。

图1-1 旋转电机和直线电机示意图 a)旋转电机 b)直线电机直线电机可以认为是旋转电机在结构方面的一种演变,它可看作是将一台旋转电机沿径向剖开,然后将电机的圆周展成直线,如图1-2所示。

这样就得到了由旋转电机演变而来的最原始的直线电机。

由定子演变而来的一侧称为初级,由转子演变而来的一侧成为次级。

图1-2 由旋转电机演变为直线电机的过程 a)沿径向剖开 b)把圆周展成直线图1-2中演变而来的直线电机,其初级和次级长度是相等的,由于在运行时初级和次级之间要做相对运动,如果在运动开始时,初级与次级正巧对齐,那么在运动中,初级与次级之间互相耦合的部分越来越少,而不能正常运动。

为了保证在所需的行程范围内,初级和次级之间的耦合能保持不变,因此世界应用时,是将初级与次级制造成不同的长度。

由于段初级在制造成本上,运行的费用上均比短次级低得多,因此一般采用短初级长次级。

如图1-3所示。

图1-3 单边型直线电机 a)短初级 b)短次级在图1-3中所示的直线电机中仅在一边安放初级,对于这样的结构型式称为单边型直线电机。

特点是在初级与次级之间存在着很大的法向吸力,一般这个法向吸力在钢次级时约为推力的10倍左右,大多数场合这种吸力是不希望存在的。

图1-4 双边型直线电机 a)短初级 b)短次级在图1-4中所示的直线电机在次级的两边都装上了初级。

这样这个法向吸力就可以相互抵消,这种结构型式称为双边型。

上述介绍的直线电机称为扁平型直线电机,是目前应用最为广泛的,除此之外直线电机还可以做成圆筒型(也称管型)结构,它也可以看作是由旋转电机演变过来的,演变过程如图1-5所示。

图1-5 旋转电机演变成圆筒型直线电机的过程 a)旋转电机 b)扁平型单边直线电机 c)圆筒型(管型)直线电机图1-5a表示一台旋转电机以及由定子绕组所构成的磁场极性分布情况;图1-5b表示转变为扁平型直线电机后,初级绕组所构成的磁场极性分布情况,然后将扁平型直线电机沿着和直线运动相垂直的方向卷接成筒形。

直线电机基础

直线电机基础

直线电机基础直线电机也称线性电机,线性马达,直线马达在实际工业应用中的稳定增长,证明直线电机可以放心的使用。

下面简单介绍直线电机类型和他们与旋转电机的不同.最常用的直线电机类型是平板式和U 型槽式,和管式。

线圈的典型组成是三相,有霍尔元件实现无刷换相.图示直线电机用HALL换相的相序和相电流.该图直线电机明确显示动子(forcer, rotor)的内部绕组.磁鉄和磁轨.动子是用环氧材料把线圈压成的。

而且,磁轨是把磁铁固定在钢上。

直线电机在过去的10年,经实践上引人注目的增长和工业应用的显著受益才真正成熟。

直线电机经常简单描述为旋转电机被展平,而工作原理相同。

动子(forcer, rotor) 是用环氧材料把线圈压缩在一起制成的.而且,磁轨是把磁铁(通常是高能量的稀土磁铁)固定在钢上.电机的动子包括线圈绕组,霍尔元件电路板,电热调节器(温度传感器监控温度)和电子接口。

在旋转电机中,动子和定子需要旋转轴承支撑动子以保证相对运动部分的气隙(air gap)。

同样的,直线电机需要直线导轨来保持动子在磁轨产生的磁场中的位置。

和旋转伺服电机的编码器安装在轴上反馈位置一样,直线电机需要反馈直线位置的反馈装置--直线编码器,它可以直接测量负载的位置从而提高负载的位置精度。

直线电机的控制和旋转电机一样。

象无刷旋转电机,动子和定子无机械连接(无刷),不象旋转电机的方面,动子旋转和定子位置保持固定,直线电机系统可以是磁轨动或推力线圈动(大部分定位系统应用是磁轨固定,推力线圈动)。

用推力线圈运动的电机,推力线圈的重量和负载比很小。

然而,需要高柔性线缆及其管理系统。

用磁轨运动的电机,不仅要承受负载,还要承受磁轨质量,但无需线缆管理系统。

相似的机电原理用在直线和旋转电机上。

相同的电磁力在旋转电机上产生力矩在直线电机产生直线推力作用。

因此,直线电机使用和旋转电机相同的控制和可编程配置。

直线电机的形状可以是平板式和U 型槽式,和管式.哪种构造最适合要看实际应用的规格要求和工作环境。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直线电机装配工艺的研究与应用摘要:为了提高企业制造技术,加快新技术的开发,促进企业技术进步,随着高速切削、超精密加工等先进制造技术的发展,要求要有很高的驱动推力、快速进给速度和极高的快速定位精度。

机床进给系统形成了直线电机直接驱动为主的发展方向。

本文阐述了直线电机的工作原理及其功能,并以CKS6125数控车床所采用的直线电机为例,阐述直线电机的装配工艺的关键技术,且对直线电机的主要装配工序进行分析与研究。

此次直线电机试装的成功,为我厂机床更新换代,经济的发展起到了积极的推动作用。

1.引言近年来,就如何提高企业制造技术,加快新技术的开发,以被越来越多企业所重视。

随着高速切削、超精密加工等先进制造技术的发展,对机床各项性能指标提出了越来越高要求。

同时也对机床进给系统的伺服性能提出了更高的要求:要有很高的驱动推力、快速进给速度和极高的快速定位精度。

高速度、高加速度和高精度是现代伺服的要求及发展趋势。

直线电动机高速进给单元的应用使进给传动链及其结构发生深刻的变化,机床进给系统形成了直线电机直接驱动为主的发展方向。

直线电机的机械结构虽然简单,但制造工艺要求却非常严格,为加快我国高速加工技术的发展与应用,加速我厂数控机床的更新换代,组织力量对直线电机装配工艺过程进行攻关是必要的。

2.直线电机简介直线电机是将直线位移机构的传动元件和执行元件相结合。

按能量转换定理,进给机构的直线电机可分为同步电动机和异步电动机。

直线电机结构紧凑、功率损耗小、快移速度高、加速度高、运动噪声低等优点,直线电机驱动方式与旋转电机驱动方式的最大区别是,取消了从电动机到工作台之间的一切机械中间传动环节,实现了“零传动”,避免了丝杠传动中的反向间隙、惯性、摩擦力和刚性不足等缺点,使机床的性能大大提高。

这项新技术国际上只有几家较大的机床公司把它应用到机床行业,而我国直线电机的设计制造技术刚刚起步,尚末形成批量生产规模,直线电机各项性能指标和国外尚有较大差距。

我厂在数控车床上应用直线电机在国内是第一家,所以说直线电机在CKS6125数控车床X轴上的应用,是我们对这项新技术的尝试,这项新技术研制的成功,为以后的机床开发和应用打下了基础。

由于该项技术为我厂首次试制,直线电机的装配应处在探索中。

CKS6125数控车床X轴直线电机采用的是西门子1FN3永磁同步直线电机,是将初级部构芯(线圈)安装在滑板上,次级部构芯(磁铁)安装在床鞍上而成的一个完整内装式电机。

其结构如图1:图11FN3永磁同步直线电机主要有初级部分、次级部分、初级部构芯型材、精密冷却部分组成,其结构如图2:图2床鞍导轨采用依纳公司的2RUE3SDNLFEG3W2/920滚柱滑块组合导轨,滑块采用自润滑,另带2-BKESX35DHO 锁紧快,其结构如图3:图33.直线电机装配工艺的关键技术及工艺方案3.1 直线电机装配工艺的关键技术根据直线电机的结构特点,直线电机零件加工和装配的主要关键: a)初、次级部构芯安全装配。

b) 安装直线电机所需工装选择。

端子盒可选件:精确冷却器(对环境温度影响< 4 K)次级部分 初级部分可选件:连续防护件(保护次级部分)动力冷却器可选件:尾端件(固定机盖,水流入流出)可选件:冷却部分(对环境温度影响< 4 K)c)安装直线电机螺钉紧固扭矩选择。

d)直线电机初、次级部芯装配。

e)直线电机装配后检查与运车。

3.2直线电机装配工艺方案确定直线电机机械结构较为简单,但其装配工艺却非常严格。

由于直线电机次级构芯的永磁体有一个强大的静态磁场和相当高铁铁磁极力,这对于人的健康和安全有直接的影响,因此装配过程中既要考虑如何保证直线电机的装配精度,也要重视人身安全。

按照上述要求制定直线电机装配工序流程为:装配前准备→将床鞍安装在床身、安装床鞍导轨→预装滑板调整机床精度→将次级部构芯冷却安装在床鞍上并试漏→安装次级部构芯→安装次级部构芯磁性盖板→将初级部构芯冷却器安装在滑板上→安装初级部构芯→安装滑板→检验直线电机安装情况(手动)→连接各冷却和液压管路→完善各部3.3直线电机装配过程的分析由于直线电机装配后,拆装非常困难,因此必须做好装配前准备工作。

装配前应按目录清点零件,收集所需工装,清洗零件,按图纸对零件进行检测。

按照直线电机装配工艺流程进行装配。

一、如何实现直线电机安全装配由于直线电机次级构芯的永磁体有一个强大的静态磁场和相当高铁磁极力,因此装配过程中要求做到:a.磁性材料距次级部构芯距离必须保证>100mm。

b.手表、磁性材料(磁卡、软盘等)要远离。

c.安装、维修、维护设备时要带工作手套。

d.带心脏起搏器的人员不得在此设备上工作。

e.不能将强磁体放在次级部构芯附近。

装配直线电机时,为了应急,应最少应准备两个高强度、非磁性材料制造的楔形物(如:不锈钢扁铲),一把锤子(重3kg),用于吸到次级部构芯零件的分开f.装配前才能拆掉次级部构芯包装箱。

g.装配时至少有2人操作。

h.永远不能把初级部构芯直接放到次级部构芯上。

i.使用钢制工具时要握紧工具,从侧面接近次级部构芯。

j.次级部构芯装好后又做其他工作,要用20mm以上厚的非金属材料(如木头)把它盖好。

k.在初级部构芯和次级部构芯已被装好在直线导轨上之后,要防止由于磁力作用在移动方向上移动。

l.要使用专用安装工具和设备。

二、如何选择安装直线电机所用工装由于直线电机初级部构芯具有很强的磁力,所以安装直线电机所用工具应采用不锈钢或非金属工具,安装初、次级部构芯时,为防止磁力作用造成的伤害,而采用专用安装装置,所需工装如下:a.拆卸/安装装置(非磁性材料)。

b.手锤1把(非磁性材料)。

c.(楔形物)2把(非磁性材料)。

d.扳手(不锈钢)。

三、如何选择安装直线电机螺钉和紧固扭矩安装直线电机为避免磁性,选用了不锈钢A2螺钉,为保证螺钉安装牢固,规定螺钉拧入的深度不少于1.0×d,为增加螺钉的夹持力,给螺钉涂上MoS2润滑脂,为保证初、次级线圈受力均匀,冷却板安装时不变形,紧固螺钉时用扭矩扳手按要求对角紧固。

安装1FN3直线电机用螺钉紧固扭矩单位:N.m由于直线电机拆装较困难,为保证无杂质,安装前将零件清洗干净。

为保证螺钉安装时不蹩进,将螺钉孔进行校正。

由于初、次级部构芯气槽尺寸直接影响初、次级部构芯吸引力和进给力,为不减弱直线电机功能,保证初、次级部构芯安装后之间的槽隙为0.8mm,安装前对各零件尺寸链进行校正。

为保证直线电机安装精度,安装直线电机前先将滑板与床鞍进行预装,调整好精度后,再将滑板拆下,分别安装初、次级部构芯。

1.次级部构芯的装配a.用螺钉把次级部构芯固定到床鞍上,将组合分配器轴向放在冷却型材的插头上,将组合分配器螺钉拧上,为防止冷却型材扭曲变形,不要拧紧螺钉。

安装另一端组合分配器,拧紧螺钉。

检查次级部构芯冷却系统是否漏油。

试漏时采用好冷却介质,避免在直线电机构件上形成冷凝水、湿气。

b.安装次级部构芯。

每块次级部构芯紧固后,用防磁板盖上,然后再安装另一块次级部构芯,避免因磁力造成的伤害。

次级部构芯共由四块串联在一起,装配时必须保证贴在次级部构芯支持板上的标示字母“N (北极)”都要对着相同的方向。

c.安装将次级部构芯磁性盖板。

安装时先将次级部构芯磁性盖板一端固定在次级部构芯端块上,另一端与最后一块次级部构芯的外边沿大约45º角从上部定位,抽出隔磁盖板,然后将次级部构芯磁性盖板降下来与次级部构芯对准。

当下降时,磁性力能被感觉到盖板马上被释放,然后“喀嚓”一声进入正确位置。

检查一下盖板装的位置是否正确,然后将次级部构芯磁性盖板另一端固定在另一块次级部构芯端块上。

2. 初级部构芯的安装a. 将初级部构芯精密冷却装置、初级部构芯安装在滑板。

b. 将拆卸/安装装置固定在滑板两侧,保证拆卸/安装装置在最大极限位置。

c. 将隔垫放在次级部构芯上,在将滑板放在床鞍上,保证拆卸/安装装置与床鞍接触可靠,慢慢松动螺钉,使滑板慢慢与床鞍导轨块接触,保证螺纹孔对正,用高强度螺钉将滑板紧固在导轨块上。

d. 不能把次级部构芯直接放到次级部构芯上。

e. 次级部构芯已被装好在直线导轨上之后,要防止由于磁力作用在移动方向上移动。

五、装配运车试验a.检查直线电机各冷却、液压接头是否连接好,电线连接是否正确,各保护开关安装是否可靠。

b.直线电机进行耐压、绝缘试验。

c.接通冷却液和液压油,手动移动滑板,移动要均匀,摩擦要小,不允许有卡住现象,确保在整个行程上都能移动平滑。

当手动移动滑板时,均匀有节奏的力的波动因电机结构的不同,这并不表明电机装配或者安装不正确。

d.电机通电后,先在低速下运行,待运行无误后,在逐渐升高速度。

不能用机床的冷却液或润滑剂来冷却直线电机。

冷却介质可采用水加防腐剂或低粘度油。

e.介质必须是清洁、过滤过的,最大允许颗粒为100μm。

f.任何环境下,都要防止在直线电机构件上形成冷凝水湿气,要选择好冷却介质流进温度,一般选择最大流进温度在环境温度以下3℃。

如果电机的连续进给力用到100%,那么流进温度应最大限制在35℃。

g.次级部构芯的最高温度不能超过60℃,否则永磁体会被永久消磁。

h.冷却回路的最大压力:10bar。

4. 结论采用上述方法装配出的直线电机进给系统,经过运车试验,其快速移动速度可达到60m/min,加速度可达1g,定位精度达到0.006mm,重复定位精度达到0.003,满足了试验要求,达到预期目的,直线电机试装的成功,为我厂机床更新换代,经济的发展起到了积极的推动作用。

参考文献1.《制造技术与机床》2.《机械工艺学》3.《西门子直线电机设计手册》。

相关文档
最新文档