初中几何基础知识练习题

合集下载

相似三角形几何模型-一线三等角(基础篇)-2022-2023学年九年级数学下册基础知识讲练(人教版)

相似三角形几何模型-一线三等角(基础篇)-2022-2023学年九年级数学下册基础知识讲练(人教版)

专题27.33 相似三角形几何模型-一线三等角(基础篇)(专项练习)一、单选题1.如图,在正方形ABCD中,P是BC上一点(点P不与点B,C重合),连接AP.作PE⊥AP,PE交CD于点E.若AB=6,点P为BC的中点,则DE=()A.32B.92C.12D.532.如图,在矩形ABCD中,点E、F分别在边AD、DC上,ABE DEF△△∽,AB=6,DE=2,DF=3,则BE的长是()A.12B.15C.313D.3153.如图,在等边三角形ABC中,AB=4,P是边AB上一点,BP=32,D是边BC上一点(点D不与端点重合),作⊥PDQ=60°,DQ交边AC于点Q.若CQ=a,满足条件的点D有且只有一个,则a的值为()A.52B.83C.2D.34.如图,在ABC中,AB=AC,D在AC边上,E是BC边上一点,若AB=3,AE=2,⊥AED=⊥B,则AD的长为()A .35B .32C .43D .345.如图,在ABC 中,AB AC =,点D 是边BC 上一点,且ADE B ∠=∠,下列说法错.误.的是( )A .AD CE BD DE ⋅=⋅B .ADE ACDC .ABD DCE △△D .AD DE =6.如图,在△ABC 中,AB =AC ,D 在AC 边上,E 是BC 边上一点,若AB =6,AE =2⊥AED =⊥B ,则AD 的长为( )A .3B .4C .5D .5.57.如图,在等边三角形ABC 中,P 为边BC 上一点,D 为边AC 上一点,且⊥APD =60°,BP =1,CD =23,则ΔABC 的边长为( )A .3B .4C .5D .68.如图,D 是等边三角形ΔABC 边上的点,AD =3,BD =5,现将ΔABC 折叠,使点C与点D 重合,折痕为EF ,且点E 点F 分别在边AC 和BC 上,则CECF的值为( )A .1113 B .35C .45D .899.如图,在矩形ABCD 中,E ,F ,G 分别在AB ,BC ,CD 上,DE ⊥EF ,EF ⊥FG ,BE =3,BF =2,FC =6,则DG 的长是( )A .4B .133C .143D .510.如图,在测量旗杆高度的数学活动中,小达同学在脚下放了一面镜子,然后向后退,直到他刚好在镜子中看到旗杆的顶部.若眼睛距离地面 1.5AB =米,同时量得2BC =米,10CD =米,则旗杆高度DE 为( )A .7.5米B .403米 C .7米 D .9.5米二、填空题11.如图,在矩形ABCD 中,E 是BC 上的点,点F 在CD 上,要使ABE ∆与CEF ∆相似,需添加的一个条件是_______(填一个即可).12.如图,在边长为a 的正方形中,E 、F 分别为边BC 和CD 上的动点,当点E 和点F 运动时, AE 和EF 保持垂直.则⊥⊥ABE⊥⊥FCE;⊥当BE=12a 时、梯形ABCF 的面积最大;⊥当点E 运动到BC 中点时Rt ABE⊥Rt⊥AEF;⊥当Rt ABE⊥Rt⊥AEF 时cos⊥AFE=其中正确结论的序号是 .13.如图,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,且:1:4CF CD =,给出下列结论:⊥ABE ECF ∽;⊥ABE AEF ∽;⊥AE EF ⊥;⊥ADF ECF ∽.其中正确结论的序号为________.14.如图,四边形ABCD 是正方形,6AB =,E 是BC 中点,连接DE ,DE 的垂直平分线分别交AB DE CD 、、于M 、O 、N ,连接EN ,过E 作EF EN ⊥交AB 于F ,则AF =______.15.如图,在矩形ABCD 中,E ,F 分别是边BC ,CD 上的点,4AB =,8AD =,3CF =,若ABE △与以E ,C ,F 为顶点的三角形相似,则BE 的长为______.16.如图,在等边三角形ABC中,点D、点E分别在BC,AC上,且⊥ADE=60°,(1)写出和⊥CDE相等的角:______;(2)若AB=3,BD=1,则CE长为______.17.如图,在矩形ABCD中,点E、F分别在边AD、DC上,⊥ABE⊥⊥DEF,AB=3,AE=4,DE=1.2,则EF=_____.18.如图,D是等边三角形ABC的边AB上一点,且AD:1DB=:2,现将ABC折叠,使点C与点D重合,折痕为EF,点E、F分别在AC和BC上,且CE:CF的值为______.19.如图,在矩形ABCD中,E是BC的中点,连接AE,过点E作EF AE⊥交DC于BC=,则DF的长为______.点F.若4AB=,620.如图,将长方形纸片ABCD沿MN折叠,使点A落在BC边上点A′处,点D的对应点为D′,连接A'D′交边CD于点E,连接CD′,若AB=9,AD=6,A'点为BC的中点,则线段ED'的长为_____.三、解答题21.如图,正方形ABCD中,点E,F,G分别在AB,BC,CD上,且⊥EFG=90°.求证:⊥EBF⊥⊥FCG.22.如图,等边三角形△ACB的边长为3,点P为BC上的一点,点D为AC上的一点,连接AP、PD,⊥APD=60°.(1) 求证:△ABP⊥△PCD;(2) 若PC=2,求CD的长.23.如图,在⊥ABC中,AD是角平分线,点E是边AC上一点,且满足ADE B∠=∠.(1) 证明:ADB AED∆∆;(2) 若3AE =,5AD =,求AB 的长.24.如图,在ABC 中,AB AC =,120BAC ∠=︒,D 为BC 边上一点,E 为AC 边上一点,且30ADE ∠=︒,求证:ABD DCE ∽△△.25.在矩形ABCD 中,4AB =,6AD =,将矩形折叠,使点A 落在点P 处,折痕为DE .(1)如图⊥,若点P 恰好在边BC 上,连接AP ,求APDE的值; (2)如图⊥,若E 是AB 的中点,EP 的延长线交BC 于点F ,求BF 的长.26.通过对下面数学模型的研究学习,解决下列问题:(1)如图1,点A 在直线l 上,90,BAD AB AD ∠=︒=,过点B 作BC l ⊥于点C ,过点D 作DE l ⊥交于点E .由12290D ∠+∠=∠+∠=︒,得1D ∠=∠.又90BCA AED ∠=∠=︒,可以推理得到()ABC DAE AAS ≌.进而得到结论:AC =_____,BC =_____.我们把这个数学模型称为“K 字”模型或“一线三直角”模型;(2)如图2,90,,,BAD MAN AB AD AM AN BM l ∠=∠=︒==⊥于点C ,NG l ⊥于点G ,由(1)易知NG =_______,ND 与直线l 交于点P ,求证:NP DP =.参考答案:1.B 【分析】根据正方形的性质,余角,可证明出⊥ABP ⊥⊥PCE ,再根据相似三角形的性质即可求出CE的值,最后根据线段的和差关系即可求解.解:在正方形ABCD中,AB=BC=CD=6,⊥B=⊥C=90°,⊥P为BC中点,⊥BP=PC=12AB=3,⊥AP⊥PE,⊥⊥APE=90°=⊥APB+⊥EPC,⊥⊥B=90°,⊥⊥APB+⊥BAP=90°,⊥⊥BAP=⊥EPC,⊥⊥B=⊥C=90°,⊥⊥ABP⊥⊥PCE,⊥AB PCBP CE=,即633CE=,⊥32 CE=,⊥DE=CD-CE=39622-=,故选:B.【点拨】本题主要考查了正方形的性质、相似三角形的判定与性质,证得⊥ABP⊥⊥PCE 是解答本题的关键.2.C【分析】利用相似三角形的性质求出AE的长,再利用勾股定理求解即可.解:⊥ABE DEF∽,⊥AB AE DE DF=,⊥623AE =,⊥9AE=,⊥矩形ABCD中,⊥A=90°,⊥222269313 BE AB AE++故选:C.【点拨】本题考查了矩形的性质、相似三角形的性质、勾股定理,解题关键是求出AE 的长后利用勾股定理求解.3.B【分析】先证明⊥BPD⊥⊥CDQ,利用相似三角形的性质得出比例式,进而建立关于BD的一元二次方程,再判别式为0,建立方程求解,即可得出结论.解:⊥⊥ABC是等边三角形,⊥⊥B=⊥C=60°,⊥⊥BPD+⊥BDP=180°-⊥B=120°,⊥⊥PDQ=60°,⊥⊥BDP+⊥CDQ=120°,⊥⊥BPD=⊥CDQ,⊥⊥B=⊥C=60°,⊥⊥BPD⊥⊥CDQ,⊥BP BD CD CQ=,⊥324BDBD a=-,⊥2BP2-8BP+3a=0,⊥满足条件的点P有且只有一个,⊥方程2BP2-8BP+3a=0有两个相等的实数根,⊥⊥=82-4×2×3a=0,⊥a=83.故选:B.【点拨】此题是相似形综合题,主要考查了等式的性质,相似三角形的判定和性质,一元二次方程根的判别式,利用方程的思想解决问题是解本题的关键.4.C【分析】由等边对等角可得⊥B=⊥C,即得出⊥C=⊥AED.再结合题意易证⊥EAD∼⊥CAE,即得出AD AE AE AC=,代入数据即可求出AD 的长. 解:根据题意可知AB =AC =3,⊥⊥B =⊥C ,⊥⊥B =⊥AED ,⊥⊥C =⊥AED ,又⊥⊥EAD =⊥CAE , ⊥⊥EAD ∼⊥CAE , ⊥AD AE AE AC =,即223AD =, 解得:43AD =, 故选C .【点拨】本题考查等腰三角形的性质,相似三角形的判定和性质.掌握相似三角形的判定方法是解题关键.5.D【分析】根据AB AC =和ADE B ∠=∠,可证得⊥ABD ⊥⊥DCE ,⊥ADE ⊥⊥ACD ,再逐项判断即可求解.解:⊥AB AC =,⊥⊥B =⊥C ,⊥⊥ADC =⊥B +⊥BAD ,⊥ADC =⊥ADE +⊥CDE ,ADE B ∠=∠,⊥⊥BAD =⊥CDE ,⊥⊥ABD ⊥⊥DCE ,故C 正确,不符合题意;⊥AD BD DE CE=, ⊥AD CE BD DE ⋅=⋅,故A 正确,不符合题意;⊥AB AC =,⊥⊥B =⊥C ,⊥ADE B ∠=∠,⊥⊥ADE =⊥C ,⊥⊥DAE =⊥CAD ,⊥⊥ADE ⊥⊥ACD ,故B 正确,不符合题意;⊥AD DE AC CD=,⊥AED =⊥ADC , ⊥点D 是边BC 上一点,⊥AC 不一定等于CD ,⊥⊥ADC 不一定等于⊥DAC ,⊥⊥AED 不一定等于⊥DAC ,⊥AD 不一定等于DE ,故D 错误,符合题意;故选:D .【点拨】本题主要考查了相似三角形的判定和性质,解题的关键是熟练掌握相似三角形的判定和性质定理.6.A【分析】由等边对等角可得B C ∠=∠,即得出C AED ∠=∠.再结合题意易证EADCAE ,即得出AD AE AE AC =,代入数据即可求出AD 的长. 解:根据题意可知6AB AC ==,⊥B C ∠=∠.⊥B AED ∠=∠,⊥C AED ∠=∠.又⊥EAD CAE ∠=∠, ⊥EADCAE , ⊥AD AE AE AC =32632= 解得:3AD =.故选A【点拨】本题考查等腰三角形的性质,三角形相似的判定和性质.掌握三角形相似的判定方法是解题关键.7.A【分析】根据等边三角形性质求出AB =BC =AC ,⊥B =⊥C =60°,推出⊥BAP =⊥DPC ,证⊥BAP ⊥⊥CPD ,得出AB BP CP CD=,代入求出即可. 解:⊥⊥ABC 是等边三角形,⊥AB =BC =AC ,⊥B =⊥C =60°,⊥⊥BAP +⊥APB =180°-60°=120°,⊥⊥APD =60°,⊥⊥APB +⊥DPC =180°-60°=120°,⊥⊥BAP =⊥DPC ,即⊥B =⊥C ,⊥BAP =⊥DPC , ⊥⊥BAP ⊥⊥CPD , ⊥AB BP CP CD= ⊥23CD =,CP =BC -BP =x -1,BP =1, ⊥1213x x =-解得:AB =3.故选A .【点拨】本题考查了相似三角形的性质和判定,等边三角形的性质,三角形的内角和定理的应用,关键是推出⊥BAP ⊥⊥CPD ,主要考查了学生的推理能力和计算能力.8.A【分析】根据等边三角形的性质、相似三角形的性质得到⊥AED =⊥BDF ,根据相似三角形的周长比等于相似比计算即可.解:⊥⊥ABC 是等边三角形,⊥⊥A =⊥B =⊥C =60°,AB =AC =BC =3+5=8,由折叠的性质可知,⊥EDF =⊥C =60°,EC =ED ,FC =FD ,⊥⊥AED =⊥BDF , ⊥⊥AED ⊥⊥BDF ,⊥1113DE AE AD DE DF BD DF BF ++==++, ⊥1113CE DE CF DF ==,故选A.【点拨】本题考查的是翻转变换的性质、相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理、翻转变换的性质是解题的关键.9.B【分析】先运用勾股定理可求得EF, 过G作GH⊥DE垂足为H,则四边形EFGH是矩形可得HG=EF,再说明⊥EBF⊥⊥DAE、⊥DAE⊥⊥GHD,进一步可得⊥EBF⊥⊥GHD,最后运用相似三角形的性质解答即可.解:⊥在Rt⊥BEF中,BF=2,BE=3⊥EF22223213BE BF+=+如图:过G作GH⊥DE垂足为H,⊥DE⊥EF,EF⊥FG⊥四边形EFGH是矩形⊥HG=EF13⊥矩形ABCD⊥⊥A=⊥B=90°⊥⊥AED+⊥ADE=90°⊥DE⊥EF⊥⊥AED+⊥BEF=90°⊥⊥BEF=⊥ADE又⊥⊥A=⊥B=90°⊥⊥EBF⊥⊥DAE同理:⊥DAE⊥⊥GHD⊥⊥EBF⊥⊥GHD⊥DG HGEF BE=,1313=解得DG=133.故选B.【点拨】本题主要考查了矩形的判定与性质、运用勾股定理解直角三角形、相似三角形的判定与性质等知识点,灵活运用相似三角形的判定与性质是解答本题的关键.10.A【分析】由平面镜反射可得:,ACB DCE ∠=∠ 再证明,ABC EDC ∽再利用相似三角形的性质可得答案.解:由平面镜反射可得:,ACB DCE ∠=∠90,ABC EDC ,ABC EDC ∽,AB BC DE CD1.5AB =米,2BC =米,10CD =米,1.52,10DE 解得:7.5DE =,经检验:符合题意,∴ 旗杆高度DE 为7.5米.故选A【点拨】本题考查的是相似三角形的应用,掌握“利用相似三角形的性质列方程求解”是解本题的关键.11.AE EF ⊥或⊥BAE =⊥CEF ,或⊥AEB =⊥EFC (任填一个即可)【分析】根据相似三角形的判定解答即可.解:⊥矩形ABCD , ⊥⊥ABE =⊥ECF =90︒,⊥添加⊥BAE =⊥CEF ,或⊥AEB =⊥EFC ,或AE⊥EF ,⊥⊥ABE⊥⊥ECF ,故答案为:⊥BAE =⊥CEF ,或⊥AEB =⊥EFC ,或AE⊥EF .【点拨】此题考查相似三角形的判定,关键是根据相似三角形的判定方法解答. 12.⊥⊥⊥解:⊥证明:⊥四边形ABCD 为正方形,⊥⊥B=⊥C=90°,又⊥AE⊥EF ,⊥⊥AEF=90°,⊥⊥AEB+⊥FEC=90°,而⊥AEB+⊥BAE=90°,⊥⊥BAE=⊥FEC ,⊥Rt⊥ABE⊥Rt⊥ECF ,故⊥正确⊥ 解 :⊥Rt⊥ABE⊥Rt⊥ECF ,⊥AB :EC=BE :CF ,又⊥AB=a ,设BE=x ,则CE=a ﹣x ,⊥a :(a ﹣x )=x :CF , ⊥CF=,⊥2)2221()21()215(28ABCF a x S CF AB BC ax x a a a a -=+⋅-=+⋅=-+梯形 ⊥当时,取得最大值.故⊥正确⊥当点E 运动到BC 中点时,BE=EC=在直角三角形ABE 中,由勾股定理解得又由Rt⊥ABE⊥Rt⊥ECF 可知AB BE AE EC CF EF ==即5222a a a CF EF== 解得CF=,EF=所以在直角三角形AEF 中,由勾股定理得在直角三角形ABE 和直角三角形AEF 中,⊥Rt ABE 与Rt⊥AEF 相似.故⊥正确⊥由⊥可知当Rt ABE⊥Rt⊥AEF 时,点E 是BC 的中点⊥ ⊥.故⊥错误考点:相似三角形的判定与性质;正方形的性质;梯形点评:本题主要考查相似三角形的判定与性质,掌握相似三角形的判定定理,灵活运用勾股定理是本题的关键13.①②③【分析】容易证明⊥△ABE ⊥△ECF ;利用⊥可得90AEB FEC ∠+∠=,,可得⊥AE ⊥EF ;且可得2AE AB EF EC==,可证得⊥△ABE ⊥△AEF ,而AD DF CE CF ≠,所以⊥不正确. 解:⊥E 为BC 中点,CF :CD =1:4,⊥2AB BE CE CF==, 且⊥B =⊥C , ⊥△ABE ⊥△ECF ,⊥⊥正确;⊥⊥BAE =⊥FEC ,且90BAE AEB ∠+∠=, ⊥90AEB FEC ∠+∠=,⊥90AEF ∠=,⊥AE ⊥EF ,⊥⊥正确;由⊥可得2AE AB EF EC ==, ⊥AB EC BE AE EF EF==,且90ABE AEF ∠=∠=, ⊥△ABE ⊥△AEF ,⊥⊥正确;⊥2,3DA DF CE CF ==, ⊥AD DF CE CF≠, ⊥△ADF 和△ECF 不相似,⊥⊥不正确,综上可知正确的为:⊥⊥⊥,故答案为⊥⊥⊥.【点拨】考查相似三角形的判定与性质,掌握相似三角形的判定方法是解题的关键. 14.2【分析】MN 垂直平分DE ,得出NE ND =,利用6DN NC +=,在ΔRt NCE 中利用勾股定理求得CN 的长,再证明FBE ECN ∆∆,利用相似比求得BF 的长度,进而求得AF 的长度.解:设CN x =,则6DN x =-MN 垂直平分DE∴6NE ND x ==-在ΔRt NCE 中,222CN CE NE +=又⊥E 是BC 中点⊥3CE =2223(6)x x ∴+=-解得94x = 又⊥EF EN ⊥90NEC FNB ∴∠+∠=,NEC EFB CNE FEB ∴∠=∠∠=∠ Δ~ΔFBE ECN ∴ FB CE BE CN∴= 3934FB ∴= 4FB ∴=642AF AB FB ∴=-=-=故答案为:2.【点拨】本题考查线段垂直平分线的应用,勾股定理及相似三角形的应用,解决本题的关键是各知识点的综合应用.15.26,或327【分析】设BE =x ,当ABE △⊥△ECF 时,AB BE EC CF =即483x x =-,当ABE △⊥△FCE 时,AB BE FC EC =即438x x=-,解方程即可. 解:设BE =x , 当ABE △⊥△ECF 时,AB BE EC CF =即483x x =- 整理得28120x x -+=,解得1226x x ==,,经检验都符合题意, 当ABE △⊥△FCE 时,AB BE FC EC=即438x x =-, 解得327x =. 经检验符合题意,故答案为26,或327. 【点拨】本题考查三角形相似性质,列分式方程,正确三角形相似性质,列分式方程是解题关键.16. ⊥BAD23【分析】 (1) 根据⊥ABC 是等边三角形,得到⊥B =⊥C = 60°, AB = BC ;又因为⊥ADC =⊥B +⊥BAD ,⊥EDC +⊥ADE = ⊥B +⊥BAD 就得到⊥EDC =⊥BAD(2) 因为⊥EDC =⊥BAD ,⊥C =⊥B 得到⊥ABD ~⊥DCE ,得到AB BD CD EC= ,即可求出EC ; (1) 证明: ⊥⊥ABC 是等边三角形,⊥B =⊥C = 60°, AB = BC ;又⊥⊥ADC =⊥B +⊥BAD⊥EDC +⊥ADE = ⊥B +⊥BAD又⊥⊥ADE =⊥B =60°⊥⊥EDC =⊥BAD所以和⊥CDE 相等的角为:⊥BAD故答案为:⊥BAD(2) ⊥⊥EDC =⊥BAD⊥⊥C =⊥B⊥ABD ~⊥DCE ,AB BD CD EC∴= 3,1BC AB BD === 又312CD BC BD =-=-=312EC∴= 解得:EC =23故答案为:23 ; 【点拨】此题主要考查了等边三角形的性质和相似三角形的判定和性质,能够证得⊥ABD ~⊥DCE 是解答此题的关键.17.2【分析】由勾股定理,求出BE =5,由⊥ABE ⊥⊥DEF ,得AB DE =BE EF ,进而求出EF 的长.解:在矩形ABCD 中⊥A =90°⊥AB =3,AE =4⊥BE 22AB AE +2234+⊥⊥ABE ⊥⊥DEF⊥AB DE =BE EF ⊥31.2=5EF解得EF =2故答案为:2. 【点拨】本题主要考查相似三角形的性质,借助于矩形的性质和勾股定理求边长,熟练掌握以上性质是解题的关键.18.45【分析】设AD =k ,则DB =2k ,得到AB =AC =BC=3k ,⊥A =⊥B =⊥C =⊥EDF =60°,进而证明⊥AED ⊥⊥BDF ,得到⊥AED 与⊥BDF 的相似比为4:5,即可求出CE :CF =DE :DF =4:5,问题得解.解:设AD =k ,则DB =2k ,⊥⊥ABC 为等边三角形,⊥CEF 折叠得到⊥DEF ,⊥AB =AC =BC =3k ,⊥A =⊥B =⊥C =⊥EDF =60°,⊥⊥EDA +⊥FDB =120°,⊥EDA +⊥AED =120°,⊥⊥FDB =⊥AED ,⊥⊥AED ⊥⊥BDF ,由⊥CEF 折叠得到⊥DEF ,得CE =DE ,CF =DF ,⊥⊥AED 的周长为4k ,⊥BDF 的周长为5k ,⊥⊥AED 与⊥BDF 的相似比为4:5,⊥CE :CF =DE :DF =4:5.故答案为:45.【点拨】本题主要考查了相似的性质与判定、等边三角形的性质、翻折变换的性质及其应用等知识,熟知等边三角形、翻折变换的性质,借助相似三角形的判定与性质(用含有k 的代数式表示)将两条线段的比转化为相似比是解题的关键.19.74 【分析】结合矩形的性质证明BAE CEF ∆∆可求得CF 的长,再利用DF CD DF =-可求解. 解:四边形ABCD 为矩形,90B C ∴∠=∠=︒,4CD AB ==,90BAE AEB ∴∠+∠=︒,EF AE ⊥,90AEF ∴∠=︒,90AEB CEF ∴∠+∠=︒,BAE CEF ∴∠=∠,BAE CEF ∴∆∆,::AB CE BE CF ∴=,E 是BC 的中点,6BC =,3BE CE ∴==,4AB =, 4:33:CF ∴=, 解得94CF =, 97444DF CD DF ∴=-=-=. 故选:74. 【点拨】本题主要考查矩形的性质,相似三角形的判定与性质,证明BAECEF ∆∆是解题的关键.20.94 【分析】根据折叠的性质可得'AM AM =,''90MA D A ∠=∠=︒,设'AM A M x ==,则9BM x =-,由线段中点可得''11322A B AC BC AD ====,在'Rt A BM 中,利用勾股定理可得'5A M =,4MB =,利用相似三角形的判定定理及性质可得''A BMECA ,'''A E AC A M BM =,代入求解,同时根据线段间的数量关系即可得出结果. 解:将长方形纸片ABCD 沿着MN 折叠,使点A 落在BC 边上点'A 处,⊥'AM AM =,''90MA D A ∠=∠=︒,设'AM A M x ==,则9BM x =-, ⊥'A 是BC 的中点,⊥''11322A B AC BC AD ====, 在'Rt A BM 中,'22'2A B BM AM+=, 即()22239+-=x x ,解得:5x =,⊥'5A M =,4MB =,⊥''90MA B EAC ∠+∠=︒,''90A EC EAC ∠+∠=︒, ⊥''MA B A EC ∠=∠,⊥'90B ACE ∠=∠=︒,⊥''A BM ECA ,⊥'''A E AC A M BM =,即'354A E =, ⊥'154A E =, ⊥'''''159644ED A D A E AD A E =-=-=-=, 故答案为:94 【点拨】题目主要考查长方形中的折叠问题,包括勾股定理,相似三角形的判定及性质等,结合图形,熟练掌握运用折叠的性质及相似三角形的性质是解题关键.21.见分析【分析】根据正方形的性质得⊥B =⊥C =90°,再利用等角的余角相等得⊥BEF =⊥CFG ,然后根据有两组角对应相等的两个三角形相似可得到⊥EBF ⊥⊥FCG .解:⊥四边形ABCD 为正方形,⊥⊥B =⊥C =90°,⊥⊥BEF +⊥BFE =90°,⊥⊥EFG =90°,⊥⊥BFE +⊥CFG =90°,⊥⊥BEF =⊥CFG ,⊥⊥EBF ⊥⊥FCG .【点拨】本题考查正方形的性质,相似三角形的判定,解的关键是掌握相似三角形的判定定理.22.(1)见分析(2)CD 的长为23【分析】(1)由等边三角形和⊥APD =60°得,⊥B =⊥C =⊥APD =60°,⊥APB +⊥CPD =120°,在△APB中,⊥APB +⊥BAP =120°,由此可得⊥BAP =⊥CPD .因此△ABP ⊥△PCD ;(2)由(1)的结论△ABP ⊥△PCD 可得BP AB CD PC =,从而可以求出线段CD 的长. (1)证明:⊥等边三角形ABC ,⊥⊥B =⊥C =60°,⊥⊥APD =60°,⊥⊥APB +⊥CPD =120°,在△APB 中,⊥APB +⊥BAP =120°,⊥⊥BAP =⊥CPD ,⊥⊥ABP ⊥⊥PCD ;(2)解:等边三角形边长为3,PC =2,由(1)得△ABP ⊥△PCD ,BP AB CD PC =,⊥132CD =,⊥CD =23.答:CD 的长为23. 【点拨】本题考查了相似三角形的性质和判定,等边三角形的性质,三角形的内角和定理的应用,关键是推出△ABP ⊥△PCD .23.(1)见分析(2)253【分析】(1)证出⊥BAD =⊥EAD .根据相似三角形的判定可得出结论;(2)由相似三角形的性质可得出AD AB AE AD =,则可得出答案. 解:(1)⊥AD 是⊥BAC 的角平分线,⊥⊥BAD =⊥EAD .⊥⊥ADE =⊥B ,⊥⊥ADB ⊥⊥AED .(2)⊥⊥ADB ⊥⊥AED ,⊥AD AB AE AD=, ⊥AE =3,AD =5,⊥535AB =, ⊥253AB =. 【点拨】本题考查了相似三角形的判定与性质以及三角形内角和定理,熟练掌握相似三角形的判定定理和性质定理是解题的关键.24.见分析【分析】利用三角形的外角性质证明⊥EDC =⊥DAB ,即可证明⊥ABD ⊥⊥DCE .证明:⊥AB=AC ,且⊥BAC =120°,⊥⊥ABD =⊥ACB =30°,⊥⊥ADE =30°,⊥⊥ABD =⊥ADE =30°,⊥⊥ADC =⊥ADE +⊥EDC =⊥ABD +⊥DAB ,⊥⊥EDC =⊥DAB ,⊥⊥ABD ⊥⊥DCE .【点拨】本题考查了三角形相似的判定、等腰三角形的性质、三角形的外角性质,利用三角形的外角性质证明⊥EDC =⊥DAB 是解题的关键.25.(1)23(2)32【分析】(1)根据矩形的性质可得⊥BAD =⊥ABC =90°,再由折叠的性质可得APB AED ∠=∠.可证得ABP △⊥DAE △.即可求解;(2)过点E 作EH DP ∥交AD 于H ,由折叠的性质可得HED HDE ∠=∠,从而得到EH DH =.然后设EH DH x ==,则6AH x =-,由勾股定理可得103DH =,从而得到83AH =.再证得AEH △⊥BFE △,即可求解. (1)解:在矩形ABCD 中,⊥BAD =⊥ABC =90°,⊥90BAP APB ∠+∠=︒,由折叠性质得:AP DE ⊥,⊥90BAP AED ∠+∠=︒,⊥APB AED ∠=∠.⊥90EAD ABP ∠=∠=︒,⊥ABP △⊥DAE △.⊥4263AP AB DE AD ===. (2)解:过点E 作EH DP ∥交AD 于H ,⊥EH DF ∥,⊥HED EDP ∠=∠.⊥由折叠性质得HDE EDP ∠=∠,⊥DPE =⊥A =90°,⊥HED HDE ∠=∠,⊥EH DH =.设EH DH x ==,则6AH x =-,⊥E 是AB 的中点,⊥2AE =,⊥AE 2+AH 2=EH 2,⊥()22226x x +-=,解得:103x =,即103DH =, ⊥83AH =. ⊥EH DF ∥,⊥⊥HEP =90°,⊥⊥AEH +⊥BEF =90°,⊥⊥A =⊥B =90°,⊥⊥AEH +⊥AHE =90°,⊥⊥AHE =⊥BEF ,⊥AEH △⊥BFE △, ⊥AE AH BF BE =,即8232BF =, 解得32BF =, ⊥BF 的长为32. 【点拨】本题主要考查了矩形与折叠问题,相似三角形的判定和性质,熟练掌握矩形与折叠的性质,相似三角形的判定和性质是解题的关键.26.(1)DE ,AE ;(2)AC .证明见详解.【分析】(1)根据(AAS)≌ABC DAE ,得出AC =DE ,BC =AE 即可;(2)过D 作DE ⊥直线l 于E ,先证⊥MCA ⊥⊥AGN (AAS ),得出AC =NG ,由(1)知(AAS)≌ABC DAE ,得出AC =DE ,再证⊥NGP ⊥⊥DEP (AAS )即可.(1)解:⊥(AAS)≌ABC DAE ,⊥AC =DE ,BC =AE ,故答案为DE ,AE ;(2)证明:过D 作DE ⊥直线l 于E ,⊥90MAN ∠=︒,⊥⊥CAM +⊥NAG =90°,⊥BM ⊥l ,⊥⊥MCA =90°,⊥⊥M +⊥CAM =90°,⊥⊥M =⊥NAG ,⊥NG l ⊥,⊥⊥AGN =90°,在⊥MCA 和⊥AGN 中,MCA AGN M GAN MA AN ∠=∠⎧⎪∠=∠⎨⎪=⎩,⊥⊥MCA ⊥⊥AGN (AAS ),⊥AC =NG ,由(1)知(AAS)≌ABC DAE ,⊥AC =DE ,⊥NG =DE ,在⊥NGP 和⊥DEP 中,90NGP DEP GPN EPDNG DE ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ⊥⊥NGP ⊥⊥DEP (AAS )⊥NP =DP ,故答案为AC.【点拨】本题考查一线三直角全等问题,掌握余角性质,三角形全等判定与性质是解题关键.。

初二下册几何练习题数学

初二下册几何练习题数学

初二下册几何练习题数学几何学在数学中占据着重要的地位,它研究了空间的形状、大小、相互位置和变换等问题。

初二下册数学课本中的几何练习题是帮助学生巩固和应用几何知识的重要工具。

本文将介绍一些初二下册几何练习题,并提供详细解答,以帮助学生更好地理解和掌握几何知识。

一、直角三角形的应用题在几何学中,直角三角形是一种重要的特殊三角形。

它有着许多应用,比如解决高度、距离、倾斜度等实际问题。

以下是一个直角三角形的应用题。

【题目】一面墙的高度为3米,一根杆子竖直插在离墙底部2米处。

杆子的长度为5米,求杆子顶端距离墙顶端的高度。

【解答】根据题意可知,墙的高度为3米,杆子的长度为5米,杆子插在离墙底部2米处。

设杆子顶端距离墙顶端的高度为h米。

根据勾股定理可得:2^2 + h^2 = 5^2。

解方程得:h^2 = 25 - 4 = 21。

因此,h = √21米,约等于4.58米。

二、平行线和三角形的性质题平行线和三角形是初中几何学中的基础概念,它们具有一些重要的性质和关系。

以下是一个关于平行线和三角形性质的练习题。

【题目】已知平行线AB和CD,AB = 6cm,BC = 8cm,AD = 9cm,求BD的长度。

【解答】根据平行线的性质可知,线段AB和CD之间的距离等于线段BC和AD之间的距离。

设线段BD的长度为x,则有6 + x = 9 - 8,解得x = 5cm。

三、多边形的面积和周长题多边形是几何学中常见的图形,它们有着丰富的性质和形态。

以下是一个关于多边形面积和周长的练习题。

【题目】已知正方形ABCD的边长为5cm,求其面积和周长。

【解答】正方形的面积计算公式为边长的平方,因此该正方形的面积为5 × 5 = 25平方厘米。

正方形的周长计算公式为边长的四倍,因此该正方形的周长为4 × 5 = 20厘米。

四、相似三角形的比较题相似三角形是几何学中一个重要的概念,它们具有一些特殊的比例关系。

以下是一个关于相似三角形的比较题。

人教版七年级上第四章几何图形初步点、线、面、体同步练习题含答案

人教版七年级上第四章几何图形初步点、线、面、体同步练习题含答案
11.线动成面
【分析】利用雨刷可看成线,扇面是面,即可求出答案.
【详解】汽车的雨刷在挡风玻璃上画出一个扇面,这说明线动成面的数学原理.
故答案为:线动成面.
【点睛】本题考查了点,线,面、体,此题较简单,解题时要灵活应用点、线、面、体之间的关系.
12.②
【分析】易得此几何体为两个底面相同且相连的圆锥的组合体,主视图是从几何体正面看到的图形.
8.由4个面围成;面与面相交形成6条线,直线有5条,曲线有1条.
【分析】由题意直接根据立体图形的基本知识结合图形进行分析即可得出答案.
【详解】解:由图可知,该几何体由4个面围成;
面与面相交形成6条线,直线有5条,曲线有1条.
【点睛】本题考查认识立体图形的知识,比较简单,注意基本知识的掌握.
9.见解析.
12.将图所示的Rt△ABC绕AB旋转一周所得的几何体的主视图是图中的________(只填序号).
参考答案:
1.C
【分析】观察截面形状可发现,长方体内部的圆自上而下由大圆逐渐变成小圆、点,符合圆锥截面的性质.
【详解】解:观察截面形状可知,这个长方体的内部构造是长方体中间有一圆锥状空洞,
故选:C.
【点睛】本题考查了截一个几何体,解答的关键是熟悉常见的几何体的截面,由截面的形状想象复杂几何体的组成.
【详解】解:Rt△ABC绕斜边AB旋转一周所得的几何体是两个底面相等相连的圆锥,圆锥的主视图是等腰三角形,所以该几何体的左视图是两个底边相等的等腰三角形相连,并且上面的等腰三角形较大,故为图②.
故答案为②.
【点睛】本题考查了空间想象能力及几何体的三视图;发挥空间想象能力,确定旋转一周所得的几何体形状是关键.
【分析】根据生活中常见的几何体的特征进行求解即可得到答案.

初中几何基础知识练习题

初中几何基础知识练习题

几何基础知识训练和提高一 选择题1.科学家 用分数722和113355代替π的近似值,且这两个数分别称为 和 。

( ) (A). 刘徽 密率 约率 (B). 祖冲之 密率 约率(C). 祖冲之 约率 密率 (D). 鲁道夫 约率 密率 2.早上7时30分在钟面上,时针和分针所夹的角的度数是( ).(A) 30°;(B) 15°;(C) 45°;(D)60°.3.在长方体ABCD –EFGH 中,与面ABFE 垂直的棱有( ). (A )3条; (B )4条; (C )5条; (D )6条. 4.下列图形中,是旋转对称图形,但不是中心对称图形的是( )(A )等腰梯形; (B )等边三角形; (C )平行四边形; (D )直角梯形.5.在研究圆的有关性质时,我们曾做过这样的一个操作“将一张圆形纸片沿着它的任意一条 直径翻折,可以看到直径两侧的两个半圆互相重合”。

由此说明:( ) (A)圆是中心对称图形,圆心是它的对称中心;(B)圆是轴对称图形,任意一条直径所在的直线都是它的对称轴; (C)圆的直径互相平分;(D)垂直弦的直径平分弦及弦所对的弧.6.下列哪种方法不能检验直线与平面是否垂直( ).(A )铅垂线; (B)三角尺;(C)长方形纸片; (D)合页型折纸7.正五边形绕着它的中心旋转后与它本身重合,最小的旋转角度数是 (A )36°; (B )54°; (C )72°; (D ) 108°. 8.如果一个扇形的圆心角扩大为原来的2倍,半径长缩小为原来的12,那么所得扇形的面积与原来扇形的面积的比值是( )(A )1 (B )2 (C )12(D )49.下列命题中的真命题是( )(A )关于中心对称的两个图形全等; (B )全等的两个图形是中心对称图形(C )中心对称图形都是轴对称图形; (D )轴对称图形都是中心对称图形. 10.直角坐标平面内,有标记为甲、乙、丙、丁的四个三角形,如图6所示,下列说法错误的是( )(A )丙和乙关于原点对称; (B )甲通过翻折可以与丙重合;(C )乙向下平移7个单位可以与丁重合; (D )丁和丙关于y 轴对称.二 填空题1.在长方体ABCD-EFGH 中,与棱EF 垂直的棱是 .(写出符合题意的所有棱) 2.若∠α的余角是56°36′,则∠α的补角是 .3.点A 在点B 的北偏东80°方向上,点C 在射线BA 与正北方向夹角的角平分线上,那么点C 位于点B________处. 4.如图,点A 、O 、C 在一直线上,OE 是BOC ∠的平分线,︒=∠90EOF ,1∠比2∠大75°,则2∠求的度数是 . COF ∠的度数是 . 5.有一块边长为3米的正方形草地,,在一顶点处用一根木桩牵制了一头小羊。

人教版七年级上册数学 第四章 几何图形初步 习题

人教版七年级上册数学 第四章 几何图形初步 习题

第四章几何图形初步4.1 几何图形4.1.1 立体图形与平面图形第1课时认识立体图形与平面图形基础题知识点1 认识立体图形1.(丽水中考)下列图形中,属于立体图形的是(C)A B C D2.下列物体中,最接近圆柱的是(C)3.下面几何体中,既不是柱体,又不是锥体的是(C)4.请写出图中的立体图形的名称.(1)圆柱;(2)三棱柱;(3)三棱锥;(4)圆锥.5.如图,把下列物体和与其相似的立体图形连接起来.解:如图.知识点2 认识平面图形6.以下图形中,不是平面图形的是(C)A.线段B.角C.圆锥D.圆7.【关注社会生活】如图是交通禁止驶入标志,组成这个标志的几何图形有(A)A.圆、长方形B.圆、线段C.球、长方形D.球、线段8.如图所示的是一座房子的平面图,组成这幅图的几何图形有(C)A.三角形、长方形B.三角形、正方形、长方形C.三角形、正方形、长方形、梯形D.正方形、长方形、梯形9.如图是由平面图形正方形和半圆构成的.10.下图中包含哪些简单的平面图形?解:图中包含圆、正方形、长方形、三角形、平行四边形.易错点忽视柱体上、下底面“平行且相等”这一条件而致错11.如图所示的立体图形中,不是柱体的是(D)中档题12.下列几何图形:①三角形;②长方形;③正方体;④圆;⑤圆锥;⑥圆柱,其中立体图形有m个,平面图形有n 个,则m-n的值为(D)A.3B.2C.1D.013.如图,用简单的平面图形画出三位携手同行的小人物,请你仔细观察,图中三角形有4个,圆有6个.14.在如图所示的图形中,柱体有①②③⑦,锥体有⑤⑥,球体有④.15.指出图中各物体是由哪些立体图形组成的.解:(1)由正方体、圆柱、圆锥组成.(2)由圆柱、长方体、三棱柱组成.(3)由五棱柱、球组成.16.如图,有7种图形,请你选用这7种图形中的若干种(不少于两种)构造一幅画,并用一句话说明你的构想是什么?举例:如图,左框中就是一个符合要求的图案,请你在右框中画出一个与这个不同的图案,并加以说明.一辆汽车解:答案不唯一,略.综合题17.【注重动手操作】动手剪拼:下边的三幅图都是不规则图形,你能把它们各剪一刀,分成两部分,然后拼成正方形吗?试试看. 解:如图.第2课时立体图形与平面图形的相互转化基础题知识点1 从不同的方向观察立体图形1.(绍兴中考)如图的几何体是由五个相同的小立方体搭成,它从正面看到的平面图形是(A)A B C D2.有一种圆柱体茶叶筒如图所示,从正面看得到的平面图形是(D)3.如图所示的几何体,从左面看得到的平面图形是(B)A B C D4.如图是小李书桌上放的一本书,从上往下看得到的平面图形是(A)A B C D5.图中的两个圆柱体底面半径相同而高度不同,关于从不同的方向看这两个圆柱体得到的平面图形,说法正确的是(B)A.从正面看得到的平面图形相同B.从上面看得到的平面图形相同C.从左面看得到的平面图形相同D.从各个方向看得到的平面图形都相同6.下列几何体中,从正面、上面、左面观察都是相同图形的是(C)A.圆柱B.三棱柱C.球D.长方体知识点2 立体图形的展开图7.如图所示的立体图形,它的展开图是(C)A B C D8.(常州中考)下列图形中,是圆锥的侧面展开图的是(B)9.(陕西中考)如图是一个几何体的表面展开图,则该几何体是(C)A.正方体B.长方体C.三棱柱D.四棱锥10.(无锡中考)下面每个图形都是由6个边长相同的正方形拼成的图形,其中能折叠成正方体的是(C)中档题11.(广安中考)如图所示的几何体,从上面看得到的平面图形是(D)12.(龙东中考)由几个相同的小正方体搭成的一个几何体如图所示,从正面看这个几何体得到的平面图形是(A)13.(绵阳中考)把图中的三棱柱展开,所得到的展开图是(B)14.(教材P123习题T10变式)(河南中考)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是(D)A.厉B.害C.了D.我15.(连云港中考)由6个大小相同的正方体搭成的几何体如图所示,比较它从三个不同方向看到的平面图形的面积,则(C)A.一样大B.从正面看到的平面图形的面积最小C.从左面看到的平面图形的面积最小D.从上面看到的平面图形的面积最小16.如图是由一些相同的小正方体搭成的几何体从三个不同方向看到的图形,搭成这个几何体的小正方体的个数是4.17.马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子,试问共有4种添加方法.综合题18.如图是一个长方体的展开图,每一面上都标注了字母(标字母的面是外表面),根据要求回答问题:(1)如果D面在长方体的左面,那么F面在哪里?(2)B面和哪个面是相对的面?(3)如果C面在前面,从上面看是D面,那么左面是哪个面?(4)如果B面在后面,从左面看是D面,那么前面是哪个面?(5)如果A面在右面,从下面看是F面,那么B面在哪里?解:(1)右面.(2)E面.(3)B面.(4)E面.(5)后面.小专题(十一)正方体的展开与折叠——教材P122习题T7、P123习题T10的变式与应用类型1 判断正方体的展开图教材母题:(教材P122习题T7)如图,这些图形都是正方体的展开图吗?如果不能确定,折一折,试一试.你还能再画出一些正方体的展开图吗?解:第一排第3个图不能,其余都能折成正方体.正方体的展开图可总结为如下图所示“一四一”“二三一”“三三”“二二二”四种类型,共11种情况. 1.一四一型2.二三一型3.三三型4.二二二型若小正方形摆成的平面图形呈“”“”“”型,则不能折成正方体.若出现“”型,则另两面必须在两侧.1.(长春中考)下列图形中,可以是正方体表面展开图的是(D)A B C D2.将如图所示的图形剪去一个小正方形,使余下的部分恰好能折成一个正方体,应剪去(序号)(D)A.1或2或3B.3或4或5C.4或5或6D.1或2或6类型2 找正方体的相对面或相邻面3.一个立方体的表面展开图如图所示,将其折叠成立方体后,“你”字对面的字是(C)A.中B.考C.顺D.利4.如图,该平面展开图按虚线折叠成正方体后,相对面上两个数之和为7,则x+y的值是(C)A.7B.8C.9D.104.1.2 点、线、面、体基础题知识点1 点、线、面、体1.面与面相交,形成的是(B)A.点B.线C.面D.体2.下雨时汽车的雨刷把玻璃上的雨水刷干净,这属于的实际运用是(B)A.点动成线B.线动成面C.面动成体D.都不对3.下面现象能说明“面动成体”的是(A)A.旋转一扇门,门运动的痕迹B.扔一块小石子,小石子在空中飞行的路线C.天空划过一道流星D.时钟秒针旋转时扫过的痕迹4.长方体有6个面,12条棱,8个顶点;圆柱有3个面,其中有2个平面,1个曲面.5.如图所示的是一个棱柱,请问:(1)这个棱柱由几个面围成?各面的交线有几条?它们是直的还是曲的?(2)这个棱柱的底面和侧面各是什么形状?(3)该棱柱有几个顶点?解:(1)这个棱柱由5个面围成,各面的交线有9条,它们是直的.(2)棱柱的底面是三角形,侧面是长方形.(3)有6个顶点.知识点2 由平面图形旋转而成的立体图形6.(长沙中考)将下列如图的平面图形绕轴l旋转一周,可以得到的立体图形是(D)7.【易错】现有一个长为4 cm,宽为3 cm的长方形,绕它的一边旋转一周,得到的几何体的体积是36π cm3或48π cm3.中档题8.(教材P120练习T2变式)将下面平面图形绕直线l旋转一周,可得到如图所示立体图形的是(B)A B C D9.如果一个多面体的一个面是多边形,其余各面是有一个公共顶点的三角形,那么这个多面体叫做棱锥.如图是一个四棱柱和一个六棱锥,它们各有12条棱.下列棱柱中和九棱锥的棱数相等的是(B)A.五棱柱B.六棱柱C.七棱柱D.八棱柱10.下面图1是正方体木块,若用不同的方法,把它切去一块,可以得到如图2、图3、图4、图5不同形状的木块.图1 图2 图3 图4 图5(1)我们知道,图1的正方体木块有8个顶点,12条棱,6个面.请你观察,将图2、图3、图4、图5中木块的顶点数a、棱数b、面数c填入下表:图顶点数a 棱数b 面数c1 8 12 62 6 9 53 8 12 64 8 13 75 10 15 7(2)观察这张表,请你归纳出上述各种木块的顶点数a、棱数b、面数c之间的数量关系,这种数量关系是:a+c -b=2(用含a,b,c的一个等式表示).4.2 直线、射线、线段第1课时直线、射线、线段基础题知识点1 直线1.下列可近似看作直线的是(D)A.绷紧的琴弦B.探照灯射出的光线C.孙悟空的金箍棒D.太阳光线2.下列图示中,直线表示方法正确的有(D)A.①②③④B.①②C.②④D.①④3.如图,下列说法错误的是(D)A.点P为直线AB外一点B.直线AB不经过点PC.直线AB与直线BA是同一条直线D.点P在直线AB上4.用一个钉子把一根细木条钉在木板上,用手拨木条,木条能转动,这说明经过一点可以画无数条直线;用两个钉子把细木条钉在木板上,就能固定细木条,这说明两点确定一条直线.5.如图,完成下列填空:(1)直线a经过点A,C,但不经过点B,D;(2)点B在直线 b上,在直线 a外;(3)点A既在直线a上,又在直线b上.知识点2 射线6.(教材P126练习T1变式)如图所示,A,B,C是同一直线上的三点,下面说法正确的是(C)A.射线AB与射线BA是同一条射线B.射线AB与射线BC是同一条射线C.射线AB与射线AC是同一条射线D.射线BA与射线BC是同一条射线7.如图,能用O,A,B,C中的两个字母表示的不同射线有7条.知识点3 线段8.下列表示线段的方法中,正确的是(B)A.线段AB.线段ABC.线段abD.线段Ab9.按语句“画出线段PQ的延长线”,画图正确的是(A)10.(柳州中考)如图,在直线l上有A,B,C三点,则图中线段共有(C)A.1条B.2条C.3条D.4条11.如图,直线有多少条?把它们分别表示出来;线段有多少条?把它们分别表示出来;射线有多少条?可以表示的射线有多少条?把它们表示出来.解:直线有3条,分别为直线AB,直线AC,直线BC;线段有6条,分别为线段AB,线段AC,线段AD,线段BD,线段CD,线段BC;射线有14条,可以表示的射线有8条,分别为射线AB,射线AC,射线BA,射线BC,射线CA,射线CB,射线DB,射线DC.易错点三个点的位置不确定,考虑不周全12.平面上有三个点,可以确定直线的条数是1条或3条.中档题13.如图,对于直线AB,线段CD,射线EF,其中能相交的是(B)14.下列关于作图的语句中,一定正确的是(D)A.画直线AB=10 cmB.画射线OB=10 cmC.已知A,B,C三点,过这三点画一条直线D.画线段OB=10 cm15.延长线段AB到点C,下列说法中正确的是(B)A.点C在线段AB上B.点C在直线AB上C.点C不在直线AB上D.点C在直线AB的延长线上16.如图,下列叙述不正确的是(C)A.点O不在直线AC上B.图中共有5条线段C.射线AB与射线BC是指同一条射线D.直线AB与直线CA是指同一条直线17.(教材P126练习T2变式)如图,已知平面上四点A,B,C,D.(1)画直线AB,射线CD;(2)画射线AD,连接BC;(3)直线AB与射线CD相交于点E;(4)连接AC,BD相交于点F.解:如图所示.18.如图,已知数轴上的原点为O,点A表示3,点B表示-1,回答下列问题:(1)数轴在原点O左边的部分(包括原点)是一条什么线?怎样表示?(2)射线OB上的点表示什么数?(3)数轴上表示不大于3且不小于-1的数的部分是什么图形?怎样表示?解:(1)是一条射线,表示为射线OB.(2)负数和零(非正数).(3)线段,表示为线段AB.19.【易错】往返于甲、乙两地的客车,中途有三个站(如图).其中每两站的票价不同.问:(1)有多少种不同的票价?(2)要准备多少种车票?解:根据线段的定义:可知图中的线段有AC,AD,AE,AB,CD,CE,CB,DE,DB,EB,共10条. (1)有10种不同的票价.(2)因车票需要考虑方向性,如“A→C”与“C→A”票价相同,但方向不同,故需要准备20种车票. 综合题 20.如图:(1)试验观察:如果每过两点可以画一条直线,那么: 第①组最多可以画3条直线; 第②组最多可以画6条直线; 第③组最多可以画10条直线; (2)探索归纳:如果平面上有n (n≥3)个点,且任意3个点均不在一条直线上,那么最多可以画n (n -1)2条直线;(用含n 的式子表示) (3)解决问题:某班45名同学在毕业后的一次聚会中,如果每两人握1次手问好,那么共握990次手.第2课时 比较线段的长短基础题 知识点1 用尺规作一条线段等于已知线段 1.尺规作图的工具是 (D )A.刻度尺和圆规B.三角尺和圆规C.直尺和圆规D.没有刻度的直尺和圆规 2.已知:线段a ,b.求作:线段AB ,使得AB =a +2b. 小明给出了四个步骤: ①在射线AM 上画线段AP =a ; ②则线段AB =a +2b ;③在射线PM上画PQ=b,QB=b;④画射线AM.你认为正确的顺序是(B)A.①②③④B.④①③②C.④③①②D.④②①③3.如图,已知线段a,b,作一条线段使它等于2a+b.(要求:不写作法,保留作图痕迹)解:如图,AC即为所求线段.知识点2 线段的长短比较及和差4.如图所示,比较线段a和线段b的长度,结果正确的是(B)A.a>bB.a<bC.a=bD.无法比较5.七年级(1)班的同学想举行一次拔河比赛,他们想从两条大绳中挑出一条较长的绳子,请你为他们选择一种合适的方法(A)A.把两条大绳的一端对齐,然后同一方向上拉直两条大绳,另一端在外面的即为长绳B.把两条绳子接在一起C.把两条绳子重合,观察另一端情况D.没有办法挑选6.如图,在三角形ABC中,比较线段AC和AB长短的方法可行的有(C)①凭感觉估计;②用直尺度量出AB和AC的长度;③用圆规将线段AB叠放到线段AC上,观察点B的位置;④沿点A 折叠,使AB 和AC 重合,观察点B 的位置.A.1个B.2个C.3个D.4个知识点3 线段的中点及等分点7.如图,点B 在线段AC 上,下列式子中:①AB=12AC ;②AB=BC ;③AC=2AB ;④AB+BC =AC ,其中能表示点B 是线段AC 的中点的有(C )A.1个B.2个C.3个D.4个 8.如图,点O 是线段AB 的中点,点C 在线段OB 上,AC =6,CB =3,则OC 的长等于(C )A.0.5B.1C.1.5D.29.如图,点C 在线段AB 上,点D 是线段AC 的中点,点C 是线段BD 的四等分点.若CB =2,则线段AB 的长为(C )A.6B.10C.14D.18 10.如图,点C 是线段AB 上的点,点D 是线段BC 的中点.(1)若AB =10,AC =6,求CD 的长; (2)若AC =30,BD =10,求AB 的长. 解:(1)因为点D 是线段BC 的中点, 所以CD =12BC.因为AB =10,AC =6, 所以BC =AB -AC =10-6=4. 所以CD =12BC =2.(2)因为点D 是线段BC 的中点, 所以BC =2BD. 因为BD =10, 所以BC =2×10=20. 因为AB =AC +BC , 所以AB =30+20=50.易错点 由于点的位置不确定而出现漏解11.已知A ,B ,C 是直线MN 上的点,若AC =8 cm ,BC =6 cm ,点D 是AC 的中点,则BD 的长等于10 cm 或2 cm. 中档题12.已知线段AB =2 cm ,延长AB 到点C ,使BC =AB ,再延长BA 到点D ,使BD =2AB ,则线段DC 的长为(C ) A.4 cm B.5 cm C.6 cm D.2 cm13.【易错】已知点A ,B ,C 在同一条直线上,点M ,N 分别是AB ,AC 的中点.如果AB =10 cm ,AC =8 cm ,那么线段MN 的长度为(D )A.6 cmB.9 cmC.3 cm 或6 cmD.1 cm 或9 cm14.如图,C ,D 是线段AB 上的点,若AB =8,CD =2,则图中以A ,C ,D ,B 为端点的所有线段的长度之和等于(D )A.24B.22C.20D.2615.如图,点C ,D ,E 都在线段AB 上,已知AD =BC ,点E 是线段AB 的中点,则CE =DE.(填“>”“<”或“=”)16.如图,点M 是线段AB 的中点,点C 在线段AB 上,且AC =4 cm ,点N 是AC 的中点,MN =3 cm ,求线段CM 和AB 的长.解:因为点N 是AC 的中点,AC =4 cm , 所以NC =12AC =12×4=2(cm ).因为MN =3 cm ,所以CM =MN -NC =3-2=1(cm ). 所以AM =AC +CM =4+1=5(cm ). 因为点M 是AB 的中点, 所以AB =2AM =2×5=10(cm ).17.如图,已知线段AB =20 cm ,点M 是线段AB 的中点,点C 是AB 延长线上一点,AC =3BC ,点D 是线段BA 延长线上一点,AD =12AB.(1)求线段BC 的长; (2)求线段DC 的长;(3)点M 还是哪些线段的中点?解:(1)因为AC =AB +BC ,AC =3BC , 所以3BC =AB +BC ,即AB =2BC. 因为AB =20 cm , 所以BC =10 cm.(2)因为AD =12AB ,AB =20 cm ,所以AD =10 cm.所以DC =AD +AB +BC =10+20+10=40(cm ). (3)因为点M 是线段AB 的中点, 所以AM =MB =10 cm. 所以DM =20 cm ,MC =20 cm. 所以点M 还是线段DC 的中点. 综合题18.已知线段AB 上有两点P ,Q ,点P 将AB 分成两部分,AP∶PB=2∶3,点Q 将AB 也分成两部分,AQ∶QB=4∶1,且PQ =3 cm.求AP ,QB 的长. 解:画出图形,如图:设AP =2x cm ,PB =3x cm ,则AB =5x cm. 因为AQ∶QB=4∶1, 所以AQ =4x cm ,QB =x cm. 所以PQ =PB -QB =2x cm. 因为PQ =3 cm , 所以2x =3. 所以x =1.5.所以AP =3 cm ,QB =1.5 cm.第3课时关于线段的基本事实及两点间的距离基础题知识点1 关于线段的基本事实1.(随州中考改编)某同学用剪刀沿直线将一片平整的银杏叶剪掉一部分(如图),发现剩下的银杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是(A)A.两点之间,线段最短B.两点确定一条直线C.直线比曲线短D.经过一点有无数条直线2.【关注社会生活】下面现象,可以用两点之间线段最短来解释的是(D)A.平板弹墨线B.建筑工人砌墙C.会场把茶杯摆直D.弯河道改直3.如图,A,B是公路l两旁的两个村庄,若两村要在公路上合修一个汽车站P,使它到A,B两村的距离之和最小,试在l上标注出点P的位置,并说明理由.解:点P的位置如图所示.作法:连接AB交直线l于点P,则P点即为汽车站位置.理由:两点之间,线段最短.知识点2 两点间的距离4.(滨州中考)若数轴上点A,B分别表示数2,-2,则A,B两点之间的距离可表示为(B)A.2+(-2)B.2-(-2)C.(-2)+2D.(-2)-25.如图,线段AB=8 cm,延长AB到点C.若线段BC的长是AB长的一半,则A,C两点之间的距离为(D)A.4 cmB.6 cmC.8 cmD.12 cm中档题6.(新疆中考)如图所示,某同学的家在A处,星期日他到书店去买书,想尽快赶到书店B,请你帮助他选择一条最近的路线(B)A.A→C→D→BB.A→C→F→BC.A→C→E→F→BD.A→C→M→B7.已知A,B,C为直线l上的三点,线段AB=9 cm,BC=1 cm,那么A,C两点间的距离是(D)A.8 cmB.9 cmC.10 cmD.8 cm或10 cm8.如图,平面上有A,B,C,D四个村庄,为解决当地缺水问题,政府准备修建一个蓄水池,不考虑其他因素,请你画出蓄水池P的位置,使它与4个村庄的距离之和最小.解:连接AC,BD的交点即为P点的位置,如图.综合题9.(教材P130习题T11变式)如图所示,有一个圆柱形纸筒,一只虫子在点B处,一只蜘蛛在点A处,蜘蛛沿着纸筒表面准备偷袭虫子,那么蜘蛛想要最快地捉住虫子,应怎样走?解:如图所示,蜘蛛沿线段AB爬行,能最快地捉住虫子.小专题(十二)线段的计算类型1 中点问题(整体思想)【例】 如图,点C 在线段AB 上,点M ,N 分别是AC ,BC 的中点.(1)若AC =9 cm ,CB =6 cm ,则线段MN 的长为152cm ;(2)若AC =a cm ,CB =b cm ,则线段MN 的长为a +b2cm ;(3)若AB =m cm ,求线段MN 的长度;(4)若点C 为线段AB 上任意一点,且AB =n cm ,其他条件不变,你能猜想MN 的长度吗?并用一句简洁的话描述你发现的结论.解:(3)因为点M ,N 分别是AC ,BC 的中点, 所以MC =12AC ,CN =12BC.又因为MN =MC +CN ,所以MN =12(AC +BC )=12AB =m2 cm.(4)猜想:MN =12AB =n2cm.结论:若点C 为线段AB 上一点,且点M ,N 分别是AC ,BC 的中点,则MN =12AB.【变式1】 若MN =k cm ,求线段AB 的长. 解:因为点M 是AC 的中点, 所以CM =12AC.因为点N 是BC 的中点, 所以CN =12BC.所以MN =CM +CN =12(AC +BC )=12AB.所以AB =2MN =2k cm.【变式2】 若将例题中的“点C 在线段AB 上”改为“点C 在线段AB 的延长线上”,其他条件不变,(3)中结论还成立吗?请画出图形,写出你的结论,并说明理由. 解:MN =m2cm 成立.当点C 在线段AB 的延长线上时,如图.因为点M ,N 分别是AC ,BC 的中点,所以MC =12AC ,CN =12BC.又因为MN =MC -CN ,所以MN =12(AC -BC )=12AB =m2 cm.如图,只要点C 在线段AB 所在直线上,点M ,N 分别是AC ,BC 的中点,那么MN =12AB.图1 图2 图31.如图,C 是线段AB 上一点,M 是AB 的中点,N 是AC 的中点.若AB =8 cm ,AC =3.2 cm ,则线段MN 的长为2.4cm.2.如图,已知点C ,D 为线段AB 上顺次两点,M ,N 分别是AC ,BD 的中点.(1)若AB =24,CD =10,求MN 的长;(2)若AB =a ,CD =b ,请用含a ,b 的式子表示出MN 的长. 解:(1)因为AB =24,CD =10, 所以AC +DB =14.因为M ,N 分别为AC ,BD 的中点, 所以CM =12AC ,DN =12BD.所以MC +DN =12(AC +DB )=7.所以MN =MC +DN +CD =17. (2)因为AB =a ,CD =b , 所以AC +DB =a -b.所以MC +DN =12(AC +DB )=12(a -b ).所以MN =MC +DN +CD =12(a -b )+b =12(a +b ).类型2 直接计算3.如图,已知线段AB ,按下列要求完成画图和计算:(1)延长线段AB 到点C ,使BC =2AB ,取线段AC 的中点D ; (2)在(1)的条件下,如果AB =4,求线段BD 的长度. 解:(1)如图.(2)因为BC =2AB ,且AB =4, 所以BC =8.所以AC =AB +BC =8+4=12. 因为D 为AC 中点, 所以AD =12AC =6.所以BD =AD -AB =6-4=2.类型3 方程思想4.如图,已知B ,C 两点把线段AD 分成2∶5∶3三部分,点M 为AD 的中点,BM =6 cm ,求CM 和AD 的长.解:设AB =2x cm ,BC =5x cm ,CD =3x cm , 则AD =AB +BC +CD =10x cm. 因为M 是AD 的中点, 所以AM =MD =12AD =5x cm.所以BM =AM -AB =5x -2x =3x cm. 因为BM =6 cm , 所以3x =6.解得x =2.故CM =MD -CD =5x -3x =2x =2×2=4(cm ), AD =10x =10×2=20(cm ).5.如图,已知线段AB 和CD 的公共部分BD =13AB =14CD ,线段AB ,CD 的中点E ,F 之间的距离是10 cm ,求AB ,CD的长.解:设BD =x cm ,则AB =3x cm ,CD =4x cm ,AC =6x cm. 因为点E ,F 分别为AB ,CD 的中点, 所以AE =12AB =1.5x cm ,CF =12CD =2x cm.所以EF =AC -AE -CF =6x -1.5x -2x =2.5x (cm ). 因为EF =10 cm , 所以2.5x =10.解得x =4. 所以AB =12 cm ,CD =16 cm.类型4 分类讨论思想6.已知线段AB =60 cm ,在直线AB 上画线段BC ,使BC =20 cm ,点D 是AC 的中点,求CD 的长度. 解:当点C 在线段AB 上时,如图1,图1CD =12AC =12(AB -BC )=12×(60-20)=12×40=20(cm ); 当点C 在线段AB 的延长线上时,如图2,图2CD =12AC =12(AB +BC )=12×(60+20)=12×80=40(cm ). 所以CD 的长度为20 cm 或40 cm.7.课间休息时小明拿两根木棒玩,小明说:“较短木棒AB 长40 cm ,较长木棒CD 长60 cm ,将它们的一端重合,放在同一条直线上,此时两根木棒的中点分别是点E 和点F ,则点E 和点F 间的距离是多少?你说对了我就给你玩.”聪明的你请帮小华求出此时两根木棒的中点E 和F 间的距离是多少?解:如图1,当AB 在CD 的左侧且点B 和点C 重合时,图1因为点E 是AB 的中点,所以BE =12AB =12×40=20(cm ).因为点F 是CD 的中点,所以CF =12CD =12×60=30(cm ).所以EF =BE +CF =20+30=50(cm ). 如图2,当AB 在CD 上且点B 和点C 重合时,图2因为点E 是AB 的中点,所以BE =12AB =12×40=20(cm ).因为点F 是CD 的中点,所以CF =12CD =12×60=30(cm ).所以EF =CF -BE =30-20=10(cm ).所以此时两根木棒的中点E 和F 间的距离是50 cm 或10 cm.类型5 动态问题8.如图,数轴上A ,B 两点对应的有理数分别为10和15,点P 从点A 出发,以每秒1个单位长度的速度沿数轴正方向运动,点Q 同时从原点O 出发,以每秒2个单位长度的速度沿数轴正方向运动,设运动时间为t 秒.(1)当0<t <5时,用含t 的式子填空:BP =5-t ,AQ =10-2t ; (2)当t =2时,求PQ 的值;(3)【分类讨论思想】当PQ =12AB 时,求t 的值.解:(2)当t =2时,AP <5,点P 在线段AB 上;OQ <10,点Q 在线段OA 上,如图所示:此时PQ =OP -OQ =(OA +AP )-OQ =(10+t )-2t =10-t =8.(3)PQ =|OP -OQ|=|(OA +AP )-OQ|=|(10+t )-2t|=|10-t|. 因为PQ =12AB ,所以|10-t|=2.5. 解得t =7.5或t =12.5.4.3 角 4.3.1 角基础题知识点1 角的定义及表示方法 1.下列说法中,正确的是(C ) A.两条射线组成的图形叫做角B.有公共端点的两条线段组成的图形叫做角C.角可以看作是由一条射线绕着它的端点旋转而形成的图形D.角可以看作是由一条线段绕着它的端点旋转而形成的图形 2.图中角的表示方法正确的有(B )A.1个B.2个C.3个D.4个 3.如图所示,下列表示角的方法错误的是(D )A.∠1与∠AOB 表示同一个角B.∠β表示的是∠BOCC.图中共有三个角:∠AOB ,∠AOC,∠BOCD.∠AOC 也可用∠O 来表示4.如图,∠1,∠2表示的角用大写字母分别表示为∠ABC,∠BCN;∠A 也可表示为∠BAC,还可以表示为∠MAN .5.如图所示,能用一个字母表示的角有2个,以A 为顶点的角有3个,图中所有的角有7个(小于平角).知识点2 角的度量6.(厦门中考)1°等于(C )A.10′B.12′C.60′D.100′ 7.下列各角中,是钝角的是(B )A.14周角B.23平角C.平角D.14平角8.已知∠1=27°18′,∠2=27.18°,∠3=27.3°,则下列说法正确的是(A ) A.∠1=∠3 B.∠1=∠2 C.∠1<∠2 D.∠2=∠3 9.计算:(1)12′=0.2°或720″; (2)360″=0.1°或6′; (3)57.18°=57°10′48″. 知识点3 钟面角10.某校七年级在下午3:00开展“阳光体育”活动.下午3:00这一时刻,时钟上分针与时针所夹的小于平角的角等于90°.易错点1 角的概念辨析有误 11.下列说法正确的是(C ) A.平角就是一条直线 B.小于平角的是钝角C.平角的两条边在同一条直线上D.周角的终边与始边重合,所以周角的度数为0° 易错点2 角度换算时出错12.(1)把124.24°化为度、分、秒的形式为124°14′24″; (2)若把36°36′36″化成以度为单位,则结果为36.61°. 中档题13.下列各式中,角度互化正确的是(D ) A.63.5°=63°50′ B.23°12′36″=23.48° C.18°18′18″=18.33° D.22.25°=22°15′14.【易错】一个20°的角放在10倍的放大镜下看是(A ) A.20° B.2° C.200° D.无法判断 15.如图,点O 在直线AB 上,则在此图中小于平角的角有(B )A.4个B.5个C.6个D.7个16.如图,有下列说法:①∠ECG和∠C是同一个角;②∠OGF和∠OGB是同一个角;③∠DOF和∠EOG是同一个角;④∠ABC和∠ACB是同一个角.其中正确的有(B)A.1个B.2个C.3个D.4个17.(通辽中考)4点10分,时针与分针所夹的小于平角的角为(B)A.55°B.65°C.70°D.以上结论都不对18.如图,写出符合下列条件的角(图中所有的角均指小于平角的角).(1)能用一个大写字母表示的角;(2)以点A为顶点的角;(3)图中所有的角(可用简便方法表示).解:(1)∠B,∠C.(2)∠CAD,∠BAD,∠BAC.(3)∠C,∠B,∠1,∠2,∠3,∠4,∠CAB.19.爸爸问小明:“一个方桌有四个角,如果锯掉一个角,还剩几个角?”小明回答:“还剩3个角.”并画出了如下图形.小明回答正确吗?若不正确,请说明理由,并画出图形.解:不正确,理由:除小明这种画法外还有如下两种画法,所以还剩3个或4个或5个角.画图如下:【变式】 n 边形剪去一个角,还剩(n -1)或n 或(n +1)个角. 综合题20.【类比探究】有公共端点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点.如图所示,如果过角的顶点:(1)在角的内部作1条射线,那么图中一共有3个角; (2)在角的内部作2条射线,那么图中一共有6个角; (3)在角的内部作3条射线,那么图中一共有10个角;(4)在角的内部作n 条射线,那么图中一共有(n +2)(n +1)2个角.【变式】 以直线l 外一点P 为端点,向直线l 上的n (n>1)个点作射线,则以点P 为顶点,以这些射线为边的角(小于180°)的个数为n (n -1)2.(用含有n 的式子表示)。

专题12.23 三角形全等几何模型-“一线三直角”模型(专项练习)(基础篇)

专题12.23 三角形全等几何模型-“一线三直角”模型(专项练习)(基础篇)

C D E B A 专题12.23 三角形全等几何模型-“一线三直角”模型(专项练习)(基础篇)知识储备:1、模型一: 三垂直全等模型图一如图一,∠D=∠BCA=∠E=90°,BC=AC 。

结论:Rt △BDC ≌Rt △CEA2、拓展:模型二: 三等角全等模型图二如图二,∠D=∠BCA=∠E ,BC=AC 。

结论:△BEC ≌△CDA3、知识点补充:勾股定理0222=90.RT ABC C ∆∠如图三,在中,,三角形三边分边为a 、b 、c,则a +b =c图三一、单选题1.已知:如图所示,AC=CD ,∠B=∠E=90°,AC∠CD,则不正确的结论是( )A .∠1=∠2B .∠A=∠2C .∠ABC∠∠CED D .∠A 与∠D 互为余角2.如图,90ACB ∠=︒,AC BC =,AD CE ⊥,BE CE ⊥,垂足分别为D 、E ,2.5AD cm =, 1.7DE cm =,则BE 的长( ).A .0.8cmB .0.7cmC .0.6cmD .1cm3.如图,在等腰直角三角形ABC 中,90,8C AC ∠=︒=,F 为AB 边的中点,点D ,E 分别在,AC BC 边上运动,且保持AD CE =,连接,,DE DF EF .在此运动变化的过程中,下列结论:∠DEF 是等腰直角三角形;∠四边形CDFE 的面积保持不变;∠AD BE DE +>.其中正确的是( )A .∠∠∠B .∠C .∠D .∠∠二、填空题 4.如图,在等腰Rt∠ABC 中,∠C=90°,AC=7.点O 在BC 上,且CO=1,点M 是AC 上一动点,连接OM ,将线段OM 绕点O 逆时针旋转90°,得到线段OD ,要使点D 恰好落在AB 上,CM 的长度为__________.5.如图,90ACB ∠=︒,CA CB =,AD CE ⊥,BE CE ⊥,垂足分别为D ,E ,3cm =AD ,1.8cm DE =,则BE =______cm .6.如图,()()4,0,0,6A B ,以B 点为直角顶点在第一象限作等腰直角ABC ∆,则C 点的坐标为_________7.如图,点A 在线段DE 上,AB ∠AC ,垂足为A ,且AB =AC ,BD ∠DE ,CE ∠DE ,垂足分别为D 、E ,若ED =12,BD =8,则CE 长为_____.8.如图,AC BC =,AE CD =,AE CE ⊥于点E ,BD CD ⊥于点D ,10AE =,4BD =,则DE 的长是_____.⊥于点F.若9.如图,直线a经过正方形ABCD的顶点A,已知BE a⊥于点E,DF aBE=,83DF=,则线段EF的长为______.10.如图,四边形ABCD中,∠ABC=∠ACD=90°,AC=CD,BC=4cm,则BCD的面积为_____cm2.11.如图,正方形ABCD中,点E、F分别是BC、AB边上的点,且AE∠DF,垂足为点O,∠AOD,则图中阴影部分的面积为_____.三、解答题12.如图:在∠ABC中∠ACB=90°,AC=BC,AE是BC边上的中线,过点C作CF∠AE,垂足为F,过B作BD∠BC交CF的延长线于D.求证:(1)AE=CD.(2)若AC=12cm,求BD的长.13.如图1,在∠ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD∠MN于D,BE∠MN 于E.(1)说明∠ADC∠∠CEB;(2)说明AD+BE=DE;(3)当直线MN绕点C旋转到图2的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以说明.14.如图,已知A、B、D在同一条直线上,∠A=∠D=90°,AC=BD,∠1=∠2.求证:∠CBE 是等腰直角三角形.15.在ABC中,∠ACB=90°,AC=BC,直线,MN经过点C,且AD∠MN于点D,BE∠MN 于点E.(1)当直线MN绕点C旋转到如图1的位置时,求证:DE=AD+BE;(2)当直线MN绕点C旋转到如图2的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到如图3的位置时,线段DE、AD、BE之间又有什么样的数量关系?请你直接写出这个数量关系,不要证明.16.课间,小明拿着老师的等腰三角板玩,不小心掉在两墙之间,如图所示:(1)求证:∠ADC∠∠CEB;(2)已知DE=35cm,请你帮小明求出砌墙砖块的厚度a的大小(每块砖的厚度相同)17.如图,在∠ABC中,AC=BC,直线l经过顶点C,过A,B两点分别作l的垂线AE,BF,E,F为垂足.AE=CF,求证:∠ACB=90°.18.如图,已知在CDE ∆中,12∠=∠,直线AB 经过点E ,DA AB ⊥,CB AB ⊥,垂足分别为A 、B ,AD BE =,求证:AE BC =.19.如图1.∠ABC 中,AG∠BC 于点G ,以A 为直角顶点,分别以AB 、AC 为直角边,向∠ABC 作等腰Rt∠ABE 和等腰Rt∠ACF ,过点E ,F 作射线GA 的垂线,垂足分别为P ,Q .(1)求证:∠EPA∠∠AGB :(2)试探究EP 与FQ 之间的数量关系,并证明你的结论;(3)如图2.若连接EF 交GA 的延长线于H ,由(2)中的结论你能判断EH 与FH 的大小关系吗?并说明理由:(4)在(3)的条件下,若BC =10,AG =12.请直接写出S ∠AEF = .20.如图所示,90,C BE BA ∠=⊥,且,BE BA BD BC =⊥,延长CB 交DE 于点F ,且DF EF =.求证:2AC BF =.21.已知:在直角坐标系中,点()0,3B -,点()1,0C ,点A 在第二象限,,AC BC AC BC =⊥,求点A 的坐标.22.如图,已知:,,,,那么AC 与CE 有什么关系?写出你的猜想并说明理由.参考答案1.A【分析】由题意易得∠ACD=90°,则有∠1+∠2=90°,进而可证三角形全等,然后可排除选项.【详解】解:∠AC∠CD,∠∠ACD=90°,∠∠1+∠2=90°,∠∠B=∠E=90°,∠∠2+∠D=90°,∠∠1=∠D,∠AC=CD,∠∠ABC∠∠CED(AAS),故C正确,∠∠A=∠2,故B正确,∠∠A+∠D=90°,故D正确,∠A选项错误;故选A.【点睛】本题主要考查全等三角形的性质与判定,熟练掌握全等三角形的性质与判定是解题的关键.2.A【分析】证∠CEB和∠ADC全等,得到BE和CD相等,CE和AD相等,即可得到结论;【详解】解:∠BE∠CE,AD∠CE,∠∠E=∠ADC=90°,∠∠EBC+∠BCE=90°,∠∠BCE+∠ACD=90°,∠∠EBC=∠DCA,在∠CEB和∠ADC中,E ADC EBC DCA BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∠∠CEB∠∠ADC∠BE=DC ,CE=AD∠AD=2.5cm ,DE=1.7cm ,∠CE=1.7cm ,∠DC=CE -DE=0.8cm ,∠BE=0.8cm ;故选:A .【点睛】本题考查垂直性质的运用,直角三角形的性质的运用,全等三角形的性质和判定,证明三角形全等是解题的关键.3.A【分析】连接CF ,利用SAS 可证ADF CEF ≌,从而得出,=∠=∠DF FE AFD CFE ,从而求出90EFD ∠=︒,即可判断∠;根据全等三角形的性质可得=ADF CEF SS ,从而得出四边形CDFE 的面积为12ABC S ,从而判断∠;延长DF 到G 使FG DF =,连接,EG BG ,证出AD BG =和DE EG =,最后根据三角形的三边关系即可判断∠.【详解】解:如图,连接CF .∠AC BC =,F 为AB 的中点,∠CF AB ⊥,12∠=∠=ACF BCF ACB . ∠90ACB ∠=︒,∠45∠=∠=∠=︒A ACF BCF ,∠CF AF =.又∠AD CE =,∠ADF CEF ≌.∠,=∠=∠DF FE AFD CFE ,∠90AFD CFD ∠+∠=︒,∠90∠+∠=︒CFE CFD ,∠90EFD ∠=︒,∠DEF 是等腰直角三角形.∠正确.∠ADF CEF ≌,∠=ADF CEF S S ,∠四边形CDFE 的面积为12+=+==CDF CEF CDF MDF AFC ABC SS S S S S . ∠11883222=⨯=⨯⨯=ABC S AC BC , ∠四边形CDFE 的面积为16,为定值.∠正确.延长DF 到G 使FG DF =,连接,EG BG .∠AF BF =,∠=∠AFD BFG ,DF FG =,∠ADF BCF ≌△△,∠AD BG =.∠90EFD ∠=︒,∠EF DF ⊥,∠DE EG =.在EBG 中,∠+>BG BE EG ,∠AD BE DE +>.∠正确.∠∠∠均正确,故选A .【点睛】此题考查的是全等三角形的判定及性质、等腰直角三角形的判定和三角形的三边关系,掌握构造全等三角形的方法是解决的关键.4.5【分析】如图,作辅助线;首先证明DOE OMC ∆≅∆,得到OC DE =,CM OE =;其次证明BE DE =,求出OE ,即可解决问题.【详解】解:如图,过点D 作DE OB ⊥于点E ;DEO DOM C ∠=∠=∠,DOE COM COM CMO ∴∠+∠=∠+∠,DOE OMC ∴∠=∠;由题意得:OD OM =;在DOE ∆与OMC ∆中,DOE OMC DEO OCM OD OM ∠=∠⎧⎪∠=∠⎨⎪=⎩,()DOE OMC AAS ∴∆≅∆,1DE OC ∴==,CM OE =;ABC ∆为等腰直角三角形,45B ∴∠=︒,45BDE ∠=︒,1BE DE ∴==,7115OE =--=,5CM OE ∴==,故答案为5.【点睛】本题主要考查了旋转变换的性质、等腰直角三角形的性质、全等三角形的判定等几何知识点及其应用问题;解题的方法是作辅助线,构造全等三角形;解题的关键是灵活运用旋转变换的性质等几何知识点来分析、判断、推理或解答.5.1.2【分析】先根据等角的余角相等得出∠EBC =∠DCA ,再根据AAS 证明∠CEB ∠∠ADC ,然后利用全等三角形的性质并结合已知数据即可求得结果.【详解】解∠BE ∠CE ,AD ∠CE ,∠∠E =∠ADC =90°,∠∠EBC +∠BCE =90°.∠∠BCE +∠ACD =90°,∠∠EBC =∠DCA .在∠CEB 和∠ADC 中,E ADC EBC DCA BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∠∠CEB ∠∠ADC (AAS),∠BE=DC ,CE=AD =3cm∠DC=CE −DE ,DE =1.8cm ,∠DC =3-1.8=1.2cm ,∠BE =1.2cm故答案为:1.2cm【点睛】本题考查了全等三角形的判定和性质,属于常考题型,难度不大,熟练掌握三角形全等的判定和方法是关键.6.()6,10【分析】过点C 作CD∠y 轴于点D ,由∠ABC 为等腰直角三角形即可得出∠ABC =90°、AB =BC ,通过角的计算即可得出∠ABO =∠BCD ,再结合∠CDB =∠BOA =90°即可利用AAS 证出∠ABO∠∠BCD ,由此即可得出BD 、CD 的长度,进而可得出点C 的坐标.【详解】解:过点C 作CD∠y 轴于点D ,如图所示.∠∠ABC 为等腰直角三角形,∠∠ABC =90°,AB =BC .∠CD∠BD ,BO∠AO ,∠∠CDB =∠BOA =90°.∠∠CBD+∠ABO =90°,∠CBD+∠BCD =90°,∠∠ABO =∠BCD .在∠ABO 和∠BCD 中,==90ABO BCD BOA CDB AB BC ∠=∠⎧⎪∠∠︒⎨⎪=⎩,∠∠ABO∠∠BCD (AAS ),∠BD =AO ,CD =BO ,∠A (4,0),B (0,6),∠BD =4,CD =6,∠点C 的坐标为()6,10,故答案为:()6,10.【点睛】本题结合等腰直角三角形和坐标点综合考查,关键在于辅助线的作法,过C 点作垂直于x 轴的垂线还是垂直于y 轴的垂线是解题关键.7.4【分析】根据已知条件及互余关系可证∠ABD ∠∠CAE ,得出BD =AE =8,AD =CE ,求出AD =4,即可得出答案.【详解】解:∠BD ∠DE ,CE ∠DE ,∠∠D =∠E =90°,∠ABD +∠BAD =90°,∠AB ∠AC ,∠∠BAD +∠EAC =90°,∠∠ABD =∠EAC ,在∠ABD和∠CAE中,D EAB CAABD EAC∠=∠⎧⎪=⎨⎪∠=∠⎩,∠∠ABD∠∠CAE(ASA),∠BD=AE=8,AD=CE,∠AD=ED﹣AE=12﹣8=4,∠CE=4故答案为:4.【点睛】本题考查了全等三角形的判定与性质、等角的余角相等.找到证明三角形全等的条件,证明三角形全等是解题的关键.8.6【分析】根据垂直的定义得到∠AEC=∠D=90°,根据全等三角形的性质即可得到结论.【详解】解:∠AE∠CE于点E,BD∠CD于点D,∠∠AEC=∠D=90°,在Rt∠AEC与Rt∠CDB中AC BC AE CD ⎧⎨⎩==,∠Rt∠AEC∠Rt∠CDB(HL),∠CE=BD=4,CD=AE=10,∠DE=CD−CE=10−4=6,故答案为:6.【点睛】本题考查了全等三角形的判定与性质,解答本题的关键是根据已知条件判定三角形的全等.9.11【分析】根据题意易得∠AEB∠∠DFA,则有BE=AF,DF=AE,进而问题可得解.【详解】解:∠四边形ABCD是正方形,∠AD=AB,∠DAB=90°,∠BE a ⊥,DF a ⊥,∠∠DFA=∠AEB=90°,∠∠FAD+∠ADF=90°,又∠∠FAD+∠BAE=90°,∠∠ADF=∠BAE ,∠∠AEB∠∠DFA ,∠3BE =,8DF =,∠BE=AF=3,DF=AE=8,∠EF=AF+AE=3+8=11;故答案为11.【点睛】本题主要考查全等三角形的判定与性质及正方形的性质,熟练掌握全等三角形的判定与性质及正方形的性质是解题的关键.10.8.【分析】作DH ∠BC ,证明ABC CHD ≌,根据全等三角形的性质得到DH =BC =4,根据三角形的面积公式计算,得到答案.【详解】解:过点D 作DH ∠BC ,交BC 的延长线于点H ,∠∠ABC =90°,∠∠BAC +∠ACB =90°,∠∠ACD =90°,∠∠HCD +∠ACB =90°,∠∠BAC =∠HCD ,在∠ABC 和∠CHD 中,BAC HCD ABC CHD AC CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∠ABC CHD ≌(AAS ),∠DH =BC =4,∠BCD 的面积=1144822BC DH =⨯⨯=(cm 2), 故答案为:8.【点睛】本题考查的是直角三角形的两锐角互余,三角形全等的判定与性质,三角形面积的计算,掌握以上知识是解题的关键.11【分析】先证得∠ADF ≅∠BAE ,再利用等量代换即可求得阴影部分的面积等于∠AOD 的面积.【详解】正方形ABCD 中,∠DAF=∠ABE=90︒,AD=AB ,∠AE∠DF ,∠∠DOA=∠DAF =90︒,∠∠DAO+∠ADF =∠DAO +∠FAO =90︒,∠∠ADF =∠FAO ,在∠ADF 和∠BAE 中, ADF FAO AD ABDAF ABE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∠∠ADF ≅∠BAE ,∠ADF BAE SS =, ∠ADF AOF BAE AOF S SS S -=-, ∠AOF SS ==阴影.【点睛】本题考查了正方形的性质,全等三角形的判定和性质,证得阴影部分的面积等于∠AOD 的面积是解题的关键.12.(1)见解析;(2)6【分析】(1)根据DB∠BC ,CF∠AE ,得出∠D =∠AEC ,再结合∠DBC =∠ECA =90°,且BC =CA ,证明∠DBC∠∠ECA ,即可得证;(2) 由(1)可得∠DBC∠∠ECA ,可得CE=BD ,根据BC=AC=12cm AE 是BC 的中线,即可得出12CE BC =,即可得出答案. 【详解】证明:(1)证明:∠DB∠BC ,CF∠AE ,∠∠DCB +∠D =∠DCB +∠AEC =90°.∠∠D =∠AEC .又∠∠DBC =∠ECA =90°,且BC =CA , 在∠DBC 和∠ECA 中90D AEC DBC ECA BC AC ∠∠∠∠⎪⎩︒⎧⎪⎨====,∠∠DBC∠∠ECA (AAS ).∠AE =CD ;(2) 由(1)可得∠DBC∠∠ECA∠CE=BD ,∠BC=AC=12cm AE 是BC 的中线, ∠162CE BC cm ==, ∠BD=6cm .【点睛】本题考查了全等三角形的判定和性质,直角三角形斜边上的中线,证明∠DBC∠∠ECA 解题关键.13.(1)见详解;(2)见详解;(3)DE+BE=AD ,理由见详解【分析】(1)由题意易得∠ADC=∠CEB=90°,∠BCE=∠CAD ,进而问题可得证;(2)由(1)可得AD=CE ,BE=CD ,进而根据线段的数量关系可求证;(3)由题意易证∠ADC∠∠CEB,则有AD=CE,BE=CD,进而问题可求解.【详解】解:(1)∠AD∠MN,BE∠MN,∠∠ADC=∠CEB=90°,∠∠ACB=90°,∠∠DCA+∠BCE=90°,∠∠DCA+∠CAD=90°,∠∠BCE=∠CAD,∠AC=CB,∠∠BCE∠∠CAD(AAS);(2)由(1)得:∠BCE∠∠CAD,∠AD=CE,BE=CD,∠DE=DC+CE,∠DE=AD+BE;(3)AD=DE+BE,理由如下:∠AD∠MN,BE∠MN,∠∠ADC=∠CEB=90°,∠∠ACB=90°,∠∠DCA+∠BCE=90°,∠∠DCA+∠CAD=90°,∠∠BCE=∠CAD,∠AC=CB,∠∠BCE∠∠CAD(AAS),∠DC=BE,AD=CE,∠CE=CD+DE,∠AD=DE+BE.【点睛】本题主要考查全等三角形的性质与判定及直角三角形的两个锐角互余,数量掌握全等三角形的性质与判定及直角三角形的两个锐角互余是解题的关键.14.见解析【分析】由题意易证∠ABC∠∠DEB ,则有BC=BE ,∠EBD=∠BCA ,进而问题可证.【详解】证明: 在∠ABC 和∠DEB 中,12A D AC BD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∠∠ABC∠∠DEB (AAS ),∠BC=EB ,∠∠1=∠2,∠2+∠DBE=90°,∠∠1+∠DBE=90°,∠∠CBE=180°﹣(∠1+∠DBE )=90°,∠∠BCE 是等腰直角三角形.【点睛】本题主要考查全等三角形的性质与判定、直角三角形的性质及等腰直角三角形的判定,熟练掌握全等三角形的性质与判定、直角三角形的性质及等腰直角三角形的判定是解题的关键.15.(1)见解析;(2)见解析;(3)DE =BE ﹣AD【分析】(1)由题意易得∠DAC+∠ACD =90°,则∠DAC =∠BCE ,进而可证∠ADC∠∠CEB ,然后根据全等三角形的性质可求解;(2)由题意易得∠CEB=∠ADC=90°,则可求∠CAD=∠BCE ,进而可证∠CAD∠∠BCE ,然后根据全等三角形的性质可求解;(3)根据题意可证∠CAD∠∠BCE ,然后根据全等三角形的性质可求解.【详解】(1)证明:∠AD∠MN ,BE∠MN ,∠∠ADC =∠CEB =90°,∠∠DAC+∠ACD =90°,∠∠ACB =90°,∠∠BCE+∠ACD =90°,∠∠DAC =∠BCE ,在∠ADC 和∠CEB ,ADC CEB DAC ECB AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∠∠ADC∠∠CEB (AAS ),∠CD =BE ,AD =CE ,∠DE =CE+CD =AD+BE ;(2)证明:∠AD∠MN ,BE∠MN ,∠∠ADC =∠CEB =90°,∠∠DAC+∠ACD =90°,∠∠ACB =90°,∠∠BCE+∠ACD =90°,∠∠DAC =∠BCE ,∠AC=BC ,∠∠ADC∠∠CEB ,∠CD =BE ,AD =CE ,∠DE =CE ﹣CD =AD ﹣BE ;(3)解:DE =BE ﹣AD ,理由如下:∠AD∠MN ,BE∠MN ,∠∠ADC =∠CEB =90°,∠∠DAC+∠ACD =90°,∠∠ACB =90°,∠∠BCE+∠ACD =90°,∠∠DAC =∠BCE ,∠AC=BC ,∠∠ADC∠∠CEB ,∠CD =BE ,AD =CE ,∠DE =BE ﹣AD .【点睛】本题主要考查全等三角形的性质与判定及直角三角形的两个锐角互余,熟练掌握全等三角形的性质与判定及直角三角形的两个锐角互余是解题的关键.16.(1)见详解;(2)砌墙砖块的厚度a 为5cm .【分析】(1)根据题意可得AC =BC ,∠ACB =90°,AD∠DE ,BE∠DE ,进而得到∠ADC =∠CEB =90°,再根据等角的余角相等可得∠BCE =∠DAC ,再证明∠ADC∠∠CEB 即可. (2)利用(1)中全等三角形的性质进行解答.【详解】(1)证明:由题意得:AC =BC ,∠ACB =90°,AD∠DE ,BE∠DE ,∠∠ADC =∠CEB =90°,∠∠ACD +∠BCE =90°,∠ACD +∠DAC =90°,∠∠BCE =∠DAC ,在∠ADC 和∠CEB 中ADC CEB DAC BCE AC BC ∠∠∠∠⎧⎪⎨⎪⎩===,∠∠ADC∠∠CEB (AAS );(2)解:由题意得:∠一块墙砖的厚度为a ,∠AD =4a ,BE =3a ,由(1)得:∠ADC∠∠CEB ,∠DC =BE =3a ,AD =CE =4a ,∠DC +CE =BE +AD =7a =35,∠a =5,答:砌墙砖块的厚度a 为5cm .【点睛】此题主要考查了全等三角形的应用,关键是正确找出证明三角形全等的条件. 17.见解析【分析】根据题意易得Rt∠ACE∠Rt∠CBF ,则有∠EAC =∠BCF ,然后根据等角的余角相等及领补角可求证.【详解】证明:如图,在Rt∠ACE 和Rt∠CBF 中,AC BC AE CF =⎧⎨=⎩, ∠Rt∠ACE∠Rt∠CBF (HL ),∠∠EAC =∠BCF ,∠∠EAC+∠ACE =90°,∠∠ACE+∠BCF =90°,∠∠ACB =180°﹣90°=90°.【点睛】本题主要考查直角三角形全等的判定与性质,熟练掌握三角形全等的判定条件及性质是解题的关键.18.见解析【分析】根据HL 证明Rt∠DAE∠Rt∠EBC 即可求解.【详解】解:(1)证明:∠ DA∠AB ,CB∠AB ,∠ ∠A =∠B =90°又∠∠1=∠2∠DE =CE在Rt∠DAE 和Rt∠EBC 中,AE CE AD BE=⎧⎨=⎩ ∠Rt∠DAE∠Rt∠EBC (HL )∠AE =BC .【点睛】此题主要考查全等三角形的判定与性质,解题的关键是熟知全等三角形的判定定理.19.(1)证明见解析;(2)结论:EP =FQ ,证明见解析;(3)结论:EH =FH ,理由见解析;(4)60.【分析】(1)根据等腰Rt∠ABE 的性质,求出∠EPA =∠EAB =∠AGB =90°,∠PEA =∠BAG ,根据AAS 推出∠EPA∠∠AGB .(2)根据全等三角形的性质推出EP =AG ,同理可得∠FQA∠∠AGC ,即可得出AG =FQ ,最后等量代换即可得出答案.(3)求出∠EPH =∠FQH =90°,根据AAS 推出∠EPH∠∠FQH ,即可得出EH 与FH 的大小关系.(4)根据全等三角形∠EPH∠∠FQH ,∠EPA∠∠AGB ,∠FQA∠∠AGC ,推出S ∠FQA =S ∠AGC ,S ∠FQH =S ∠EPH ,S ∠EPA =S ∠AGB ,即可求出S ∠AEF =S ∠ABC ,根据三角形面积公式求出即可.【详解】解:(1)如图1,∠∠EAB =90°,EP∠AG ,AG∠BC ,∠∠EPA =∠EAB =∠AGB =90°,∠∠PEA+∠EAP =90°,∠EAP+∠BAG =90°,∠∠PEA =∠BAG ,在∠EPA 和∠AGB 中,EPA BGA PEA BAG AE AB ∠=∠⎧⎪∠=∠⎨⎪=⎩∠∠EPA∠∠AGB (AAS ),(2)结论:EP =FQ ,证明:由(1)可得,∠EPA∠∠AGB ,∠EP =AG ,如图1,∠∠FAC =90°,FQ∠AG ,AG∠BC ,∠∠FQA =∠FAC =∠CGA =90°,∠∠FAQ+∠AFQ =90°,∠FAQ+∠GAC =90°,∠∠AFQ =∠GAC ,在∠QFA 和∠GAC 中,FQA CGA FAQ CAG AF AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∠∠QFA∠∠GAC (AAS ),∠AG =FQ ,∠EP =FQ ;(3)结论:EH =FH ,理由:如图,∠EP∠AG ,FQ∠AG ,∠∠EPH =∠FQH =90°,在∠EPH 和∠FQH 中,EHP FHQ EPH FQH EP FQ ∠=∠⎧⎪∠=∠⎨⎪=⎩∠∠EPH∠∠FQH (AAS ),∠EH =FH .(4))∠∠EPH∠∠FQH ,∠EPA∠∠AGB ,∠FQA∠∠AGC ,∠S ∠FQA =S ∠AGC ,S ∠FQH =S ∠EPH ,S ∠EPA =S ∠AGB ,∠S ∠AEF =S ∠EPA +S ∠FQA=S ∠AGB +S ∠AGC=S ∠ABC =12×BC×AG =12×10×12 =60故答案为:60.【点睛】本题属于三角形综合题,主要考查了全等三角形的性质和判定以及等腰直角三角形的性质的综合应用,解题时注意:全等三角形的对应边相等,对应角相等.等腰直角三角形是一种特殊的三角形,具有所有三角形的性质,还具备等腰三角形和直角三角形的所有性质.20.详见解析【解析】【分析】延长BF 至G ,使FG BF =,连结EG ,得BFD GFE ∆∆≌,90DBF G ∠=∠=︒,BF=GF,再证ABC BEG ∆∆≌,得2AC BG BF ==.【详解】证明:延长BF 至G ,使FG BF =,连结EG ,在∠BDF 和∠GEF 中,BF=GF BFD=GFE DF=EF ⎧⎪∠∠⎨⎪⎩,∠BDF GEF ∆∆≌ ,∠90DBF G ∠=∠=︒,BF=GF ,∠BG=2BF ,∠BE∠BA ,∠∠C=∠G=90°,∠A=∠EBG ,在∠ABC 和∠BEG 中,C=G A=EBG AB=BE ∠∠⎧⎪∠∠⎨⎪⎩,∠ABC BEG ∆∆≌,∠AC=BG=2BF.【点睛】本题考查全等三角形的判定和性质,熟练掌握全等三角形的判定与性质定理是解题的关键.21.点A 的坐标为()2,1-【解析】【分析】过点A 作AE x ⊥轴于点E ,先证出ACE CBO ∆∆≌,则CE=BO=3,1AE OC ==,根据点A 在第二象限即可得点A 的坐标.【详解】解:过点A 作AE x ⊥轴于点E ,∠在直角坐标系中,点()0,3B -,点()1,0C ,∠BO=3,OC=1,OC∠OB∠,AC BC AC BC =⊥∠OBC ECA ∠=∠ ,BOC CEA ∠=∠∠ACE CBO ∆∆≌,CE BO ∴==3,1AE OC ==,∠点A 在第二象限,∴点A 的坐标为()2,1-.故答案为点A 的坐标为()2,1-.【点睛】本题考查坐标与图形,全等三角形的判定与性质,解题的关键是通过作辅助线构建全等三角形,要注意第二象限点的坐标符号是(-,+).22.见解析【详解】通过证明两个三角形全等,可以证明两条对应线段相等.。

数学初三几何练习题

数学初三几何练习题

数学初三几何练习题第一题:直角三角形的性质已知直角三角形ABC,其中∠C是直角。

请回答以下问题:1. 如果三角形ABC的斜边AC为5 cm,而边AB为4 cm,求边BC 的长度。

2. 如果三角形ABC的斜边AC为13 cm,而边BC为5 cm,求边AB的长度。

3. 如果三角形ABC的边AB为7 cm,而边BC为24 cm,求斜边AC的长度。

解答:1. 根据勾股定理,直角三角形两直角边的平方和等于斜边的平方。

设边BC的长度为x,则根据勾股定理:4² + x² = 5²16 + x² = 25x² = 25 - 16x² = 9x = √9x = 3所以边BC的长度为3 cm。

2. 同样根据勾股定理,设边AB的长度为x,则根据勾股定理: x² + 5² = 13²x² + 25 = 169x² = 169 - 25x² = 144x = √144x = 12所以边AB的长度为12 cm。

3. 同样根据勾股定理,设斜边AC的长度为x,则根据勾股定理: 7² + 24² = x²49 + 576 = x²x² = 625x = √625x = 25所以斜边AC的长度为25 cm。

第二题:相似三角形的性质已知两个三角形ABC和DEF相似,请回答以下问题:1. 如果∠A = 45°,∠B = 60°,∠D = 30°,求∠E的度数。

2. 如果边AC的长度为4 cm,边BC的长度为6 cm,边DE的长度为8 cm,求边EF的长度。

解答:1. 已知两个三角形相似时,对应角度相等。

所以∠A = ∠D = 45°,∠B = ∠E = 60°。

2. 已知相似三角形的对应边长成比例。

设边EF的长度为x,则根据比例关系:AB/DE = BC/EF4/8 = 6/x4x = 48x = 48/4x = 12所以边EF的长度为12 cm。

初中数学几何图形初步基础测试题含答案解析

初中数学几何图形初步基础测试题含答案解析

初中数学几何图形初步基础测试题含答案解析一、选择题1.一个立方体的表面展开图如图所示,将其折叠成立方体后,“你”字对面的字是()A.中B.考C.顺D.利【答案】C【解析】试题解析:正方体的表面展开图,相对的面之间一定相隔一个正方形,“祝”与“考”是相对面,“你”与“顺”是相对面,“中”与“立”是相对面.故选C.考点:正方体展开图.2.如图是由四个正方体组合而成,当从正面看时,则得到的平面视图是()A.B.C.D.【答案】D【解析】【分析】根据从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.根据图中正方体摆放的位置判定则可.【详解】解:从正面看,下面一行是横放3个正方体,上面一行最左边是一个正方体.故选:D.【点睛】本题主要考查三视图的识别,解决本题的关键是要熟练掌握三视图的识别方法.3.如图,一个正六棱柱的表面展开后恰好放入一个矩形内,把其中一部分图形挪动了位置,发现矩形的长留出5cm ,宽留出1,cm 则该六棱柱的侧面积是( )A .210824(3) cm -B .()2108123cm -C .()254243cm -D .()254123cm -【答案】A【解析】【分析】 设正六棱柱的底面边长为acm ,高为hcm ,分别表示出挪动前后所在矩形的长与宽,由题意列出方程求出a =2,h =9−23,再根据六棱柱的侧面积是6ah 求解.【详解】解:设正六棱柱的底面边长为acm ,高为hcm ,如图,正六边形边长AB =acm 时,由正六边形的性质可知∠BAD =30°,∴BD =12a cm ,AD =32a cm , ∴AC =2AD =3a cm ,∴挪动前所在矩形的长为(2h +3a )cm ,宽为(4a +12a )cm , 挪动后所在矩形的长为(h +2a 3a )cm ,宽为4acm , 由题意得:(2h +3)−(h +2a 3a )=5,(4a +12a )−4a =1, ∴a =2,h =9−23∴该六棱柱的侧面积是6ah =6×2×(9−232108(3) cm -;故选:A .【点睛】本题考查了几何体的展开图,正六棱柱的性质,含30度角的直角三角形的性质;能够求出正六棱柱的高与底面边长是解题的关键.4.下面四个图形中,是三棱柱的平面展开图的是( )A .B .C .D .【答案】C【解析】【分析】根据三棱柱的展开图的特点作答.【详解】A 、是三棱锥的展开图,故不是;B 、两底在同一侧,也不符合题意;C 、是三棱柱的平面展开图;D 、是四棱锥的展开图,故不是.故选C .【点睛】本题考查的知识点是三棱柱的展开图,解题关键是熟练掌握常见立体图形的平面展开图的特征.5.一副直角三角板如图放置,其中∠C =∠DFE =90°,∠A =45°,∠E =60°,点F 在CB 的延长线上.若DE ∥CF ,则∠BDF 等于( )A .30°B .25°C .18°D .15° 【答案】D【解析】【分析】根据三角形内角和定理可得45ABC ∠=︒和30EDF ∠=︒,再根据平行线的性质可得45EDB ABC ==︒∠∠,再根据BDF EDB EDF =-∠∠∠,即可求出BDF ∠的度数.【详解】∵∠C =90°,∠A =45°∴18045ABC A C =︒--=︒∠∠∠∵//DE CF∴45EDB ABC ==︒∠∠∵∠DFE =90°,∠E =60°∴18030EDF E DFE =︒--=︒∠∠∠∴15BDF EDB EDF =-=︒∠∠∠故答案为:D .【点睛】本题考查了三角板的角度问题,掌握三角形内角和定理、平行线的性质是解题的关键.6.如图,直线a ∥b ,点B 在直线b 上,且AB ⊥BC ,∠1=55°,那么∠2的度数是( )A .20°B .30°C .35°D .50°【答案】C【解析】【分析】由垂线的性质可得∠ABC=90°,所以∠3=180°﹣90°﹣∠1=35°,再由平行线的性质可得到∠2的度数.【详解】解:由垂线的性质可得∠ABC=90°,所以∠3=180°﹣90°﹣∠1=35°,又∵a ∥b ,所以∠2=∠3=35°.故选C .【点睛】本题主要考查了平行线的性质.7.某包装盒如下图所示,则在下列四种款式的纸片中,可以是该包装盒的展开图的是( )A.B.C.D.【答案】A【解析】【分析】将展开图折叠还原成包装盒,即可判断正确选项.【详解】解:A、展开图折叠后如下图,与本题中包装盒相同,故本选项正确;B、展开图折叠后如下图,与本题中包装盒不同,故本选项错误;C、展开图折叠后如下图,与本题中包装盒不同,故本选项错误;D、展开图折叠后如下图,与本题中包装盒不同,故本选项错误;故选:A.【点睛】本题主要考查了含图案的正方体的展开图,学生要经历一定的实验操作过程,当然学生也可以将操作活动转化为思维活动,在头脑中模拟(想象)折纸、翻转活动,较好地考查了学生空间观念.8.如图,已知圆柱底面的周长为4 dm,圆柱的高为2 dm,在圆柱的侧面上,过点A和点C 嵌有一圈金属丝,则这圈金属丝的周长的最小值为()A.5B.2 dm C.25D.42【答案】D【解析】【分析】要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,根据勾股定理计算即可.【详解】解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC的长度.∵圆柱底面的周长为4dm,圆柱高为2dm,∴AB=2dm,BC=BC′=2dm,∴AC2=22+22=4+4=8,∴2dm,∴这圈金属丝的周长最小为2dm.故选D.【点睛】本题考查了平面展开-最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.9.已知点C在线段AB上,则下列条件中,不能确定点C是线段AB中点的是()A.AC=BC B.AB=2AC C.AC+BC=AB D.12 BC AB【答案】C【解析】【分析】根据线段中点的定义,结合选项一一分析,排除答案.显然A、B、D都可以确定点C是线段AB中点【详解】解:A、AC=BC,则点C是线段AB中点;B、AB=2AC,则点C是线段AB中点;C、AC+BC=AB,则C可以是线段AB上任意一点;D、BC=12AB,则点C是线段AB中点.故选:C.【点睛】本题主要考查线段中点,解决此题时,能根据各选项举出一个反例即可.10.如下图,将直角三角形绕一条边所在直线旋转一周后形成的几何体不可能是()A.B.C.D.【答案】C【解析】【分析】分三种情况讨论,即可得到直角三角形绕一条边所在直线旋转一周后形成的几何体.【详解】解:将直角三角形绕较长直角边所在直线旋转一周后形成的几何体为:将直角三角形绕较短直角边所在直线旋转一周后形成的几何体为:将直角三角形绕斜边所在直线旋转一周后形成的几何体为:故选C.【点睛】本题考查了面动成体,点、线、面、体组成几何图形,点、线、面、体的运动组成了多姿多彩的图形世界.11.如图,某河的同侧有A,B两个工厂,它们垂直于河边的小路的长度分别为=,这两条小路相距5km.现要在河边建立一个抽水站,把水送到BD km=,32AC kmA,B两个工厂去,若使供水管最短,抽水站应建立的位置为()A .距C 点1km 处B .距C 点2km 处 C .距C 点3km 处D .CD 的中点处【答案】B【解析】【分析】 作出点A 关于江边的对称点E ,连接EB 交CD 于P ,则PA PB PE PB EB +=+=,根据两点之间线段最短,可知当供水站在点P 处时,供水管路最短.再利用三角形相似即可解决问题.【详解】作出点A 关于江边的对称点E ,连接EB 交CD 于P ,则PA PB PE PB EB +=+=.根据两点之间线段最短,可知当供水站在点P 处时,供水管路最短.根据PCE PDB ∆∆:,设PC x =,则5PD x =-,根据相似三角形的性质,得 PC CE PD BD =,即253x x =-, 解得2x =.故供水站应建在距C 点2千米处.故选:B .【点睛】本题为最短路径问题,作对称找出点P ,利用三角形相似是解题关键.12.如图,已知ABC ∆的周长是21,OB ,OC 分别平分ABC ∠和ACB ∠,OD BC ^于D ,且4OD =,则ABC ∆的面积是( )A .25米B .84米C .42米D .21米【答案】C【解析】【分析】根据角平分线的性质可得点O 到AB 、AC 、BC 的距离为4,再根据三角形面积公式求解即可.【详解】连接OA∵OB ,OC 分别平分ABC ∠和ACB ∠,OD BC ^于D ,且4OD =∴点O 到AB 、AC 、BC 的距离为4∴ABC AOC OBC ABO S S S S =++△△△△()142AB BC AC =⨯⨯++ 14212=⨯⨯ 42=(米)故答案为:C .【点睛】本题考查了三角形的面积问题,掌握角平分线的性质、三角形面积公式是解题的关键.13.如图,将三个同样的正方形的一个顶点重合放置,如果145∠=°,330∠=°时,那么2∠的度数是( )A .15°B .25°C .30°D .45°【答案】A【解析】【分析】 根据∠2=∠BOD+EOC-∠BOE ,利用正方形的角都是直角,即可求得∠BOD 和∠EOC 的度数从而求解.【详解】∵∠BOD=90°-∠3=90°-30°=60°,∠EOC=90°-∠1=90°-45°=45°,∵∠2=∠BOD+∠EOC-∠BOE ,∴∠2=60°+45°-90°=15°.故选:A .【点睛】此题考查余角和补角,正确理解∠2=∠BOD+EOC-∠BOE 这一关系是解题的关键.14.如图,点C 是射线OA 上一点,过C 作CD ⊥OB ,垂足为D ,作CE ⊥OA ,垂足为C ,交OB 于点E ,给出下列结论:①∠1是∠DCE 的余角;②∠AOB =∠DCE ;③图中互余的角共有3对;④∠ACD =∠BEC ,其中正确结论有( )A .①②③B .①②④C .①③④D .②③④【答案】B【解析】【分析】 根据垂直定义可得BCA 90∠=o ,ADC BDC ACF 90∠∠∠===o ,然后再根据余角定义和补角定义进行分析即可.【详解】解:CE OA ⊥Q ,OCE 90o ∠∴=,ECD 190∠∠∴+=o ,1∠∴是ECD ∠的余角,故①正确;CD OB ⊥Q ,AOB COCE 90∠∠∴==o ,AOB OEC 90∠∠∴+=o ,DCE OEC 90∠∠+=o ,B BAC 90∠∠∴+=o ,1ACD 90∠∠+=o ,AOB DCE ∠∠∴=,故②正确;1AOB 1DCE DCE CED AOB CED 90∠∠∠∠∠∠∠∠+=+=+=+=o Q , ∴图中互余的角共有4对,故③错误;ACD 90DCE ∠∠=+o Q ,BEC 90AOB ∠∠=+o ,AOB DCE ∠∠=Q ,ACD BEC ∠∠∴=,故④正确.正确的是①②④;故选B .【点睛】考查了余角和补角,关键是掌握两角之和为90o 时,这两个角互余,两角之和为180o 时,这两个角互补.15.已知直线m ∥n ,将一块含30°角的直角三角板按如图所示方式放置(∠ABC =30°),并且顶点A ,C 分别落在直线m ,n 上,若∠1=38°,则∠2的度数是( )A .20°B .22°C .28°D .38°【答案】B【解析】【分析】 过C 作CD ∥直线m ,根据平行线的性质即可求出∠2的度数.【详解】解:过C 作CD ∥直线m ,∵∠ABC =30°,∠BAC =90°,∴∠ACB =60°,∵直线m ∥n ,∴CD ∥直线m ∥直线n ,∴∠1=∠ACD ,∠2=∠BCD ,∵∠1=38°,∴∠ACD =38°,∴∠2=∠BCD =60°﹣38°=22°,故选:B .【点睛】本题考查了平行线的计算问题,掌握平行线的性质是解题的关键.16.下列图形中,是圆锥的侧面展开图的为( )A .B .C .D .【答案】B【解析】【分析】 根据圆锥的侧面展开图的特点作答.【详解】圆锥的侧面展开图是光滑的曲面,没有棱,只是扇形.故选B .【点睛】考查了几何体的展开图,圆锥的侧面展开图是扇形.17.如图,将一副三角板如图放置,∠COD=28°,则∠AOB 的度数为( )A .152°B .148°C .136°D .144°【答案】A【解析】【分析】 根据三角板的性质得90AOD BOC ∠=∠=︒,再根据同角的余角相等可得62AOC BOD ==︒∠∠,即可求出∠AOB 的度数.【详解】∵这是一副三角板∴90AOD BOC ∠=∠=︒∵28COD =︒∠∴62AOC BOD ==︒∠∠∴62+28+62=152AOB AOC COD BOD =++=︒︒︒︒∠∠∠∠故答案为:A .【点睛】本题考查了三角板的度数问题,掌握三角板的性质、同角的余角相等是解题的关键.18.如图,在ABC V 中,90C ∠=︒,30B ∠=︒,如图:(1)以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ;(2)分别以M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ;(3)连结AP 并延长交BC 于点D .根据以上作图过程,下列结论中错误的是( )A .AD 是BAC ∠的平分线B .60ADC ∠=︒ C .点D 在AB 的中垂线上D .:1:3DAC ABD S S =△△【答案】D【解析】【分析】 根据作图的过程可以判定AD 是∠BAC 的角平分线;利用角平分线的定义可以推知∠CAD=30°,则由直角三角形的性质来求∠ADC 的度数;利用等角对等边可以证得△ADB 的等腰三角形,由等腰三角形的“三线合一”的性质可以证明点D 在AB 的中垂线上;利用30度角所对的直角边是斜边的一半、三角形的面积计算公式来求两个三角形的面积之比.【详解】解:A 、根据作图方法可得AD 是∠BAC 的平分线,正确;B 、∵∠C=90°,∠B=30°,∴∠CAB=60°,∵AD 是∠BAC 的平分线,∴∠DAC=∠DAB=30°,∴∠ADC=60°,正确;C 、∵∠B=30°,∠DAB=30°,∴AD=DB ,∴点D 在AB 的中垂线上,正确;D 、∵∠CAD=30°,∴CD=12AD , ∵AD=DB ,∴CD=12DB ,∴CD=13 CB,S△ACD=12CD•AC,S△ACB=12CB•AC,∴S△ACD:S△ACB=1:3,∴S△DAC:S△ABD≠1:3,错误,故选:D.【点睛】本题考查了角平分线的性质、线段垂直平分线的性质以及作图—基本作图.解题时,需要熟悉等腰三角形的判定与性质.19.如图,DE∥BC,BE平分∠ABC,若∠1=70°,则∠CBE的度数为()A.20°B.35°C.55°D.70°【答案】B【解析】【分析】根据平行线的性质可得∠1=∠ABC=70°,再根据角平分线的定义可得答案.【详解】∵DE∥BC,∴∠1=∠ABC=70°,∵BE平分∠ABC,∴1352CBE ABC∠=∠=︒,故选:B.【点睛】此题主要考查了平行线的性质,以及角平分线的定义,解题的关键是掌握两直线平行,内错角相等.20.如图,如果用剪刀沿直线将一个正方形图片剪掉一部分,发现剩下部分的周长比原正方形图片的周长要小,能正确解释这一现象的数学知识是()A.线段比曲线短B.经过一点有无数条直线C.经过两点,有且仅有一条直线D.两点之间,线段最短【答案】D【解析】【分析】如下图,只需要分析AB+BC<AC即可【详解】∵线段AC是点A和点C之间的连线,AB+BC是点A和点C经过弯折后的路径又∵两点之间线段最短∴AC<AB+BC故选:D【点睛】本题考查两点之间线段最短,在应用的过程中,要弄清楚线段长度表示的是哪两个点之间的距离。

初中数学几何图形初步基础测试题附答案解析(1)

初中数学几何图形初步基础测试题附答案解析(1)

初中数学几何图形初步基础测试题附答案解析(1)一、选择题1.如图,已知ABC ∆的周长是21,OB ,OC 分别平分ABC ∠和ACB ∠,OD BC ^于D ,且4OD =,则ABC ∆的面积是( )A .25米B .84米C .42米D .21米【答案】C【解析】【分析】 根据角平分线的性质可得点O 到AB 、AC 、BC 的距离为4,再根据三角形面积公式求解即可.【详解】连接OA∵OB ,OC 分别平分ABC ∠和ACB ∠,OD BC ^于D ,且4OD =∴点O 到AB 、AC 、BC 的距离为4∴ABC AOC OBC ABO S S S S =++△△△△()142AB BC AC =⨯⨯++ 14212=⨯⨯ 42=(米)故答案为:C .【点睛】本题考查了三角形的面积问题,掌握角平分线的性质、三角形面积公式是解题的关键.2.如图,AB∥CD,EF平分∠GED,∠1=50°,则∠2=()A.50°B.60°C.65°D.70°【答案】C【解析】【分析】由平行线性质和角平分线定理即可求.【详解】∵AB∥CD∴∠GEC=∠1=50°∵EF平分∠GED∴∠2=∠GEF= 12∠GED=12(180°-∠GEC)=65°故答案为C.【点睛】本题考查的知识点是平行线性质和角平分线定理,解题关键是熟记角平分线定理.3.如图,是某个几何体从不同方向看到的形状图(视图),这个几何体的表面能展开成下面的哪个平面图形?()A.B.C.D.【答案】D【解析】【分析】根据三视图可判断这个几何体的形状;再由平面图形的折叠及立体图形的表面展开图的特点解题.【详解】解:根据三视图可判断这个几何体是圆柱;D 选项平面图一个长方形和两个圆折叠后,能围成的几何体是圆柱.A 选项平面图折叠后是一个圆锥;B 选项平面图折叠后是一个正方体;C 选项平面图折叠后是一个三棱柱.故选:D.【点睛】本题考查由三视图判断几何体及展开图折叠成几何体,熟记常见几何体的平面展开图的特征,是解决此类问题的关键.4.将一副三角板如下图放置,使点A 落在DE 上,若BC DE P ,则AFC ∠的度数为( )A .90°B .75°C .105°D .120°【答案】B【解析】【分析】 根据平行线的性质可得30E BCE ==︒∠∠,再根据三角形外角的性质即可求解AFC ∠的度数.【详解】∵//BC DE∴30E BCE ==︒∠∠∴453075AFC B BCE =+=︒+︒=︒∠∠∠故答案为:B .【点睛】本题考查了三角板的角度问题,掌握平行线的性质、三角形外角的性质是解题的关键.5.一副直角三角板如图放置,其中∠C =∠DFE =90°,∠A =45°,∠E =60°,点F 在CB 的延长线上.若DE ∥CF ,则∠BDF 等于( )A .30°B .25°C .18°D .15° 【答案】D【解析】【分析】根据三角形内角和定理可得45ABC ∠=︒和30EDF ∠=︒,再根据平行线的性质可得45EDB ABC ==︒∠∠,再根据BDF EDB EDF =-∠∠∠,即可求出BDF ∠的度数.【详解】∵∠C =90°,∠A =45°∴18045ABC A C =︒--=︒∠∠∠∵//DE CF∴45EDB ABC ==︒∠∠∵∠DFE =90°,∠E =60°∴18030EDF E DFE =︒--=︒∠∠∠∴15BDF EDB EDF =-=︒∠∠∠故答案为:D .【点睛】本题考查了三角板的角度问题,掌握三角形内角和定理、平行线的性质是解题的关键.6.如图为一直棱柱,其底面是三边长为5、12、13的直角三角形.若下列选项中的图形均由三个矩形与两个直角三角形组合而成,且其中一个为如图的直棱柱的展开图,则根据图形中标示的边长与直角记号判断,此展开图为何?( )A .B .C .D .【答案】D【解析】分析:三棱柱的侧面展开图是长方形,底面是三角形,据此进行判断即可.详解:A 选项中,展开图下方的直角三角形的斜边长为12,不合题意;B 选项中,展开图上下两个直角三角形中的直角边不能与其它棱完全重合,不合题意;C选项中,展开图下方的直角三角形中的直角边不能与其它棱完全重合,不合题意;D选项中,展开图能折叠成一个三棱柱,符合题意;故选:D.点睛:本题主要考查了几何体的展开图,从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.7.某包装盒如下图所示,则在下列四种款式的纸片中,可以是该包装盒的展开图的是()A.B.C.D.【答案】A【解析】【分析】将展开图折叠还原成包装盒,即可判断正确选项.【详解】解:A、展开图折叠后如下图,与本题中包装盒相同,故本选项正确;B、展开图折叠后如下图,与本题中包装盒不同,故本选项错误;C、展开图折叠后如下图,与本题中包装盒不同,故本选项错误;D、展开图折叠后如下图,与本题中包装盒不同,故本选项错误;故选:A.【点睛】本题主要考查了含图案的正方体的展开图,学生要经历一定的实验操作过程,当然学生也可以将操作活动转化为思维活动,在头脑中模拟(想象)折纸、翻转活动,较好地考查了学生空间观念.8.如图,是一个正方体的表面展开图,将其折成正方体后,则“扫”的对面是()A.黑B.除C.恶D.☆【答案】B【解析】【分析】正方体的空间图形,从相对面入手,分析及解答问题.【详解】解:将其折成正方体后,则“扫”的对面是除.故选B.【点睛】本题考查了正方体的相对面的问题.能够根据正方体及其表面展开图的特点,找到相对的面是解题的关键.9.已知点C在线段AB上,则下列条件中,不能确定点C是线段AB中点的是()A.AC=BC B.AB=2AC C.AC+BC=AB D.12 BC AB【答案】C【解析】【分析】根据线段中点的定义,结合选项一一分析,排除答案.显然A、B、D都可以确定点C是线段AB中点【详解】解:A、AC=BC,则点C是线段AB中点;B、AB=2AC,则点C是线段AB中点;C、AC+BC=AB,则C可以是线段AB上任意一点;D、BC=12AB,则点C是线段AB中点.故选:C.【点睛】本题主要考查线段中点,解决此题时,能根据各选项举出一个反例即可.10.如图,在ABC V 中,90C ∠=︒,AD 是BAC ∠的平分线,O 是AB 上一点,以OA 为半径的O e 经过点D .若5BD =,3DC =,则AC 的长为( )A .6B .43C .532-D .8【答案】A【解析】【分析】 过点D 作DE AB ⊥于E ,可证ADE ADC △△≌,所以AE AC =,3DE DC ==.又5BD =,利用勾股定理可求得4BE =.设AC AE x ==.因为90C ∠=︒,再利用勾股定理列式求解即可.【详解】解:过点D 作DE AB ⊥于E ,∵90C ∠=︒,AD 是BAC ∠的平分线,∴ADE ADC △△≌,∴AE AC =,3DE DC ==.∵5BD =,∴4BE =,设AC AE x ==.因为90C ∠=︒,∴由勾股定理可得222BC AC AB +=,即2228(4)x x +=+,解得6x =,即6AC =.故选:A .【点睛】本题主要考查圆的相关知识.掌握角平分线的性质以及熟练应用勾股定理是解此题的关键.11.如图,已知点P (0,3) ,等腰直角△ABC 中,∠BAC=90°,AB=AC ,BC =2,BC 边在x 轴上滑动时,PA +PB 的最小值是 ( )A .102+B .26C .5D .26【答案】B【解析】【分析】 过点P 作PD ∥x 轴,做点A 关于直线PD 的对称点A´,延长A´ A 交x 轴于点E ,则当A´、P 、B 三点共线时,PA +PB 的值最小,根据勾股定理求出A B '的长即可.【详解】如图,过点P 作PD ∥x 轴,做点A 关于直线PD 的对称点A´,延长A´A 交x 轴于点E ,则当A´、P 、B 三点共线时,PA +PB 的值最小,∵等腰直角△ABC 中,∠BAC=90°,AB=AC ,BC =2,∴AE=BE=1,∵P (0,3) ,∴A A´=4, ∴A´E=5, ∴22221526A B BE A E ''+=+故选B.【点睛】本题考查了勾股定理,轴对称-最短路线问题的应用,解此题的关键是作出点A 关于直线PD 的对称点,找出PA +PB 的值最小时三角形ABC 的位置.12.如图将两块三角板的直角顶点重叠在一起,DOB ∠与DOA ∠的比是2:11,则BOC ∠的度数为( )A .45︒B .60︒C .70︒D .40︒【答案】C【解析】【分析】 设∠DOB=2x ,则∠DOA=11x ,可推导得到∠AOB=9x=90°,从而得到角度大小【详解】∵∠DOB 与∠DOA 的比是2:11∴设∠DOB=2x ,则∠DOA=11x∴∠AOB=9x∵∠AOB=90°∴x=10°∴∠BOD=20°∴∠COB=70°故选:C【点睛】本题考查角度的推导,解题关键是引入方程思想,将角度推导转化为计算的过程,以便简化推导13.一把直尺和一块三角板ABC (含30°,60°角)的摆放位置如图,直尺一边与三角板的两直角边分别交于点D 、点E ,另一边与三角板的两直角边分别交于点F 、点A ,且∠CED =50°,那么∠BAF =( )A .10°B .50°C .45°D .40° 【答案】A【解析】【分析】先根据∠CED =50°,DE ∥AF ,即可得到∠CAF =50°,最后根据∠BAC =60°,即可得出∠BAF 的大小.【详解】∵DE ∥AF ,∠CED =50°,∴∠CAF =∠CED =50°,∵∠BAC =60°,∴∠BAF =60°﹣50°=10°,故选:A .【点睛】此题考查平行线的性质,几何图形中角的和差关系,掌握平行线的性质是解题的关键.14.如图,将三个同样的正方形的一个顶点重合放置,如果145∠=°,330∠=°时,那么2∠的度数是( )A .15°B .25°C .30°D .45°【答案】A【解析】【分析】 根据∠2=∠BOD+EOC-∠BOE ,利用正方形的角都是直角,即可求得∠BOD 和∠EOC 的度数从而求解.【详解】∵∠BOD=90°-∠3=90°-30°=60°,∠EOC=90°-∠1=90°-45°=45°,∵∠2=∠BOD+∠EOC-∠BOE ,∴∠2=60°+45°-90°=15°.故选:A .【点睛】此题考查余角和补角,正确理解∠2=∠BOD+EOC-∠BOE 这一关系是解题的关键.15.如图,已知AB∥DC,BF平分∠ABE,且BF∥DE,则∠ABE与∠CDE的关系是()A.∠ABE=2∠CDE B.∠ABE=3∠CDEC.∠ABE=∠CDE+90°D.∠ABE+∠CDE=180°【答案】A【解析】【分析】延长BF与CD相交于M,根据两直线平行,同位角相等可得∠M=∠CDE,再根据两直线平行,内错角相等可得∠M=∠ABF,从而求出∠CDE=∠ABF,再根据角平分线的定义解答.【详解】解:延长BF与CD相交于M,∵BF∥DE,∴∠M=∠CDE,∵AB∥CD,∴∠M=∠ABF,∴∠CDE=∠ABF,∵BF平分∠ABE,∴∠ABE=2∠ABF,∴∠ABE=2∠CDE.故选:A.【点睛】本题考查了平行线的性质和角平分线的定义,作辅助线,是利用平行线的性质的关键,也是本题的难点.16.如图,点C是射线OA上一点,过C作CD⊥OB,垂足为D,作CE⊥OA,垂足为C,交OB于点E,给出下列结论:①∠1是∠DCE的余角;②∠AOB=∠DCE;③图中互余的角共有3对;④∠ACD=∠BEC,其中正确结论有( )A .①②③B .①②④C .①③④D .②③④【答案】B【解析】【分析】 根据垂直定义可得BCA 90∠=o ,ADC BDC ACF 90∠∠∠===o ,然后再根据余角定义和补角定义进行分析即可.【详解】解:CE OA ⊥Q ,OCE 90o ∠∴=,ECD 190∠∠∴+=o ,1∠∴是ECD ∠的余角,故①正确;CD OB ⊥Q ,AOB COCE 90∠∠∴==o ,AOB OEC 90∠∠∴+=o ,DCE OEC 90∠∠+=o ,B BAC 90∠∠∴+=o ,1ACD 90∠∠+=o ,AOB DCE ∠∠∴=,故②正确;1AOB 1DCE DCE CED AOB CED 90∠∠∠∠∠∠∠∠+=+=+=+=o Q , ∴图中互余的角共有4对,故③错误;ACD 90DCE ∠∠=+o Q ,BEC 90AOB ∠∠=+o ,AOB DCE ∠∠=Q ,ACD BEC ∠∠∴=,故④正确.正确的是①②④;故选B .【点睛】考查了余角和补角,关键是掌握两角之和为90o 时,这两个角互余,两角之和为180o 时,这两个角互补.17.如图是正方体的表面展开图,请问展开前与“我”字相对的面上的字是( )A .是B .好C .朋D .友【答案】A【解析】【分析】 正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“我”与“是”是相对面,“们”与“朋”是相对面,“好”与“友”是相对面.故选:A .【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.18.如图:点 C 是线段 AB 上的中点,点 D 在线段 CB 上,若AD=8,DB=3AD 4,则CD 的长为( )A .4B .3C .2D .1 【答案】D【解析】【分析】根据线段成比例求出DB 的长度,即可得到AB 的长度,再根据中点平分线段的长度可得AC 的长度,根据CD AD AC =-即可求出CD 的长度.【详解】∵38,4AD DB AD ==∴6DB =∴14AB AD DB =+=∵点 C 是线段 AB 上的中点∴172AC AB == ∴1CD AD AC =-=故答案为:D .【点睛】本题考查了线段的长度问题,掌握成比例线段的性质、中点平分线段的长度是解题的关键.19.若∠AOB =60°,∠AOC =40°,则∠BOC等于()A.100°B.20°C.20°或100°D.40°【答案】C【解析】【分析】画出符合题意的两个图形,根据图形即可得出答案.【详解】解: 如图1,当∠AOC在∠AOB的外部时,∵∠AOB=60°,∠AOC=40°∴∠BOC=∠AOB+∠AOC=60°+40°=100°如图2,当∠AOC在∠AOB的内部时,∵∠AOB=60°,∠AOC=40°∴∠BOC=∠AOB-∠AOC=60°-40°=20°即∠BOC的度数是100°或20°故选:C【点睛】本题考查了角的有关计算的应用,主要考查学生根据图形进行计算的能力,分类讨论思想和数形结合思想的运用.20.如果圆柱的母线长为5cm,底面半径为2cm,那么这个圆柱的侧面积是()A.10cm2B.10πcm2C.20cm2D.20πcm2【答案】D【解析】【分析】根据圆柱的侧面积=底面周长×高.【详解】根据圆柱的侧面积计算公式可得π×2×2×5=20πcm2,故选D.【点睛】本题考查了圆柱的计算,解题的关键是熟练掌握圆柱侧面积公式.。

初二几何基础练习题

初二几何基础练习题

初二几何基础练习题一、选择题1. 下列哪个图形是正方形?A. △ABCB. ⍖ABCDC. △XYZ2. 图中所示的平行四边形的对角线相交于点P,那么下列哪个说法是正确的?A. AP = CPB. BP = DPC. ∠CPD = ∠DPC3. 已知⍖ABCD是一个菱形,那么下列哪条命题是错误的?A. 边AB平行于边BCB. 所有边相等C. 对角线相互垂直4. 如图所示,⍖ABCD是一个梯形,AB || DC,AD ⊥ AB,∠BAD = 60°,那么∠CDA等于多少?A. 30°B. 60°C. 120°5. 在直角三角形中,斜边√2倍于一直角边,则直角三角形的两个锐角分别是:A. 30°、60°B. 45°、45°C. 60°、30°二、填空题1. “等边三角形”的特点是__________________。

2. 两条互相垂直的直线之间的夹角是__________________度。

3. 在一个等腰直角三角形中,两个锐角的度数分别为__________________度。

4. 如果两条线段相交且互相垂直,那么相交的两条线段分别称为__________________。

三、解答题1. 判断下列三角形是否为等腰三角形,并说明理由。

Ⓐ△ABC,AB = BC,∠ABC = 45°Ⓑ△DEF,DE = DF,∠FDE = 60°2. 已知⍖ABCD是一个平行四边形,E、F分别是边AB和边CD上的点,且AE : EB = 2 : 3,CF : FD = 3 : 4。

连接AF并延长与边BC相交于点G,求证:AG = 2BG。

四、应用题1. 如图所示,圆O的半径为3cm,点A是圆心,点B、C、D、E 是圆上的四个点,连接AB、AC、AD、AE。

请回答以下问题:(1)圆心角∠ACB的度数是多少?(2)⍖ABCDE是一个什么图形?(3)∠AED是该图形的内角还是外角?其度数是多少?2. 如图所示,⍖ABCD是一个矩形,AB = 6cm,BC = 8cm。

初中数学几何图形初步技巧及练习题附答案

初中数学几何图形初步技巧及练习题附答案
A.①B.②C.③D.④
【答案】B
【解析】
【分析】
依据直线的性质、两点间的距离、线段的性质以及中点的定义进行判断即可.
【详解】
①过两点有且只有一条直线,正确;
②连接两点的线段的长度叫两点间的距离,错误
③两点之间线段最短,正确;
④点B在线段AC上,如果AB=BC,则点B是线段AC的中点,正确;
故选B.
考查了展开图与折叠成几何体的性质,从实物出发,然后再从给定的图形中辨认它们能否折叠成给定的立体图形是解题关键.
8.在直角三角形ABC中,∠C=90°,AD平分∠BAC交BC于点D,BE平分∠ABC交AC于点E,AD、BE相交于点F,过点D作DG∥AB,过点B作BG⊥DG交DG于点G.下列结论:①∠AFB=135°;②∠BDG=2∠CBE;③BC平分∠ABG;④∠BEC=∠FBG.其中正确的个数是()
本题主要考查线段中点,解决此题时,能根据各选项举出一个反例即可.
10.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是( )
A.主视图B.俯视图C.左视图D.一样大
【答案】C
【解析】
如图,该几何体主视图是由5个小正方形组成,
左视图是由3个小正方形组成,
俯视图是由5个小正方形组成,
A.1个B.2个C.3个D.4个
【答案】C
【解析】
【分析】
根据角平分线性质、三角形内角和定理以及平行线的性质,即可判定①②正确;根据等角的余角相等,即可判定④正确.
【详解】
∵AD平分∠BAC交BC于点D,BE平分∠ABC交AC于点E,
∴∠BAF= ∠BAC,∠ABF= ∠ABC,
又∵∠C=90°,
∴∠ABC+∠BAC=90°,

《常考题》初中七年级数学上册第四单元《几何图形初步》基础卷(含答案解析)

《常考题》初中七年级数学上册第四单元《几何图形初步》基础卷(含答案解析)

一、选择题1.如图,已知点C 为线段AB 的中点,则①AC =BC ;②AC =12AB ;③BC =12AB ;④AB =2AC ;⑤AB =2BC ,其中正确的个数是( )A .2B .3C .4D .5 2.点 A 、B 、C 在同一条数轴上,其中点 A 、B 表示的数分别为﹣3、1,若 BC =2,则 AC等于( )A .3B .2C .3 或 5D .2 或 6 3.α∠和β∠的顶点和一边都重合,另一边都在公共边的同侧,且αβ∠>∠,那么α∠的另一半落在β∠的( )A .另一边上B .内部;C .外部D .以上结论都不对 4.观察下列图形,其中不是正方体的表面展开图的是( ) A . B .C .D .5.如图,工作流程线上A 、B 、C 、D 处各有一名工人,且AB=BC=CD=1,现在工作流程线上安放一个工具箱,使4个人到工具箱的距离之和为最短,则工具箱安放的位置( )A .线段BC 的任意一点处B .只能是A 或D 处C .只能是线段BC 的中点E 处D .线段AB 或CD 内的任意一点处6.如图,点O 在直线AB 上且OC ⊥OD ,若∠COA=36°则∠DOB 的大小为( )A .36°B .54°C .64°D .72° 7.计算:135333030306︒︒''''⨯-÷的值为( ) A .335355︒'''B .363355︒'''C .63533︒'''D .53533︒''' 8.α∠与β∠的度数分别是219m -和77m -,且α∠与β∠都是γ∠的补角,那么α∠与β∠的关系是( ).A .不互余且不相等B .不互余但相等C .互为余角但不相等D .互为余角且相等 9.如图,AD 是△ABC 的角平分线,点O 在AD 上,且OE ⊥BC 于点E ,∠BAC=60°,∠C=80°,则∠EOD 的度数为( )A .20°B .30°C .10°D .15° 10.如图,C ,D 是线段AB 上的两点,E 是AC 的中点,F 是BD 的中点,若EF =m ,CD =n ,则AB =( )A .m ﹣nB .m +nC .2m ﹣nD .2m +n11.已知α∠和β∠互补,且αβ∠>∠,则有下列式子:①90β︒-∠;②90α∠-︒;③()12αβ∠+∠;④()12αβ∠-∠;⑤()1902α∠-︒;其中,表示β∠的余角的式子有( ) A .4个 B .3个 C .2个D .1个 12.已知线段AB=8cm ,在直线AB 上画BC ,使BC=2cm ,则线段AC 的长度是( ) A .6cm B .10cm C .4cm 或10cm D .6cm 或10cm 13.如图所示,在∠AOB 的内部有3条射线,则图中角的个数为( ).A .10B .15C .5D .20 14.用一个平面去截正方体,所得截面是三角形,留下较大的几何体一定有( ) A .7个面 B .15条棱 C .7个顶点 D .10个顶点 15.下列图形中,是圆锥的表面展开图的是( )A .B .C .D .二、填空题16.线段AB =12cm ,点C 在线段AB 上,且AC =13BC ,M 为BC 的中点,则AM 的长为_______cm.17.线段3AB cm =,在线段AB 的延长线上截取1BC cm =,则AC =__________. 18.长方体、四面体、圆柱、圆锥、球等都是_____,简称____.包围着体的是______.面有____的面与______的面两种.19.某产品的形状是长方体,长为8cm,它的展开图如图所示,则长方体的体积为_____cm3.20.看图填空.(1)AC=AD-_______=AB+_______,(2)BC+CD=_______=_______-AB,(3)AD=AC+___.21.如图所示,填空:∠=∠+_________;(1)AOB AOC∠=∠-_________=_________-_________;(2)COB COD∠+∠-∠=_________.(3)AOB COD AOD22.科学知识是用来为人类服务的,我们应该把它们用于有意义的方面.下面的这两个情景,请你做出判断.情景一:如图,从教学楼到图书馆,总有少数同学不走人行道而横穿草坪,这是为什么呢?试用所.学数学知识来说明这个问题:_______________________________________________.情景二:农民兴修水利,开挖水渠,先在两端立桩拉线,然后沿线开挖,请你说出其中的道理:_______________________________________________________________________________ _.你赞同以上哪种做法,你认为应用科学知识为人类服务时应注意什么?23.如图,点C 是线段AB 上一点,点M ,N ,P 分别是线段AC ,BC ,AB 的中点.若3AC =,1CP =,则线段PN 的长为________.24.一个圆的周长是62.8m ,半径增加了2m 后,面积增加了____2m .(π取3.14) 25.如图所示,O 是直线AB 上一点,OD 平分∠BOC, ∠COE =90°,若∠AOC =40°,则∠DOE =_________.26.已知线段MN=16cm ,点P 为任意一点,那么线段MP 与NP 和的最小值是_____cm .三、解答题27.如图,是一个几何体的表面展开图.(1)该几何体是________;A .正方体B .长方体C .三棱柱D .四棱锥(2)求该几何体的体积.28.如图,已知点C 为线段AB 上一点,15cm AC =,35CB AC =,D ,E 分别为线段AC ,AB 的中点,求线段DE 的长.29.如图,∠AOB=∠DOC=90°,OE 平分∠AOD ,反向延长射线OE 至F.(1)∠AOD 和∠BOC 是否互补?说明理由;(2)射线OF是∠BOC的平分线吗?说明理由;(3)反向延长射线OA至点G,射线OG将∠COF分成了4:3的两个角,求∠AOD.30.如图,已知线段a和b,直线AB和CD相交于点O.利用尺规,按下列要求作图(只保留作图痕迹即可):(1)在射线OA,OB,OC上作线段OA′,OB′,OC′,使它们分别与线段a相等;(2)在射线OD上作线段OD′,使OD′与线段b相等;(3)连接A′C′,C′B′,B′D′,D′A′.。

初二几何练习题与答案

初二几何练习题与答案

初二几何练习题与答案几何学是数学中的一个重要分支,它研究的是形状、大小、相对位置以及其他属性。

对于初二学生来说,几何学的学习尤为关键,因为它是后续高阶数学知识的基础。

为了帮助同学们更好地掌握几何学知识,本文将提供一些初二几何练习题及其答案。

练习题一:平行线与角的关系1. 若两条平行线被一条截线切割,形成的相邻角互补,那么这两条平行线之间的夹角是多少度?答案:180度。

练习题二:三角形内角和定理2. 已知三角形ABC的一个内角为70度,另外两个内角分别为x度和y度。

求x+y的值。

答案:x+y = 180度 - 70度 = 110度。

练习题三:正方形的性质3. 若ABCD是一个正方形,且边长为5cm,求对角线AC的长度。

答案:正方形的对角线长度等于边长的平方根的两倍,即AC = 5√2 cm。

练习题四:平行四边形的性质4. 若ABCD是一个平行四边形,且AB = 6cm,BC = 8cm,求对角线AC的长度。

答案:平行四边形的对角线相等,即AC = BD。

根据勾股定理可得AC的长度为√(AB^2 + BC^2) = √(6^2 + 8^2) = 10cm。

练习题五:圆的周长与面积5. 已知一个圆的半径为3cm,求其周长和面积。

答案:圆的周长等于2πr,其中r为半径。

所以,该圆的周长为2π×3 = 6π cm。

圆的面积等于πr^2,所以该圆的面积为π×3^2 = 9πcm^2。

练习题六:直角三角形的勾股定理6. 在直角三角形ABC中,已知AB = 5cm,BC = 12cm,求AC的长度。

答案:根据勾股定理可得AC的长度为√(AB^2 + BC^2) = √(5^2 +12^2) = 13cm。

练习题七:相似三角形7. 已知三角形ABC与三角形EDF相似,且AB = 6cm,BC = 8cm,DE = 9cm。

求EF的长度。

答案:由相似三角形的性质可知,相似三角形的对应边长度之比相等。

初中的几何基础专的题目

初中的几何基础专的题目

图形的初步认识与三角形1.下列图形中,∠1与∠2互为补角的是( )2.(2016·宜昌)如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( ) A .垂线段最短B .经过一点有无数条直线C .经过两点,有且仅有一条直线D .两点之间,线段最短3.(2015·红河州模拟)如图,AF 是∠BAC 的平分线,EF ∥AC 交AB 于点E.若∠1=25°,则∠BAF 的度数为( )A .15°B .50°C .25°D .12.5°4.下列命题中,是真命题的是( ) A .同位角相等B .过一点有且只有一条直线与已知直线垂直C .平行于同一条直线的两条直线平行D .连接两点之间的线段叫做两点之间的距离5.(2016·云南考试说明)若AB ⊥CD 于点B ,BE 是∠ABD 的平分线,则∠ABE 的度数为 .6.(2016·富源县模拟)如图,Rt △ABC 中,∠C =90°,若BC =10,AD 平分∠BAC 交BC 于点D ,且BD ∶CD =3∶2,则点D 到线段AB 的距离为 .7.(2016·云南省剑川县模拟)说明命题“x >-4,则x 2>16”是假命题的一个反例可以是x = .8.(2016·富源县模拟)如图,AB ∥CD ,AC ⊥BC ,垂足为 C.若∠A =40°,则∠BCD = 度.9.(2016·云南考试说明)在线段AB 的延长线上取点C ,使BC =2AB ,M 是线段AC 的中点,若AB =30 cm ,则线段BM 的长为cm.10.(2016·淄博)如图,一个由4条线段构成的“鱼”形图案,其中∠1=50°,∠2=50°,∠3=130°,找出图中的平行线,并说明理由.11.(2016·曲靖市罗平县模拟)如图,AD ∥BC ,∠B =30°,DB 平分∠ADE ,则∠DEC 的度数为( )A .30°B .60°C .90°D .120°12.(2016·深圳)如图,已知a ∥b ,直角三角板的直角顶点在直线b 上,若∠1=60°,则下列结论错误的是( )A .∠2=60°B .∠3=60°C .∠4=120°D .∠5=40°13.(2016·云南模拟)如图,AB ∥DE ,∠B =30°,∠C =110°,∠D 的度数为( )A .115°B .120°C .100°D .80°14.两条直线相交只有1个交点,三条直线相交最多有3个交点,四条直线相交最多有6个交点,…,十条直线相交最多有 个交点.15.如图,已知∠1=∠2,∠3=71°,则∠4的度数是( )A .19°B .71°C .109°D .119°1.(2015·宜昌)下列图形具有稳定性的是( )A .正方形B .矩形C .平行四边形D .直角三角形 2.(2016·贵港)在△ABC 中,若∠A =95°,∠B =40°,则∠C 的度数为( C ) A .35° B .40° C .45° D .50° 3.(2016·云南省楚雄州模拟)如图,AB ∥CD ,点E 在线段BC 上,若∠1=40°,∠2=30°,则∠3的度数是( )A .70°B .60°C .55°D .50°4.(2016·乐山)如图,CE 是△ABC 的外角∠ACD 的平分线,若∠B =35°,∠ACE =60°,则∠A =( )A .35°B .95°C .85°D .75°5.(2015·山西)如图,在△ABC 中,点D ,E 分别是边AB ,BC 的中点,若△DBE 的周长是6,则△ABC 的周长是( )A .8B .10C .12D .146.(2015·绵阳)如图,在△ABC 中,∠ABC ,∠ACB 的平分线BE ,CD 相交于点F ,∠ABC =42°,∠A =60°,则∠BFC =( )A .118°B .119°C .120°D .121°7.(2015·衡阳)如图所示,小明为了测量学校里一池塘的宽度AB ,选取可以直达A 、B 两点的点O 处,再分别取OA ,OB 的中点M ,N ,量得MN =20 m ,则池塘的宽度AB 为m.8.(2016·淮安)已知一个等腰三角形的两边长分别为2和4,则该等腰三角形的周长是 .9.如图,在△BCD中,BC=4,BD=5.(1)求CD的取值范围;(2)若AE∥BD,∠A=55°,∠BDE=125°,求∠C的度数.10.(2016·盐城)若a、b、c为△ABC的三边长,且满足|a-4|+b-2=0,则c的值可以为( )A.5 B.6 C.7 D.811.(2015·淮安)将一副三角尺按如图所示的方式放置,使含30°角的三角尺的短直角边和含45°角的三角尺的一条直角边重合,则∠1的度数是.12.如图,在△ABC中,AD⊥BC,AE平分∠BAC,若∠1=30°,∠2=20°,则∠B=.13.(2015·广州)如图,在四边形ABCD中,∠A=90°,AB=33,AD=3,点M,N分别是线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别是DM,MN的中点,则EF长度的最大值为.14.如图,在△ABC中,∠C=90°,∠CAB,∠CBA的平分线交于点D,BD的延长线交AC 于点E,则∠ADE=.1.(2015·毕节)下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是( )A.3,4, 5 B.1,2, 3 C.6,7,8 D.2,3,4 2.(2015·苏州)如图,在△ABC中,AB=AC,D为BC中点,∠BAD=35°,则∠C的度数为( )A.35° B.45° C.55° D.60°3.(2015·北京)如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开,若测得AM的长为1.2 km,则M,C两点间的距离为( )A.0.5 km B.0.6 km C.0.9 km D.1.2 km4.(2016·云南考试说明)如图是某商场一楼与二楼之间的手扶电梯示意图,其中AB,CD 分别表示一楼、二楼地面的水平线,∠ABC=150°,BC的长是8 m,则乘电梯从点B到点C上升的高度h是( )A.833 m B .4 m C .4 3 m D .8 m5.(2016·云南考试说明)如图,在Rt △ABC 中,∠B =90°,ED 是AC 的垂直平分线,交AC 于点D ,交BC 于点E ,已知∠BAE =10°,则∠C 的度数为( )A .30°B .40°C .50° D .60°6.(2016·昆明市官渡区模拟)如图,Rt △ABC 中,AB =9,BC =6,∠B =90°,将△ABC 折叠,使A 点与BC 的中点D 重合,折痕为MN ,则线段BN 的长为( ) A.53 B.52C .4D .57.(2015·绍兴)由于木质衣架没有柔性,在挂置衣服的时候不太方便操作.小敏设计了一种衣架,在使用时能轻易收拢,然后套进衣服后松开即可.如图1,衣架杆OA =OB =18 cm ,若衣架收拢时,∠AOB =60°,如图2,则此时A,B 两点之间的距离是 cm.8.(2016·烟台)如图,O 为数轴原点,A ,B 两点分别对应-3,3,作腰长为4的等腰△ABC ,连接OC ,以O 为圆心,CO 长为半径画弧交数轴于点M ,则点M对应的实数为 .9.(2016·龙岩)如图,△ABC 是等边三角形,BD 平分∠ABC ,点E 在BC 的延长线上,且CE =1,∠E =30°,则BC = .10.(2016·西宁)如图,OP 平分∠AOB ,∠AOP =15°,PC ∥OA ,PD ⊥OA 于点D ,PC =4,则PD = .11.(2016·新疆)如图,测量河宽AB(假设河的两岸平行),在C 点测得∠ACB =30°,D 点测得∠ADB =60°,又CD =60 m ,则河宽AB 为(结果保留根号).12.(2015·北京)如图,在△ABC 中,AB =AC ,AD 是BC 边上的中线,BE ⊥AC 于点E.求证:∠CBE =∠BAD.13.(2016·云南考试说明)某厂房屋顶呈人字架形(等腰三角形),如图所示.已知AC =BC=8 m ,∠A =30°,CD ⊥AB ,垂足为D.求: (1)∠ACB 的大小; (2)AB 的长度.14.(2016·云南考试说明)将宽为2 cm 的长方形纸条折叠成如图所示的形状,那么折痕PQ 的长是( )A.23 3 cmB.43 3 cm C. 5 cm D .2 cm 15.(2016·连云港)如图1,分别以直角三角形三边为边向外作等边三角形,面积分别为S 1、S 2、S 3;如图2,分别以直角三角形三个顶点为圆心,三边长为半径向外作圆心角相等的扇形,面积分别为S 4、S 5、S 6.其中S 1=16,S 2=45,S 5=11,S 6=14,则S 3+S 4=( )A .86B .64C .54D .4816.(2016·雅安)如图所示,底边BC 为23,顶角A 为120°的等腰△ABC 中,DE 垂直平分AB 于D ,则△ACE 的周长为( )A .2+2 3B .2+ 3C .4 D .3 317.(2016·河北)如图,∠AOB =120°,OP 平分∠AOB ,且OP =2.若点M ,N 分别在OA ,OB 上,且△PMN 为等边三角形,则满足上述条件的△PMN 有( )A .1个B .2个C .3个 D .3个以上18.(2016·益阳)在△ABC 中,AB =15,BC =14,AC =13,求△ABC 的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.作AD ⊥BC 于D ,设BD =x ,用含x 的代数式表示CD →根据勾股定理,利用AD作为“桥梁”,建立方程模型求出x →利用勾股定理求出AD 的长,再计算三角形面积19.(2016·富源县老厂中学模拟)如图,在△ABC 中,∠ACB =90°,BC =6 cm ,AC =8 cm ,动点P 从A 出发,以2 cm/s 的速度沿AB 移动到B ,则点P 出发 时,△BCP 为等腰三角形.1.如图所示,△ABC ≌△DEC ,则不能得到的结论是( )A .AB =DE B .∠A =∠DC .BC =CD D .∠ACD =∠BCE2.(2016·永州)如图,点D ,E 分别在线段AB ,AC 上,CD 与BE 相交于O 点,已知AB =AC ,现添加以下的哪个条件仍不能判定△ABE ≌△ACD( )A .∠B =∠C B .AD =AE C .BD =CE D .BE =CD3.(2016·怀化)如图,OP 为∠AOB 的平分线,PC ⊥OA ,PD ⊥OB ,垂足分别是C 、D ,则下列结论错误的是( )A .PC =PDB .∠CPO =∠DOPC .∠CPO =∠DPOD .OC =OD4.如图,∠B =∠D =90°,BC =CD ,∠1=40°,则∠2为( )A .40°B .50°C .60°D .75°5.(2016·成都)如图,△ABC ≌△A ′B ′C ′,其中∠A =36°,∠C ′=24°,则∠B = .6.(2016·云南考试说明)如图,在△ABC 中,D ,E ,F 分别是AB ,BC ,AC 上的点,已知DF ∥BC ,EF ∥AB ,请补充一个条件: ,使△ADF ≌△FEC.7.(2016·云南考试说明)如图,过正方形ABCD 的顶点B 作直线l ,过A ,C 两点作l 的垂线,垂足分别为E ,F ,若AE =1,CF =3,则AB 的长度为 .8.(2016·福州)一个平分角的仪器如图所示,其中AB =AD ,BC =DC ,求证:∠BAC =∠DAC..9.(2016·昆明市官渡区模拟)如图,点E 、F 在BC 上,BE =FC ,AB =DC ,∠B =∠C.求证:∠A =∠D.10.(2016·孝感)如图,BD ⊥AC 于点D ,CE ⊥AB 于点E ,AD =AE.求证:BE =CD.11.(2016·云南模拟)如图,四边形ABCD 是矩形,点E 是AD 的中点,点F 是BC 的中点.求证:△ABF ≌△CDE.12.(2016·荆门)如图,在矩形ABCD 中(AD >AB),点E 是BC 上一点,且DE =DA ,AF ⊥DE ,垂足为点E.在下列结论中,不一定正确的是( )A .△AFD ≌△DCEB .AF =12AD C .AB =AF D .BE =AD -DF13.(2016·贺州)如图,在△ABC 中,分别以AC 、BC 为边作等边三角形ACD 和等边三角形BCE ,连接AE 、BD 交于点O ,则∠AOB 的度数为 .14.(2016·楚雄州双柏县模拟)如图,已知∠ABO =∠DCO ,OB =OC ,求证:△ABC ≌△DCB.15.(2016·威海改编)如图,在△ABC 和△BCD 中,∠BAC =∠BCD =90°,AB =AC ,CB =CD.延长CA 至点E ,使AE =AC.延长CB 至点F ,使BF =BC.连接AD ,AF ,DF ,EF.延长DB 交EF 于点N.求证: (1)AF =AD ; (2)EF =BD.16.(2016·宜昌)杨阳同学沿一段笔直的人行道行走,在由A 步行到达B 处的过程中,通过隔离带的空隙O ,刚好浏览完对面人行道宣传墙上的社会主义核心价值观标语.其具体信息汇集如下,如图,AB ∥OH ∥CD ,相邻两平行线间的距离相等.AC ,BD 相交于O ,OD ⊥CD ,垂足为 D.已知AB =20米.根据上述信息可求标语CD 的长度为 米.。

平面直角坐标系背景下的几何问题(基础练)-八年级数学上册基础知识专项突破讲与练(北师大版)

平面直角坐标系背景下的几何问题(基础练)-八年级数学上册基础知识专项突破讲与练(北师大版)

专题3.22平面直角坐标系背景下的几何问题(分层练习)(基础练)一、单选题(本大题共10小题,每小题3分,共30分)1.(2022秋·辽宁沈阳·八年级沈阳市实验学校校考期中)如图,在平面直角坐标系中,四边形OABC 为正方形,点C 坐标为()3,2,则点A 的坐标为()A .()2,2-B .()2,3-C .()3,2-D .()3,3-2.(2023春·湖北武汉·七年级统考期中)如图在平而直角坐标系中,点(1,3)A --,点(3,1)B -,点(2,2)C ,则三角形ABC 的面积是()A .7B .7.5C .8D .8.53.(2023春·湖北鄂州·七年级统考期末)如图,线段AB 经过原点O ,点C 在y 轴上,D 为线段AB 上一动点,若点()2,A m -,()4,B n ,()0,3C -,且12AB =,则CD 长度的最小值为()A .1B .32C .23D .434.(2023·河南周口·统考三模)如图,已知点()()6,0,0,8A B ,点P 在y 轴负半轴上,若将PAB 沿直线AP 折叠,使点B 的对应点恰好落在x 轴正半轴上的点B '处,则点P 的坐标是()A .()0,10-B .()0,12-C .()0,14-D .()0,16-5.(2022秋·全国·八年级专题练习)如图,在PMN 中,,,(0,2),(2,2)PM PN PM PN P N =⊥-,则M 的坐标是()A .()-B .(-C .(-D .(4,0)-6.(2019秋·广东潮州·八年级统考期中)如图,已知Rt OAB ,60OAB ∠=︒,90AOB ∠=︒,O 点与坐标系原点重合,若点P 在x 轴上,且APB △是等腰三角形,则点P 的坐标可能有()个.A .1个B .2个C .3个D .4个7.(2023春·北京大兴·七年级统考期末)(),0A a ,()3,4B 是平面直角坐标系xOy 中的两点,当线段AB 的长度最小时,a 的值为()A .4-B .3-C .4D .38.(2023春·湖北黄冈·七年级统考阶段练习)如图,在平面直角坐标系中,三角形ABC 三个顶点A 、B 、C 的坐标()0,4A ,()1,B b -,()2,C c ,BC 经过原点O ,且CD AB ⊥,垂足为点D ,则AB CD ⋅的值为().A .10B .11C .12D .149.(2023春·福建福州·七年级校考期中)已知(),0A a ,()0,10B ,()5,0C 三点,且三角形ABC 的面积等于20,则a 的值为()A .1或9-B .9C .1或9D .9或9-10.(2023春·河南南阳·八年级统考阶段练习)如图,在直角坐标系的x 轴负半轴和y 轴正半轴上分别截取OA OB ,,使OA OB =,再分别以点A ,B 为圆心,以大于12AB 的长为半径作弧,两弧交于第二象限的点N ,若点N 的坐标为()226n n --,,则n 的值是()A .1B .2C .3D .4二、填空题(本大题共8小题,每小题4分,共32分)11.(2022秋·辽宁大连·八年级统考期中)如图,在平面直角坐标系中,()0,3A ,()1,0C -,AC BC =,AC BC ⊥,则B 点坐标为.12.(2022春·湖南益阳·八年级统考期末)如图,在平面直角坐标系中,已知点()4,0A ,()0,3B ,若有一个直角三角形与Rt AOB △全等,且与其共OB 边,A '点是A 点的对应点,试写出所有满足条件的A '点的坐标13.(2023春·山西临汾·七年级统考期中)如图,(20),A -,()0,3B ,()2,4C ,()3,0D ,点P 在x 轴上,直线CP 平分四边形ABCD 的面积,则PD 的长为.14.(2020秋·广东东莞·八年级校考阶段练习)如图,2OA =,5OB =,以A 点为直角顶点作Rt ABC △,90BAC ∠=︒,AB AC =,则C 点的坐标为.15.(2022秋·江苏南通·八年级统考阶段练习)如图,等腰Rt ABC △中,90ABC AB BC ∠=︒=,.点A 、B 分别在坐标轴上,且x 轴恰好平分BAC ∠,BC 交x 轴于点M ,过C 点作CD x ⊥轴于点D ,交AB 的延长线于点E ,测得AM 的长度为6,则点C 的纵坐标为.16.(2023秋·全国·八年级专题练习)如图,在平面直角坐标系中,点A 的坐标为()0,4,点B 的坐标为()3,0,点C 、D 分别在y 轴、AB 上运动,连接BC CD 、,则BC CD +的最小值为.17.(2023秋·全国·八年级专题练习)如图,在平面直角坐标系中,点A ,点B ,点C 的坐标分别是(4,4)-,(2,4)--,(4,2)-,点D 与点A 关于y 轴对称,顺次连接A ,B ,C ,D 四点得到四边形ABCD ,点P 是四边形ABCD 边上的一个动点,连接PB ,若PB 将四边形ABCD 的面积分为1:4的两部分,则点P 的坐标为.18.(2022春·上海·九年级统考自主招生)如图,在平面直角坐标系中,(6,0)A -、(2,2)B -,动点P 在直线y x =-上,动点Q 在x 轴上,则AP PQ QB ++的最小值为.三、解答题(本大题共6小题,共58分)19.(8分)(2021秋·福建三明·八年级统考期中)如图,ABC 的三个顶点的坐标分别为()5,0A -,()4,0B ,()2,5C .(1)求ABC 的面积;(2)画出ABC 关于y 轴对称的图形.20.(8分)(2023春·全国·七年级期末)在平面直角坐标系中,点()0A a ,,()2B b ,,()40C ,,且0a >.(1)若2(2)40a b --=,求点A ,点B 的坐标;(2)如图,在(1)的条件下,过点B 作BD 平行y 轴,交AC 于点D ,求点D 的坐标;21.(10分)(2023秋·河南濮阳·八年级校考期末)如图(1),已知()3,0A ,()0,1B -,ABC 是等腰直角三角形,90ABC ∠=︒,BA BC =.(1)如图,求C 点坐标;(2)如图(2),点P 为x 正半轴上一点,作等腰直角BPQ V ,其中90PBQ ∠=︒,BP BQ =,求证:PA CQ =.22.(10分)(2023春·山东济宁·八年级统考期中)如图所示,点(,)A a b ,(,)B c d 是平面直角坐标系中的两个点,且AC x ⊥轴于点C ,BD x ⊥轴于点D .(1)||DC =__________,||||CA DB -=__________.(用含a ,b ,c ,d 的式子表示)(2)请构造直角三角形,利用勾股定理计算A ,B 两点之间距离的平方为__________.(用含a ,b ,c ,d 的式子表示)(3)若(3,5)E -,5(2,)F -,求E 、F 两点之间的距离.23.(10分)(2022秋·广东阳江·八年级统考期末)如图,已知()3,0A ,()0,1B -,连接AB ,过B 点作AB 的垂线段BC ,使BA BC =,连接AC .(1)如图1,求C 点坐标;(2)如图2,若P 点从A 点出发沿x 轴向左平移,连接BP ,作等腰直角BPQ V ,连接CQ ,当点P 在线段OA 上,求证:PA CQ =.24.(12分)(2023春·广东东莞·七年级统考期末)如图1,在平面直角坐标系中,点A 、C 的坐标分别是(,0)a 、(,4)c ,且满足2(4)40a c ++-=,连接AC ,交y 轴于点Q ,并过点C 作CB x ⊥轴于点B .(1)求ABC 的面积;(2)当Q 的坐标为(0,2),若y 轴上有一动点P ,使得ABC QCP S S =△△,求出点P 的坐标;(3)如图2,过点B 作BD AC ∥交y 轴于点D ,当AE ,DE 分别平分CAB ∠和ODB ∠时,写出AED ∠与CAB ∠,ODB ∠的数量关系,并写出证明过程.参考答案1.B【分析】如图所示,过点A 作AD x ⊥轴于点D ,过点C 作CE x ⊥轴于点E ,根据正方形的性质,可证Rt Rt (ASA)AOD OCE △≌△,可得DO EC =,AD OE =,根据点C 的坐标可确定,OE CE 的长,由此即可求解.解:如图所示,过点A 作AD x ⊥轴于点D ,过点C 作CE x ⊥轴于点E,∵四边形OABC 是正方形,∴OA AB BC OC ===,=90AOC ∠︒,∴90AOD EOC ∠+∠=︒,90AOD OAD ∠+∠=︒,∴OAD EOC ∠=∠,在Rt ,Rt AOD OCE △△中,90OAD COE AO CO ADO OEC ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∴Rt Rt (ASA)AOD OCE △≌△,∴DO EC =,AD OE =,∵()3,2C ,∴3OE =,2CE =,∴2,3OD AD ==,且点A 在第二象限,∴(2,3)A -,故选:B .【点拨】本题主要考查几何图形,全等三角形的判定和性质,图像与坐标的综合,掌握正方形的性质,全等三角形的判定和性质,根据图像特点确定坐标的方法等知识是解题的关键.2.A【分析】根据坐标系,利用梯形的面积减去多余三角形的面积即可求解.解:如图所示,过点C 作DE x ∥轴,过点,A B 分别作,AE BD 垂直于ED ,垂足为点,E D ,∵()1,3A --,()3,1B -,()2,2C ,∴()1,2E -,()3,2D ,则5,4,3AE ED BD ===∴三角形ABC 的面积是()1115345331167.5 1.57222+⨯-⨯⨯-⨯⨯=--=故选:A .【点拨】本题考查了坐标与图形,数形结合是解题的关键.3.B【分析】分别过点A 、B 作y 轴的垂线,垂足分别为点E 、点F ,得出2AE =,4BF =,3OC =,最后利用垂线段最短及三角形的面积公式解决问题.解:如图,分别过点A 、B 作y 轴的垂线,垂足分别为点E 、点F ,∵点()2,A m -,()4,B n ,()0,3C -,∴2AE =,4BF =,3OC =,∵垂线段最短,∴当CD AB ⊥时CD 有最小值,∵ABC AOC BOC S S S =+ ,∴11324391222AB CD ⋅=⨯⨯+⨯⨯=∵12AB =,∴32CD =,∴CD 长度的最小值为32,故选:B .【点拨】本题考查了坐标与图形性质及三角形的面积,掌握三角形的面积等于底边长与高线乘积的一半是解题的关键.4.B【分析】根据勾股定理求得AB ,设()0,P t ,0t <,根据折叠的性质得出10AB AB '==,8PB PB t '==-,在Rt POB '△中,勾股定理即可求解.解:∵点()()6,0,0,8A B ,∴6,8OA OB ==,∴10AB ==,∵将PAB 沿直线AP 折叠,使点B 的对应点恰好落在x 轴正半轴上的点B '处,∴10AB AB '==∴10616OB OA AB ''=+=+=,设()0,P t ,0t <,∴8PB PB t'==-在Rt POB '△中,OP t =-,∴()()222168t t -+=-解得:12t =-,∴P 的坐标为()0,12-故选B.【点拨】本题考查了勾股定理与折叠问题,坐标与图形,熟练掌握折叠的性质是解题的关键.5.D【分析】过点N 作ND ⊥y 轴于点D ,利用P (0,2),N (2,−2),得出OP =2,OD =2,DN =2,根据“AAS”证明△MOP ≌△PDN ,OM =PD ,即可得出答案.解:过点N作ND⊥y轴于点D,∵P(0,2),N(2,−2),∴OP=2,OD=2,DN=2,∴PD=4,∵PM⊥PN,∴∠MPN=90°,∴∠MPO+∠DPN=90°,又∵∠DPN+∠PND=90°,∴∠MPO=∠PND,又∵∠MOP=∠PDN=90°,∴△MOP≌△PDN(AAS),∴OM=PD=4,∴M(−4,0),故D正确.故选:D.【点拨】本题考查了全等三角形的性质和判定,平面直角坐标系中点的坐标,作出辅助线,证明△MOP≌△PDN是解题的关键.6.D【分析】只要是x轴上的点且满足APB△为等腰三角形即可.解:如图,则在x轴上共有4个这样的P点.故选:D .【点拨】本题主要考查了等腰三角形的形状以及坐标与图形的简单结合,能够熟练掌握.7.D【分析】点A 在x 轴上的动点,根据垂线段最短,AB 长度的最小值即为点B 到x 轴的最短距离,此时点A 为从B 向x 轴作垂线的垂足,最短距离即为点B 的纵坐标.解:如图,过点B 作BA x ⊥轴于点A ,此AB 的长度最小,∵(),0A a ,()3,4B ,即当3a =时,线段AB 长度的值最小,此时线段AB 长度的最小值为4,故选:D .【点拨】本题考查坐标与图形,垂线段最短,确定点A 的位置是解题的关键.8.C【分析】根据ABC 的面积等于AOB 的面积与AOC 的面积之和即可得.解:()0,4A ,()1,B b -,()2,C c ,BC 经过原点O ,AOB ∴ 的OA 边上的高为1,AOC 的OA 边上的高为2,4OA =,ABC AOB AOC S S S =+ ,且CD AB ⊥,1114142222AB CD ∴⋅=⨯⨯+⨯⨯,解得12AB CD ⋅=,故选:C .【点拨】本题考查了点坐标与图形,正确找出ABC AOB AOC S S S =+△△△是解题关键.9.C【分析】根据已知可得:5CA a =-,10BO =,然后三角形的面积公式列式计算即可解答.解:∵(),0A a ,()0,10B ,()5,0C ,∴5CA a =-,10BO =,∵三角形ABC 的面积等于20,∴1202AC BO ⋅=,即0151022a -⋅=⨯,∴54a -=,∴54a -=或54a -=-,∴9a =或1a =,故选:C .【点拨】本题考查了三角形的面积,坐标与图形的性质,熟练掌握三角形的面积公式是解题的关键.10.D【分析】由作图可知,点N 在AOB ∠的角平分线上,推出点N 的横坐标与纵坐标互为相反数,由此即可解决问题.解:由作图可知,点N 在AOB ∠的角平分线上,两弧交于第二象限的点N ,∴点N 的横坐标与纵坐标互为相反数,∴2260n n -+-=,∴4n =,故选:D .【点拨】本题考查作图-基本作图,坐标与图形的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.11.()2,1-【分析】过B 点作BD x ⊥轴于点D ,证明BDC COA ≌△△即可作答.解:过B 点作BD x ⊥轴于点D ,如图,∵AC BC ⊥,∴90ACB ACO DCB ∠=︒=∠+∠,∵90ACO CAO ∠+∠=︒,∴DCB CAO ∠=∠,∵BD x ⊥轴,∴90BDC COA ∠=︒=∠,∵CAO DCB AOC CDB AC BC ∠=∠⎧⎪∠=⎨⎪=⎩,∴BDC COA ≌△△,∴DC OA =,BD CO =,∵()0,3A ,()1,0C -,∴3DC OA ==,1BD CO ==,∴2OD DC CO =-=,∴结合图形有:()2,1B -,故答案为:()2,1-.【点拨】本题主要考查了全等三角形的判定与性质,坐标与图形等知识,作出辅助线,证明BDC COA ≌△△是解答本题的关键.12.()4,3或()4,0-或()4,3-【分析】根据全等三角形的性质画出满足条件的Rt OBC △,然后写出对应顶点的坐标即可.解:如图,A '的坐标为:(4,3)或(4,0)-或(4,3)-.故答案为:(4,3)或(4,0)-或(4,3)-.【点拨】本题考查了全等三角形的性质:全等三角形的性质是证明线段和角相等的理论依据,应用时要会找对应角和对应边.13.3【分析】作CE x ⊥轴,根据四边形ABCD 的面积AOB CDE OBCE S S S =++ 梯形求得四边形的面积,设点(0),P x ,则3PD x =-,由直线CP 平分四边形ABCD 的面积列出方程求解可得.解:过点C 作CE x ⊥轴于点E ,∵(20),A -,()0,3B ,()2,4C ,()3,0D ,∴,,,24,321AO OB OE CE DE =====,∴四边形ABCD 的面积AOB CDEOBCE S S S =++ 梯形()1112334214222=⨯⨯+⨯+⨯+⨯⨯12=,设点(0),P x ,则3PD x =-,∵直线CP 平分四边形ABCD 的面积,∴11262PCD S =⨯= ,∴()13462x -⨯=,∴0x =,∴3PD =.故答案为:3.【点拨】本题考查坐标与图形的性质,熟练掌握割补法求四边形的面积及由分割的面积间的关系列出方程是解题的关键.14.(7,2)--【分析】过C 作CM x ⊥轴于M 点,证明(AAS)MAC OBA △≌△,得到2CM OA ==,5MA OB ==,从而可得坐标.解:如图,过C 作CM x ⊥轴于M 点,CM OA ⊥Q ,AC AB ⊥,90MAC OAB ∴∠+∠=︒,90OAB OBA ∠+∠=︒,则MAC OBA ∠=∠,在MAC △和OBA △中,90CMA AOB MAC OBA AC BA ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,(AAS)MAC OBA ∴△≌△,2CM OA ∴==,5MA OB ==,∴点C 的坐标为(7,2)--,故答案为:(7,2)--.【点拨】本题考查了坐标与图形,全等三角形的判定和性质等知识,正确作出辅助线构造全等三角形是本题的关键.15.3-【分析】根据已知条件分别证明()ASA ABM CBE ≌△△和()ASA ADE ADC ≌,进而得AM CE =,12DE DC CE ==,即可求解.解:90ABC ∠=︒ ,18090CBE ABC ∴∠=︒-∠=︒,在EBC 中,90E ECB ∠+∠=︒,又CD x ⊥轴,90ADE ADC ∴∠=∠=︒,在AED △中,90EAD E ∠+∠=︒,ECB EAD ∴∠=∠,在ABM 和CBE △中,EAD ECB AB CB ABC CBE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ASA ABM CBE ≌△△,6AM CE ∴==,又AD 平分EAC ∠,EAD CAD ∴∠=∠,在ADE V 和ADC △中,EAD CAD AD AD ADE ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ASA ADE ADC ≌,132DE DC ∴===,∴点C 的纵坐标为3-.故答案为:3-.【点拨】本题考查了全等三角形的判定与性质,熟练掌握三角形全等的证明是解本题的关键.16.245/4.8/445【分析】先找出线段AB 关于y 轴的对称线段,再过点B 作这条对称线段的垂线段,这条垂线段的长度即位BC CD +的最小值.解:如下图所示,先找出点B 关于y 轴对称的对称点B ',截取AD =AD ',此时点D 与点D ¢关于y 轴对称,从而可知BC CD B C D C +=+'.再根据垂线段最短可知,当BD '是线段AB '的垂线段,BD '与y 轴交于点C 时,BC CD +即BC D C +'有最小值BD '.∵点A 的坐标为()0,4,点B 的坐标为()3,0∴点B '的坐标为()3,0-,BB '=6.AB '=5,AO =4,∴1122ABB S BB AO AB BD ''''=⨯⨯=⨯⨯△即1164522ABB S BD ''=⨯⨯=⨯⨯△∴245BD '=∴BC CD +的最小值为245故答案为:245.【点拨】本题考查线段和的最小值,掌握垂线段最短和找出线段AB 关于y 轴的对称线段时解题的关键.17.3,42⎛⎫- ⎪⎝⎭或44,3⎛⎫ ⎪⎝⎭【分析】先根据各坐标求出四边形ABCD 的面积,再分情况讨论当点P 在AD 上和CD 上的点P 坐标.解:作BH AD ⊥于H ,点D 与点A 关于y 轴对称,点(4,4)A -,∴点D 坐标为(4,4),点B ,点C 的坐标分别是(2,4)--,(4,2)-,2AH ∴=,6HD =,8BH =,6CD =,1128822ABH S AH BH =⋅⋅=⨯⨯=△,()()116864222CDHB S CD BH DH =⋅+⋅=⨯+⨯=梯形,42850ABCD S =+=四边形,如图1,当点P 在AD 上时,:1:4ABP CDPB S S = △四边形,10ABP S ∴=△,∴1102AP BH ⋅⋅=,52AP ∴=,53422-= ,∴点P 坐标为:3(2-,4);如图2,当点P 在CD 上时,:1:4ACP CDPB S S = △四边形,10ACP S ∴=△,∴1102CP DH ⋅⋅=,103CP ∴=, 104233-=,∴点P 坐标为:4(4,)3综上,点P 坐标为3,42⎛⎫- ⎪⎝⎭或44,3⎛⎫ ⎪⎝⎭,故答案为:3,42⎛⎫- ⎪⎝⎭或44,3⎛⎫ ⎪⎝⎭.【点拨】本题考查了坐标系中图形的面积的求法,分情况讨论点P 的位置是解题关键.18.217【分析】作B 点关于x 轴的对称点B ',作A 点关于直线y x =-的对称点A ',连接A B ''交x 轴于点Q ,交直线y x =-于点P ,连接BQ ,根据轴对称的性质和由两点之间线段最短可知此时AP PQ QB ++最短,AP PQ QB ++最小值A B ''=,由勾股定理求出A B '',即可求解.解:作B 点关于x 轴的对称点B ',作A 点关于直线y x =-的对称点A ',连接A B ''交x 轴于点Q ,交直线y x =-于点P ,连接BQ ,如图,∵B 点关于x 轴的对称点B ',(2,2)B -∴()2,2B '--,BQ B Q '=,∵A 点关于直线y x =-的对称点A ',(6,0)A -,∴()0,6A ',PA PA =',∴AP PQ QB PA PQ B Q A B ++=+'='+'',此时,AP PQ QB ++值最小,最小值A B ''=,∵()0,6A ',()2,2B '--,∴A B ''=∴AP PQ QB ++最小值为.故答案为:【点拨】本题主要考查的是最短线路问题,勾股定理,熟知利用轴对称求最短距离、两点之间线段最短是解答此题的关键.19.(1)452;(2)见分析【分析】(1)结合点的坐标,直接利用三角形的面积公式求解即可;(2)分别确定A ,B ,C 关于y 轴对称的A ',B ',C ',再顺次连接即可.(1)解:∵()5,0A -,()4,0B ,∴9AB =,又∵()2,5C ,∴1459522ABC S =⨯⨯=△;(2)如图,A B C ''' 即为所求作的三角形..【点拨】本题考查的是坐标与图形,求解网格三角形的面积,画关于y 轴对称的三角形,熟记轴对称的性质并进行画图是解本题的关键.20.(1)()02A ,,()24B ,;(2)()21D ,【分析】(1)由非负性质得出20a -=,40b -=,得出2a =,4b =,即可得出答案;(2)延长BD 交OC 于M ,由题意得出点D 的横坐标为2,可得点D 是AC 的中点,即可得出答案.(1)解:2(2)0a -= ,20a ∴-=,且40b -=,2a ∴=,4b =,∴点()02A ,,()24B ,;(2)解:延长BD 交OC 于M ,如图所示:,BD x ∥轴,DM OC ∴⊥,点D 的横坐标为2,()02A ,,()40C ,,∴点D 是AC 的中点,()21D ∴,.【点拨】本题考查了偶次方和算术平方根的非负性质、坐标与图形等知识,熟练掌握非负数的性质是解题的关键.21.(1)()1,4C -;(2)见分析【分析】(1)构造出()AAS AOB BDC ≌△△,得出OA BD =,OB CD =,再求出3OA =,1OB =,即可求解;(2)利用等腰直角三角形的性质判断出PBA QBC ∠=∠,进而得出()SAS ABP CBQ △≌△,即可得证.(1)解:过点C 作CD OB ⊥于点D ,则90CDB ∠=︒,∴90BCD DBC ∠+∠=︒,∵90ABC ∠=︒,∴90ABO DBC ∠+∠=︒,∴ABO BCD ∠=∠,在AOB 和BDC 中,90AOB BDC ABO BCD BA BC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴()AAS AOB BDC ≌△△,∴OA BD =,OB CD =,又∵(30)A ,,(0)B ,-1,∴3BD OA ==,1CD OB ==,∴134OD OB BD =+=+=,∴()1,4C -;(2)证明:∵90PBQ ∠=︒,∴90PBA ABQ ∠+∠=︒,∵90ABC ∠=︒,∴90QBC ABQ ∠+∠=︒,∴PBA QBC ∠=∠,在ABP 和CBQ △中,BP BQ PBA QBC BA BC =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABP CBQ △≌△,∴PA CQ =.【点拨】本题主要考查了同角的余角相等,全等三角形的判定和性质,等腰直角三角形的判定和性质,作出辅助线构造出全等三角形是解本题的关键.22.(1)c a -,bd -;(2)()()22c ad b -+-;(3)【分析】(1)CD 的长为A B 、两点的横坐标之差的绝对值;DB AC -为B A 、两点的纵坐标绝对值之差;(2)根据勾股定理可求A B 、两点之间的距离的平方;(3)利用两点间的距离公式计算.(1)解:,CD c a CA DB d b =--=-.故答案为:,c a d b --;(2)解:如图,过B 点作BE AC ⊥于E ,则A B 、两点之间的距离的平方为()()22c ad b -+-.故答案为:()()22c ad b -+-;(3)解:()2222355125EF ⎡⎤=--+--=⎣⎦(),所以EF =【点拨】本题考查了勾股定理,两点间的距离公式:设有两点1122A x y B x y (,),(,),则这两点间的距离为AB 23.(1)(1,4)-;(2)证明过程见详解【分析】(1)如图所示(见详解),过点C 作CD y ⊥轴于D ,证明(AAS)OAB DBC ≌△△,根据()3,0A ,()0,1B -,可求出OD ,DC 的长,由此即可求出C 点坐标;(2)90PBQ ABC ∠=∠=︒,可知PBA QBC ∠=∠,证明(SAS)PBA QBC ≌△△,即可求证.(1)解:如图所示,过点C 作CD y ⊥轴于D ,∵90AOB BDC ∠=∠=︒,AB BC ⊥,∴90OAB ABO ABO DBC ∠+∠=∠+∠=︒,∴OAB DBC ∠=∠,且BA BC =,∴(AAS)OAB DBC ≌△△,且()3,0A ,()0,1B -,∴3OA BD ==,1DC OB ==,∴4(0,)D -,(1,4)-C .故C 点坐标为:(1,4)-.(2)证明:∵90PBQ ABC ∠=∠=︒,∴PBQ ABQ ABC ABQ ∠-∠=∠-∠,∴PBA QBC ∠=∠,在PBA △和QBC △中,BP BQ PBA QBC BA BC =⎧⎪∠=∠⎨⎪=⎩,∴(SAS)PBA QBC ≌△△,∴PA CQ =.【点拨】本题主要考查三角形在平面直角坐标系的变换,三角形全等的判定和性质,掌握三角形的判定和性质是解题的关键.24.(1)16;(2)(0,10)或(0,6)-;(3)1()2AED CAB ODB ∠=∠+∠,理由见分析.【分析】(1)根据2(4)40a c ++-=,可求得a 和c 的值,确定点A ,B ,C 的坐标,进而求得AB 和BC 的长度,根据三角形面积公式计算即可求得答案.(2)先求得PQ 的长度,点P 的位置有两种情况:在点Q 上方或在点Q 下方,分情况写出点P 的坐标即可.(3)过点E 作EF AC ∥,根据平行线的性质可得到AED ∠与CAE ∠,BDE ∠的数量关系,根据角平分线的定义,进而求得AED ∠与CAB ∠,ODB ∠的数量关系.解:(1)∵2(4)40a c ++-=,∴40a +=,40c -=.∴4a =-,4c =.∴点A ,B ,C 的坐标分别为(4,0)-,(4,0),(4,4).∴8AB =,4BC =.∴11841622ABC S AB BC =⋅=⨯⨯=△.(2)∵QCP ABC S S =△△,∴16QCP S =△.∴1162c PQ x ⋅=,即216PQ =.∴8PQ =.∵点Q 的坐标为(0,2),∴当点P 在点Q 上方时,点P 的坐标为(0,10),当点P 在点Q 下方时,点P 的坐标为(0,6)-.∴点P 的坐标为(0,10)或(0,6)-.(3)1()2AED CAB ODB ∠=∠+∠.理由如下:如图,过点E 作EF AC ∥.∵AE ,DE 分别平分CAB ∠和ODB ∠,∴12CAE CAB ∠=∠,12BDE ODB ∠=∠.∵EF AC ∥,∴AEF CAE ∠=∠.∵EF AC ∥,BD AC ∥,∴EF BD ∥.∴DEF BDE ∠=∠.又AED AEF DEF ∠=∠+,∴111()222AED CAE BDE CAB ODB CAB ODB ∠=∠+∠=∠+∠=∠+∠.【点拨】本题主要考查平面直角坐标系、平行线的性质、角平分线的定义,牢记平行线的性质和角平分线的定义是解题的关键.。

《好题》初中七年级数学上册第四章《几何图形初步》经典练习(含答案)

《好题》初中七年级数学上册第四章《几何图形初步》经典练习(含答案)

《好题》初中七年级数学上册第四章《几何图形初步》经典练习(含答案)一、选择题1.下面四个图形中,能判断∠1>∠2的是( )A .B .C .D . D解析:D【分析】根据图象,利用排除法求解.【详解】A .∠1与∠2是对顶角,相等,故本选项错误;B .根据图象,∠1<∠2,故本选项错误;C .∠1是锐角,∠2是直角,∠1<∠2,故本选项错误;D .∠1是三角形的一个外角,所以∠1>∠2,故本选项正确.故选D .【点睛】本题考查了学生识图能力和三角形的外角性质.2.点 A 、B 、C 在同一条数轴上,其中点 A 、B 表示的数分别为﹣3、1,若 BC =2,则 AC 等于( )A .3B .2C .3 或 5D .2 或 6D 解析:D【解析】试题此题画图时会出现两种情况,即点C 在线段AB 内,点C 在线段AB 外,所以要分两种情况计算.∵点A 、B 表示的数分别为﹣3、1,∴AB=4.第一种情况:在AB 外,如答图1,AC=4+2=6;第二种情况:在AB 内,如答图2,AC=4﹣2=2.故选D .3.α∠和β∠的顶点和一边都重合,另一边都在公共边的同侧,且αβ∠>∠,那么α∠的另一半落在β∠的( )A .另一边上B .内部;C .外部D .以上结论都不对C解析:C【分析】根据题意画出图形,利用数形结合即可得出结论.【详解】解:如图所示:.故选C.【点睛】本题考查的是角的大小比较,能根据题意画出图形是解答此题的关键.4.如图∠AOC=∠BOD=90︒,4位同学观察图形后分别说了自己的观点.甲:∠AOB=∠COD;乙:图中小于平角的角有6个;丙:∠AOB+∠COD =90︒;丁:∠BOC+∠AOD = 180︒ .其中正确的结论有().A.4个B.3个C.2个D.1个B解析:B【分析】根据余角的性质,补角的性质,可得答案.【详解】解:甲∠AOB+∠BOC=∠BOC+∠COD=90°,∠AOB=∠COD,故甲正确;乙∠AOB,∠AOC,∠AOD,∠BOC,∠BOD,∠COD,故乙正确;丙∠AOB=∠COD,故丙错误;丁:∠BOC+∠AOD=∠BOC+∠AOB+∠BOD=∠AOC+∠BOD=180°,故丁正确;故选:B.【点睛】本题考查了余角、补角的定义和角的有关推理的应用,能正确进行推理是解此题的关键,难度适中.5.下面的几何图形是由四个相同的小正方体搭成的,其中主视图和左视图相同的是() A.B.C.D. C解析:C【分析】根据从正面看得到的视图是主视图,从左边看得到的图形是左视图,根据看到的图形进行比较即可解答.【详解】解:A 、主视图看到的是2行,3列,最下1行是3个,上面一行是1个,第2列是2个;左视图是2行,上下各1个;B .主视图看到的是3行,最下1行是2个,上面2行在下面1行的中间,各1个,左视图是3行,每行各一个;C .主视图是2行2列,下面1行是2个,上面1行1个,左面1列是2个;左视图是2行2列,下面1行是2个,上面1行1个,左面1列是2个,故主视图和左视图相同;D .主视图是2行2列,下面1行2个,上面1行1个,右面1列2个,左视图也是2行2列,下面1行2个,上面1行1个,左面1列2个.故选:C .【点睛】此题考查了从不同方向观察物体,重点是看清有几行几列,每行每列各有几个. 6.如图,在ABC 中,90BAC ∠=︒,点D ,E 分别在BC ,CA 边的延长线上,EH BC ⊥于点H ,EH 与AB 交于点F .则1∠与2∠的数量关系是( ).A .12∠=∠B .1∠与2∠互余C .1∠与2∠互补D .12100∠+∠=°C解析:C【分析】 先根据同角的余角相等得出∠1=∠BCE ,再根据∠BCE+∠2=180°,得出∠1+∠2=180°即可.【详解】∵EH ⊥BC ,∴∠1+∠B=90°,∵∠BAC=90°,∴∠BCE+∠B=90°,∴∠1=∠BCE .∵∠BCE+∠2=180°,∴∠1+∠2=180°,即∠1与∠2互补,故选:C .【点睛】本题考查了余角和补角.解题的关键是掌握余角和补角的定义,同角的余角相等的性质. 7.α∠与β∠的度数分别是219m -和77m -,且α∠与β∠都是γ∠的补角,那么α∠与β∠的关系是( ).A .不互余且不相等B .不互余但相等C .互为余角但不相等D .互为余角且相等D解析:D【分析】由α∠与β∠都是γ∠的补角可得αβ∠=∠,进而可得关于m 的方程,解方程即可求出m ,进一步即可进行判断.【详解】解:由α∠与β∠都是γ∠的补角,得αβ∠=∠,即21977m m -=-,解得:32m =,所以2197745m m -=-=.所以α∠与β∠互为余角且相等.故选:D .【点睛】本题考查了余角和补角以及简单的一元一次方程的解法,属于基本题型,熟练掌握上述基础知识是解题的关键.8.一根直木棒长10厘米,棒上有刻度如图,若把它作为尺子,只测量一次,能测量的长度共有( )A .7种B .6种C .5种D .4种B解析:B【分析】根据棒上标的数字,找出这根木棒被2、7两点分成的线段的条数即可.【详解】如图,∵线段AD 被B 、C 两点分成AB 、AC 、AD 、BC 、BD 、CD 六条的线段∴能量的长度有:2、3、5、7、8、10,共6个,故选B .【点睛】本题考查的实质是找出已知图形上线段的条数.9.两个锐角的和是( )A .锐角B .直角C .钝角D .锐角或直角或钝角D解析:D【分析】在0度到90度之间的叫锐角,可以用赋值法讨论.解:当∠A=10°,∠B=20°时,∠A+∠B=30°,即两锐角的和为锐角;当∠A=30°,∠B=60°时,∠A+∠B=90°,即两锐角的和为直角;当∠A=50°,∠B=60°时,∠A+∠B=110°,即两锐角的和为钝角;综上所述,两锐角的和可能是锐角,可能是直角,也可能是钝角故选D.【点睛】利用赋值法解题,可以使一些难以直接证明的问题简单易解.10.把一张长方形的纸片按如图所示的方式折叠,EM,FM为折痕,C点折叠后的C'点∠的度数是()落在MB'的延长线上,则EMFA.85°B.90°C.95°D.100°B解析:B【解析】【分析】根据折叠的性质:对应角相等,对应的线段相等,可得.【详解】解:根据图形,可得:∠EMB′=∠EMB,∠FMB′=∠FMC,∵∠FMC+∠FMB′+∠EMB′+∠BME=180°,∴2(∠EMB′+∠FMB′)=180°,∵∠EMB′+∠FMB′=∠FME,∴∠EMF=90°,故选B.【点睛】本题主要考查图形翻折的性质,解决本题的关键是要熟练掌握图形翻折的性质.二、填空题11.如图,直线AB,CD交于点O,射线OM平分∠AOC,若∠BOD=76°,则∠BOM等于________.142°【解析】【分析】根据对顶角相等求出∠AOC的度数再根据角平分线的定义求出∠AOM的度数然后根据平角等于180°列式计算即可得解【详解】解:∵∠BOD=76°∴∠AOC=∠BOD=76°∵射线解析:142°【解析】根据对顶角相等求出∠AOC的度数,再根据角平分线的定义求出∠AOM的度数,然后根据平角等于180°列式计算即可得解.【详解】解:∵∠BOD =76°,∴∠AOC=∠BOD =76°,∵射线OM平分∠AOC,∴∠AOM=12∠AOC=12×76°=38°,∴∠BOM=180°-∠AOM=180°-38°=142°.故答案为142°.【点睛】本题考查了对顶角相等的性质,角平分线的定义,准确识图是解题的关键.12.若∠A=4817︒',则它的余角是__________;它的补角是___________。

七年级数学上册第四章几何图形初步基础知识题库

七年级数学上册第四章几何图形初步基础知识题库

(名师选题)七年级数学上册第四章几何图形初步基础知识题库单选题1、如图是一个正方体的展开图,把展开图折叠成小正方体后,和“建”字所在面相对的面上的字是()A.跟B.百C.走D.年答案:B分析:正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此作答.∵正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,∴在此正方体上与“建”字相对的面上的汉字是“百”.故选B.小提示:本题考查了正方体的展开图形,解题关键是从相对面入手进行分析及解答问题.2、我们知道过平面上两点可以画一条直线,过平面上3点最多可以画3条直线,过平面上4点最多可以画6条直线,过平面上5点最多可以画10条直线.如果平面上有6个点,且任意3个点均不在同一直线上,那么最多可以画多少条直线?()A.15B.21C.30D.35答案:A分析:根据图示的规律用代数式表示即可.根据图形得:第①组最多可以画3条直线;第②组最多可以画6条直线;第③组最多可以画10条直线.条直线.如果平面上有n(n≥3)个点,且每3个点均不在1条直线上,那么最多可以画1+2+3+…+n-1=n(n−1)2 =15=15.当n=6时,6×52即:最多可以画15条直线.故选:A.小提示:本题考查了图形的变化类问题,解题的关键是仔细的观察图形并找到其中的规律.3、如图,从∠AOB的顶点引出两条射线OC,OD,图中的角共有()A.3个B.4个C.6个D.7个答案:C分析:按一定的规律数角的个数即可.解:以OA为一边的角有:∠AOD,∠AOC,∠AOB,以OD为一边的角有:∠DOC,∠DOB,以OC为一边的角有:∠COB,所以,图中共有6个角,故选:C.小提示:本题通过数角的个数,巩固角的概念,难度适中.4、如图为一个几何体的表面展开图,则该几何体是( )A.三棱锥B.四棱锥C.四棱柱D.圆锥答案:B分析:底面为四边形,侧面为三角形可以折叠成四棱锥.解:由图可知,底面为四边形,侧面为三角形,∴该几何体是四棱锥,故选:B.小提示:本题主要考查的是几何体的展开图,熟记常见立体图形的展开图特征是解题的关键.5、如图,有一种电子游戏,电子屏幕上有一条直线,在直线上有A,B,C,D四点,且AB=BC=CD,点P沿直线l从左向右移动,当出现点P与A,B,C,D四点中的至少两个点距离相等时,就会发出警报,则直线l 上会发出警报的点P有()A.3个B.4个C.5个D.6个答案:C分析:点P与A,B,C,D四点中的至少两个点距离相等时,也就是点P恰好是其中一条线段中点,而图中共有六条线段,由此可以得到出现报警的最多次数.解:根据题意可知:当点P经过任意一条线段中点时会发出报警,∵图中共有线段AB、AC、AD、BC、BD、CD,∵AD和BC的中点是同一个,∴直线l上会发出警报的点P有5个.故选:C.小提示:本题考查了两点间的距离,利用总体思想去思考线段的总条数是解决问题最巧妙的办法,可以减去不必要的讨论与分类.6、夜里将点燃的蚊香迅速绕一圈,可划出一个曲线,这是因为()A.面对成体B.线动成面C.点动成线D.面面相交成线答案:C分析:根据点动成线的知识点进行解答即可.解:夜里将点燃的蚊香迅速绕一圈,可划出一个曲线,是因为点动成线,故选:C.小提示:此题主要考查了点、线、面、体,从运动的观点来看:点动成线,线动成面,面动成体,掌握知识点是解题关键.7、如图,用一个平行于圆锥底面的平面截圆锥,截面的形状是()A.B.C.D.答案:B分析:根据圆锥体的立体图形判断即可.用平行底面的平面截圆锥体,截面是圆形,故选:B.小提示:本题考查了截面图形的判断,具有一定的空间想象力是解答本题的关键.8、七巧板是中国传统数学文化的重要载体.将一块正方形木板制成如图1所示的一副七巧板,小明选择该副七巧板中的若干块拼成了如图2所示的“帆船”图案,其中已经用上编号为①和③的两块,则拼成该“帆船”图案还需要的木块一定是()A.②⑥B.④⑥⑦C.⑤⑥⑦D.④⑤⑥答案:A分析:根据七巧板拼凑的方法及拼图的线条即可求解.解:图2中“帆”的部分由两块大三角形组成,即图1中的①③④,左侧船体是一块小三角形,即③,右侧船体由于帆有一些重合,但根据线条形状不难看出是一个平行四边形,即⑥⑦,所以拼成该“帆船”图案还需要的木块一定是④、⑥和⑦,故B:A.小提示:本题考查了七巧板的运用,熟练掌握七巧板的拼凑方法是解题的关键.9、下列说法中正确的有().(1)线段有两个端点,直线有一个端点;(2)由两条射线组成的图形叫角(3)角的大小与我们画出的角的两边的长短无关;(4)线段上有无数个点;(5)两个锐角的和必定是直角或钝角;(6)若∠AOC与∠AOB有公共顶点,且∠AOC的一边落在∠AOB的内部,则∠AOB>∠AOC.A.1个B.2个C.3个D.4个答案:C分析:线段有两个端点,直线没有端点,由两条有公共端点的射线组成的图形叫角,角的大小与角两边的长短无关,根据线段、直线、角的定义等知识逐一进行判断.解:(1)线段有两个端点,直线没有端点,故(1)错误;(2)由两条有公共端点的射线组成的图形叫角,这两条射线叫做角的边,它们的公共端点叫做角的顶点,故(2)错误;(3)角的大小与我们画出的角的两边的长短无关,故(3)正确;(4)线段上有无数个点,故(4)正确;(5)两个锐角的和可能是锐角,故(5)错误;(6)若∠AOC与∠AOB有公共顶点,且∠AOC的一边落在∠AOB的内部,则∠AOB>∠AOC,故(6)正确,即正确的序号为(3)(4)(6),共3个,故选:C.小提示:本题考查线段、直线、角的定义等知识,是基础考点,掌握相关知识是解题关键.10、体育课上,蒋老师给同学们分发了篮球、足球、乒乓球和羽毛球,这些球类中的“球”不属于球体的是()A.篮球B.足球C.乒乓球D.羽毛球答案:D分析:根据球体的特征判断即可得到答案.半圆面以它的直径为旋转轴,旋转所成的空间物体就是球,球体的三视图都是圆,篮球、足球、乒乓球和羽毛球中,只有羽毛球不是球体,故选:D.小提示:本题考查了空间立体图形的识别,结合实际生活中球体的特征判断是解决问题的关键.填空题11、如图,每个小正方形边长都为1的3×3方格纸中,3个白色小正方形已被剪掉,现需在编号为①~⑥的小正方形中,再剪掉一个小正方形,从而使余下的5个小正方形恰好能折成一个棱长为1的无盖正方体,则需要再剪掉的小正方形可能是 _____.(请填写所有可能的小正方形的编号)答案:①②③分析:根据正方体的11种展开图的模型即可求解.解:把图中的①或②或③剪掉,剩下的图形能折成一个棱长为1的无盖正方体,所以答案是:①②③.小提示:本题考查了正方体的展开与折叠,牢记正方体的11种展开图的模型是解决本题的关键.12、一个棱柱有12个顶点,所有的侧棱长的和是48cm,则每条侧棱长是____ cm.答案:8分析:有12个顶点的棱柱是六棱柱.六棱柱有6条侧棱,知道侧棱长的和是48cm,除以6就得到了每条侧棱的长度了.解:根据棱柱的概念和定义,可知12个顶点的棱柱是六棱柱,即有6条侧棱,又因为所有侧棱长的和是48cm,所以每条侧棱长是48÷6=8cm.所以答案是:8.小提示:本题考查棱柱,在棱柱中,是几棱柱,它就有几个侧面,并且就有几条侧棱.13、分别从正面、左面、上面观察如图的立体图形,各能得到什么平面图形?正面:________,左面:________,上面:________.答案:长方形长方形圆分析:根据三视图的画法分别从不同角度观察图形即可得出结论.如图所示:从正面看从左面看从上面看所以答案是:长方形,长方形,圆.小提示:本题主要考查了从不同方向观察物体,正确得出三视图是解题关键.14、圆柱的侧面展开图是一个相邻的两边长分别为4,2π的长方形,则圆柱体的体积为_____.答案:4π或8##8或4π分析:分两种情况:①以2π为底面周长,4为高;②以4为圆柱体的底面周长,2π为高;分别求解即可.解:①以2π为底面周长,4为高,此时圆柱体的底面半径为2π2π=1,∴圆柱体的体积为π×12×4=4π,②以4为圆柱体的底面周长,2π为高,此时圆柱体的底面半径为42π=2π,∴圆柱体的体积为π×(2π)2×2π=8,所以答案是:4π或8.小提示:本题考查圆柱体的展开与折叠,理解圆柱体表面展开图与圆柱体之间的关系是解决问题的关键.15、若船A在灯塔B的正南方向上,那么灯塔B在船A的________方向上.答案:正北分析:船A在灯塔B的正南方向上这是以灯塔为基准的方位图,而要求灯塔B在船A的方位则是以船为基准,从而可得答案.解:船A在灯塔B的正南方向上,那么灯塔B在船A的正北方向上.所以答案是:正北.小提示:本题考查了方向角的知识,掌握以什么为基准是解本题的关键.解答题16、小明在学习了《展开与折叠》这一课后,明白了很多几何体都能展开成平面图形.于是他在家用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的①和②.根据你所学的知识,回答下列问题:(1)小明总共剪开了条棱.(2)现在小明想将剪断的②重新粘贴到①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,你认为他应该将剪断的纸条粘贴到①中的什么位置?请你帮助小明在①上补全.(3)小明说:已知这个长方体纸盒高为20cm,底面是一个正方形,并且这个长方体纸盒所有棱长的和是880cm,求这个长方体纸盒的体积.答案:(1)8;(2)见解析;(3)200000立方厘米分析:1)根据长方体总共有12条棱,有4条棱未剪开,即可得出剪开的棱的条数;(2)根据长方体的展开图的情况可知有4种情况;(3)设底面边长为acm,根据棱长的和是880cm,列出方程可求出底面边长,进而得到长方体纸盒的体积.解:(1)由图可得,小明共剪了8条棱,所以答案是:8.(2)如图,粘贴的位置有四种情况如下:(3)∵长方体纸盒的底面是一个正方形,∴可设底面边长acm,∵长方体纸盒所有棱长的和是880cm,长方体纸盒高为20cm,∴4×20+8a=880,解得a=100,∴这个长方体纸盒的体积为:20×100×100=200000立方厘米.小提示:本题主要考查了几何展开图,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.17、日常生活中,我们几乎每天都要看钟表,它的时针;和分针如同兄弟俩在赛跑,其中蕴涵着丰富的数学知识.(1)如图1,上午8:00这一时刻,时钟上分针与时针的夹角等于________;(2)请在图2中画出8:20这一时刻时针和分针的大致位置,思考并回答:从上午8:00到8:20,时钟的分针转过的度数是________,时钟的时针转过的度数是________;(3)“元旦”这一天,小明上午八点整出门买东西,回到家中时发现还没到九点,但是时针与分针重合了,那么小明从离开家到回到家的时间为多少分钟?答案:(1)120°;(2)120°,10°;(3)44分析:(1)根据8:00这一时刻时针在8上,分针在12上,之间共有4个大格,列式计算即可得解;(2)根据分针共转过4个大格子,每一个大格子是30°列式计算即可得解;时针在8到9之间转过20分钟,转完整个大格子需要60分钟,然后列式计算即可得解;(3)设8点x 分钟时,时针与分针重合了,然后根据分针的速度是时针的速度的12倍,列出方程求解即可. 解:(1)30°×4=120°;(2)分针转过4×30°=120°,时针转过:2060×30°=10°; 故答案为(1)120°;(2)120°,10°;(3)设8点x 分钟时,时针与分针重合了则(12-1)×x 60×30°=8×30°,解得x=48011≈44,∴小明从离开家到回到家的时间为44分钟.小提示:本题考查了钟面角问题,求出时针与分针的夹角问题,通常需要考虑夹角中的大格子和小格子两个部分,也可以利用分针的转速是时针的转速的12倍考虑求解.18、点C 在线段AB 上,若BC =2AC 或AC =2BC ,则称点C 是线段AB 的“雅点”,线段AC 、BC 称作互为“雅点”伴侣线段.(1)如图①,若点C 为线段AB 的“雅点”,AC =6(AC <BC ),则AB =______;(2)如图②,数轴上有一点E 表示的数为1,向右平移5个单位到达点F ;若点G 在射线EF 上,且线段GF 与以E 、F 、G 中某两个点为端点的线段互为“雅点”伴侣线段,请写出点G 所表示的数.(写出必要的推理步骤) 答案:(1)18(2)133或83或8.5或16.分析:(1)由BC =2AC 即可得答案;(2)点G 在射线EF 上,且线段GF 与以E 、F 、G 中某两个点为端点的线段互为“雅点”伴侣线段,分种情况讨论即可.(1)∵点C 为线段AB 的“雅点”,AC =6(AC <BC ),∴BC =2AC ,∵AC =6,∴BC =12,∴AB =AC +BC =18,所以答案是:18;(2)点G 在射线EF 上,且线段GF 与以E 、F 、G 中某两个点为端点的线段互为“雅点”伴侣线段,分以下四种情况: ①G 在线段EF 上,EG =2FG ,如图1:∵EG =2FG ,EG +FG =5,∴EG =103,∵E 表示的数为1,∴G 点表示的数为1+103=133,②G 在线段EF 上,且FG =2EG ,如图2:∵FG =2EG ,EG +FG =5,∴EG =53,∵E 表示的数为1,∴G 表示的数为1+53=83,③G 在线段EF 外,且EF =2FG ,如图3:∵EF =2FG ,EF =5,∴FG =2.5,∴G 表示的数是1+5+2.5=8.5,④G 在EF 外,且FG =2EF ,如图4:∵FG =2EF ,EF =5,∴FG =10,∴G 表示的数为1+5+10=16,总上所述,G 表示的数为:133或83或8.5或16. 小提示:本题考查数轴相关知识,解答需要分类,解题的关键是读懂“雅点”、“雅点”伴侣线段的定义.。

初中数学几何图形初步基础测试题含答案

初中数学几何图形初步基础测试题含答案

初中数学几何图形初步基础测试题含答案一、选择题1.如图,已知AB∥DC,BF平分∠ABE,且BF∥DE,则∠ABE与∠CDE的关系是()A.∠ABE=2∠CDE B.∠ABE=3∠CDEC.∠ABE=∠CDE+90°D.∠ABE+∠CDE=180°【答案】A【解析】【分析】延长BF与CD相交于M,根据两直线平行,同位角相等可得∠M=∠CDE,再根据两直线平行,内错角相等可得∠M=∠ABF,从而求出∠CDE=∠ABF,再根据角平分线的定义解答.【详解】解:延长BF与CD相交于M,∵BF∥DE,∴∠M=∠CDE,∵AB∥CD,∴∠M=∠ABF,∴∠CDE=∠ABF,∵BF平分∠ABE,∴∠ABE=2∠ABF,∴∠ABE=2∠CDE.故选:A.【点睛】本题考查了平行线的性质和角平分线的定义,作辅助线,是利用平行线的性质的关键,也是本题的难点.2.下列图形中,是正方体表面展开图的是()A.B.C.D.【解析】【分析】利用正方体及其表面展开图的特点解题.【详解】解:A 、B 、D 经过折叠后,下边没有面,所以不可以围成正方体,C 能折成正方体. 故选C .【点睛】本题考查了正方体的展开图,解题时牢记正方体无盖展开图的各种情形.3.如图,O 是直线AB 上一点,OC 平分∠DOB,∠COD=55°45′,则∠AOD=( )A .68°30′B .69°30′C .68°38′D .69°38′【答案】A【解析】【分析】先根据平分,求出∠COB ,再利用互补求∠AOD【详解】∵OC 平分∠DOB ,∠COD=55°45′∴∠COB=55°45′,∠DOB=55°45′+55°45′=111°30′∴∠AOD=180-111°30′=68°30′故选:A【点睛】本题考查角度的简单推理,计算过程中,设计到了分这个单位,需要注意,分与度的进率是604.如图,已知直线AB 和CD 相交于G 点,CG EG ⊥,GF 平分AGE ∠,34CGF ∠=︒,则BGD ∠大小为( )A .22︒B .34︒C .56︒D .90︒【答案】A【解析】先根据垂直的定义求出∠EGF的度数,然后根据GF平分∠ABE可得出∠AGF的度数,再由∠AGC=∠AGF-∠CGF求出∠AGC的度数,最后根据对顶角相等可得出∠BGD的度数.【详解】解:∵CG⊥EG,∴∠EGF=90°-∠CGF=90°-34°=56°,又GF平分∠AGE,∴∠AGF=∠EGF=56°,∴∠AGC=∠AGF-∠CGF=56°-34°=22°,∴∠BGD=∠AGC=22°.故选:A.【点睛】本题考查了对顶角的性质,垂直的定义以及角平分线的定义,掌握基本概念和性质是解题的关键.5.下列图形不是正方体展开图的是()A.B.C.D.【答案】D【解析】【分析】根据正方体展开的11种形式对各选项分析判断即可【详解】A、B、C是正方体展开图,错误;D折叠后,有2个正方形重合,不是展开图形,正确故选:D【点睛】本题是空间想象力的考查,解题关键是在脑海中折叠图形,看是否满足条件6.在直角三角形ABC中,∠C=90°,AD平分∠BAC交BC于点D,BE平分∠ABC交AC于点E,AD、BE相交于点F,过点D作DG∥AB,过点B作BG⊥DG交DG于点G.下列结论:①∠AFB=135°;②∠BDG=2∠CBE;③BC平分∠ABG;④∠BEC=∠FBG.其中正确的个数是()A.1个B.2个C.3个D.4个【答案】C【解析】【分析】根据角平分线性质、三角形内角和定理以及平行线的性质,即可判定①②正确;根据等角的余角相等,即可判定④正确.【详解】∵AD平分∠BAC交BC于点D,BE平分∠ABC交AC于点E,∴∠BAF=12∠BAC,∠ABF=12∠ABC,又∵∠C=90°,∴∠ABC+∠BAC=90°,∴∠BAF+∠ABF=45°,∴∠AFB=135°,故①正确;∵DG∥AB,∴∠BDG=∠ABC=2∠CBE,故②正确;∵∠ABC的度数不确定,∴BC平分∠ABG不一定成立,故③错误;∵BE平分∠ABC,∴∠ABF=∠CBE,又∵∠C=∠ABG=90°,∴∠BEC+∠CBE=90°,∠ABF+∠FBG=90°,∴∠BEC=∠FBG,故④正确.故选:C【点睛】本题考查了角平分线性质、三角形内角和定理、平行线的性质以及等角的余角相等等知识,熟练运用这些知识点是解题的关键.7.下列说法,正确的是( )A.经过一点有且只有一条直线B.两条射线组成的图形叫做角C.两条直线相交至少有两个交点D.两点确定一条直线【答案】D【解析】【分析】根据直线的性质、角的定义、相交线的概念一一判断即可.【详解】A、经过两点有且只有一条直线,故错误;B、有公共顶点的两条射线组成的图形叫做角,故错误;C、两条直线相交有一个交点,故错误;D、两点确定一条直线,故正确,故选D.【点睛】本题考查直线的性质、角的定义、相交线的概念,熟练掌握相关知识是解题的关键.8.图①是由白色纸板拼成的立体图形,将它的两个面的外表面涂上颜色,如图②所示.则下列图形中,是图②的表面展开图的是().A.B.C.D.【答案】B【解析】试题分析:由平面图形的折叠及立体图形的表面展开图的特点解题.解:由图中阴影部分的位置,首先可以排除C、D,又阴影部分正方形在左,三角形在右,而且相邻,故只有选项B符合题意.故选B.点评:此题主要考查了几何体的展开图,本题虽然是选择题,但答案的获得需要学生经历一定的实验操作过程,当然学生也可以将操作活动转化为思维活动,在头脑中模拟(想象)折纸、翻转活动,较好地考查了学生空间观念.9.已知点C在线段AB上,则下列条件中,不能确定点C是线段AB中点的是()A.AC=BC B.AB=2AC C.AC+BC=AB D.12 BC AB【答案】C【解析】【分析】根据线段中点的定义,结合选项一一分析,排除答案.显然A、B、D都可以确定点C是线段AB中点【详解】解:A、AC=BC,则点C是线段AB中点;B、AB=2AC,则点C是线段AB中点;C、AC+BC=AB,则C可以是线段AB上任意一点;D、BC=12AB,则点C是线段AB中点.故选:C.【点睛】本题主要考查线段中点,解决此题时,能根据各选项举出一个反例即可.10.木杆AB斜靠在墙壁上,当木杆的上端A沿墙壁NO竖直下滑时,木杆的底端B也随之沿着射线OM方向滑动.下列图中用虚线画出木杆中点P随之下落的路线,其中正确的是()A.B.C.D.【答案】D【解析】解:如右图,连接OP,由于OP是Rt△AOB斜边上的中线,所以OP=12AB,不管木杆如何滑动,它的长度不变,也就是OP是一个定值,点P就在以O为圆心的圆弧上,那么中点P下落的路线是一段弧线.故选D.11.如图,小强从A处出发沿北偏东70°方向行走,走至B处,又沿着北偏西30°方向行走至C处,此时需把方向调整到与出发时一致,则方向的调整应是()A.左转 80°B.右转80°C.右转 100°D.左转 100°【答案】C【解析】【分析】过C点作CE∥AB,延长CB与点D,根据平行线的性质得出∠A+∠ABH=180°,∠ECB=∠ABC,求出∠ABH=110°,∠ABC=80°,即可求出∠ECB=80°,得出答案即可.【详解】过C点作CE∥AB,延长CB与点D,如图∵根据题意可知:AF∥BH,AB∥CE,∴∠A+∠ABH=180°,∠ECB=∠ABC,∵根据题意可知:∠FAB=70°,∠HBC=30°,∴∠ABH=180°−70°=110°,∠ABC=110°−30°=80°,∴∠ECB=80°,∴∠DCE=180°−80°=100°,即方向的调整应是右转100°.故答案选C.【点睛】本题考查了平行线的判定与性质,解题的关键是熟练的掌握平行线的判定与性质.12.已知直线m∥n,将一块含30°角的直角三角板按如图所示方式放置(∠ABC=30°),并且顶点A,C分别落在直线m,n上,若∠1=38°,则∠2的度数是()A.20°B.22°C.28°D.38°【答案】B【解析】【分析】过C作CD∥直线m,根据平行线的性质即可求出∠2的度数.【详解】解:过C作CD∥直线m,∵∠ABC=30°,∠BAC=90°,∴∠ACB=60°,∵直线m∥n,∴CD∥直线m∥直线n,∴∠1=∠ACD,∠2=∠BCD,∵∠1=38°,∴∠ACD=38°,∴∠2=∠BCD=60°﹣38°=22°,故选:B.【点睛】本题考查了平行线的计算问题,掌握平行线的性质是解题的关键.13.如图,在△ABC中,∠ABC=90°,∠C=52°,BE为AC边上的中线,AD平分∠BAC,交BC边于点D,过点B作BF⊥AD,垂足为F,则∠EBF的度数为()A.19°B.33°C.34°D.43°【答案】B【解析】【分析】根据等边对等角和三角形内角和定理可得∠EBC=52°,再根据角平分线的性质和垂直的性质可得∠FBD=19°,最后根据∠EBF=∠EBC﹣∠FBD求解即可.【详解】解:∵∠ABC=90°,BE为AC边上的中线,∴∠BAC=90°﹣∠C=90°﹣52°=38°,BE=12AC=AE=CE,∴∠EBC=∠C=52°,∵AD平分∠BAC,∴∠CAD=12∠BAC=19°,∴∠ADB=∠C+∠DAC=52°+19°=71°,∵BF⊥AD,∴∠BFD=90°,∴∠FBD=90°﹣∠ADB=19°,∴∠EBF=∠EBC﹣∠FBD=52°﹣19°=33°;故选:B.【点睛】本题考查了三角形的角度问题,掌握等边对等角、三角形内角和定理、角平分线的性质、垂直的性质是解题的关键.14.如图是一个由正方体和一个正四棱锥组成的立体图形,它的主视图是()A.B.C.D.【答案】A【解析】【分析】对一个物体,在正面进行正投影得到的由前向后观察物体的视图,叫做主视图.【详解】解:由主视图的定义可知A选项中的图形为该立体图形的主视图,故选择A.【点睛】本题考查了三视图的概念.15.下列说法中,正确的个数为( )①过同一平面内5点,最多可以确定9条直线;②连接两点的线段叫做两点的距离;=,则点B是线段AC的中点;③若AB BC④三条直线两两相交,一定有3个交点.A.3个B.2个C.1个D.0个【答案】D【解析】【分析】根据直线交点、两点间距离、线段中点定义分别判断即可得到答案.【详解】①过同一平面内5点,最多可以确定10条直线,故错误;②连接两点的线段的长度叫做两点的距离,故错误;=,则点B不一定是线段AC的中点,故错误;③若AB BC④三条直线两两相交,可以都交于同一点,故错误;故选:D.【点睛】此题考查直线交点、两点间距离定义、线段中点定义,正确理解定义是解题的关键.16.下列说法中不正确的是()①过两点有且只有一条直线②连接两点的线段叫两点的距离③两点之间线段最短④点B在线段AC上,如果AB=BC,则点B是线段AC的中点A.①B.②C.③D.④【答案】B【分析】依据直线的性质、两点间的距离、线段的性质以及中点的定义进行判断即可.【详解】①过两点有且只有一条直线,正确;②连接两点的线段的长度叫两点间的距离,错误③两点之间线段最短,正确;④点B在线段AC上,如果AB=BC,则点B是线段AC的中点,正确;故选B.17.如图,一副三角尺按不同的位置摆放,下列摆放方式中∠α与∠β互余的是()A.B.C.D.【答案】A【解析】【分析】根据同角的余角相等,等角的补角相等和邻补角的定义对各小题分析判断即可得解.【详解】A、图中∠α+∠β=180°﹣90°=90°,∠α与∠β互余,故本选项正确;B、图中∠α=∠β,不一定互余,故本选项错误;C、图中∠α+∠β=180°﹣45°+180°﹣45°=270°,不是互余关系,故本选项错误;D、图中∠α+∠β=180°,互为补角,故本选项错误.故选:A.【点睛】此题考查余角和补角,熟记概念与性质是解题的关键.18.若∠AOB =60°,∠AOC =40°,则∠BOC等于()A.100°B.20°C.20°或100°D.40°【答案】C【解析】【分析】画出符合题意的两个图形,根据图形即可得出答案.【详解】当∠AOC在∠AOB的外部时,∵∠AOB=60°,∠AOC=40°∴∠BOC=∠AOB+∠AOC=60°+40°=100°如图2,当∠AOC在∠AOB的内部时,∵∠AOB=60°,∠AOC=40°∴∠BOC=∠AOB-∠AOC=60°-40°=20°即∠BOC的度数是100°或20°故选:C【点睛】本题考查了角的有关计算的应用,主要考查学生根据图形进行计算的能力,分类讨论思想和数形结合思想的运用.19.如图,已知点P(0,3) ,等腰直角△ABC中,∠BAC=90°,AB=AC,BC=2,BC边在x轴上滑动时,PA+PB的最小值是()A102B26C.5 D.6【答案】B【分析】过点P 作PD ∥x 轴,做点A 关于直线PD 的对称点A´,延长A´ A 交x 轴于点E ,则当A´、P 、B 三点共线时,PA +PB 的值最小,根据勾股定理求出A B '的长即可.【详解】如图,过点P 作PD ∥x 轴,做点A 关于直线PD 的对称点A´,延长A´A 交x 轴于点E ,则当A´、P 、B 三点共线时,PA +PB 的值最小,∵等腰直角△ABC 中,∠BAC=90°,AB=AC ,BC =2,∴AE=BE=1,∵P (0,3) ,∴A A´=4, ∴A´E=5, ∴22221526A B BE A E ''=+=+=,故选B.【点睛】本题考查了勾股定理,轴对称-最短路线问题的应用,解此题的关键是作出点A 关于直线PD 的对称点,找出PA +PB 的值最小时三角形ABC 的位置.20.如图将两块三角板的直角顶点重叠在一起,DOB ∠与DOA ∠的比是2:11,则BOC ∠的度数为( )A .45︒B .60︒C .70︒D .40︒【答案】C【解析】【分析】 设∠DOB=2x ,则∠DOA=11x ,可推导得到∠AOB=9x=90°,从而得到角度大小【详解】∵∠DOB与∠DOA的比是2:11∴设∠DOB=2x,则∠DOA=11x∴∠AOB=9x∵∠AOB=90°∴x=10°∴∠BOD=20°∴∠COB=70°故选:C【点睛】本题考查角度的推导,解题关键是引入方程思想,将角度推导转化为计算的过程,以便简化推导。

几何初升高题目及答案大全

几何初升高题目及答案大全

几何初升高题目及答案大全【题目一】题目:已知三角形ABC中,AB=5,AC=7,BC=9,求三角形ABC的面积。

【答案】解:根据海伦公式,首先计算半周长:\[ s = \frac{AB + AC + BC}{2} = \frac{5 + 7 + 9}{2} = 11 \]然后,根据海伦公式计算面积:\[ S = \sqrt{s(s - AB)(s - AC)(s - BC)} = \sqrt{11(11 - 5)(11 - 7)(11 - 9)} = \sqrt{11 \times 6 \times 4 \times 2} = 22 \]所以,三角形ABC的面积是22平方单位。

【题目二】题目:在圆O中,弦AB与弦CD相交于点P,PA=3,PB=4,PC=5,PD=6,求圆O的半径。

【答案】解:根据相交弦定理,我们有:\[ PA \times PB = PC \times PD \]\[ 3 \times 4 = 5 \times 6 \]\[ 12 = 30 \]这与题目给出的条件不符,说明题目有误。

根据题目条件,我们无法求得圆O的半径。

【题目三】题目:已知直角三角形ABC中,角C为直角,AB=10,AC=6,求BC的长度。

【答案】解:根据勾股定理,直角三角形的斜边平方等于两直角边平方和:\[ AB^2 = AC^2 + BC^2 \]\[ 10^2 = 6^2 + BC^2 \]\[ 100 = 36 + BC^2 \]\[ BC^2 = 64 \]\[ BC = 8 \]所以,BC的长度为8单位。

【题目四】题目:在正六边形ABCDEF中,点O是正六边形的中心,求点O到顶点A的距离。

【答案】解:正六边形的中心到每个顶点的距离相等,并且等于正六边形的半径。

设正六边形的边长为a,则正六边形的半径R可以通过以下公式计算:\[ R = \frac{a}{\sqrt{3}} \]由于正六边形的内角为120°,我们可以将正六边形划分为6个等边三角形,每个等边三角形的边长为a。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几何基础知识训练和提高
一 选择题
1.科学家 用分数
722和113
355代替π的近似值,且这两个数分别称为 和 。

( ) (A). 刘徽 密率 约率 (B). 祖冲之 密率 约率
(C). 祖冲之 约率 密率 (D). 鲁道夫 约率 密率 2.早上7时30分在钟面上,时针和分针所夹的角的度数是( ).
(A) 30°;
(B) 15°;
(C) 45°;
(D)60°.
3.在长方体ABCD –EFGH 中,与面ABFE 垂直的棱有( ). (A )3条; (B )4条; (C )5条; (D )6条. 4.下列图形中,是旋转对称图形,但不是中心对称图形的是( )
(A )等腰梯形; (B )等边三角形; (C )平行四边形; (D )直角梯形.
5.在研究圆的有关性质时,我们曾做过这样的一个操作“将一张圆形纸片沿着它的任意一条 直径翻折,可以看到直径两侧的两个半圆互相重合”。

由此说明:( ) (A)圆是中心对称图形,圆心是它的对称中心;
(B)圆是轴对称图形,任意一条直径所在的直线都是它的对称轴; (C)圆的直径互相平分;
(D)垂直弦的直径平分弦及弦所对的弧.
6.下列哪种方法不能检验直线与平面是否垂直( ).
(A )铅垂线; (B)三角尺;
(C)长方形纸片; (D)合页型折纸
7.正五边形绕着它的中心旋转后与它本身重合,最小的旋转角度数是 (A )36°; (B )54°; (C )72°; (D ) 108°. 8.如果一个扇形的圆心角扩大为原来的2倍,半径长缩小为原来的
1
2
,那么所得扇形的面积与原来扇形的面积的比值是( )
(A )1 (B )2 (C )1
2
(D )4
9.下列命题中的真命题是( )
(A )关于中心对称的两个图形全等; (B )全等的两个图形是中心对称图形
(C )中心对称图形都是轴对称图形; (D )轴对称图形都是中心对称图形. 10.直角坐标平面内,有标记为甲、乙、丙、丁的四个三角形,如图6所示,下列说法错误的是( )
(A )丙和乙关于原点对称; (B )甲通过翻折可以与丙重合;
(C )乙向下平移7个单位可以与丁重合; (D )丁和丙关于y 轴对称.
二 填空题
1.在长方体ABCD-EFGH 中,与棱EF 垂直的棱是 .(写出符合题意的所有棱) 2.若∠α的余角是56°36′,则∠α的补角是 .
3.点A 在点B 的北偏东80°方向上,点C 在射线BA 与正北方向夹角的角平分线上,那么点C 位于点B________处. 4.如图,点A 、O 、C 在一直线上,OE 是BOC ∠的平分线,︒=∠90EOF ,1∠比2∠大75°,则2∠求的度数
是 . COF ∠的度数是 . 5.有一块边长为3米的正方形草地,,在一顶点处用一根木桩牵制了一头小羊。

已知牵羊的绳子长2米,那么草地上不会被羊吃掉草的部分是 平方米。

(π 取3.14)
2
1
A O
C E
D
F B 第10题图
第4题图
6.经过点P (-1,5)且垂直于x 轴的直线可以表示为直线 .
7.命题“全等三角形的面积相等”的逆命题是 . 8.经过线段AB 两个端点的圆的圆心的轨迹是 . 9.如图,在直角坐标平面内,已知点A 的坐标(-5,0), (1) 图中B 点的坐标是 ;
(2) 点B 关于原点对称的点C 的坐标是 ;
点A 关于y 轴对称的点D 的坐标是 ;
(3) △ABC 的面积是 ;
(4) 在直角坐标平面上找一点E ,能满足ADE S ∆=ABC S ∆的点E
有 ;
(5) 在y 轴上找一点F ,使ADF S ∆=ABC S ∆,
那么点F 的所有可能位置是
;(用坐标表示,并在图中画出)
10. 圆心角为30,半径为12厘米的扇形面积是 平方厘米. 三 计算题
1.如图,在边长为4厘米的正方形内,有四个半径都为1厘米的圆,每相邻的两个圆仅有一个公共点,求阴影部分的
面积和周长.
2. 已知家用的抽油烟机滤网的展开面为扇形,且滤网附着在一个圆台的内侧面上。

假设圆台的内侧面面积与滤网的面积一样大。

若圆台的上部直径为∮24cm ,下部直径为∮3cm ,圆台的母线长为14cm 。

求该扇形展开面的圆心角?
第25题图。

相关文档
最新文档