锐角三角函数应用题练习
人教版初3数学9年级下册 第28章(锐角三角函数)应用题综合训练(含解析)
初中三角函数应用题综合一.解直角三角形的应用(共10小题)1.如图,小明同学用仪器测量一棵大树AB的高度,在C处测得∠ADM=30°,在E处测得∠AFM =60°,CE=10米,仪器高度CD=1.5米,求这棵树AB的高度.(结果精确到0.1,参考数据:≈1.41,≈1.73,≈2.24)2.如图,小明家A和地铁口B两地恰好处在东西方向上,且相距3km,学校C在他家A正北方向的4km处,公园D与地铁口B和学校C的距离分别5km和km.(1)若∠BDA=10°,求∠ADC的大小;(2)计算公园D与小明家A的距离.3.如图,A、B两地间有一座山,汽车原来从A地到B地需要经折线ACB绕山行驶.为加快城乡对接,建立全域美丽乡村,某地区对A、B两地间的公路进行改建,在这座山打一条隧道,使汽车可以直接沿AB行驶.已知AC=80千米,∠A=30°,∠B=45°.求:(1)开通隧道前,汽车从A地到B地需要行驶多少千米;(2)开通隧道后汽车从A地到B地大约少行驶多少千米?(结果精确到0.1千米)(参考数据:≈1.41,≈1.73)4.如图,数学兴趣小组利用硬纸板自制的Rt△DEF来测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条边DE=1m,EF=0.6m,测得边DF离地面的高度AC=0.8m,CD=6m,求树高AB.5.如图是小朋友玩的“滚铁环”游戏的示意图,⊙O向前滚动时,铁棒DE保持与OE垂直.⊙O与地面接触点为A,若⊙O的半径为25cm,∠AOE=53°.(1)求点E离地面AC的距离BE的长;(2)设人站立点C与点A的距离AC=53cm,DC⊥AC,求铁棒DE的长.(参考数据:sin53°≈0.8,cos53°≈0.6)6.某中学数学活动小组设计了如图检测公路上行驶的校车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于30米,在l上点D的同侧取点A,B,使∠CAD=30°,∠CBD=45°.(1)求AB的长(精确到0.1米,参考数据:≈1.73,≈1.41);(2)已知本路段对校车限速为40千米/小时,若测得校车从A到B用时2秒,这辆校车是否超速?说明理由.7.为了测量旗杆AB的高度,小颖画了如下的示意图,其中CD,EF是两个长度为2m的标杆.(1)如果现在测得∠DEC=30°,EG=4m,求旗杆AB的高度;(参考数据:≈1.41,≈1.73)(2)如果CE的长为x,EG的长为y,请用含x,y的代数式表示旗杆AB的高度.二.解直角三角形的应用−坡度坡角问题(共7小题)8.如图所示,斜坡的坡比i=h:l=1:,则斜坡的坡度是( )A.30°B.60°C.1:D.:19.如图,要测量山高CD,可以把山坡“化整为零”地划分为AB和BC两段,每一段上的山坡近似是“直”的.若量得坡长AB=600m,BC=800m,测得坡角∠BAD=30°,∠CBE=45°,则山高CD为( )A.(300+800)m B.700mC.(300+400)m D.(400+300)m10.如图,河坝横断面迎水坡AB的坡比为1:,坝高BC为4m,则AC的长度为( )A.8m B.4m C.8m D.m11.如图所示,某拦水大坝的横断面为梯形ABCD,AE,DF为梯形的高,其中迎水坡AB的坡角α=45°,坡长AB=10米,背水坡CD的坡度i=1:,则背水坡的坡长CD为( )米.A.20B.20C.10D.2012.为了学生的安全,某校决定把一段如图所示的步梯路段进行改造.已知四边形ABCD为矩形,DE =10m,其坡度为i1=1:,将步梯DE改造为斜坡AF,其坡度为i2=1:4,求斜坡AF的长度是 米.(结果精确到0.01m,参考数据:≈1.732,≈4.123)13.某校有一露天舞台,纵断面如图所示,AC垂直于地面,AB表示楼梯,AE为舞台面,楼梯的坡角∠ABC=45°,坡长AB=2m,为保障安全,学校决定对该楼梯进行改造,降低坡度,拟修新楼梯AD,使∠ADC=30°.(1)求舞台的高AC(结果保留根号);(2)求DB的长度(结果保留根号).14.某居民楼MN后有一个坡度为i=1:2.4的小山坡,小区物业准备在小山坡上加装一广告牌PQ (如图所示),已知QA=5.2米,水平地面上居民楼MN距坡底A点的距离AN=1.2米.当太阳光线与水平线成53°角时,测得广告牌PQ落在居民楼上的影子EN长为3米,求广告牌PQ的高.(参考数据:sin53°≈,cos53°≈,tan53°≈)三.解直角三角形的应用−仰角俯角问题(共8小题)15.若从楼顶A点测得点C的俯角为31°,测得点D的俯角为42°,则∠ADC的度数为( )A.31°B.42°C.48°D.59°16.如图,某建筑物的顶部有一块宣传牌CD,小明在山坡的坡脚A处测得宣传牌底部D的仰角为60°,沿山坡向上走到B处测得宣传牌顶部C的仰角为45°,已知斜坡AB的坡角为30°,AB=10米,AE=15米,则宣传牌CD的高度是( )A.B.C.D.17.某通信公司准备逐步在歌乐山上建设5G基站.如图,某处斜坡CB的坡度(或坡比)为i=1:2.4,通讯塔AB垂直于水平地面,在C处测得塔顶A的仰角为45°,在D处测得塔顶A的仰角为53°,斜坡路段CD长26米,则通讯塔AB的高度为( )(参考数据:,,)A.米B.米C.56米D.66米18.某中学九年级数学兴趣小组想测量建筑物AB的高度.他们在C处仰望建筑物顶端,测得仰角为48°,再往建筑物的方向前进6米到达D处,测得仰角为64°,则建筑物的高度为 米.(测角器的高度忽略不计,结果精确到0.1米)(参考数据:sin48°≈,tan48°≈,sin64°≈,tan64°≈2)19.如图,某校数学兴趣小组要测量楼房DC的高度.在点A处测得楼顶D的仰角为30°,再往楼房的方向前进30m至B处,测得楼顶D的仰角为45°,则楼房DC的高度为 m.20.如图,小马同学在数学综合实践活动中,利用所学的数学知识对山坡一棵树的高度进行测量,先测得小马同学离底部C的距离BC为10m,此时测得对树的顶端D的仰角为55°,已知山坡与水平线的夹角为20°,小马同学的观测点A距地面1.6m,求树木CD的高度(精确到0.1m).(参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈1.43,sin20°≈0.34,cos20°≈0.94,tan20°≈0.36).21.如图,某中学数学活动小组在学习了“利用三角函数测高”后,选定测量小河对岸一幢建筑物BC 的高度,他们先在斜坡上的D处,测得建筑物顶端B的仰角为30°.且D离地面的高度DE=5m.坡底EA=30m,然后在A处测得建筑物顶端B的仰角是60°,点E,A,C在同一水平线上,求建筑物BC的高.(结果用含有根号的式子表示)22.如图,某人在D处测得山顶C的仰角为37°,向前走100米来到山脚A处,测得山坡AC的坡度为i=1:0.5,求山的高度(不计测角仪的高度,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75).参考答案与试题解析一.解直角三角形的应用(共10小题)1.如图,小明同学用仪器测量一棵大树AB的高度,在C处测得∠ADM=30°,在E处测得∠AFM =60°,CE=10米,仪器高度CD=1.5米,求这棵树AB的高度.(结果精确到0.1,参考数据:≈1.41,≈1.73,≈2.24)【解答】解:由题意知,四边形CDBM、CDEF、EFMB是矩形,∴BM=CD=1.5米,CE=DF=10米.在Rt△ADM中,∵tan∠ADM=,∴DM==AM.在Rt△AFM中,∵tan∠AFM=,∴FM==AM.∵DF=DM﹣FM,∴AM﹣AM=10.∴AM=10.AM=5.∴AB=AM+MB=5+1.5≈5×1.73+1.5=8.65+1.5=10.15=10.2(米).答:这棵树AB的高度为10.2米.2.如图,小明家A和地铁口B两地恰好处在东西方向上,且相距3km,学校C在他家A正北方向的4km处,公园D与地铁口B和学校C的距离分别5km和km.(1)若∠BDA=10°,求∠ADC的大小;(2)计算公园D与小明家A的距离.【解答】解:(1)由题意得:BD=5km,CD=5km,∠BAC=90°,AB=3km,CA=4km,∴BC===5(km),∴BC=BD,∵BC2+BD2=52+52=50,CD2=(5)2=50,∴BC2+BD2=CD2,∴△BCD是等腰直角三角形,∴∠CBD=90°,∴∠BDC=45°,∴∠ADC=∠BDC﹣∠BDA=45°﹣10°=35°;(2)过D作DE⊥AB,交AB的延长线于E,如图所示:则∠DEB=90°,∴∠BDE+∠DBE=90°,由(1)得:∠CBD=90°,∴∠DBE+∠CBA=90°,∴∠BDE=∠CBA,在△BDE和△CBA中,,∴△BDE≌△CBA(AAS),∴DE=BA=3km,BE=CA=4km,∴AE=BE+AB=7(km),∴AD===(km).∴公园D与小明家A的距离为km.3.如图,A、B两地间有一座山,汽车原来从A地到B地需要经折线ACB绕山行驶.为加快城乡对接,建立全域美丽乡村,某地区对A、B两地间的公路进行改建,在这座山打一条隧道,使汽车可以直接沿AB行驶.已知AC=80千米,∠A=30°,∠B=45°.求:(1)开通隧道前,汽车从A地到B地需要行驶多少千米;(2)开通隧道后汽车从A地到B地大约少行驶多少千米?(结果精确到0.1千米)(参考数据:≈1.41,≈1.73)【解答】解:(1)如图,过点C作AB的垂线CD,垂足为D,∵AB⊥CD,sin30°=,AC=80千米,∴CD=AC•sin30°=80×=40(千米),BC===40(千米),∴AC+BC=80+40≈1.41×40+80=136.4(千米).∴开通隧道前,汽车从地到地大约要走136.4千米.(2)∵cos30°=,AC=80千米,∴AD=AC•cos30°=80×=40(千米),∵tan45°=,CD=40(千米),∴BD===40(千米),∴AB=BD+AD=40+40≈40+40×1.73=109.2(千米).∴汽车从A地到B地比原来少走的路程为:AC+BC﹣AB=136.4﹣109.2=27.2(千米).∴开通隧道后,汽车从A地到B地大约可以少走27.2千米.4.如图,数学兴趣小组利用硬纸板自制的Rt△DEF来测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条边DE=1m,EF=0.6m,测得边DF离地面的高度AC=0.8m,CD=6m,求树高AB.【解答】解:方法一:在Rt△EDF中,DE=1m,EF=0.6m,∴tan∠EDF===,在Rt△BCD中,CD=6m,∵tan∠BDC=tan∠EDF,∴=,∴BC=3.6m,∵AC=0.8m,∴AB=AC+BC=3.6+0.8=4.4(m),答:树高AB为4.4m;方法二:由题意得:∠BCD=∠DEF=90°,∠CDB=∠EDF,∴△DCB∽△DEF,∴,∵DE=1m,EF=0.6m,CD=6m,∴=,解得:BC=3.6,∵AC=0.8m,∴AB=AC+BC=3.6+0.8=4.4(m),答:树高AB为4.4m.5.如图是小朋友玩的“滚铁环”游戏的示意图,⊙O向前滚动时,铁棒DE保持与OE垂直.⊙O与地面接触点为A,若⊙O的半径为25cm,∠AOE=53°.(1)求点E离地面AC的距离BE的长;(2)设人站立点C与点A的距离AC=53cm,DC⊥AC,求铁棒DE的长.(参考数据:sin53°≈0.8,cos53°≈0.6)【解答】解:过E作与AC平行的直线,与OA、FC分别相交于H、N.(1)在Rt△OHE中,∠OHE=90°,OE=25cm,∠AOE=53°,∴HO=OE×cos53°=15cm,EH=20cm,EB=HA=25﹣15=10(cm),所以铁环钩离地面的高度为10cm;(2)∵铁环钩与铁环相切,∴∠EOH+∠OEH=∠OEH+∠DEN=90°,∠DEN=∠EOH,∴DE==,在Rt△DEN中,∠DNE=90°,EN=BC=AC﹣AB=53﹣20=33(cm),DE===55(cm),∴铁环钩的长度DE为55cm.6.某中学数学活动小组设计了如图检测公路上行驶的校车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于30米,在l上点D的同侧取点A,B,使∠CAD=30°,∠CBD=45°.(1)求AB的长(精确到0.1米,参考数据:≈1.73,≈1.41);(2)已知本路段对校车限速为40千米/小时,若测得校车从A到B用时2秒,这辆校车是否超速?说明理由.【解答】解:(1)由题意得:在Rt△ADC中,AD==≈51.9(米),在Rt△BDC中,BD===30(米),∴AB=AD﹣BD≈51.9﹣30=21.9(米),答:AB的长为21.9米;(2)不超速,理由:∵汽车从A到B用时2秒,∴速度为21.9÷2=10.95(米/秒),∵10.95×3600=39420(米/时),∴该车速度为39.42千米/小时,∵39.42千米/小时<40千米/小时,∴这辆校车在AB路段不超速.7.为了测量旗杆AB的高度,小颖画了如下的示意图,其中CD,EF是两个长度为2m的标杆.(1)如果现在测得∠DEC=30°,EG=4m,求旗杆AB的高度;(参考数据:≈1.41,≈1.73)(2)如果CE的长为x,EG的长为y,请用含x,y的代数式表示旗杆AB的高度.【解答】解:(1)由题意得:∠ABC=∠DCE=∠FEG=90°,在Rt△DCE中,CE===2m,∵∠DEC=∠AEB,∴△DEC∽△AEB,∴=,∴=,∵∠FGE=∠AGB,∴△FGE∽△AGB,∴=,∴=,∴=,∴EB=(8+12)m,∴=,∴AB=8+4≈14.92m,答:旗杆AB的高度为14.92米;(2)由(1)得:△DEC∽△AEB,∴=,∴=,由(1)得:△FGE∽△AGB,∴=,∴=,∴=,∴EB=,∴=,∴AB=,答:旗杆AB的高度为m.二.解直角三角形的应用−坡度坡角问题(共7小题)8.如图所示,斜坡的坡比i=h:l=1:,则斜坡的坡度是( )A.30°B.60°C.1:D.:1【解答】解:∵斜坡的坡比i=h:l=1:,∴斜坡的坡度为1:,故选:C.9.如图,要测量山高CD,可以把山坡“化整为零”地划分为AB和BC两段,每一段上的山坡近似是“直”的.若量得坡长AB=600m,BC=800m,测得坡角∠BAD=30°,∠CBE=45°,则山高CD为( )A.(300+800)m B.700mC.(300+400)m D.(400+300)m【解答】解:由题意可知,四边形BFDE为矩形,∴DE=BF,在Rt△BAF中,∠BAF=30°,AB=600m,则BF=AB=300(m),∴DE=300m,在Rt△CBE中,∠CBE=45°,BC=800m,∴CE=BC=400(m),∴CD=CE+DE=(300+400)m,故选:C.10.如图,河坝横断面迎水坡AB的坡比为1:,坝高BC为4m,则AC的长度为( )A.8m B.4m C.8m D.m【解答】解:∵迎水坡AB的坡比为1:=,BC=4m,∴AC=BC=4(m),故选:B.11.如图所示,某拦水大坝的横断面为梯形ABCD,AE,DF为梯形的高,其中迎水坡AB的坡角α=45°,坡长AB=10米,背水坡CD的坡度i=1:,则背水坡的坡长CD为( )米.A.20B.20C.10D.20【解答】解:由题意得:四边形AEFD是矩形,∴DF=AE,∵迎水坡AB的坡角α=45°,坡长AB=10米,∴DF=AE=10×sin45°=10(米),∵背水坡CD的坡度i=1:,∴tan C=i===,∴∠C=30°,∴CD=2DF=2AE=20(米),故选:A.12.为了学生的安全,某校决定把一段如图所示的步梯路段进行改造.已知四边形ABCD为矩形,DE =10m,其坡度为i1=1:,将步梯DE改造为斜坡AF,其坡度为i2=1:4,求斜坡AF的长度是 20.62 米.(结果精确到0.01m,参考数据:≈1.732,≈4.123)【解答】解:∵DE的坡度为i1=1:,∴tan∠DEC==,∴∠DEC=30°,∴DC=DE=5(m),∵四边形ABCD为矩形,∴AB=CD=5m,∵斜坡AF的坡度为i2=1:4,AB=5m,∴BF=4AB=20(m),在Rt△ABF中,AF==≈20.62(m),∴斜坡AF的长度约为20.62米,故答案为:20.62.13.某校有一露天舞台,纵断面如图所示,AC垂直于地面,AB表示楼梯,AE为舞台面,楼梯的坡角∠ABC=45°,坡长AB=2m,为保障安全,学校决定对该楼梯进行改造,降低坡度,拟修新楼梯AD,使∠ADC=30°.(1)求舞台的高AC(结果保留根号);(2)求DB的长度(结果保留根号).【解答】解:(1)在Rt△ABC中,AB=2m,∠ABC=45°,∴AC=BC=AB•sin45°=2×=(m),答:舞台的高AC为m;(2)在Rt△ADC中,∠ADC=30°,则CD===,∴BD=CD﹣BC=(﹣)m,答:DB的长度为(﹣)m.14.某居民楼MN后有一个坡度为i=1:2.4的小山坡,小区物业准备在小山坡上加装一广告牌PQ (如图所示),已知QA=5.2米,水平地面上居民楼MN距坡底A点的距离AN=1.2米.当太阳光线与水平线成53°角时,测得广告牌PQ落在居民楼上的影子EN长为3米,求广告牌PQ的高.(参考数据:sin53°≈,cos53°≈,tan53°≈)【解答】解:过点E作EF⊥PQ于点F,延长PQ交BA于点G,则QG⊥BA,∴设QG=x米,∵山坡的坡度为i=1:2.4,∴AG=2.4x米,由勾股定理得:x2+(2.4x)2=5.22,解得:x=2,则QG=2米,AG=2.4x=4.8米,∴EF=NG=4.8+1.2=6(m),在Rt△PEF中,∠PEF=53°,EF=6m,则PF=EF•tan∠PEF=6×tan53°≈6×=8(m),∵FQ=EN﹣QG=3﹣2=1(m),∴PQ=8+1=9(m).答:信号塔PQ的高约为9m.三.解直角三角形的应用−仰角俯角问题(共8小题)15.若从楼顶A点测得点C的俯角为31°,测得点D的俯角为42°,则∠ADC的度数为( )A.31°B.42°C.48°D.59°【解答】解:由题意得:∠ADB=42°,∠BDC=90°,∴∠ADC=∠BDC﹣∠ADB=90°﹣42°=48°,故选:C.16.如图,某建筑物的顶部有一块宣传牌CD,小明在山坡的坡脚A处测得宣传牌底部D的仰角为60°,沿山坡向上走到B处测得宣传牌顶部C的仰角为45°,已知斜坡AB的坡角为30°,AB=10米,AE=15米,则宣传牌CD的高度是( )A.B.C.D.【解答】解:过B作BF⊥AE,交EA的延长线于F,作BG⊥DE于G.在Rt△ABF中,∠BAF=30°,AB=10米,∴BF=AB=5(米),AF=BF=5(米).∴BG=AF+AE=(5+15)(米),在Rt△BGC中,∠CBG=45°,∴△BGC是等腰直角三角形,∴CG=BG=(5+15)(米),在Rt△ADE中,∠DAE=60°,AE=15米,∴DE=AE=15(米),∴CD=CG+GE﹣DE=5+15+5﹣15=(20﹣10)(米),即宣传牌CD的高度是(20﹣10)米,故选:A.17.某通信公司准备逐步在歌乐山上建设5G基站.如图,某处斜坡CB的坡度(或坡比)为i=1:2.4,通讯塔AB垂直于水平地面,在C处测得塔顶A的仰角为45°,在D处测得塔顶A的仰角为53°,斜坡路段CD长26米,则通讯塔AB的高度为( )(参考数据:,,)A.米B.米C.56米D.66米【解答】如图,延长AB与水平线交于F,过D作DM⊥CF,M为垂足,过D作DE⊥AF,E为垂足,连接AC,AD,∵斜坡CB的坡度为i=1:2.4,∴==,设DM=5k米,则CM=12k米,在Rt△CDM中,CD=26米,由勾股定理得,CM2+DM2=CD2,即(5k)2+(12k)2=262,解得k=2,∴DM=10(米),CM=24(米),∵斜坡CB的坡度为i=1:2.4,设DE=12a米,则BE=5a米,∵∠ACF=45°,∴AF=CF=CM+MF=(24+12a)米,∴AE=AF﹣EF=24+12a﹣10=(14+12a)米,在Rt△ADE中,DE=12a米,AE=(14+12a)米,∵tan∠ADE==tan53°≈,∴=,解得a=,∴DE=12a=42(米),AE=14+12a=56(米),BE=5a=(米),∴AB=AE﹣BE=56﹣=(米),答:基站塔AB的高为米.故选:B.18.某中学九年级数学兴趣小组想测量建筑物AB的高度.他们在C处仰望建筑物顶端,测得仰角为48°,再往建筑物的方向前进6米到达D处,测得仰角为64°,则建筑物的高度为 14.7 米.(测角器的高度忽略不计,结果精确到0.1米)(参考数据:sin48°≈,tan48°≈,sin64°≈,tan64°≈2)【解答】解:根据题意,得∠ADB=64°,∠ACB=48°在Rt△ADB中,tan64°=,则BD=≈AB,在Rt△ACB中,tan48°=,则CB=≈AB,∴CD=BC﹣BD,即6=AB﹣AB,解得:AB=≈14.7(米),∴建筑物的高度约为14.7米,故答案为:14.7.19.如图,某校数学兴趣小组要测量楼房DC的高度.在点A处测得楼顶D的仰角为30°,再往楼房的方向前进30m至B处,测得楼顶D的仰角为45°,则楼房DC的高度为 (15+15) m.【解答】解:设BC的长为x米.在Rt△CBD中,∠D=90°,∠CBD=45°,∴CD=BC=x米,在Rt△CAD中,∠ACD=90°,∠DAC=30°,∴tan∠CAD===,解得:x=15+15,答:楼房DC的高度为(15+15)米,故答案为:(15+15).20.如图,小马同学在数学综合实践活动中,利用所学的数学知识对山坡一棵树的高度进行测量,先测得小马同学离底部C的距离BC为10m,此时测得对树的顶端D的仰角为55°,已知山坡与水平线的夹角为20°,小马同学的观测点A距地面1.6m,求树木CD的高度(精确到0.1m).(参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈1.43,sin20°≈0.34,cos20°≈0.94,tan20°≈0.36).【解答】解:延长DC交BF于F,过A作AH⊥DC于H,则HF=AB=1.6m,AH=BF,在Rt△ACF中,∵∠CBF=20°,BC=10m,∴CF=BC•sin20°≈10×0.34=3.4(m),BF=BC•cos20°≈10×0.94=9.4(m),∴AH=BF=9.4m,在Rt△ADH中,∵∠DAH=55°,∴DH=AH•tan55°≈9.4×1.43≈13.4(m),∴DC=DH+HF﹣CF=13.4+1.6﹣3.4=11.6(m),答:树木CD的高度约为11.6m.21.如图,某中学数学活动小组在学习了“利用三角函数测高”后,选定测量小河对岸一幢建筑物BC 的高度,他们先在斜坡上的D处,测得建筑物顶端B的仰角为30°.且D离地面的高度DE=5m.坡底EA=30m,然后在A处测得建筑物顶端B的仰角是60°,点E,A,C在同一水平线上,求建筑物BC的高.(结果用含有根号的式子表示)【解答】解:过点D作DH⊥BC于点H,如图所示:则四边形DHCE是矩形,DH=EC,DE=HC=5,设建筑物BC的高度为xm,则BH=(x﹣5)m,在Rt△DHB中,∠BDH=30°,∴DH=(x﹣5),AC=EC﹣EA=(x﹣5)﹣30,在Rt△ACB中,∠BAC=60°,tan∠BAC=,∴=解得:x=,答:建筑物BC的高为m.四.解直角三角形的应用−仰角俯角问题(共1小题)22.如图,某人在D处测得山顶C的仰角为37°,向前走100米来到山脚A处,测得山坡AC的坡度为i=1:0.5,求山的高度(不计测角仪的高度,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75).【解答】解:设山高BC=x,则AB=x,由tan37°==0.75,得:=0.75,解得x=120,经检验,x=120是原方程的根.答:山的高度是120米.。
锐角三角函数练习题
锐角三角函数练习题(总11页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--1.已知cos α<,锐角α的取值范围是()A .60°<a <90B .0°<a <60°C .30°<a <90°D0°<a <30°2.2sin60°-cos30°·tan45°的结果为( )A 、 3 33.B C D .0 3.等腰直角三角形一个锐角的余弦为( ) A 、12 32B C D .l4.在Rt △ABC 中,a 、b ,c 分别为∠A 、∠B 、∠C 的对边,∠C=90°,则a 3 cosA+b 3 cosB 等于( ) A .abc B .(a+b )c 3 C .c 3 D ().abc a b c+ 5.点M(tan60°,-cos60°)关于x 轴的对称点M ′的坐标是( )1111.(3,); 3,); .(3,) .(3,)2222A B C D ----6.在△ABC 中,∠C =90 °,a 、b ,c 分别为∠A 、∠B 、∠C 的对边,且c2-4ac+4a 2= 0,则sinA+cosA 的值为( ) 131223. 2 B C D +++7.在△ABC 中,∠A 为锐角,已知 cos(90°-A )3sin(90°-B )3,则△ABC 一定是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形8.sin35°·cos55°十cos35°·sin55°=_______ 9. 已知0°<a <4512sin cos =__αα-10.在Rt △ABC 中,∠C=90°,∠A=60°,斜边上的高是 3 ,则a=____, b=______,c =______. 11 .在平面直角坐标系中,已知A(3,0)点B(0,-4),则cos ∠OAB 等于__________12.计算|2|4sin 6012--+1||245(20041)2O O -+- ×(-12 )-3+(4)tan 60πO O -+1301()16(2)(2004)36033π-O +÷-+- )()013222sin 60-︒+-(结果保留根号......)2(tan301)____-=1360|2|2-+-+ sin 30(1tan 60)tan 45sin 60---13 已知:如图 l -1-2,在△ABC 中,BC =8,∠B =60°,∠C =45°, 求BC 边上的高AD.14如图1-l -3,在Rt △ABC 中,∠C=90°,∠A=45°,点D 在AC 上,∠BDC=60°,AD=l ,求BD 、DC 的长.15 如图1-1-4所示,四边形ABCD 中,BC=CD=BD ,∠ADB=90°,cos ∠ABD=45 ,求S ΔABD :S ΔBCD16 如图1-l -6,在四边形ABCD 中.∠B =∠D =90°,∠A=60°,AB=4,AD=5,求 BCCD 的值。
锐角三角函数应用题专题
1、(09年湖北仙桃)如图所示,小华同学在距离某建筑物6米的点A 处测得广告牌B 点、C 点的仰角分别为52°和35°,则广告牌的高度BC 为_____________米(精确到0.1米).(sin35°≈0.57,cos35°≈0.82,tan35°≈0.70;sin52°≈0.79,cos52°≈0.62,tan52°≈1.28)2、(09年湖南怀化)如图,小明从A 地沿北偏东 30方向走1003m 到B 地,再从B 地向正南方向走200m 到C 地,此时小明离A 地 m .3、(09年山东潍坊)如图,小明要测量河内小岛B 到河边公路l 的距离,在A 点测得30BAD ∠=°,在C 点测得60BCD ∠=°,又测得50AC =米,则小岛B 到公路l 的距离为( )米. A .25B .253C .10033D .25253+4、(09年山东济南)九年级三班小亮同学学习了“测量物体高度”一节课后,他为了测得右图所放风筝的高度,进行了如下操作: (1)在放风筝的点A 处安置测倾器,测得风筝C 的仰角60CBD =︒∠;(2)根据手中剩余线的长度出风筝线BC 的长度为70米; (3)量出测倾器的高度 1.5AB =米.根据测量数据,计算出风筝的高度CE 约为 米.(精确到0.1米,3 1.73≈)5、(09年广东深圳、山东东营)如图,斜坡AC 的坡度(坡比)为1:3,AC =10米.坡顶有一旗杆BC ,旗杆顶端B 点与A 点有一条彩带AB 相连,AB =14米.试求旗杆BC 的高度.6、(09年广东湛江)如图,某军港有一雷达站P ,军舰M 停泊在雷达站P 的南偏东60°方向36海里处,另一艘军舰N 位于军舰M 的正西方向,与雷达站P 相距182海里.求: (1)军舰N 在雷达站P 的什么方向?(2)两军舰M N 、的距离.(结果保留根号)第6题图NMP北 A BC D 6米52° 35°(第1题图)ADB EC60°(第4题图)第2题图BC AD l第3题图ABC D第5题图7、(09年湖南常德)如图,某人在D 处测得山顶C 的仰角为30o ,向前走200米来到山脚A 处,测得山坡AC 的坡度为i=1∶0.5,求山的高度(不计测角仪的高度,3 1.73≈,结果保留整数).8、(09年湖南娄底)在学习实践科学发展观的活动中,某单位在如图8所示的办公楼迎街的墙面上垂挂一长为30米的宣传条幅AE ,张明同学站在离办公楼的地面C 处测得条幅顶端A 的仰角为50°,测得条幅底端E 的仰角为30°. 问张明同学是在离该单位办公楼水平距离多远的地方进行测量?(精确到整数米)(参考数据:sin50°≈0.77,cos50°≈0.64, tan50°≈1.20,sin30°=0.50,cos30°≈0.87,tan30°≈0.58)9、(09湖南湘西)如图,在离水面高度为5米的岸上有人用绳子拉船靠岸,开始时绳子与水面的夹角为30°,此人以每秒0.5米收绳.问:(1) 未开始收绳子的时候,图中绳子BC 的长度是多少米? (2) 收绳8秒后船向岸边移动了多少米?(结果保留根号)11、(09年湖北黄石)如图9,山顶建有一座铁塔,塔高CD=30m ,某人在点A 处测得塔底C 的仰角为20°,塔顶D 的仰角为23°,求此人距CD 的水平距离AB 。
专题22 锐角三角函数及其应用(共30道)(原卷版)-2023年中考数学真题分项汇编(全国通用)
专题22锐角三角函数及其应用(30题)一、单选题1.(2023·江苏南通·统考中考真题)如图,从航拍无人机A 看一栋楼顶部B 的仰角α为30︒,看这栋楼底部C 的俯角β为60︒,无人机与楼的水平距离为120m ,则这栋楼的高度为()A .1403mB .1603mC .1803mD .2003m2.(2023·湖南益阳·统考中考真题)如图,在平面直角坐标系xOy 中,有三点()0,1A ,()4,1B ,()5,6C ,则sin BAC ∠=()A .12B .135C .22D .323.(2023·山东日照·统考中考真题)日照灯塔是日照海滨港口城市的标志性建筑之一,主要为日照近海及进出日照港的船舶提供导航服务.数学小组的同学要测量灯塔的高度,如图所示,在点B 处测得灯塔最高点A 的仰角45ABD ∠=︒,再沿BD 方向前进至C 处测得最高点A 的仰角60ACD ∠=︒,15.3m BC =,则灯塔的高度AD 大约是()(结果精确到1m ,参考数据:2 1.41≈,3 1.73≈)A .31mB .36mC .42mD .53mA.32sin25二、解答题5.(2023·辽宁盘锦两点时,一架无人机从空中的6.(2023·辽宁鞍山·统考中考真题)某商店窗前计划安装如图面图中,墙面BC垂直于地面CE∠=∠所在墙面BC垂直,即ABC∠线恰好照射在地面点D处,则ADE7.(2023·辽宁阜新·统考中考真题)如图,小颖家所在居民楼高AB 为46m ,从楼顶A 处测得另一座大厦顶部C 的仰角α是45︒,而大厦底部D 的俯角β是37︒.(1)求两楼之间的距离BD .(2)求大厦的高度CD .(结果精确到0.1m .参考数据:sin 370.6︒≈,cos370.8︒≈,tan 370.75︒≈)8.(2023·陕西·统考中考真题)一天晚上,小明和爸爸带着测角仪和皮尺去公园测量一景观灯(灯杆底部不可到达)的高AB .如图所示,当小明爸爸站在点D 处时,他在该景观灯照射下的影子长为DF ,测得2.4m DF =;当小明站在爸爸影子的顶端F 处时,测得点A 的仰角α为266︒..已知爸爸的身高 1.8m CD =,小明眼睛到地面的距离 1.6m EF =,点F 、D 、B 在同一条直线上,EF FB ⊥,CD FB ⊥,AB FB ⊥.求该景观灯的高AB .(参考数据:sin 26.60.45︒≈,cos26.60.89︒≈,tan 26.60.50)︒≈10.(2023·山东济南·统考中考真题)图1是某越野车的侧面示意图,BC=,1230.6mAO=.如图2,打开后备箱,车后盖ABC∠=︒,该车的高度 1.7m(1)求打开后备箱后,车后盖最高点B'到地面l的距离;(2)若小琳爸爸的身高为1.8m,他从打开的车后盖C'处经过,有没有碰头的危险?请说明理由.位于码头A北偏东60︒方向.一艘勘测船从海岛C沿北偏西30︒方向往灯塔B行驶,沿线勘测石油资源,勘测发现位于码头A北偏东15︒方向的D处石油资源丰富.若规划修建从D处到海岸线的输油管道,则输油管道的最短长度是多少千米?(结果保留根号)12.(2023·浙江·统考中考真题)图1是某住宅单元楼的人脸识别系统(整个头部需在摄像头视角围内才能OA=,识别的最远水平距被识别),其示意图如图2,摄像头A的仰角、俯角均为15︒,摄像头高度160cm OB=.离150cm(1)身高208cm的小杜,头部高度为26cm,他站在离摄像头水平距离130cm的点C处,请问小杜最少需要下蹲多少厘米才能被识别.(2)身高120cm的小若,头部高度为15cm,踮起脚尖可以增高3cm,但仍无法被识别.社区及时将摄像头的仰角、俯角都调整为20︒(如图3),此时小若能被识别吗?请计算说明.(精确到0.1cm,参考数据︒≈︒≈︒≈︒≈︒≈︒≈)sin150.26,cos150.97,tan150.27,sin200.34,cos200.94,tan200.3613.(2023·江苏宿迁·统考中考真题)【问题背景】由光的反射定律知:反射角等于入射角(如图,即【活动探究】观察小军的操作后,小明提出了一个测量广告牌高度的做法(如图)动至1E处,小军恰好通过镜子看到广告牌顶端到广告牌的底端A,测出2DE告牌AG的高度.【应用拓展】小军和小明讨论后,发现用此方法也可测量出斜坡上信号塔①让小军站在斜坡的底端D处不动(小军眼睛离地面距离面上)位置至E处,让小军恰好能看到塔顶(即8tan15ADG∠=).通过他们给出的方案,请你算出信号塔14.(2023·辽宁·统考中考真题)小亮利用所学的知识对大厦的高度大厦底部的俯角是30︒,测得大厦顶部的仰角是37︒,已知他家楼顶B 处距地面的高度BA 为40米(图中点A ,B ,C ,D 均在同一平面内).(1)求两楼之间的距离AC (结果保留根号);(2)求大厦的高度CD (结果取整数).(参考数据:sin 370.60︒≈,cos370.80︒≈,tan 370.75︒≈,3 1.73≈)15.(2023·江苏泰州·统考中考真题)如图,堤坝AB 长为10m ,坡度i 为1:0.75,底端A 在地面上,堤坝与对面的山之间有一深沟,山顶D 处立有高20m 的铁塔CD .小明欲测量山高DE ,他在A 处看到铁塔顶端C 刚好在视线AB 上,又在坝顶B 处测得塔底D 的仰角α为2635︒'.求堤坝高及山高DE .(sin 26350.45'︒≈,cos 26350.89'︒≈,tan 26350.50'︒≈,小明身高忽略不计,结果精确到1m )16.(2023·湖南娄底·统考中考真题)几位同学在老师的指导下到某景区进行户外实践活动,在登山途中发17.(2023·黑龙江大庆·统考中考真题)某风景区观景缆车路线如图所示,缆车从点AB=米,达山顶P,其中400与水平方向的夹角为30︒,求垂直高度︒≈)tan150.26818.(2023·宁夏·统考中考真题)如图,粮库用传送带传送粮袋,大转动轮的半径为成30︒角.假设传送带与转动轮之间无滑动,当大转动轮转19.(2023·湖北恩施·统考中考真题)小王同学学习了锐角三角函数后,通过观察广场的台阶与信号塔之间的相对位置,他认为利用台阶的可测数据与在点A ,B 处测出点D 的仰角度数,可以求出信号塔DE 的高.如图,AB 的长为5m ,高BC 为3m .他在点A 处测得点D 的仰角为45︒,在点B 处测得点D 的仰角为38.7︒,A B C D E ,,,,在同一平面内.你认为小王同学能求出信号塔DE 的高吗?若能,请求出信号塔DE 的高;若不能,请说明理由.(参考数据:sin 38.70.625︒≈,cos38.70.780︒≈,tan 38.70.80︒≈,结果保留整数)20.(2023·辽宁营口·统考中考真题)为了丰富学生的文化生活,学校利用假期组织学生到素质教育基地A 和科技智能馆B 参观学习,学生从学校出发,走到C 处时,发现A 位于C 的北偏西25︒方向上,B 位于C 的北偏西55︒方向上,老师将学生分成甲乙两组,甲组前往A 地,乙组前往B 地,已知B 在A 的南偏西20︒方向上,且相距1000米,请求出甲组同学比乙组同学大约多走多远的路程(参考数据:2 1.41≈,6 2.45≈)21.(2023·山东·统考中考真题)如图,某育苗基地为了能够最大限度地遮挡夏季炎热的阳光和充分利用冬天的光照,计划在苗圃正上方搭建一个平行于地面的遮阳蓬.已知苗圃的(南北)宽 6.5AB =米,该地区一(1)求登山缆车上升的高度DE ;(2)若步行速度为30m/min ,登山缆车的速度为60m/min ,求从山底A 处到达山顶D 处大约需要多少分钟(结果精确到0.1min )(参考数据:sin 530.80cos530.60tan 53 1.33︒≈︒≈︒≈,,)24.(2023·贵州·统考中考真题)贵州旅游资源丰富.某景区为给游客提供更好的游览体验,拟在如图①景区内修建观光索道.设计示意图如图②所示,以山脚A 为起点,沿途修建AB 、CD 两段长度相等的观光索道,最终到达山顶D 处,中途设计了一段与AF 平行的观光平台BC 为50m .索道AB 与AF 的夹角为15︒,CD 与水平线夹角为45︒,A B 、两处的水平距离AE 为576m ,DF AF ⊥,垂足为点F .(图中所有点都在同一平面内,点A E F 、、在同一水平线上)(1)求索道AB 的长(结果精确到1m );(2)求水平距离AF 的长(结果精确到1m ).(参考数据:sin150.25︒≈,cos150.96︒≈,tan150.26︒≈,2 1.41≈)25.(2023·湖北鄂州·统考中考真题)鄂州市莲花山是国家4A 级风景区,元明塔造型独特,是莲花山风景区的核心景点,深受全国各地旅游爱好者的青睐.今年端午节,景区将举行大型包粽子等节日庆祝活动.如图2,景区工作人员小明准备从元明塔的点G 处挂一条大型竖直条幅到点E 处,挂好后,小明进行实地测(1)求自动扶梯AD的长度;(2)求大型条幅GE的长度.(结果保留根号)甘肃兰州·统考中考真题)如图127.(2023·内蒙古·统考中考真题)为了增强学生体质、图,A点为出发点,途中设置两个检查点,分别为的南偏东25︒方向32km处,C点在A点的北偏东45︒.的度数;(1)求行进路线BC和CA所在直线的夹角BCA(2)求检查点B和C之间的距离(结果保留根号).28.(2023·吉林·统考中考真题)某校数学活动小组要测量校园内一棵古树的高度,王朵同学带领小组成员进行此项实践活动,记录如下:填写人:王朵综合实践活动报告时间:2023年4月20日活动任务:测量古树高度活动过程【步骤一】设计测量方案小组成员讨论后,画出如图①的测量草图,确定需测的几何量.【步骤二】准备测量工具自制测角仪,把一根细线固定在半圆形量角器的圆心处,细线的另一端系一个小重物,制成一个简单的测角仪,利用α=________.AB=.1.54mBD=.10m三、填空题m .(精确到1m .参考数据:tan 50 1.2tan 26.60.5︒≈︒≈,)30.(2023·内蒙古赤峰·统考中考真题)为发展城乡经济,建设美丽乡村,某乡对A 地和B 地之间的一处垃圾填埋场进行改造,把原来A 地去往B 地需要绕行到C 地的路线,改造成可以直线通行的公路AB .如图,经勘测,6AC =千米,60CAB ∠=︒,37CBA ∠=︒,则改造后公路AB 的长是千米(精确到0.1千米;参考数据:sin 370.60︒≈,cos370.80︒≈,tan 370.75︒≈,3 1.73≈).。
锐角三角函数练习题及答案
锐角三角函数(一)1.把Rt△ABC各边的长度都扩大3倍得Rt△A′B′C′,那么锐角A,A′的余弦值的关系为()A.cosA=cosA′ B.cosA=3cosA′ C.3cosA=cosA′ D.不能确定2.如图1,已知P是射线OB上的任意一点,PM⊥OA于M,且PM:OM=3:4,则cosα的值等于()A.34 B.43 C.45 D .35图 1 图 2 图3 图4图53.在△ABC中,∠C=90°,∠A,∠B,∠C的对边分别是a,b,c,则下列各项中正确的是()A.a=c·sinB B.a=c·cosB C.a=c·tanB D.以上均不正确4.在Rt△ABC中,∠C=90°,cosA=23,则tanB等于()A.35 B.53 C.255 D.525.在Rt△ABC中,∠C=90°,AC=5,AB=13,则sinA=______,cosA=______,•tanA=_______.6.如图2,在△ABC中,∠C=90°,BC:AC=1:2,则sinA=_______,cosA=______,tanB=______.7.如图3,在Rt△ABC中,∠C=90°,b=20,c=202,则∠B的度数为_______.8.如图4,在△CDE中,∠E=90°,DE=6,CD=10,求∠D的三个三角函数值.9.已知:α是锐角,tanα=724,则sinα=_____,cosα=_______.10.在Rt△ABC中,两边的长分别为3和4,求最小角的正弦值为10.如图5,角α的顶点在直角坐标系的原点,一边在x轴上,•另一边经过点P(2,23),求角α的三个三角函数值.12.如图,在△ABC中,∠ABC=90°,BD⊥AC于D,∠CBD=α,AB=3,•BC=4,•求sinα,cosα,tanα的值.解直角三角形一、填空题1. 已知cosA=23,且∠B=900-∠A ,则sinB=__________.2. 在Rt △ABC 中,∠C 为直角,cot(900-A)=1.524,则tan(900-B)=_________.3. ∠A 为锐角,已知sinA=135,那么cos (900-A)=___________.4. 已知sinA=21(∠A 为锐角),则∠A=_________,cosA_______,tanA=__________.5. 用不等号连结右面的式子:cos400_______cos200,sin370_______sin420.6. 若cot α=0.3027,cot β=0.3206,则锐角α、β的大小关系是______________. 7. 计算: 2sin450-3tan600=____________. 8. 计算: (sin300+tan450)·cos600=______________.9. 计算: tan450·sin450-4sin300·cos450+6cot600=__________.10. 计算: tan 2300+2sin600-tan450·sin900-tan600+cos 2300=____________. 二、选择题:1. 在Rt △ABC 中,∠C 为直角,AC=4,BC=3,则sinA=( )A . 43;B . 34;C .53;D . 54.2. 在Rt △ABC 中,∠C 为直角,sinA=22,则cosB 的值是( )A .21;B .23;C .1;D .223. 在Rt △ABC 中,∠C 为直角,∠A=300,则sinA+sinB=( )A .1;B .231+;C .221+;D .414. 当锐角A>450时,sinA 的值( )A .小于22; B .大于22; C .小于23; D .大于235. 若∠A 是锐角,且sinA=43,则( )A .00<∠A<300; B .300<∠A<450;C .450<∠A<600;D . 600<∠A<9006. 当∠A 为锐角,且tanA 的值大于33时, ∠A( )A .小于300; B .大于300; C .小于600; D .大于6007. 如图,在Rt △ABC 中,∠C 为直角,CD ⊥AB 于D ,已知AC=3,AB=5,则tan ∠BCD 等于( )A .43;B .34;C .53;D .548. Rt △ABC 中,∠C 为直角,AC=5,BC=12,那么下列∠A 的四个三角函数中正确的是( )A . sinA=135; B .cosA=1312; C . tanA=1213;D . cotA=1259. 已知α为锐角,且21<cos α<22,则α的取值范围是( )A .00<α<300;B .600<α<900;C .450<α<600;D .300<α<450.三、解答题1、 在△ABC 中,∠C 为直角,已知AB=23,BC=3,求∠B 和AC .2、在△ABC 中,∠C 为直角,直角边a=3cm ,b=4cm ,求sinA+sinB+sinC 的值.3、在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别是a 、b 、c ,已知b=3, c=14. 求∠A 的四个三角函数.4、在△ABC 中,∠C 为直角,不查表解下列问题: (1)已知a=5,∠B=600.求b ; (2)已知a=52,b=56,求∠A .5、在△ABC 中,∠C 为直角, ∠A 、∠B 、∠C 所对的边分别是a 、b 、c ,已知a=25,b=215,求c 、∠A 、∠B .6、在Rt △ABC 中,∠C =90°,由下列条件解直角三角形: (1) 已知a =156, b =56,求c; (2) 已知a =20, c =220,求∠B ; (3) 已知c =30, ∠A =60°,求a ;(4) 已知b =15, ∠A =30°,求a .7、已知:如图,在ΔABC 中,∠ACB =90°,CD ⊥AB ,垂足为D ,若∠B =30°,CD =6,求AB 的长.8、已知:如图,在山脚的C 处测得山顶A 的仰角为︒45,沿着坡度为︒30︒=∠30DCB ,400=CD 米),测得A 的仰角为︒60,求山的高度DCAB9、会堂里竖直挂一条幅AB,如图5,小刚从与B成水平的C点观察,视角∠C=30°,当他沿CB方向前进2米到达到D时,视角∠ADB=45°,求条幅AB的长度。
三角函数计算应用题
锐角三角函数的应用
例1、如图,已知操场上旗杆PQ的高为10米,若在B处测得旗杆顶点P的仰角为30°,在BQ延长线上的A处测得点P的仰角为45°.
(1)试求A、B两点之间的距离;
(2)小唐同学正在放风筝,风筝从A处起飞,几分钟后便飞达C处.此时,B处的小宋同学,发现自己的位置与风筝和旗杆PQ的顶点P在同一直线上,在A处小唐同学背向旗杆又测得风筝的仰角为75°,求A、C两点之间的距离.(结果可保留根号)
例2、如图,△ABC 的内心在y 轴上,点C 的坐标为(2,0),点B 的坐标是(0,2),直线AC 的解析式为y =2
1x-1,则tanA 的值是
例3、每年的6至8月份是台风多发季节,某次台风来袭时,一棵大树树干AB (假定树干AB 垂直于地面)被刮倾斜15°后折断倒在地上,树的项部恰好接触到地面D (如图所示),量得树干的倾斜角为∠BAC=15°,大树被折断部分和地面所成的角∠ADC=60°,AD=4米,求这棵大树AB 原来的高度是多少米?(结果精确到个位,参考数据:√2≈1.4,√3 ≈1.7,√6≈2.4)。
锐角三角函数同步练习(应用题)
第28章锐角三角函数练习题 姓名:________1.(2009年郴州市)如图,数学活动小组来到校园内的一盏路灯下测量路灯的高度,测角仪AB α为30,点B 到电灯杆底端N 的距离BN 为10米,求路灯的高度MN 是多少米?(取23=1. 732,结果保留两位小数)2.(2009成都)某中学九年级学生在学习“直角三角形的边角关系”一章时,开展测量物体高度的实践活动,他们要测量学校一幢教学楼的高度.如图,他们先在点C 测得教学楼AB 的顶点A 的仰角为30°,然后向教学楼前进60米到达点D ,又测得点A 的仰角为45°.请你根据这些数据,求出这幢教学楼的高度.(计算过程和结果均不取近似值)3.(2009年黄石市)三楚第一山——东方山是黄石地区的佛教圣地,也是国家AAA 级游览景区.它的主峰海拔约为600米,主峰AB 上建有一座电信信号发射架BC ,现在山脚P 处测得峰顶的仰角为α,发射架顶端的仰角为β,其中35tan tan 58αβ==,,求发射架高BC .4.(2009年云南省)如图,小芸在自家楼房的窗户A 处,测量楼前的一棵树CD 的高. 现测得树顶C 处的俯角为45°,树底D 处的俯角为60°,楼底到大树的距离BD 为20米.请5.(2009年济宁市)坐落在山东省汶上县宝相寺内的太子灵踪塔始建于北宋(公元1112年),为砖彻八角形十三层楼阁式建筑.数学活动小组开展课外实践活动,在一个阳光明媚的上午,他们去测量太子灵踪塔的高度,携带的测量工具有:测角仪.皮尺.小镜子.(1)小华利用测角仪和皮尺测量塔高. 图1为小华测量塔高的示意图.她先在塔前的平地上选择一点A ,用测角仪测出看塔顶()M 的仰角35α=,在A 点和塔之间选择一点B ,测出看塔顶()M 的仰角45β=,然后用皮尺量出A .B 两点的距离为18.6m,自身的高度为1.6m.请你利用上述数据帮助小华计算出塔的高度(tan 350.7≈,结果保留整数).CB AP600米山顶 发射架 45° AB C D 60°(2)如果你是活动小组的一员,正准备测量塔高,而此时塔影NP 的长为a m (如图2),你能否利用这一数据设计一个测量方案?如果能,请回答下列问题:①在你设计的测量方案中,选用的测量工具是: ;②要计算出塔的高,你还需要测量哪些数据? . 6.(2009年山东青岛市)在一次数学活动课上,老师带领同学们去测量一座古塔CD 的高度.他们首先从A 处安置测倾器,测得塔顶C 的仰角21CFE ∠=°,然后往塔的方向前进50米到达B 处,此时测得仰角37CGE ∠=°CD 的高度. (参考数据:3sin 375°≈,3tan 374°≈,9sin 2125°≈,3tan 218°≈)7.(2009年铁岭市)某旅游区有一个景观奇异的望天洞,D 点是洞的入口,游人从入口进洞游览后,可经山洞到达山顶的出口凉亭A 处观看旅游区风景,最后坐缆车沿索道AB 返回山脚下的B 处.在同一平面内,若测得斜坡BD 的长为100米,坡角10DBC ∠=°,在B 处测得A 的仰角40ABC ∠=°,在D 处测得A 的仰角85ADF ∠=°,过D 点作地面BE 的垂线,垂足为C .(1)求ADB ∠的度数;(2)求索道AB 的长.(结果保留根号)8.(2009年福州)如,在边长为1的小正方形组成的网格中,ABC △的三个顶点均在格点上,请按要求完成下列各题:(1)用签字笔...画AD ∥BC (D 为格点),连接CD ; (2)线段CD 的长为 ;(3)请你在ACD △的三个内角中任选一个锐角..,若你所选的 锐角是 ,则它所对应的正弦函数值是 . (4) 若E 为BC 中点,则tan ∠CAE 的值是 .9.(2009年日照)如图,斜坡AC 的坡度(坡比)为1:3,AC =10米.坡顶有一旗杆BC ,旗杆顶端B 点与A 点有一条彩带AB 相连,AB =14米.试求旗杆BC 的高度.10.(2009贺州)如图,︒=∠25MON ,矩形ABCD 的对角线ON AC ⊥,边BC 在OM 上,当AC=3时,AD11.(2009年天津市)在一次课外实践活动中,同学们要测量某公园人工湖两侧A B ,两个凉亭之间的距离.现测得30AC =m ,70BC =m ,120CAB ∠=°,请计算A B ,两个凉亭之间的距离. A CD EFBCG E DB A F ACD AO25°CBM NDC A12. ( 2009年嘉兴市)如图,已知一次函数b kx y +=的图象经过)1,2(--A ,)3,1(B 两点,并且交x 轴于点C ,交y 轴于点D ,(1)求该一次函数的解析式; (2)求OCD ∠tan 的值;(3)求证:︒=∠135AOB .13. (2009年泸州)如图11,在△ABC 中,AB=BC ,以AB为直径的⊙O 与AC 交于点D ,过D 作DF⊥BC, 交AB 的延长线于E ,垂足为F .(1)求证:直线DE 是⊙O 的切线;(2)当AB=5,AC=8时,求cosE的值. 14.(2009呼和浩特)要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子与地面所成的角α一般满足5075α°≤≤°.如图,现有一个长6m 的梯子,梯子底端与墙角的距离为3m .(1)求梯子顶端B 距离墙角C(2)计算此时梯子与地面所成角α,并判断人能否安全使用这个梯子. (3 1.732≈,2 1.414≈)15.(2009年郴州市)如图,数学活动小组来到校园内的一盏路灯下测量路灯的高度,测角仪AB α为30,点B 到电灯杆底端N 的距离BN 为10米,求路灯的高度MN 是多少米?(取2316.(2009年常德市)如图,某人在D 处测得山顶C 的仰角为30o,向前走200米来到山脚A 处,测得山坡AC 度(不计测角仪的高度,3 1.73≈,结果保留整数).17.(2009年包头)如图,线段AB DC 、分别表示甲.乙两建筑物的高,AB BC DC BC ⊥,⊥,从B 点测得D 点的仰角α为60°从A 点测得D 点的仰角β为30°,已知甲建筑物高36AB =米.(1)求乙建筑物的高DC ; (2)求甲.乙两建筑物之间的距离BC(参考数据:2 1.4143 1.732≈,≈)18.(2009眉山)海船以5海里/小时的速度向正东方向行驶,在A 处看见灯塔B 在海船的北偏东60°方向,2小时后船行驶到C 处,发现此时灯塔B 在海船的北偏西45方向,求此时灯塔B 到C 处的距离.19.(2009年台州市)如图,有一段斜坡BC 长为10米,坡角12CBD ︒∠=,为方便残疾人的轮椅车通行,现准备把坡角降为5°. (1)求坡高CD ; (2)求斜坡新起点A 与原起点B 的20.(2009年赤峰市)公园里有一块形如四边形ABCD 的草地,测得BC=CD=10米,B D CA O1 1yx图11 BC A 墙地面 C BA5°D乙C B A甲EC∠B=∠C=120°,∠A=45°.请你求出这块草地的面积.21.(2009年娄底)在学习实践科学发展观的活动中,某单位在如图8所示的办公楼迎街的墙面上垂挂一长为30米的宣传条幅AE ,张明同学站在离办公楼的地面C 处测得条幅顶端A 的仰角为50°,测得条幅底端E 的仰角为30°. 问张明同学是在离该单位办公楼水平距离多远的地方进行测量?(精确到整数米)22. (2009年金华市) 如图1是工人将货物搬运上货车常用的方法,把一块木板斜靠在货车车厢的尾部,形成一个斜坡,货物通过斜坡进行搬运.根据经验,木板与地面的夹角为20°(即图2中∠ACB =20°)时最为合适,已知货车车厢底部到地面的距离ABADCD24.(2009重庆綦江)如图,在矩形ABCD 中,E 是BC 边上的点,AE=BC ,DF ⊥AE ,垂足为F ,连接DE . (1)求证:ABE △DFA ≌△; (2)如果10AD AB =,=6,求sin EDF ∠的值.第28章锐角三角函数练习题参考答案1. 解:在直角三角形MPA 中,30α∠=°,10AP 米310tan 30105.7733MP米因为 1.5AB 米所以 1.5 5.87.27MN米2.解:如图,由已知可得∠ACB=30°,∠ADB=45° ∴在Rt △ABD 中,BD=AB 又在Rt △ABC 中,∵ tan30°=BCAB ∴33=BC AB ,即BC=3AB ∵BC=CD+BD ,∴3AB=CD+AB 即(3-1)AB=60A BCD图1 图2DABCEF∴AB=1360-=30(3+1)米∴教学楼高度为30(3+1)米. 3. 解:在Rt PAB △中,∵tan AB PA α=, ∴6001000m 3tan 5AB PA α===.在Rt PAC △中, ∵tan ACPAβ=, ∴5tan 1000625m 8AC PA β===. ∴62560025m BC =-=. 答:发射架高为25m .4. 解:过点A 作AE ∥BD 交DC 的延长线于点E , 则∠AEC =∠BDC =90°.∵45EAC ∠=,20AE BD ==, ∴20EC =.∵tan tan ABADB EAD BD∠=∠=, ∴20tan 60203AB =⋅=2032014.6CD ED EC AB EC =-=-=≈(米).答:树高约为14.6米.5. 解:(1)设CD 的延长线交MN 于E 点,MN 长为xm ,则( 1.6)ME x m =-. ∵045β=,∴ 1.6DE ME x ==-.∴ 1.618.617CE x x =-+=+. ∵0tan tan 35ME CE α==,∴ 1.60.717x x -=+,解得45x m =. ∴太子灵踪塔()MN 的高度为45m .(2) ①测角仪.皮尺; ② 站在P 点看塔顶的仰角.自身的高度. 6. 解:由题意知CD AD ⊥,EF AD ∥,45°AB ED60°C∴90CEF ∠=°,设CE x =, 在Rt CEF △中,tan CE CFE EF ∠=,则8tan tan 213CE x EF x CFE ===∠°; 在Rt CEG △中,tan CECGE GE ∠=, 则4tan tan 373CE x GE x CGE ===∠°;∵EF FG EG =+, ∴845033x x =+. 37.5x =,∴37.5 1.539CD CE ED =+=+=(米). 答:古塔的高度约是39米.7. (1)解:∵DC CE ⊥,∴90BCD ∠=°. 又∵10DBC ∠=°, ∴80BDC ∠=°, ∵85ADF ∠=°,∴360809085105ADB ∠=---=°°°°°. (2)过点D 作DG AB ⊥于点G .在Rt GDB △中,401030GBD ∠=-=°°°, ∴903060BDG ∠=-=︒°° 又∵100BD =, ∴111005022GD BD ==⨯=. 3cos301005032GB BD ==⨯=°. A CDEFBG在Rt ADG △中,1056045GDA ∠=-=︒°° ∴50GD GA ==,∴50503AB AG GB =+=+(米) 答:索道长50503+米. 8. (1)如图 (2)5;(3)∠CAD ,55(或∠ADC ,552); (4)21. 9. 延长BC 交AD 于E 点,则CE ⊥AD . 在Rt △AEC 中,AC =10,由坡比为1: 3可知:∠CAE =30°, ∴ CE =AC·sin30°=10×21=5, AE =AC·cos30°=10×23=53 . 在Rt △ABE 中,BE =22AE AB -=()223514-=11.∵ BE =BC +CE ,∴ BC =BE -CE =11-5=6(米). 答:旗杆的高度为6米. 10. 解:延长AC 交 ON 于点E , ∵AC ⊥ON , ∠OEC=90°,∵四边形ABCD 是矩形, ∴∠ABC=90°,A D=BC , 又∵∠OCE=∠ACB , ∴∠BAC=∠O=25°, 在Rt △ABC 中,AC=3, ∴BC=AC· ∴ADABCED A25°CBMDECAD11. 如图,过C 点作CD 垂直于AB 交BA 的延长线于点D .在Rt CDA △中,3018018012060AC CAD CAB =∠=-∠=︒-︒=︒,°.∴•=AC CD 31560sin 30sin =︒•=∠CAD ,︒•=∠•=60cos 30cos CAD AC AD =15.又在Rt CDB△中,22270BC BD BC CD ==,-,()227015365BD ∴=-=.651550AB BD AD ∴=-=-=,答:A B ,两个凉亭之间的距离为50m.12. (1)由⎩⎨⎧+=+-=-b k b k 321,解得⎪⎩⎪⎨⎧==3534b k ,所以3534+=x y (2)5(0)4C -,,5(0)3D ,. 在Rt △OCD 中,35=OD ,45=OC , ∴OCD ∠tan 34==OC OD .(3)取点A 关于原点的对称点(21)E ,, 则问题转化为求证︒=∠45BOE . 由勾股定理可得,5=OE ,5=BE ,10=OB ,∵222BE OE OB +=, ∴△EOB 是等腰直角三角形. ∴︒=∠45BOE . ∴135AOB ∠=°.BD CAO 1 1yE13.14. 解:(1)在Rt ACB △中, (2)在Rt ACB △中,31cos 62AC AB α=== ∴可以安全使用.15.. 解:在直角三角形MPA 中,30α∠=°,10AP 米310tan 30105.7733MP米因为 1.5AB 米所以 1.5 5.87.27MN米16. 设山高BC =x ,则AB =12x , 由tan 3012002BC x BDx==+,得1)400x=,解得1)16211x ==≈米17.解:(1)过点A 作AE CD ⊥于点E ,根据题意,得6030DBC DAE αβ∠=∠=∠=∠=°,°,36AE BC EC AB ===,米,设DE x =,则36DC DE EC x =+=+, 在Rt AED △中,tan tan 30DEDAE AE∠==°, AE BC AE ∴=∴==,,在Rt DCB △中,tan tan 60DC DBC BC ∠===°,3361854x x x DC ∴=+=∴=,,(米). (2)BC AE ==,18x =,1818 1.73231.18BC ∴==⨯≈(米).18. 解:如图,过B 点作BD⊥AC 于DD乙CBA 甲 E∴∠DAB =90°-60°=30°,∠DCB=90°-45°=45° 设BD =x,在Rt△ABD 中,AD =x ⋅tan30°=33x 在Rt△BDC 中,BD =DC =x BC =2x又AD =5×2=10 ∴3103x x +=得5(31)x =- ∴25(31)5(62)BC =⋅-=-(海里)答:灯塔B 距C 处5(62)-海里19. 解:(1)在BCD Rt ∆中,︒=12sin BC CD 1.221.010=⨯≈(米). (2)在BCD Rt ∆中,︒=12cos BC BD8.998.010=⨯≈(米); 在ACD Rt ∆中,︒=5tan CD AD 2.123.330.09≈≈(米), 23.339.813.5313.5AB AD BD =-≈-=≈(米). 20解:连接BD ,过C 作CE BD ⊥于E ,10120BC DC ABC BCD ==∠=∠=,°, 123090ABD ∴∠=∠=∴∠=°,°.553CE BE ∴=∴=,.452103A AB BD BE ∠=∴===°,..21. 解:方法一:过D 点作DF ⊥AB 于F 点 在Rt △DEF 中,设EF =x ,则DF =3x在Rt △ADF 中,tan 50°=303xx+30+x=3∴DF =3x≈48答:张明同学站在离办公楼约48米处进行测量的 方法二:过点D 作DF ⊥AB 于F 点在Rt △DEF 中,EF =FD·tan 30°在Rt △AFD 中,AF =FD·tan 30°∵AE +EF =AF∴30+FDtan 30°=FD·tan 50°∴FD ≈48答:张明同学站在离办公楼约48米处进行测量的22. 解:由题意可知:AB ⊥BC∴在Rt △ABC 中, sin ∠ACB =AB AC ∴AC = ABsin ∠ACB = = ∴CD = AC +AD23. (1)证明:在矩形ABCD 中,ABE DFA ∴△≌△.(2)解:由(1)知ABE DFA △≌△ 在直角ADF △中,在直角DFE △中,10sin 210EF EDF DE ∴∠===。
锐角三角函数及其应用(共60题)(学生版)
锐角三角函数及其应用(60题)一、解答题1(2023·河南·统考中考真题)综合实践活动中,某小组用木板自制了一个测高仪测量树高,测高仪ABCD为正方形,AB=30cm,顶点A处挂了一个铅锤M.如图是测量树高的示意图,测高仪上的点D,A与树顶E在一条直线上,铅垂线AM交BC于点H.经测量,点A距地面1.8m,到树EG的距离AF= 11m,BH=20cm.求树EG的高度(结果精确到0.1m).2(2023·四川宜宾·统考中考真题)渝昆高速铁路的建成,将会显著提升宜宾的交通地位.渝昆高速铁路宜宾临港长江公铁两用大桥(如图1),桥面采用国内首创的公铁平层设计.为测量左桥墩底到桥面的距离CD,如图2.在桥面上点A处,测得A到左桥墩D的距离AD=200米,左桥墩所在塔顶B的仰角∠BAD=45°,左桥墩底C的俯角∠CAD=15°,求CD的长度.(结果精确到1米.参考数据:2≈1.41,3≈1.73)3(2023·辽宁·统考中考真题)暑假期间,小明与小亮相约到某旅游风景区登山,需要登顶600m高的山峰,由山底A处先步行300m到达B处,再由B处乘坐登山缆车到达山顶D处.已知点A,B.D,E,F在同一平面内,山坡AB的坡角为30°,缆车行驶路线BD与水平面的夹角为53°(换乘登山缆车的时间忽略不计)(1)求登山缆车上升的高度DE;(2)若步行速度为30m/min,登山缆车的速度为60m/min,求从山底A处到达山顶D处大约需要多少分钟(结果精确到0.1min)(参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)4(2023·甘肃兰州·统考中考真题)如图1是我国第一个以“龙”为主题的主题公园--“兰州龙源”.“兰州龙源”的“龙”字主题雕塑以紫铜铸造,如巨龙腾空,气势如虹,屹立在黄河北岸.某数学兴趣小组开展了测量“龙”字雕塑CD高度的实践活动.具体过程如下:如图2,“龙”字雕塑CD位于垂直地面的基座BC上,在平行于水平地面的A处测得∠BAC=38°、∠BAD=53°,AB=18m.求“龙”字雕塑CD的高度.(B,C,D三点共线,BD⊥AB.结果精确到0.1m)(参考数据:sin38°≈0.62,cos38°≈0.79,tan38°≈0.78,sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)5(2023·内蒙古通辽·统考中考真题)如图,一艘海轮位于灯塔P的北偏东72°方向,距离灯塔100nmile的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东40°方向上的B处.这时,B 处距离灯塔P有多远(结果取整数)?(参考数据:sin72°≈0.95,cos72°≈0.31,tan72°≈3.08,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84.)6(2023·湖北·统考中考真题)为了防洪需要,某地决定新建一座拦水坝,如图,拦水坝的横断面为梯形ABCD,斜面坡度i=3:4是指坡面的铅直高度AF与水平宽度BF的比.已知斜坡CD长度为20米,∠C=18°,求斜坡AB的长.(结果精确到米)(参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)7(2023·湖南张家界·统考中考真题)“游张家界山水,逛七十二奇楼”成为今年旅游新特色.某数学兴趣小组用无人机测量奇楼AB的高度,测量方案如图:先将无人机垂直上升至距水平地面225m的P 点,测得奇楼顶端A的俯角为15°,再将无人机沿水平方向飞行200m到达点Q,测得奇楼底端B的俯角为45°,求奇楼AB的高度.(结果精确到1m,参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27)8(2023·辽宁大连·统考中考真题)如图所示是消防员攀爬云梯到小明家的场景.已知AE⊥BE,BC ⊥BE,CD∥BE,AC=10.4m,BC=1.26m,点A关于点C的仰角为70°,则楼AE的高度为多少m?(结果保留整数.参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)9(2023·广东·统考中考真题)2023年5月30日,神舟十六号载人飞船发射取得圆满成功,3名航天员顺利进驻中国空间站,如图中的照片展示了中国空间站上机械臂的一种工作状态,当两臂AC=BC= 10m,两臂夹角∠ACB=100°时,求A,B两点间的距离.(结果精确到0.1m,参考数据sin50°≈0.766,cos50°≈0.643,tan50°≈1.192)10(2023·湖南·统考中考真题)我国航天事业捷报频传,2023年5月30日,被誉为“神箭”的长征二号F运载火箭托举神舟十六号载人飞船跃入苍穹中国空间站应用与发展阶段首次载人发射任务取得圆满成功,如图(九),有一枚运载火箭从地面O处发射,当火箭到达P处时,地面A处的雷达站测得AP距离是5000m,仰角为23°.9s,火箭直线到达Q处,此时地面A处雷达站测得Q处的仰角为45°.求火箭从P 到Q处的平均速度(结果精确到1m/s).(参考数据:sin23°≈0.39,cos23°≈0.92,tan23°≈0.42)11(2023·浙江绍兴·统考中考真题)图1是某款篮球架,图2是其示意图,立柱OA垂直地面OB,支架CD与OA交于点A,支架CG⊥CD交OA于点G,支架DE平行地面OB,篮筺EF与支架DE在同一直线上,OA=2.5米,AD=0.8米,∠AGC=32°.(1)求∠GAC的度数.(2)某运动员准备给篮筐挂上篮网,如果他站在発子上,最高可以把篮网挂到离地面3米处,那么他能挂上篮网吗?请通过计算说明理由.(参考数据:sin32°≈0.53,cos32°≈0.85,tan32°≈0.62)12(2023·浙江台州·统考中考真题)教室里的投影仪投影时,可以把投影光线CA,CB及在黑板上的投影图像高度AB抽象成如图所示的△ABC,∠BAC=90°.黑板上投影图像的高度AB=120cm,CB 与AB的夹角∠B=33.7°,求AC的长.(结果精确到1cm.参考数据:sin33.7°≈0.55,cos33.7°≈0.83,tan33.7°≈0.67)13(2023·湖南怀化·统考中考真题)为弘扬革命传统精神,清明期间,某校组织学生前往怀化市烈士陵园缅怀革命先烈.大家被革命烈士纪念碑的雄伟壮观震撼,想知道纪念碑的通高CD(碑顶到水平地面的距离),于是师生组成综合实践小组进行测量.他们在地面的A点用测角仪测得碑顶D的仰角为30°,在B点处测得碑顶D的仰角为60°,已知AB=35m,测角仪的高度是1.5m(A、B、C在同一直线上),根据以上数据求烈士纪念碑的通高CD.(3≈1.732,结果保留一位小数)14(2023·新疆·统考中考真题)烽燧即烽火台,是古代军情报警的一种措施,史册记载,夜间举火称“烽”,白天放烟称“燧”.克孜尔尕哈烽燧是古丝绸之路北道上新疆境内时代最早、保存最完好、规模最大的古代烽燧(如图1).某数学兴趣小组利用无人机测量该烽燧的高度,如图2,无人机飞至距地面高度31.5米的A处,测得烽燧BC的顶部C处的俯角为50°,测得烽燧BC的底部B处的俯角为65°,试根据提供的数据计算烽燧BC的高度.(参数据:sin50°≈0.8,cos50°≈0.6,tan50≈1.2,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)15(2023·四川遂宁·统考中考真题)某实践探究小组想测得湖边两处的距离,数据勘测组通过勘测,得到了如下记录表:实践探究活动记录表活动内容 测量湖边A、B两处的距离成员 组长:××× 组员:××××××××××××测量工具 测角仪,皮尺等测量示意图说明:因为湖边A、B两处的距离无法直接测量,数据勘测组在湖边找了一处位置C.可测量C处到A、B两处的距离.通过测角仪可测得∠A、∠B、∠C的度数.测量数据角的度数∠A=30°∠B=45°∠C=105°边的长度BC=40.0米AC=56.4米数据处理组得到上面数据以后做了认真分析.他们发现不需要勘测组的全部数据就可以计算出A、B之间的距离.于是数据处理组写出了以下过程,请补全内容.已知:如图,在△ABC中,∠A=30°,∠B=45°..(从记录表中再选一个条件填入横线)求:线段AB的长.(为减小结果的误差,若有需要,2取1.41,3取1.73,6取2.45进行计算,最后结果保留整数.)16(2023·四川成都·统考中考真题)为建设美好公园社区,增强民众生活幸福感,某社区服务中心在文化活动室墙外安装避阳篷,便于社区居民休憩.如图,在侧面示意图中,遮阳篷AB长为5米,与水平面的夹角为16°,且靠墙端离地高BC为4米,当太阳光线AD与地面CE的夹角为45°时,求阴影CD的长.(结果精确到0.1米;参考数据:sin16°≈0.28,cos16°≈0.96,tan16°≈0.29)17(2023·贵州·统考中考真题)贵州旅游资源丰富.某景区为给游客提供更好的游览体验,拟在如图①景区内修建观光索道.设计示意图如图②所示,以山脚A为起点,沿途修建AB、CD两段长度相等的观光索道,最终到达山顶D处,中途设计了一段与AF平行的观光平台BC为50m.索道AB与AF的夹角为15°,CD与水平线夹角为45°,A、B两处的水平距离AE为576m,DF⊥AF,垂足为点F.(图中所有点都在同一平面内,点A、E、F在同一水平线上)(1)求索道AB的长(结果精确到1m);(2)求水平距离AF的长(结果精确到1m).(参考数据:sin15°≈0.25,cos15°≈0.96,tan15°≈0.26,2≈1.41)18(2023·湖北鄂州·统考中考真题)鄂州市莲花山是国家4A级风景区,元明塔造型独特,是莲花山风景区的核心景点,深受全国各地旅游爱好者的青睐.今年端午节,景区将举行大型包粽子等节日庆祝活动.如图2,景区工作人员小明准备从元明塔的点G处挂一条大型竖直条幅到点E处,挂好后,小明进行实地测量,从元明塔底部F点沿水平方向步行30米到达自动扶梯底端A点,在A点用仪器测得条幅下端E的仰角为30°;接着他沿自动扶梯AD到达扶梯顶端D点,测得点A和点D的水平距离为15米,且tan∠DAB=43;然后他从D点又沿水平方向行走了45米到达C点,在C点测得条幅上端G的仰角为45°.(图上各点均在同一个平面内,且G,C,B共线,F,A,B共线,G、E、F共线,CD∥AB,GF⊥FB).(1)求自动扶梯AD的长度;(2)求大型条幅GE的长度.(结果保留根号)19(2023·山东东营·统考中考真题)一艘船由A港沿北偏东60°方向航行30km至B港,然后再沿北偏西30°方向航行40km至C港,则A,C两港之间的距离为多少km?20(2023·四川凉山·统考中考真题)超速容易造成交通事故.高速公路管理部门在某隧道内的C、E 两处安装了测速仪,该段隧道的截面示意图如图所示,图中所有点都在同一平面内,且A、D、B、F在同一直线上.点C、点E到AB的距离分别为CD、EF,且CD=EF=7m,CE=895m,在C处测得A点的俯角为30°,在E处测得B点的俯角为45°,小型汽车从点A行驶到点B所用时间为45s.(1)求A,B两点之间的距离(结果精确到1m);(2)若该隧道限速80千米/小时,判断小型汽车从点A行驶到点B是否超速?并通过计算说明理由.(参考数据:2≈1.4,3≈1.7)21(2023·内蒙古·统考中考真题)为了增强学生体质、锤炼学生意志,某校组织一次定向越野拉练活动.如图,A点为出发点,途中设置两个检查点,分别为B点和C点,行进路线为A→B→C→A.B点在A点的南偏东25°方向32km处,C点在A点的北偏东80°方向,行进路线AB和BC所在直线的夹角∠ABC为45°.(1)求行进路线BC和CA所在直线的夹角∠BCA的度数;(2)求检查点B和C之间的距离(结果保留根号).22(2023·湖南常德·统考中考真题)今年“五一”长假期间,小陈、小余同学和家长去沙滩公园游玩,坐在如图的椅子上休息时,小陈感觉很舒服,激发了她对这把椅子的好奇心,就想出个问题考考同学小余,小陈同学先测量,根据测量结果画出了图1的示意图(图2).在图2中,已知四边形ABCD是平行四边形,座板CD与地面MN平行,△EBC是等腰三角形且BC=CE,∠FBA=114.2°,靠背FC=57cm,支架AN=43cm,扶手的一部分BE=16.4cm.这时她问小余同学,你能算出靠背顶端F点距地面(MN)的高度是多少吗?请你帮小余同学算出结果(最后结果保留一位小数).(参考数据:sin65.8°=0.91,cos65.8°=0.41,tan65.8°=2.23)23(2023·山东·统考中考真题)无人机在实际生活中的应用广泛,如图所示,某人利用无人机测最大楼的高度BC,无人机在空中点P处,测得点P距地面上A点80米,点A处俯角为60°,楼顶C点处的俯角为30°,已知点A与大楼的距离AB为70米(点A,B,C,P在同一平面内),求大楼的高度BC(结果保留根号)24(2023·重庆·统考中考真题)人工海产养殖合作社安排甲、乙两组人员分别前往海面A,B养殖场捕捞海产品,经测量,A在灯塔C的南偏西60°方向,B在灯塔C的南偏东45°方向,且在A的正东方向,AC=3600米.(1)求B养殖场与灯塔C的距离(结果精确到个位);(2)甲组完成捕捞后,乙组还未完成捕捞,甲组决定前往B处协助捕捞,若甲组航行的平均速度为600米/每分钟,请计算说明甲组能否在9分钟内到达B处?(参考数据:2≈1.414,3≈1.732)25(2023·山东聊城·统考中考真题)东昌湖西岸的明珠大剧院,隔湖与远处的角楼、城门楼、龙堤、南关桥等景观遥相呼应.如图所示,城门楼B在角楼A的正东方向520m处,南关桥C在城门楼B的正南方向1200m处.在明珠大剧院P测得角楼A在北偏东68.2°方向,南关桥C在南偏东56.31°方向(点A,B,C,P四点在同一平面内).求明珠大剧院到龙堤BC的距离(结果精确到1m).(参考数据:sin68.2°≈0.928,cos68.2°≈0.371,tan68.2°≈2.50,sin56.31°≈0.832,cos56.31°≈0.555,tan56.31°≈1.50)26(2023·四川·统考中考真题)“一缕清风银叶转”,某市20台风机依次矗立在云遮雾绕的山脊之上,风叶转动,风能就能转换成电能,造福千家万户.某中学初三数学兴趣小组,为测量风叶的长度进行了实地测量.如图,三片风叶两两所成的角为120°,当其中一片风叶OB 与塔干OD 叠合时,在与塔底D 水平距离为60米的E 处,测得塔顶部O 的仰角∠OED =45°,风叶OA 的视角∠OEA =30°.(1)已知α,β两角和的余弦公式为:cos α+β =cos αcos β-sin αsin β,请利用公式计算cos75°;(2)求风叶OA 的长度.27(2023·湖北宜昌·统考中考真题)2023年5月30日,“神舟十六号”航天飞船成功发射.如图,飞船在离地球大约330km 的圆形轨道上,当运行到地球表面P 点的正上方F 点时,从中直接看到地球表面一个最远的点是点Q .在Rt △OQF 中,OP =OQ ≈6400km .(参考数据:cos16°≈0.96,cos18°≈0.95,cos20°≈0.94,cos22°≈0.93,π≈3.14)(1)求cos α的值(精确到0.01);(2)在⊙O 中,求PQ的长(结果取整数).28(2023·四川泸州·统考中考真题)如图,某数学兴趣小组为了测量古树DE的高度,采用了如下的方法:先从与古树底端D在同一水平线上的点A出发,沿斜面坡度为i=2:3的斜坡AB前进207m到达点B,再沿水平方向继续前进一段距离后到达点C.在点C处测得古树DE的顶端E的俯角为37°,底部D的俯角为60°,求古树DE的高度(参考数据:sin37°≈35,cos37°≈45,tan37°≈34,计算结果用根号表示,不取近似值).29(2023·山西·统考中考真题)2023年3月,水利部印发《母亲河复苏行动河湖名单(2022-2025年)》,我省境内有汾河、桑干河、洋河、清漳河、浊漳河、沁河六条河流入选.在推进实施母亲河复苏行动中,需要砌筑各种驳岸(也叫护坡).某校“综合与实践”小组的同学把“母亲河驳岸的调研与计算”作为一项课题活动,利用课余时间完成了实践调查,并形成了如下活动报告.请根据活动报告计算BC 和AB 的长度(结果精确到0.1m .参考数据:3≈1.73,2≈1.41).课题母亲河驳岸的调研与计算调查方式资料查阅、水利部门走访、实地查看了解功能驳岸是用来保护河岸,阻止河岸崩塌或冲刷的构筑物驳岸剖面图相关数据及说明,图中,点A ,B ,C ,D ,E 在同一竖直平面内,AE 与CD 均与地面平行,岸墙AB ⊥AE 于点A ,∠BCD =135°,∠EDC =60°,ED =6m ,AE =1.5m ,CD =3.5m计算结果交流展示30(2023·湖南·统考中考真题)如图所示,在某交叉路口,一货车在道路①上点A处等候“绿灯”一辆车从被山峰POQ遮挡的道路②上的点B处由南向北行驶.已知∠POQ=30°,BC∥OQ,OC⊥OQ,AO⊥OP,线段AO的延长线交直线BC于点D.(1)求∠COD的大小;(2)若在点B处测得点O在北偏西α方向上,其中tanα=35,OD=12米.问该轿车至少行驶多少米才能发现点A处的货车?(当该轿车行驶至点D处时,正好发现点A处的货车)31(2023·四川内江·统考中考真题)某中学依山而建,校门A处有一坡角α=30°的斜坡AB,长度为30米,在坡顶B处测得教学楼CF的楼顶C的仰角∠CBF=45°,离B点4米远的E处有一个花台,在E 处测得C的仰角∠CEF=60°,CF的延长线交水平线AM于点D,求DC的长(结果保留根号).32(2023·湖北随州·统考中考真题)某校学生开展综合实践活动,测量某建筑物的高度AB,在建筑物附近有一斜坡,坡长CD=10米,坡角α=30°,小华在C处测得建筑物顶端A的仰角为60°,在D处测得建筑物顶端A的仰角为30°.(已知点A,B,C,D在同一平面内,B,C在同一水平线上)(1)求点D到地面BC的距离;(2)求该建筑物的高度AB.33(2023·天津·统考中考真题)综合与实践活动中,要利用测角仪测量塔的高度.如图,塔AB前有一座高为DE的观景台,已知CD=6m,∠DCE=30°,点E,C,A在同一条水平直线上.某学习小组在观景台C处测得塔顶部B的仰角为45°,在观景台D处测得塔顶部B的仰角为27°.(1)求DE的长;(2)设塔AB的高度为h(单位:m).①用含有h的式子表示线段EA的长(结果保留根号);②求塔AB的高度(tan27°取0.5,3取1.7,结果取整数).34(2023·山东临沂·统考中考真题)如图,灯塔A周围9海里内有暗礁.一渔船由东向西航行至B 处,测得灯塔A在北偏西58°方向上,继续航行6海里后到达C处,测得灯塔A在西北方向上.如果渔船不改变航线继续向西航行,有没有触礁的危险?(参考数据:sin32°≈0.530,cos32°≈0.848,tan32°≈0.625;sin58°≈0.848,cos58°≈0.530,tan58°≈1.6)35(2023·湖南永州·统考中考真题)永州市道县陈树湘纪念馆中陈列的陈树湘雕像高2.9米(如图1所示),寓意陈树湘为中国革命“断肠明志”牺牲时的年龄为29岁.如图2,以线段AB代表陈树湘雕像,一参观者在水平地面BN上D处为陈树湘雕拍照,相机支架CD高0.9米,在相机C处观测雕像顶端A的仰角为45°,然后将相机架移到MN处拍照,在相机M处观测雕像顶端A的仰角为30°,求D、N两点间的距离(结果精确到0.1米,参考数据:3≈1.732)36(2023·重庆·统考中考真题)为了满足市民的需求,我市在一条小河AB两侧开辟了两条长跑锻炼线路,如图;①A-D-C-B;②A-E-B.经勘测,点B在点A的正东方,点C在点B的正北方10千米处,点D在点C的正西方14千米处,点D在点A的北偏东45°方向,点E在点A的正南方,点E在点B 的南偏西60°方向.(参考数据:2≈1.41,3≈1.73)(1)求AD的长度.(结果精确到1千米)(2)由于时间原因,小明决定选择一条较短线路进行锻炼,请计算说明他应该选择线路①还是线路②?37(2023·江苏苏州·统考中考真题)四边形不具有稳定性,工程上可利用这一性质解决问题.如图是某篮球架的侧面示意图,BE,CD,GF为长度固定的支架,支架在A,D,G处与立柱AH连接(AH垂直于MN,垂足为H),在B,C处与篮板连接(BC所在直线垂直于MN),EF是可以调节长度的伸缩臂(旋转点F处的螺栓改变EF的长度,使得支架BE绕点A旋转,从而改变四边形ABCD的形状,以此调节篮板的高度).已知AD=BC,DH=208cm,测得∠GAE=60°时,点C离地面的高度为288cm.调节伸缩臂EF,将∠GAE由60°调节为54°,判断点C离地面的高度升高还是降低了?升高(或降低)了多少?(参考数据:sin54°≈0.8,cos54°≈0.6)38(2023·湖南·统考中考真题)随着科技的发展,无人机已广泛应用于生产生活,如代替人们在高空测量距离和高度.圆圆要测量教学楼AB的高度,借助无人机设计了如下测量方案:如图,圆圆在离教学楼底部243米的C处,遥控无人机旋停在点C的正上方的点D处,测得教学楼AB的顶部B处的俯角为30°,CD长为49.6米.已知目高CE为1.6米.(1)求教学楼AB的高度.(2)若无人机保持现有高度沿平行于CA的方向,以43米/秒的速度继续向前匀速飞行,求经过多少秒时,无人机刚好离开圆圆的视线EB.39(2023·山东烟台·统考中考真题)风电项目对于调整能源结构和转变经济发展方式具有重要意义.某电力部门在一处坡角为30°的坡地新安装了一架风力发电机,如图1.某校实践活动小组对该坡地上的这架风力发电机的塔杆高度进行了测量,图2为测量示意图.已知斜坡CD长16米,在地面点A处测得风力发电机塔杆顶端P点的仰角为45°,利用无人机在点A的正上方53米的点B处测得P点的俯角为18°,求该风力发电机塔杆PD的高度.(参考数据:sin18°≈0.309,cos18°≈0.951,tan18°≈0.325)40(2023·甘肃武威·统考中考真题)如图1,某人的一器官后面A处长了一个新生物,现需检测到皮肤的距离(图1).为避免伤害器官,可利用一种新型检测技术,检测射线可避开器官从侧面测量.某医疗小组制定方案,通过医疗仪器的测量获得相关数据,并利用数据计算出新生物到皮肤的距离.方案如下:课题检测新生物到皮肤的距离工具医疗仪器等示意图说明如图2,新生物在A处,先在皮肤上选择最大限度地避开器官的B处照射新生物,检测射线与皮肤MN的夹角为∠DBN;再在皮肤上选择距离B处9cm的C处照射新生物,检测射线与皮肤MN的夹角为∠ECN.测量数据∠DBN=35°,∠ECN=22°,BC=9cm请你根据上表中的测量数据,计算新生物A处到皮肤的距离.(结果精确到0.1cm)(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,sin22°≈0.37,cos22°≈0.93,tan22°≈0.40)41(2023·四川达州·统考中考真题)莲花湖湿地公园是当地人民喜爱的休闲景区之一,里面的秋千深受孩子们喜爱.如图所示,秋千链子的长度为3m,当摆角∠BOC恰为26°时,座板离地面的高度BM为0.9m,当摆动至最高位置时,摆角∠AOC为50°,求座板距地面的最大高度为多少m?(结果精确到0.1m;参考数据:sin26°≈0.44,cos26°≈0.9,tan26°≈0.49,sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)42(2023·江西·统考中考真题)如图1是某红色文化主题公园内的雕塑,将其抽象成加如图2所示的示意图,已知点B,A,D,E均在同一直线上,AB=AC=AD,测得∠B=55°,BC=1.8m,DE=2m.(结果保小数点后一位)(1)连接CD,求证:DC⊥BC;(2)求雕塑的高(即点E到直线BC的距离).(参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)43(2023·浙江宁波·统考中考真题)某综合实践研究小组为了测量观察目标时的仰角和俯角,利用量角器和铅锤自制了一个简易测角仪,如图1所示.(1)如图2,在P点观察所测物体最高点C,当量角器零刻度线上A,B两点均在视线PC上时,测得视线与铅垂线所夹的锐角为α,设仰角为β,请直接用含α的代数式示β.(2)如图3,为了测量广场上空气球A离地面的高度,该小组利用自制简易测角仪在点B,C分别测得气球A的仰角∠ABD为37°,∠ACD为45°,地面上点B,C,D在同一水平直线上,BC=20m,求气球A离地面的高度AD.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)44(2023·江苏连云港·统考中考真题)渔湾是国家“AAAA”级风景区,图1是景区游览的部分示意图.如图2,小卓从九孔桥A处出发,沿着坡角为48°的山坡向上走了92m到达B处的三龙潭瀑布,再沿坡角为37°的山坡向上走了30m到达C处的二龙潭瀑布.求小卓从A处的九孔桥到C处的二龙潭瀑布上升的高度DC为多少米?(结果精确到0.1m)(参考数据:sin48°≈0.74,cos48°≈0.67,sin37°≈0.60,cos37°≈0.80)45(2023·四川广安·统考中考真题)为了美化环境,提高民众的生活质量,市政府在三角形花园ABC 边上修建一个四边形人工湖泊ABDE,并沿湖泊修建了人行步道.如图,点C在点A的正东方向170米处,点E在点A的正北方向,点B、D都在点C的正北方向,BD长为100米,点B在点A的北偏东30°方向,点D在点E的北偏东58°方向.(1)求步道DE的长度.(2)点D处有一个小商店,某人从点A出发沿人行步道去商店购物,可以经点B到达点D,也可以经点E到达点D,请通过计算说明他走哪条路较近.结果精确到个位)(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60,3≈1.73)46(2023·浙江嘉兴·统考中考真题)图1是某住宅单元楼的人脸识别系统(整个头部需在摄像头视角围内才能被识别),其示意图如图2,摄像头A的仰角、俯角均为15°,摄像头高度OA=160cm,识别的最远水平距离OB=150cm.(1)身高208cm的小杜,头部高度为26cm,他站在离摄像头水平距离130cm的点C处,请问小杜最少需要下蹲多少厘米才能被识别.(2)身高120cm的小若,头部高度为15cm,踮起脚尖可以增高3cm,但仍无法被识别.社区及时将摄像头的仰角、俯角都调整为20°(如图3),此时小若能被识别吗?请计算说明.(精确到0.1cm,参考数据sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)47(2023·安徽·统考中考真题)如图,O,R是同一水平线上的两点,无人机从O点竖直上升到A点时,测得A到R点的距离为40m,R点的俯角为24.2°,无人机继续竖直上升到B点,测得R点的俯角为36.9°.求无人机从A点到B点的上升高度AB(精确到0.1m).参考数据:sin24.2°≈0.41,cos24.2°≈0.91,tan24.2°≈0.45,sin36.9°≈0.60,cos36.9°≈0.80,tan36.9°≈0.75.48(2023·浙江·统考中考真题)如图,某工厂为了提升生产过程中所产生废气的净化效率,需在气体净化设备上增加一条管道A -D -C ,已知DC ⊥BC ,AB ⊥BC ,∠A =60°,AB =11m ,CD =4m ,求管道A -D -C的总长.49(2023·浙江温州·统考中考真题)根据背景素材,探索解决问题.测算发射塔的高度背景素材某兴趣小组在一幢楼房窗口测算远处小山坡上发射塔的高度MN (如图1).他们通过自制的测倾仪(如图2)在A ,B ,C 三个位置观测,测倾仪上的示数如图3所示.经讨论,只需选择其中两个合适的位置,通过测量、换算就能计算发射塔的高度.问题解决任务1分析规划选择两个观测位置:点_________和点_________获取数据写出所选位置观测角的正切值,并量出观测点之间的图上距离.任务2推理计算计算发射塔的图上高度MN.任务3换算高度楼房实际宽度DE为12米,请通过测量换算发射塔的实际高度.注:测量时,以答题纸上的图上距离为准,并精确到1mm.50(2023·四川自贡·统考中考真题)为测量学校后山高度,数学兴趣小组活动过程如下:(1)测量坡角如图1,后山一侧有三段相对平直的山坡AB,BC,CD,山的高度即为三段坡面的铅直高度BH,CQ,DR之和,坡面的长度可以直接测量得到,要求山坡高度还需要知道坡角大小.如图2,同学们将两根直杆MN,MP的一端放在坡面起始端A处,直杆MP沿坡面AB方向放置,在直杆MN另一端N用细线系小重物G,当直杆MN与铅垂线NG重合时,测得两杆夹角α的度数,由此可得山坡AB坡角β的度数.请直接写出α,β之间的数量关系.(2)测量山高同学们测得山坡AB,BC,CD的坡长依次为40米,50米,40米,坡角依次为24°,30°,45°;为求BH,小熠同学在作业本上画了一个含24°角的Rt△TKS(如图3),量得KT≈5cm,TS≈2cm.求山高DF.(2≈1.41,结果精确到1米)(3)测量改进由于测量工作量较大,同学们围绕如何优化测量进行了深入探究,有了以下新的测量方法.如图4,5,在学校操场上,将直杆NP置于MN的顶端,当MN与铅垂线NG重合时,转动直杆NP,使点N,P,D共线,测得∠MNP的度数,从而得到山顶仰角β1,向后山方向前进40米,采用相同方式,测得山顶仰角β2;画一个含β1的直角三角形,量得该角对边和另一直角边分别为a1厘米,b1厘米,再画一个含β2的直角三角形,量得该角对边和另一直角边分别为a2厘米,b2厘米.已知杆高MN为1.6米,求山高DF.(结果用不含β1,β2的字母表示)。
锐角三角函数应用题完美手册
锐角三角函数应用题完美手册本页仅作为文档页封面,使用时可以删除This document is for reference only-rar21year.March锐角三角函数基础练习一、选择题。
1.90,5,4,sin Rt ABC C c a A ∆∠===在中,则的值为( ). A.35 B.45 C.34 D.432.1290,tan ,5ABC A ABC ∆∠=∆的周长是60cm,若C=则的面积是( ). A.230cm B.260cm C. 2120cm D. 2240cm3、在Rt △ABC 中,∠C=900,BC=4,sinA=54,则AC=( ) A 、3 B 、4 C 、5 D 、64、若cosA=31,则A A AA tan 2sin 4tan sin 3+-=( )A 、74B 、31C 、21D 、05、在△ABC 中,∠A :∠B :∠C=1:1:2,则a :b :c=( )A 、1:1:2B 、1:1:2C 、1:1:3D 、1:1:226、在Rt △ABC 中,∠C=900,则下列式子成立的是( )A 、sinA=sinB B 、sinA=cosBC 、tanA=tanBD 、cosA=tanB7.已知Rt △ABC 中,∠C=90°,AC=2,BC=3,那么下列各式中,正确的是( ) A .sinB=23 B .cosB=23 C .tanB=23 D .tanB=328.点(-sin60°,cos60°)关于y 轴对称的点的坐标是( )A.(,12) B .(-,12) C .(-,-12) D .(-12,-329.sin AOB AOB ∠∠正方形网络中,如图1放置,则等于 ( ).C. 12D. 2 10、△如图,A .B .C 三点在正方形网格线的交点处,若将△ABC 绕着点A 逆时针旋转得到△AC ′B ′,则tanB ′的值为( )A .B .C .D .11、如图,在Rt △ABC 中,∠ACB=90°,CD 是AB 边上的中线,若BC=6,AC=8,则tan ∠ACD 的值为( )A .B .C .D .12.每周一学校都要举行庄严的升国旗仪式,让我们感受到了国旗的神圣.•某同学站在离旗杆12米远的地方,当国旗升起到旗杆顶时,他测得视线的仰角为30°,•若这位同学的目高1.6米,则旗杆的高度约为( )A .6.9米B .8.5米C .10.3米D .12.0米13、如图1表示一个时钟的钟面垂直固定于水平桌面上,其中分针上有一点A ,且当钟面显示3点30分时,分针垂直于桌面,A 点距桌面的高度为10公分.如图2,若此钟面显示3点45分时,A 点距桌面的高度为16公分,则钟面显示3点50分时,A 点距桌面的高度为多少公分( )A .B .16+πC .18D .19二、填空题 1、ABC 的顶点都在方格纸的格点上,则sinA= .2.在Rt △ABC 中,∠C=90°,AB=5,AC=3,则sinB=_____.3.在△ABC中,若AC=3,则cosA=________.4.在△ABC中,AB=2,,∠B=30°,则∠BAC的度数是_____5、如图所示,在△ABC中,∠C=90°,AD是BC边上的中线,BD=4,AD=2,则tan∠CAD的值是_____6、如图所示,河堤横断面迎水坡AB的坡比是1:,堤高BC=5cm,则坡面AB的长是_____二、计算题︒+︒-︒-︒⋅︒|﹣2|﹣2sin30°++.3060456030sin cos cot tan tan()0﹣()﹣2+tan45°;四、解直角三角形1、如图,△ABC 中,cosB=,sinC=,AC=5,求△ABC 的面积2、如图,在▲ABC 中,AD 是BC 边上的高,tan cos B DAC =∠。
专题12锐角三角函数及其应用(原卷版)
专题12 锐角三角函数及其应用锐角三角函数的定义与运算1.(2022•湖州)如图,已知在Rt△ABC中,∠C=90°,AB=5,BC=3.求AC的长和sin A 的值.2.(2023•金华)计算:(﹣2023)0+﹣2sin30°+|﹣5|.3.(2021•衢州)计算:+()0﹣|﹣3|+2cos60°.4.(2021•金华)计算:(﹣1)2021+﹣4sin45°+|﹣2|.5.(2021•杭州)计算:sin30°=.6.(2022•绍兴)(1)计算:6tan30°+(π+1)0﹣.(2)解方程组:.7.(2022•金华)计算:(﹣2022)0﹣2tan45°+|﹣2|+.解直角三角形的应用8.(2021•金华)如图是一架人字梯,已知AB=AC=2米,AC与地面BC的夹角为α,则两梯脚之间的距离BC为()A.4cosα米B.4sinα米C.4tanα米D.米9.(2022•台州)如图1,梯子斜靠在竖直的墙上,其示意图如图2.梯子与地面所成的角α为75°,梯子AB长3m,求梯子顶部离地竖直高度BC.(结果精确到0.1m;参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)10.(2022•金华)图1是光伏发电场景,其示意图如图2,EF为吸热塔,在地平线EG上的点B,B′处各安装定日镜(介绍见图3).绕各中心点(A,A')旋转镜面,使过中心点的太阳光线经镜面反射后到达吸热器点F处.已知AB=A'B'=1m,EB=8m,EB'=8 m,在点A观测点F的仰角为45°.(1)点F的高度EF为m.(2)设∠DAB=α,∠D'A'B'=β,则α与β的数量关系是.11.(2023•温州)根据背景素材,探索解决问题.测算发射塔的高度背景素材 某兴趣小组在一幢楼房窗口测算远处小山坡上发射塔的高度MN (如图1),他们通过自制的测倾仪(如图2)在A ,B ,C 三个位置观测,测倾仪上的示数如图3所示.经讨论,只需选择其中两个合适的位置,通过测量、换算就能计算发射塔的高度问题解决任务1分析规划选择两个观测位置:点 A 和点 B (答案不唯一) .获取数据 写出所选位置观测角的正切值,并量出观测点之间的图上距离.任务2 推理计算计算发射塔的图上高度MN .任务3换算高度楼房实际宽度DE 为12米,请通过测量换算发射塔的实际高度.注:测量时,以答题纸上的图上距离为准,并精确到1mm .12.(2023•宁波)某综合实践研究小组为了测量观察目标时的仰角和俯角,利用量角器和铅锤自制了一个简易测角仪,如图1所示.(1)如图2,在P点观察所测物体最高点C,当量角器零刻度线上A,B两点均在视线PC上时,测得视线与铅垂线所夹的锐角为α,设仰角为β,请直接用含α的代数式示β.(2)如图3,为了测量广场上空气球A离地面的高度,该小组利用自制简易测角仪在点B,C分别测得气球A的仰角∠ABD为37°,∠ACD为45°,地面上点B,C,D在同一水平直线上,BC=20m,求气球A离地面的高度AD.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)13.(2023•浙江)图1是某住宅单元楼的人脸识别系统(整个头部需在摄像头视角范围内才能被识别),其示意图如图2,摄像头A的仰角、俯角均为15°,摄像头高度OA=160cm,识别的最远水平距离OB=150cm.(1)身高208cm的小杜,头部高度为26cm,他站在离摄像头水平距离130cm的点C处,请问小杜最少需要下蹲多少厘米才能被识别?(2)身高120cm的小若,头部高度为15cm,踮起脚尖可以增高3cm,但仍无法被识别,社区及时将摄像头的仰角、俯角都调整为20°(如图3),此时小若能被识别吗?请计算说明.(精确到0.1cm,参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)三角函数综合运用14.(2022•温州)如图,在△ABC中,AD⊥BC于点D,E,F分别是AC,AB的中点,O 是DF的中点,EO的延长线交线段BD于点G,连结DE,EF,FG.(1)求证:四边形DEFG是平行四边形.(2)当AD=5,tan∠EDC=时,求FG的长.15.(2021•温州)如图,在▱ABCD中,E,F是对角线BD上的两点(点E在点F左侧),且∠AEB=∠CFD=90°.(1)求证:四边形AECF是平行四边形;(2)当AB=5,tan∠ABE=,∠CBE=∠EAF时,求BD的长.16.(2022•丽水)如图,已知菱形ABCD的边长为4,E是BC的中点,AF平分∠EAD交CD于点F,FG∥AD交AE于点G.若cos B=,则FG的长是()A.3B.C.D.17.(2021•宁波)如图,在矩形ABCD中,点E在边AB上,△BEC与△FEC关于直线EC 对称,点B的对称点F在边AD上,G为CD中点,连结BG分别与CE,CF交于M,N 两点.若BM=BE,MG=1,则BN的长为,sin∠AFE的值为.18.(2021•金华)已知:如图,矩形ABCD的对角线AC,BD相交于点O,∠BOC=120°,AB=2.(1)求矩形对角线的长;(2)过O作OE⊥AD于点E,连结BE.记∠ABE=α,求tanα的值.19.(2022•绍兴)如图,AB=10,点C是射线BQ上的动点,连结AC,作CD⊥AC,CD =AC,动点E在AB延长线上,tan∠QBE=3,连结CE,DE,当CE=DE,CE⊥DE时,BE的长是.20.(2023•杭州)第二十四届国际数学家大会会徽的设计基础是1700多年前中国古代数学家赵爽的“弦图”.如图,在由四个全等的直角三角形(△DAE,△ABF,△BCG,△CDH)和中间一个小正方形EFGH拼成的大正方形ABCD中,∠ABF>∠BAF,连接BE.设∠BAF=α,∠BEF=β,若正方形EFGH与正方形ABCD的面积之比为1:n,tanα=tan2β,则n=()A.5B.4C.3D.221.(2022•金华)一配电房示意图如图所示,它是一个轴对称图形.已知BC=6m,∠ABC =α,则房顶A离地面EF的高度为()A.(4+3sinα)m B.(4+3tanα)m C.(4+)m D.(4+)m 22.(2021•温州)图1是第七届国际数学教育大会(ICME)会徽,在其主体图案中选择两个相邻的直角三角形,恰好能组合得到如图2所示的四边形OABC.若AB=BC=1,∠AOB=α,则OC2的值为()A.+1B.sin2α+1C.+1D.cos2α+123.(2021•衢州)图1是某折叠式靠背椅实物图,图2是椅子打开时的侧面示意图,椅面CE与地面平行,支撑杆AD,BC可绕连接点O转动,且OA=OB,椅面底部有一根可以绕点H转动的连杆HD,点H是CD的中点,F A,EB均与地面垂直,测得F A=54cm,EB=45cm,AB=48cm.(1)椅面CE的长度为cm.(2)如图3,椅子折叠时,连杆HD绕着支点H带动支撑杆AD,BC转动合拢,椅面和连杆夹角∠CHD的度数达到最小值30°时,A,B两点间的距离为cm(结果精确到0.1cm).(参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27)24.(2021•金华)如图1是一种利用镜面反射,放大微小变化的装置.木条BC上的点P处安装一平面镜,BC与刻度尺边MN的交点为D,从A点发出的光束经平面镜P反射后,在MN上形成一个光点E.已知AB⊥BC,MN⊥BC,AB=6.5,BP=4,PD=8.(1)ED的长为.(2)将木条BC绕点B按顺时针方向旋转一定角度得到BC′(如图2),点P的对应点为P′,BC′与MN的交点为D′,从A点发出的光束经平面镜P′反射后,在MN上的光点为E′.若DD′=5,则EE′的长为.25.(2023•绍兴)图1是某款篮球架,图2是其示意图,立柱OA垂直地面OB,支架CD 与OA交于点A,支架CG⊥CD交OA于点G,支架DE平行地面OB,篮筐EF与支架DE在同一直线上,OA=2.5米,AD=0.8米.∠AGC=32°.(1)求∠GAC的度数;(2)某运动员准备给篮筐挂上篮网,如果他站在凳子上,最高可以把篮网挂到离地面3米处,那么他能挂上篮网吗?请通过计算说明理由.(参考数据:sin32°≈0.53,cos32°≈0.85,tan32°≈0.62)26.(2023•台州)教室里的投影仪投影时,可以把投影光线CA,CB及在黑板上的投影图象高度AB抽象成如图所示的△ABC,∠BAC=90°,黑板上投影图象的高度AB=120cm,CB与AB的夹角∠B=33.7°,求AC的长.(结果精确到1cm.参考数据:sin33.7°≈0.55,cos33.7°≈0.83,tan33.7°≈0.67)27.(2023•丽水)如图,某工厂为了提升生产过程中所产生废气的净化效率,需在气体净化设备上增加一条管道A﹣D﹣C,已知DC⊥BC,AB⊥BC,∠A=60°,AB=11m,CD=4m,求管道A﹣D﹣C的总长.28.(2022•嘉兴)小华将一张纸对折后做成的纸飞机如图1,纸飞机机尾的横截面是一个轴对称图形,其示意图如图2,已知AD=BE=10cm,CD=CE=5cm,AD⊥CD,BE⊥CE,∠DCE=40°.(1)连结DE,求线段DE的长.(2)求点A,B之间的距离.(结果精确到0.1cm.参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)29.(2022•宁波)每年的11月9日是我国的“全国消防安全教育宣传日”,为了提升全民防灾减灾意识,某消防大队进行了消防演习.如图1,架在消防车上的云梯AB可伸缩(最长可伸至20m),且可绕点B转动,其底部B离地面的距离BC为2m,当云梯顶端A在建筑物EF所在直线上时,底部B到EF的距离BD为9m.(1)若∠ABD=53°,求此时云梯AB的长.(2)如图2,若在建筑物底部E的正上方19m处突发险情,请问在该消防车不移动位置的前提下,云梯能否伸到险情处?请说明理由.(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.3)30.(2022•绍兴)圭表(如图1)是我国古代一种通过测量正午日影长度来推定节气的天文仪器,它包括一根直立的标杆(称为“表”)和一把呈南北方向水平固定摆放的与标杆垂直的长尺(称为“圭”),当正午太阳照射在表上时,日影便会投影在圭面上,圭面上日影长度最长的那一天定为冬至,日影长度最短的那一天定为夏至.图2是一个根据某市地理位置设计的圭表平面示意图,表AC垂直圭BC,已知该市冬至正午太阳高度角(即∠ABC)为37°,夏至正午太阳高度角(即∠ADC)为84°,圭面上冬至线与夏至线之间的距离(即DB的长)为4米.(1)求∠BAD的度数.(2)求表AC的长(最后结果精确到0.1米).(参考数据:sin37°≈,cos37°≈,tan37°≈,tan84°≈)31.(2021•台州)图1是放置在水平地面上的落地式话筒架实物图,图2是其示意图.支撑杆AB垂直于地面l,活动杆CD固定在支撑杆上的点E处.若∠AED=48°,BE=110cm,DE=80cm,求活动杆端点D离地面的高度DF.(结果精确到1cm,参考数据:sin48°≈0.74,cos48°≈0.67,tan48°≈1.11)32.(2021•宁波)我国纸伞的制作工艺十分巧妙.如图1,伞不管是张开还是收拢,伞柄AP始终平分同一平面内两条伞骨所成的角∠BAC,且AB=AC,从而保证伞圈D能沿着伞柄滑动.如图2是伞完全收拢时伞骨的示意图,此时伞圈D已滑动到点D'的位置,且A,B,D′三点共线,AD′=40cm,B为AD′中点.当∠BAC=140°时,伞完全张开.(1)求AB的长.(2)当伞从完全张开到完全收拢,求伞圈D沿着伞柄向下滑动的距离.(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)。
锐角三角函数练习题初三
锐角三角函数练习题初三一、选择题1. 在锐角三角形ABC中,已知∠ABC = 30°,AB = 8,BC = 4。
求AC的值。
A. 8B. 12C. 16D. 202. 若sinα = 0.6,其中α是锐角,则cosα的值为:A. 0.4B. 0.6C. 0.8D. 1.23. 已知cosβ = 0.8,其中β是锐角,则sinβ的值为:A. 0.2B. 0.4C. 0.6D. 0.84. 在锐角三角形PQR中,已知PQ = 10,QR = 8。
求∠Q的大小。
A. 30°B. 45°C. 60°D. 90°5. 若tanθ = 0.5,其中θ是锐角,则sinθ的值为:A. 0.3B. 0.4C. 0.5D. 0.6二、填空题1. 已知∠A是锐角,则角A的对边对斜边的比值等于()。
2. 若sinα = 0.4,其中α是锐角,则cosα的值为()。
3. 若cosβ = 0.6,其中β是锐角,则sinβ的值为()。
4. 若tanθ = 0.8,其中θ是锐角,则cosθ的值为()。
5. 在锐角三角形ABC中,∠A = 30°,AB = 5,AC = 10。
求BC的值。
三、计算题1. 已知锐角三角形ABC中,∠A = 60°,AB = 5,BC = 4。
求AC 的值。
2. 在锐角三角形PQR中,∠P = 45°,PQ = 6。
若PR = 6sinQ,求PR的值。
3. 在锐角三角形XYZ中,∠X = 45°,XY = 3,YZ = 4。
求tanZ的值。
4. 已知锐角三角形LMN中,∠L = 30°,LM = 5,LN = 10。
求MN 的值。
5. 在锐角三角形UVW中,∠U = 60°,tanU = 2,UW = 10。
求VW 的值。
四、证明题证明:在锐角三角形ABC中,tanA + cotA = secA + cosecA。
锐角三角函数应用题训练全
锐角三角函数应用题训练1.如图,某数学兴趣小组想测量一棵树 CD 的高度,他们先在点 A 处测得树顶 C 的仰角为 30°,然后沿 AD 方向前行 10m,到达 B 点,在 B 处测得树顶 C 的仰角高度为 60°〔A、B、D 三点在同一直线上〕。
请你根据他们测量数据计算这棵树 CD的高度〔结果精确到〕。
〔参考数据: 2 ≈, 3 ≈〕2.如图,一艘核潜艇在海面 DF 下 600 米 A 点处测得俯角为 30°正前方的海底 C 点处有黑匣子,继续在同一深度直线航行 1464 米到 B 点处测得正前方 C 点处的俯角为 45°.求海底 C 点处距离海面 DF 的深度〔结果精确到个位,参考数据: 2 ≈,3 ≈, 5 ≈〕.3.如图,在电线杆 CD上的 C 处引拉线 CE、CF固定电线杆,拉线 CE和地面所成的角∠ CED=60°,在离电线杆 6 米的 B 处安置高为 1.5 米的测角仪 AB,在 A 处测得电线杆上 C 处的仰角为 30°,求拉线 CE的长〔结果保存小数点后一位,参考数据:2 1.41,3 1.73 〕.4.如图, AB、CD为两个建筑物,建筑物 AB 的高度为 60 米,从建筑物 AB 的顶点 A 点测得建筑物 CD 的顶点 C 点的俯角∠ EAC为 30°,测得建筑物 CD的底部 D 点的俯角∠ EAD为 45°.(1〕求两建筑物底部之间水平距离 BD 的长度;(2〕求建筑物 CD的高度〔结果保存根号〕.AECDB5.钓鱼岛自古以来就是我国的神圣领土,为维护国家主权和海洋权利,我国海监和渔政部门对钓鱼岛海域实现了常态化巡航管理.如图,某日在我国钓鱼岛附近海域有两艘自西向东航行的海监船 A、B, B 船在 A 船的正东方向,且两船保持 20 海里的距离,某一时刻两海监船同时测得在 A 的东北方向, B 的北偏东 15°方向有一我国渔政执法船 C,求此时船 C 与船 B 的距离是多少.〔结果保存根号〕6.一测量爱好者,在海边测量位于正东方向的小岛高度AC,如下图,他先在点B 测得山顶点 A 的仰角为30°,然后向正东方向前行 62 米,到达 D 点,在测得山顶点 A 的仰角为 60°〔 B、C、D 三点在同一水平面上,且测量仪的高度忽略不计〕.求小岛高度〔结果精确的1米,参考数值:,〕AC7.如图,我省在修建泛亚铁路时遇到一座山,要从A 地向B 地修一条隧道(A,B在同一水平面上),为了测量A,B 两地之间的距离,某工程师乘坐热气球从M 地出发垂直上升 150 米到达 C 处,在 C 处观察 A 地的俯角为 60°,然后保持同一高度向前平移 200 米到达 D 处,在 D 处观察 B 地的俯角为 45°,那么 A、B 两地之间的距离为多少米? (参考数据: 3 ≈;结果保存整数)NC60° D 45°M A B8.甲、乙两条轮船同时从港口 A 出发,甲轮船以每小时30 海里的速度沿着北偏东60°的方向航行,乙轮船以每小时 15 海里的速度沿着正东方向行进, 1 小时后,甲船接到命令要与乙船会合,于是甲船改变了行进的速度,沿着东南方向航行,结果在小岛 C 处与乙船相遇.假设乙船的速度和航向保持不变,求:(1〕港口 A 与小岛 C 之间的距离;(2〕甲轮船后来的速度.9.如图,游客从某旅游景区的景点 A 处下山至 C 处有两种路径,一中是从 A 沿直线步行到 C,另一种是先从 A 沿索道乘缆车到 B,然后从 B 沿直线步行到 C.现有甲、乙两位游客同时从 A 处下山,甲沿 AC 匀速步行,速度为 45m/min .乙开始从 A 乘缆车到B,在 B 处停留 5min 后,再从 B 匀速步行到 C,两人同时到达.缆车匀速直线运动的速度为 180m/min ,山路 AC 长为 2430m,经测量,∠ CAB=45°,∠ CBA=105°.〔参考数据:,〕(1〕求索道 AB 的长;(2〕为乙的步行速度.10.某中学九年级数学兴趣小组为测量校内旗杆高度,如图,在C 点测得旗杆顶端A 的仰角为 30°,向前走了 6 米到达 D 点,在 D 点测得旗杆顶端 A 的仰角为 60°(测角器的高度不计 ).〔1〕AD米;〔 2〕求旗杆 AB 的高度〔结果保存 1 位小数, 3 ≈〕.11.某日,正在我国南海海域作业的一艘大型渔船突然发生险情,相关部门接到求救信号后,立即调遣一架直升飞机和一艘刚在南海巡航的渔政船前往救援.当飞机到达距离海面3000 米的高空 C 处,测得 A 处渔政船的俯角为60°,测得 B 处发生险情渔船的俯角为30°,请问:此时渔政船和渔船相距多远?〔结果保存根号〕12.如图,小明在 M 处用高 1 米〔 DM=1 米〕的测角仪测得旗杆 AB 的顶端 B 的仰角为 30°,再向旗杆方向前进 10 米到 F 处,又测得旗杆顶端 B 的仰角为 60°,请求出旗杆 AB 的高度〔取≈,结果保存整数〕13.如图,有小岛 A 和小岛 B,轮船以 45km/h 的速度由 C 向东航行,在 C 处测得 A 的方位角为北偏东 60°,测得 B 的方位角为南偏东 45°,轮船航行 2 小时后到达小岛 B 处,在 B 处测得小岛 A 在小岛 B 的正北方向.求小岛 A 与小岛 B 之间的距离〔结果保存整数,参考数据:≈,≈〕14.一艘观光游船从港口 A 以北偏东 60°的方向出港观光,航行 80 海里至 C 处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东 37°方向,马上以 40 海里每小时的速度前往救援,求海警船到大事故船 C 处所需的大约时间.〔温馨提示: sin53 °≈,°≈ 0〕.615.根据道路管理规定,在羲皇大道秦州至麦积段上行驶的车辆,限速 60 千米 / 时.测速站点 M 距羲皇大道 l〔直线〕的距离 MN 为 30 米〔如下图〕.现有6一辆汽车由秦州向麦积方向匀速行驶,测得此车从 A 点行驶到 B 点所用时间为秒,∠ AMN=60°,∠ BMN=45°.〔 1〕计算 AB 的长度.〔 2〕通过计算判断此车是否超速.16.如图,在东西方向的海岸线 l 上有一长为 1 千米的码头 MN,在码头西端 M 的正西方向 30 千米处有一观察站 O.某时刻测得一艘匀速直线航行的轮船位于 O 的北偏西 30°方向,且与 O 相距千米的 A 处;经过 40 分钟,又测得该轮船位于 O 的正北方向,且与 O 相距 20 千米的 B 处.〔 1〕求该轮船航行的速度;〔 2〕如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.17.如图,我国的一艘海监船在钓鱼岛 A 附近沿正东方向航行,船在 B 点时测得钓鱼岛 A 在船的北偏东 60°方向,船以 50 海里 / 时的速度继续航行 2 小时后到达 C 点,此时钓鱼岛 A 在船的北偏东 30°方向.请问船继续航行多少海里与钓鱼岛 A 的距离最近?18.如图, A,B 两地之间有一座山,汽车原来从 A 地到 B 地须经 C 地沿折线 A–C -B 行驶,全长 68 km.现开通隧道后,汽车直接沿直线 AB 行驶.∠ A=30°,∠ B = 45°,那么隧道开通后,汽车从 A 地到 B 地比原来少走多少千米?〔结果精确到0.1 km〕〔参考数据: 2 1.4 ,3 1.7 〕C30°45°A B19.水利部门为加强防汛工作,决定对某水库大坝进行加固,大坝的横截面是梯形ABCD,如下图,迎水坡面 AB 的长为 16 米,∠ B=60°,背水坡面 CD的长为 16 3 米,加固后大坝的横截面为梯形ABED,CE的长为 8 米.(1)需加固的大坝长为150 米,求需要填土石方多少立方米?(2)求加固后的大坝背水坡面DE的坡度.20.如图,一段河坝的横截面为梯形 ABCD,试根据图中数据,求出坝底宽 AD.〔 i =CE∶ED,单位: m〕参考答案1.这棵树 CD 的高度为 8.7 米2. 2600 米.3. 5.7 米.4.〔 1〕两建筑物底部之间水平距离BD 的长度为 60 米;〔2〕建筑物 CD 的高度为〔 60﹣20 3 〕米.5.此时船 C 与船 B 的距离是 20 2 海里.6.53米.7. A、B 两地之间的距离为264 米8.〔 1〕〔15 3 +15〕海里.〔2〕 5 6 海里/小时.9. (1)AB=1260m;(2)乙的步行速度是45m/min.10.〔1〕AD6〔2〕AB≈米.11.2000 3 米.12.10 米13.小岛 A 与小岛 B 之间的距离是 100km.14.15.〔1〕AB=〔 30+30 3〕米;〔2〕不会超速.16.〔1〕轮船航行的速度为30 千米 / 时;〔2〕该轮船不改变航向继续航行,不能行至码头MN 靠岸.17. 50.18.14.19.(1)需填土 4 800 3(立方米 );(2)DE 的坡度为3. 420.〔+4 3 〕m。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
应用题练习
1.在高出地平面50米的小山上有一塔AB ,在地面D 测得塔顶A 和塔基B 的仰角分别为60°和45°,求塔高.
2.在宽为30米的街道东西两旁各有一楼房,从东楼底望西楼顶仰角为45°,从西楼顶望东楼顶,俯角为30°,求西楼高(精确到0.1米).
3.在溆浦县街道拓宽工程中,要伐掉一棵树AB ,在地面上事先划定以B 为圆心,半径与AB 等长的圆形危险区,现在某工人站在离B 点6米远的D 处,从C 点测得树的顶端A 点的仰角为60°,树的底部B 点的俯角为30°. 问:距离B 点16米远的保
护物是否在危险区内?
︒60︒30B
D C A
A B A B E D C F 光线
4.为缓解“停车难”的问题,县国土局拟建造地下停车库,建筑设计师提供了该地下停车库的设计示意图,按规定,地下停车库坡道口上方要张贴限高标志,以便告知停车人车辆能否安全驶入,为标明限高,请你根据该图计算CE .(精确到0.1m )
(下列数据提供参考:sin 20°=0.3420,cos 20°=0.9397,tan 20°=0.3640)
5.学校教学楼ED (高为13.8米)前有一棵大树AB (如图1).
(1)某一时刻测得大树AB 、教学楼ED 在阳光下的投影长分别是BC =2.1米,DF =6.3米,求大树AB 的高度.
(2)用皮尺、高为h 米的测角仪,请你设计另.一种..
测量大树AB 高度的方案,要求: ①在图2上,画出你设计的测量方案示意图,并将应测数据标记在图上(长度用字母m 、n …表示,角度用希腊字母α、β …表示);
②根据你所画的示意图和标注的数据,计算大树AB 高度(用字母表示).
图1 图2。