高中概率知识点、考点、易错点归纳
概率知识点归纳总结高中
概率知识点归纳总结高中概率是数学中一个重要的分支,它研究的是随机事件发生的可能性。
概率在日常生活中也有着广泛的应用,比如天气预报、赌博、金融投资等领域都离不开概率的运用。
在高中数学课程中,概率也是一个重要的内容,我们主要学习了基本概率、条件概率、独立事件、贝叶斯定理等知识点。
下面我们将对这些内容进行详细的归纳总结。
一、基本概率1.概率的定义和性质:概率是指一个随机实验的结果符合某种条件的可能性大小。
概率的性质包括非负性、规范性和可列可加性。
2.概率的计算:对于一个随机实验的样本空间S,如果事件A包含n个基本事件,那么事件A的概率P(A)可以用公式P(A)=n/N来计算,其中N为样本空间S中基本事件的总数。
3.事件的互斥与对立事件:互斥事件指两个事件不可能同时发生;对立事件指两个事件中至少有一个发生。
二、条件概率1.条件概率的定义:当事件B已经发生时,事件A发生的概率称为条件概率,记作P(A|B)。
条件概率的计算公式为P(A|B)=P(AB)/P(B)。
2.乘法定理:P(AB)=P(B)P(A|B)=P(A)P(B|A)。
3.全概率公式和贝叶斯定理:全概率公式用于求解事件A的概率,贝叶斯定理用于求解事件B发生的条件下,事件A发生的概率。
三、独立事件1.独立事件的定义和性质:事件A和事件B互相独立的条件是P(A|B)=P(A),P(B|A)=P(B),即事件A的发生与事件B的发生没有任何影响。
2.独立事件的乘法公式:若事件A和事件B是独立事件,则P(AB)=P(A)P(B)。
3.重复独立实验的概率:重复独立实验指多次独立且相同的实验,对于n次独立实验,事件A发生k次的概率为C(n,k)P(A)^k[1-P(A)]^(n-k),其中C(n,k)表示组合数。
四、随机变量及其分布1.随机变量的概念:随机变量是对随机事件结果的数学描述,它可以是离散型随机变量也可以是连续型随机变量。
2.离散型随机变量的分布:包括伯努利分布、二项分布、泊松分布等,每种分布都有其对应的概率质量函数和概率分布函数。
期末概率知识点总结高中
期末概率知识点总结高中概率是数学中的一个重要分支,是用来描述随机事件发生的可能性大小的一种方法。
在高中阶段,概率是数学课程中的一个重要内容。
下面将对高中阶段概率相关的知识点进行概括总结。
一、基本概念1. 随机试验:具有不确定性的试验称为随机试验。
例如掷骰子、抽签等。
2. 样本空间:随机试验所有可能结果的集合称为样本空间,用S表示。
3. 样本点:样本空间中的每一个元素称为样本点。
4. 事件:包含一个或多个样本点的集合称为事件。
5. 必然事件:样本空间S是一个必然事件,即必然发生的事件。
6. 不可能事件:不包含任何样本点的事件称为不可能事件。
7. 事件的发生:当随机试验的结果与事件中的样本点相符时,称事件发生。
8. 事件的互斥:事件A和事件B不可能同时发生,称A和B是互斥事件。
9. 事件的对立:事件A的对立事件,指的是A不发生的事件,记作A'。
10. 事件的等可能性:当每个样本点发生的可能性相同时,称事件是等可能事件。
二、概率计算方法1. 频率定义:对于一个随机试验,在大量重复试验中某事件发生的频率趋近于一个常数,这个常数就称为该事件的概率。
概率通过实验方法来估计。
2. 等可能概率定义:在随机试验中,所有样本点发生的可能性相同,事件A发生的概率等于事件A中的样本点个数除以样本空间的样本点个数。
3. 古典概率定义:在已知试验的样本空间和事件的基础上,根据古典概率定义可以计算事件的概率。
公式为:P(A) = n(A) / n(S),其中n(A)表示事件A中样本点的个数,n(S)表示样本空间中样本点的个数。
4. 几何概率定义:当样本空间中某一事件的几何模型可用来计算概率时,可以采用几何概率定义。
公式为:P(A) = S(A) / S(S),其中S(A)表示事件A的几何模型的面积或长度(一维情况下),S(S)表示样本空间的面积或长度(一维情况下)。
5. 条件概率:当已知事件B发生的情况下,事件A发生的概率称为条件概率,用P(A|B)表示。
高中数学概率知识点总结
高中数学概率知识点总结一、概率的基本概念1.1 概率的定义在日常生活中,我们经常会遇到很多不确定的事件,比如掷骰子的结果、抽奖的中奖情况等等。
而概率就是用来描述这些不确定事件发生的可能性的。
概率可以理解为某件事情发生的可能性大小,通常用一个介于0和1之间的数值来表示,其中0表示不可能发生,1表示一定会发生。
1.2 样本空间和事件在进行概率计算时,通常需要确定一个样本空间,即所有可能发生的结果的集合。
比如掷一枚骰子,样本空间为{1,2,3,4,5,6}。
事件则是样本空间的一个子集,表示我们关心的那部分结果。
比如“出现奇数点数”的事件为{1,3,5}。
1.3 古典概率和频率概率古典概率是指在所有可能结果等可能时,事件发生的概率即为事件发生的次数与样本空间元素总数的比值。
而频率概率是指在实际观察中,某一事件发生的次数与总次数的比值。
古典概率适用于理论计算,而频率概率适用于实际观测。
1.4 概率的性质概率具有以下几个重要性质:(1)非负性:任何事件的概率都大于等于0;(2)规范性:全集事件的概率为1;(3)可列可加性:对于两个互不相容的事件,它们的概率之和等于这两个事件并起来的概率。
二、概率的计算方法2.1 古典概率的计算在古典概率中,当每个事件发生的可能性相等时,概率等于事件发生的次数除以总事件数,即P(A)=n(A)/n(S)。
2.2 几何概率的计算几何概率是通过几何模型中的面积、长度或体积来计算概率的方法。
比如说,在一个正方形的面积中,事件发生的可能性可以表示为事件的面积与总面积的比值。
2.3 频率概率的计算频率概率是通过实验次数和事件发生次数的比值来计算概率的方法,即P(A)=n(A)/n。
2.4 排列和组合排列是指从n个不同元素中取出m个元素,按一定的次序排成一列,不同元素的个数为n!/(n-m)!。
组合是指从n个不同元素中取出m个元素,不考虑次序的情况,不同元素的个数为n!/(m!(n-m)!)。
高二数学概率知识点总结
高二数学概率知识点总结
一、随机事件的概率
1. 随机事件:在一定条件下可能发生也可能不发生的事件。
2. 必然事件:在一定条件下必然发生的事件。
3. 不可能事件:在一定条件下不可能发生的事件。
4. 概率的定义:对于一个随机事件A,它发生的概率P(A)满足0 ≤ P(A) ≤ 1。
如果P(A)=1,则事件A 为必然事件;如果P(A)=0,则事件A 为不可能事件。
二、古典概型
1. 古典概型的特征:
-试验中所有可能出现的基本事件只有有限个。
-每个基本事件出现的可能性相等。
2. 古典概型的概率计算公式:P(A)=事件A 包含的基本事件数÷总的基本事件数。
三、几何概型
1. 几何概型的特征:
-试验中所有可能出现的结果(基本事件)有无限多个。
-每个基本事件出现的可能性相等。
2. 几何概型的概率计算公式:P(A)=构成事件A 的区域长度(面积或体积)
÷试验的全部结果所构成的区域长度(面积或体积)。
四、互斥事件和对立事件
1. 互斥事件:如果事件A 和事件B 不能同时发生,那么称事件A 和事件B 为互斥事件。
-互斥事件的概率加法公式:P(A∪B)=P(A)+P(B)(A、B 互斥)。
2. 对立事件:如果事件A 和事件B 必有一个发生,且仅有一个发生,那么称事件A 和事件 B 为对立事件。
-对立事件的概率计算公式:P(A)=1 - P(A 的对立事件)。
高中概率知识点高考考点易错点归纳
高中概率知识点高考考点易错点归纳随着高考的临近,各位高中生对于概率知识点的准备工作也进入到了最后的关键阶段。
为了帮助大家更好地掌握概率知识,本文将对高中概率知识点、高考考点以及易错点进行归纳总结,希望能够对大家的备考工作起到一定的指导作用。
一、基础概念在了解高中概率知识点之前,我们首先需要了解概率的基础概念。
概率是指某一事件发生的可能性大小,通常用一个介于0和1之间的数字表示,其中0表示不可能发生,1表示肯定发生。
同时,我们还需要了解概率的计算公式,即概率=有利结果的个数/样本空间的个数。
二、概率的计算1. 事件的互斥与对立:- 互斥事件指的是两个事件不可能同时发生,例如抛一枚硬币的正面和反面。
- 对立事件指的是两个事件中一个发生另一个就不发生,例如抛一颗骰子的奇数点数和偶数点数。
这两个概念在概率计算中经常被用到,需要大家能够准确理解和应用。
2. 事件的独立与依赖:- 独立事件指的是两个事件的结果互不影响,例如连续抛掷两次硬币结果的概率。
- 依赖事件指的是两个事件的结果存在相关性,例如不放回抽球的概率计算。
对于独立事件的概率计算,我们只需要将各个事件的概率相乘即可;而对于依赖事件的概率计算,我们需要结合条件概率的概念进行计算。
3. 排列组合与概率:在概率计算中,排列组合也是一个非常重要的概念。
特别是当事件的发生次序与结果无关时,我们可以利用排列组合的知识简化计算过程,并得到更准确的概率结果。
三、高考考点1. 相对频率与概率:相对频率是指某个事件发生的次数与试验总次数之比,而概率是指某个事件发生的可能性大小。
在高考中,会出现相对频率与概率之间的换算或者比较,需要大家能够准确理解并进行运算。
2. 蒙特卡洛方法:蒙特卡洛方法是一种基于随机模拟的数值计算方法,在概率问题中得到了广泛的应用。
在高考中,可能会以蒙特卡洛方法为基础出现一些试题,需要大家能够熟练运用这种方法进行解题。
四、易错点总结1. 理解概率计算的基本定义和方法非常重要,涉及到了互斥事件、对立事件、独立事件和依赖事件等概念。
高三数学概率知识点总结
高三数学概率知识点总结概率是数学中的一个重要概念,也是高中数学的一个重要内容。
在高三数学中,概率概念及其相关的计算方法是学生们需要掌握的知识点之一。
下面将对高三数学概率知识点进行总结。
一、基本概念概率是指某件事件在所有可能事件中发生的可能性大小。
其计算公式为:概率 = 有利事件发生的次数 / 所有可能事件发生的次数。
二、事件与样本空间事件是指某些结果的集合,而样本空间则是包含所有可能结果的集合。
样本空间的元素为基本结果,也称为样本点。
事件可以包含一个或多个样本点。
三、概率的性质1. 概率的取值范围为[0,1],且概率为0表示不可能事件,概率为1表示必然事件。
2. 对于互斥事件,即两个事件不能同时发生,其概率计算为两个事件概率之和。
3. 对于独立事件,即一个事件的发生不会影响另一个事件的发生,其概率计算为两个事件概率之积。
四、计算概率的方法1. 事件的概率可以通过频率计算得出,即大量重复实验中某事件发生的频率。
2. 利用等可能原则,即假设事件发生的可能性相等来计算概率。
3. 利用排列组合的方法来计算概率,例如在有限的样本空间中计算某个事件发生的概率。
五、条件概率条件概率是指在已知某一事件发生的条件下,另一个事件发生的概率。
其计算公式为:条件概率 = A与B同时发生的概率 / A发生的概率。
其中A与B同时发生的概率可以根据事件的独立性来计算。
六、贝叶斯定理贝叶斯定理是概率论中一个重要的定理,它用于计算在已知某事件B发生的条件下,事件A发生的概率。
其计算公式为:P(A|B) = P(B|A) * P(A) / P(B)。
其中P(A)和P(B)分别表示事件A和事件B的概率,P(A|B)表示在事件B发生的条件下,事件A发生的概率。
七、随机变量与概率分布随机变量是指用来描述试验结果的变量,它可以是离散型或连续型的。
概率分布是一个函数,用于表示随机变量的取值与其概率之间的关系。
常见的离散型随机变量有二项分布、泊松分布等,而连续型随机变量有正态分布、指数分布等。
高中概率有关知识点总结
高中概率有关知识点总结概率是描述随机事件发生可能性的数学工具。
在高中数学课程中,概率是一个重要的知识点,学生需要掌握概率的基本概念、计算方法和应用技巧。
下面我们将针对高中概率知识点进行总结,主要包括概率的基本概念、基本概率问题、条件概率和贝叶斯定理、排列组合与概率、随机变量和分布以及极限定理等内容。
一、概率的基本概念1. 随机事件和样本空间随机事件是指在一次试验中可能发生的一个或一组结果,而样本空间则是所有可能结果的集合。
例如,投硬币的结果可以是正面或反面,所以样本空间Ω={正面,反面}。
在概率问题中,我们通常用样本空间来描述随机事件的可能结果。
2. 事件的概率事件A的概率P(A)表示事件A发生的可能性大小,它是一个介于0和1之间的实数。
概率的最基本性质是非负性和规范性。
即对于任意事件A,0≤P(A)≤1,并且P(Ω)=1。
3. 古典概率和频率概率古典概率是指根据事件发生的理论可能性来计算概率,如抛硬币、掷骰子等。
频率概率是指通过实际试验的结果来计算概率,如抛硬币100次,统计正面朝上的次数。
二、基本概率问题1. 互斥事件和对立事件互斥事件是指两个事件不可能同时发生,如掷骰子出现1点和出现2点。
对立事件是指两个事件之一一定会发生,如掷骰子出现奇数点和出现偶数点。
2. 独立事件独立事件是指一个事件的发生不受另一个事件的影响,例如两次掷硬币结果是独立的。
3. 事件的联合概率事件A和事件B同时发生的概率记作P(A∩B),它表示事件A和事件B共同发生的可能性。
如果事件A和事件B是独立事件,则P(A∩B)=P(A)P(B)。
4. 事件的互补概率事件A的互补事件是指A不发生的事件,记作A',其概率为P(A')=1-P(A)。
三、条件概率和贝叶斯定理事件A在事件B发生的条件下发生的概率称为事件A在事件B的条件下的概率,记作P(A|B)。
它表示在已知事件B发生的情况下,事件A发生的可能性大小。
2. 乘法法则有两个事件A和B,事件A和B都发生的概率可以用条件概率表示为P(A∩B)=P(A|B)P(B)。
数学高中概率知识点总结
数学高中概率知识点总结一、基本概念1. 随机事件:在相同条件下,可能发生也可能不发生的事件,称为随机事件。
例如抛硬币、掷骰子、抽牌等都属于随机事件。
2. 样本空间:对一个随机事件进行研究,所有可能发生的基本结果的集合称为样本空间,用S表示。
例如抛硬币的样本空间为S={正面,反面}。
3. 事件:样本空间的子集称为随机事件。
例如抛硬币,事件A={正面},事件B={反面}。
4. 事件的概率:事件A在随机试验中发生的可能性大小,称为事件A的概率,通常用P(A)表示。
0≤P(A)≤1。
二、概率的计算1. 古典概率:如果一个试验的所有基本结果能够被认为等可能,那么事件A的概率P(A)就可以用下式来计算:\[P(A) = \frac{m}{n}\]其中m是事件A中有利于A发生的基本结果的个数,n是样本空间S中基本结果的总个数。
2. 几何概率:几何概率是指通过几何方法来计算事件的概率,常用于连续随机变量的概率计算。
3. 频率概率:频率概率是指在大量独立重复试验中,事件A发生的频率会趋向于事件A的概率。
例如掷骰子、抽球的实验中。
4. 条件概率:事件B已经发生的条件下,事件A发生的概率称为事件A在事件B的条件下发生的概率,记为P(A|B),计算公式为:\[P(A|B) = \frac{P(AB)}{P(B)}\]其中P(AB)表示事件A和事件B同时发生的概率。
5. 乘法定理:在概率计算中,事件A与事件B同时发生的概率可以用下式表示:\[P(AB) = P(A|B) \cdot P(B) = P(B|A) \cdot P(A)\]6. 加法定理:对于两个互斥事件A和B(即A和B不能同时发生),它们的概率可用下式表示:\[P(A \cup B) = P(A) + P(B)\]对于两个不互斥事件A和B,它们的概率可用下式表示:\[P(A \cup B) = P(A) + P(B) - P(AB)\]三、常见的概率分布1. 二项分布:二项分布是由n个独立的是/非试验组成的概率分布,其中每次试验的概率是p,成功的次数(假设记为X)的概率分布称为二项分布。
概率的知识点总结高中
概率的知识点总结高中一、基本概念1.概率的定义概率是指某种事情发生的可能性大小。
在数学上,通常用一个数值来表示概率,这个数值一般在0到1之间,0表示不可能事件,1表示必然事件,其他数值表示发生的可能性大小。
2.试验与随机事件概率是从随机试验中引入的概念。
随机试验是指具有下面性质的试验:1)可在相同的条件下重复进行;2)每次试验的结果是不确定的。
试验可能有多种结果,每种结果称为一种随机事件。
3.样本空间、随机事件和概率样本空间是指随机试验的所有可能结果的集合,用S表示。
随机事件是样本空间的子集,用A、B等字母表示,表示一些可能发生的结果。
概率则是对各种随机事件发生的可能性大小的描述,用P(A)表示。
4.必然事件、不可能事件、独立事件与互斥事件必然事件是指一定发生的事件,概率为1;不可能事件是指一定不发生的事件,概率为0。
独立事件是指事件A的发生不影响事件B的发生,P(AB) = P(A)P(B);互斥事件是指事件A的发生导致事件B不发生,反之亦然。
5.相互独立的随机事件对于两个相互独立的事件A和B,有P(AB) = P(A)P(B)。
对于n个相互独立的随机事件A1,A2,…,An,有P(A1A2…An) = P(A1)P(A2)…P(An)。
6.条件概率当某一事件发生的前提下,另一事件发生的概率称为条件概率,用P(B|A)表示,表示在已知事件A发生的条件下,事件B发生的概率。
条件概率的计算公式为P(B|A) =P(AB)/P(A)。
7.全概率公式和贝叶斯定理全概率公式是指对某一事件A的概率P(A)进行分解成若干个不相交事件发生的条件概率相乘之和。
贝叶斯定理是指对某一事件A的条件概率P(B|A)进行计算,也可以用全概率公式进行推导。
8.随机变量与概率分布随机变量是对随机试验结果的数量特征的数学描述,包括离散随机变量和连续随机变量。
概率分布是指随机变量在各个取值上所对应的概率。
9.大数定律和中心极限定理大数定律是指随机试验的次数增加时,随机事件的频率将收敛于其概率。
高一所有概率知识点大全
高一所有概率知识点大全概率作为数学中的一个分支,是我们在生活中经常会遇到的概念之一。
而在高一阶段,我们将进一步深入学习有关概率的知识,并且会接触到更多的概率问题。
本文将为大家总结高一阶段所有的概率知识点,帮助大家全面理解和掌握概率的概念和运用。
1. 概率基本概念- 样本空间:指一个随机试验中所有可能结果的全体。
- 事件:样本空间中的某些结果的集合。
- 概率:指事件发生的可能性大小。
- 必然事件和不可能事件:必然事件的概率为1,不可能事件的概率为0。
2. 概率计算方法- 经典概率:指在所有可能结果都是等可能出现的情况下,某个事件发生的概率。
- 相对频率概率:指通过大量重复试验,事件发生的频率逐渐接近概率。
- 主观概率:指基于主观判断和个人经验给出的概率。
3. 独立事件和互斥事件- 独立事件:指两个事件的发生与否互不影响。
- 互斥事件:指两个事件不可能同时发生。
4. 条件概率- 条件概率:指在一个事件已经发生的条件下,另一事件发生的概率。
- 乘法定理:计算同时发生两个事件的概率。
5. 事件间的关系- 并事件:指两个事件中至少有一个发生的情况。
- 交事件:指两个事件同时发生的情况。
- 互斥事件:指两个事件不可能同时发生。
- 补事件:指某个事件不发生的情况。
6. 置换与组合- 置换:指从n个元素中选取r个,按不同的顺序排列的方法数。
- 组合:指从n个元素中选取r个,不考虑排列顺序的方法数。
7. 二项式定理与二项式分布- 二项式定理:指提供了展开二项式的公式。
- 二项式分布:指在一系列相互独立的独立重复试验中,某个事件发生r次的概率。
8. 期望与方差- 期望:指在一系列试验中,某个随机变量的平均值。
- 方差:指在一系列试验中,随机变量与其期望之间的差的平方的平均值。
9. 随机变量- 离散型随机变量:指在某个范围内取有限个或无限个可能值的变量。
- 连续型随机变量:指在某个范围内取任意实数值的变量。
10. 概率分布函数与密度函数- 概率分布函数:离散型随机变量的概率分布情况。
高中概率统计考点归纳
高中概率统计考点归纳一、概率的基本概念与性质概率的定义:概率是一个衡量事件发生可能性的数值,通常用P(A)表示事件A发生的概率。
概率的取值范围为0到1之间,其中P(A) = 0表示事件A不可能发生,P(A) = 1表示事件A必然发生。
举例:抛掷一枚硬币,正面朝上的概率为0.5,反面朝上的概率也为0.5。
概率的性质:非负性:对于任意事件A,有P(A) ≥0;归一性:对于必然事件S,有P(S) = 1;可加性:对于互斥事件A和B(即A和B不能同时发生),有P(A ∪B) = P(A) + P(B)。
举例:一个袋子中有3个红球和2个白球,随机抽取一个球为红球的概率是3/5,为白球的概率是2/5。
由于红球和白球是互斥事件,所以抽取到红球或白球的概率是3/5 + 2/5 = 1。
二、古典概型与几何概型古典概型:在有限个等可能的基本事件中,通过计算事件包含的基本事件个数与总基本事件个数的比值来求概率。
举例:抛掷两颗骰子,求点数之和为7的概率。
总的基本事件个数为6×6=36,点数之和为7的基本事件有(1,6)、(2,5)、(3,4)、(4,3)、(5,2)、(6,1),共6种。
因此,点数之和为7的概率为6/36=1/6。
几何概型:在某一度量(长度、面积、体积等)下,通过计算事件占有的度量与样本空间占有的度量的比值来求概率。
举例:在长度为1的线段上随机取一点,求该点位于线段前1/3部分的概率。
样本空间为整个线段,其长度为1;事件空间为线段前1/3部分,其长度为1/3。
因此,该点位于线段前1/3部分的概率为1/3。
三、条件概率与全概率公式条件概率:在已知事件B发生的条件下,事件A发生的概率,记为P(A|B)。
计算公式为P(A|B) = P(AB) / P(B),其中P(AB)表示事件A和B同时发生的概率。
举例:一个班级中有40名学生,其中25名男生和15名女生。
已知某学生是女生,求该学生数学成绩优秀的概率。
高考数学基础夯实:概率问题全部知识点全方位细致总结
高考概率问题专项:基础知识要点一、概率.1. 概率:随机事件A 的概率是频率的稳定值,反之,频率是概率的近似值.2. 等可能事件的概率:如果一次试验中可能出现的结果有年n 个,且所有结果出现的可能性都相等,那么,每一个基本事件的概率都是n1,如果某个事件A 包含的结果有m 个,那么事件A 的概率nmP(A)=.3. ①互斥事件:不可能同时发生的两个事件叫互斥事件. 如果事件A 、B 互斥,那么事件A+B 发生(即A 、B 中有一个发生)的概率,等于事件A 、B 分别发生的概率和,即P(A+B)=P(A)+P(B),推广:)P (A )P (A )P (A )A A P (A n 21n 21+++=+++ .②对立事件:两个事件必有一个发生的互斥事件...............叫对立事件. 例如:从1~52张扑克牌中任取一张抽到“红桃”与抽到“黑桃”互为互斥事件,因为其中一个不可能同时发生,但又不能保证其中一个必然发生,故不是对立事件.而抽到“红色牌”与抽到黑色牌“互为对立事件,因为其中一个必发生. 注意:i.对立事件的概率和等于1:1)A P(A )A P(P(A)=+=+.ii.互为对立的两个事件一定互斥,但互斥不一定是对立事件. ③相互独立事件:事件A(或B)是否发生对事件B(或A)发生的概率没有影响.这样的两个事件叫做相互独立事件. 如果两个相互独立事件同时发生的概率,等于每个事件发生的概率的积,即P(A·B)=P(A)·P(B). 由此,当两个事件同时发生的概率P (AB )等于这两个事件发生概率之和,这时我们也可称这两个事件为独立事件.例如:从一副扑克牌(52张)中任抽一张设A :“抽到老K”;B :“抽到红牌”则 A 应与B 互为独立事件[看上去A 与B 有关系很有可能不是独立事件,但261P(B)P(A),215226P(B),131524P(A)=⋅====.又事件AB 表示“既抽到老K 对抽到红牌”即“抽到红桃老K 或方块老K”有261522B)P(A ==⋅,因此有)B P(A P(B)P(A)⋅=⋅. 推广:若事件n 21,A ,,A A 相互独立,则)P(A )P(A )P(A )A A P(A n 21n 21 ⋅=⋅.注意:i. 一般地,如果事件A 与B 相互独立,那么A 与A B ,与B ,A 与B 也都相互独立. ii. 必然事件与任何事件都是相互独立的.iii. 独立事件是对任意多个事件来讲,而互斥事件是对同一实验来讲的多个事件,且这多个事件不能同时发生,故这些事件相互之间必然影响,因此互斥事件一定不是独立事件.④独立重复试验:若n 次重复试验中,每次试验结果的概率都不依赖于其他各次试验的结果,则称这n 次试验是独立的. 如果在一次试验中某事件发生的概率为P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率:kn k k n n P)(1P C (k)P --=. 4. 对任何两个事件都有)()()()(B A P B P A P B A P ⋅-+=+二、随机变量.1. 随机试验的结构应该是不确定的.试验如果满足下述条件:①试验可以在相同的情形下重复进行;②试验的所有可能结果是明确可知的,并且不止一个;③每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果.它就被称为一个随机试验.2. 离散型随机变量:如果对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.若ξ是一个随机变量,a ,b 是常数.则b a +=ξη也是一个随机变量.一般地,若ξ是随机变量,)(x f 是连续函数或单调函数,则)(ξf 也是随机变量.也就是说,随机变量的某些函数也是随机变量. 设离散型随机变量ξ可能取的值为: ,,,,21i x x xξ取每一个值),2,1(1 =i x 的概率i i p x P ==)(ξ,则表称为随机变量ξ的概率分布,简称ξ的分布列.有性质① ,2,1,01=≥i p ; ②121=++++ i p p p .注意:若随机变量可以取某一区间内的一切值,这样的变量叫做连续型随机变量.例如:]5,0[∈ξ即ξ可以取0~5之间的一切数,包括整数、小数、无理数.3. ⑴二项分布:如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是:kn k k n qp C k)P(ξ-==[其中p q n k -==1,,,1,0 ] 于是得到随机变量ξ的概率分布如下:我们称这样的随机变量ξ服从二项分布,记作ξ~B (n·p ),其中n ,p 为参数,并记p)n b(k;qp C k n k k n ⋅=-. 互斥对立⑵二项分布的判断与应用.①二项分布,实际是对n 次独立重复试验.关键是看某一事件是否是进行n 次独立重复,且每次试验只有两种结果,如果不满足此两条件,随机变量就不服从二项分布. ②当随机变量的总体很大且抽取的样本容量相对于总体来说又比较小,而每次抽取时又只有两种试验结果,此时可以把它看作独立重复试验,利用二项分布求其分布列. 4. 几何分布:“k =ξ”表示在第k 次独立重复试验时,事件第一次发生,如果把k 次试验时事件A 发生记为k A ,事A 不发生记为q )P(A ,A k k =,那么)A A A A P(k)P(ξk 1k 21-== .根据相互独立事件的概率乘法分式:))P(A A P()A )P(A P(k)P(ξk 1k 21-== ),3,2,1(1==-k p q k 于是得到随机变量ξ的概率分布列.我们称ξ服从几何分布,并记p q p)g(k,1k -=,其中 3,2,1.1=-=k p q 5. ⑴超几何分布:一批产品共有N 件,其中有M (M <N )件次品,今抽取)N n n(1≤≤件,则其中的次品数ξ是一离散型随机变量,分布列为)M N k n M,0k (0CC C k)P(ξn Nk n M N k M-≤-≤≤≤⋅⋅==--.〔分子是从M 件次品中取k 件,从N-M 件正品中取n-k 件的取法数,如果规定m <r 时0C r m =,则k 的范围可以写为k=0,1,…,n.〕⑵超几何分布的另一种形式:一批产品由 a 件次品、b 件正品组成,今抽取n 件(1≤n≤a+b ),则次品数ξ的分布列为n.,0,1,k C C C k)P(ξn ba kn bk a =⋅==+-.⑶超几何分布与二项分布的关系.设一批产品由a 件次品、b 件正品组成,不放回抽取n 件时,其中次品数ξ服从超几何分布.若放回式抽取,则其中次品数η的分布列可如下求得:把b a +个产品编号,则抽取n 次共有n b a )(+个可能结果,等可能:k)(η=含kn k k n ba C -个结果,故n ,0,1,2,k ,)ba a (1)b a a (C b)(a ba C k)P (ηkn k k n nk n k kn=+-+=+==--,即η~)(ba an B +⋅.[我们先为k 个次品选定位置,共k n C 种选法;然后每个次品位置有a 种选法,每个正品位置有b 种选法] 可以证明:当产品总数很大而抽取个数不多时,k)P(ηk)P(ξ=≈=,因此二项分布可作为超几何分布的近似,无放回抽样可近似看作放回抽样.三、数学期望与方差.则称 ++++=n n p x p x p x E 2211ξ为ξ的数学期望或平均数、均值.数学期望又简称期望.数学期望反映了离散型随机变量取值的平均水平.2. ⑴随机变量b a +=ξη的数学期望:b aE b a E E +=+=ξξη)( ①当0=a 时,b b E =)(,即常数的数学期望就是这个常数本身.②当1=a 时,b E b E +=+ξξ)(,即随机变量ξ与常数之和的期望等于ξ的期望与这个常数的和. ③当0=b 时,ξξaE a E =)(,即常数与随机变量乘积的期望等于这个常数与随机变量期望的乘积. ⑵单点分布:c c E =⨯=1ξ其分布列为:c P ==)1(ξ.⑶两点分布:p p q E =⨯+⨯=10ξ,其分布列为:(p + q = 1) ⑷二项分布:∑=⋅-⋅=-np q p k n k n k E k n k )!(!!ξ其分布列为ξ~),(p n B .(P 为发生ξ的概率)⑸几何分布:pE 1=ξ 其分布列为ξ~),(p k q .(P 为发生ξ的概率)4. 方差、标准差的定义:当已知随机变量ξ的分布列为),2,1()( ===k p x P k k ξ时,则称 +-++-+-=n n p E x p E x p E x D 2222121)()()(ξξξξ为ξ的方差. 显然0≥ξD,故σξξσξ.D =为ξ的根方差或标准差.随机变量ξ的方差与标准差都反映了随机变量ξ取值的稳定与波动,集中与离散的程度.ξD 越小,稳定性越高,波动越小............... 4.方差的性质.⑴随机变量b a +=ξη的方差ξξηD a b a D D 2)()(=+=.(a 、b 均为常数) ⑵单点分布:0=ξD 其分布列为p P ==)1(ξ ⑶两点分布:pq D =ξ 其分布列为:(p + q = 1) ⑷二项分布:npq D =ξ⑸几何分布:2p q D =ξ5. 期望与方差的关系.⑴如果ξE 和ηE 都存在,则ηξηξE E E ±=±)(⑵设ξ和η是互相独立的两个随机变量,则ηξηξηξξηD D D E E E +=+⋅=)(,)(⑶期望与方差的转化:22)(ξξξE E D -= ⑷)()()(ξξξξE E E E E -=-(因为ξE 为一常数)0=-=ξξE E .四、正态分布.(基本不列入考试范围)1.密度曲线与密度函数:对于连续型随机变量ξ,位于x 轴上方,ξ落在任一区间),[b a 内的概率等于它与x 轴.直线a x =与直线b x =(如图阴影部分)的曲线叫ξ图像的函数)(x f 叫做ξ的密度函数,由于“(-∞∈x 是必然事件,故密度曲线与x 2. ⑴正态分布与正态曲线:如果随机变量ξ的概率密度为:222)(21)(σμσπ--=x ex f . (σμ,,R x ∈为常数,且0 σ),称ξ服从参数为σμ,的正态分布,用ξ~),(2σμN 表示.)(x f 的表达式可简记为),(2σμN ,它的密度曲线简称为正态曲线.⑵正态分布的期望与方差:若ξ~),(2σμN ,则ξ的期望与方差分别为:2,σξμξ==D E . ⑶正态曲线的性质.①曲线在x 轴上方,与x 轴不相交. ②曲线关于直线μ=x 对称.③当μ=x 时曲线处于最高点,当x 向左、向右远离时,曲线不断地降低,呈现出“中间高、两边低”的钟形曲线.④当x <μ时,曲线上升;当x >μ时,曲线下降,并且当曲线向左、向右两边无限延伸时,以x 轴为渐近线,向x 轴无限的靠近.⑤当μ一定时,曲线的形状由σ确定,σ越大,曲线越“矮胖”.表示总体的分布越分散;σ越小,曲线越“瘦高”,表示总体的分布越集中.3. ⑴标准正态分布:如果随机变量ξ的概率函数为)(21)(22+∞-∞=- x ex x πϕ,则称ξ服从标准正态分布. 即ξ~)1,0(N 有)()(x P x ≤=ξϕ,)(1)(x x --=ϕϕ求出,而P (a <ξ≤b )的计算则是)()()(a b b a P ϕϕξ-=≤ .注意:当标准正态分布的)(x Φ的X 取0时,有5.0)(=Φx 当)(x Φ的X 取大于0的数时,有5.0)( x Φ.比如5.00793.0)5.0(=-Φσμ则σμ-5.0必然小于0,如图.⑵正态分布与标准正态分布间的关系:若ξ~),(2σμN 则ξ的分布函数通常用)(x F 表示,且有)σμx (F(x)x)P(ξ-==≤ϕ. 4.⑴“3σ”原则. 假设检验是就正态总体而言的,进行假设检验可归结为如下三步:①提出统计假设,统计假设里的变量服从正态分布),(2σμN .②确定一次试验中的取值a 是否落入范围)3,3(σμσμ+-.③做出判断:如果)3,3(σμσμ+-∈a ,接受统计假设. 如果)3,3(σμσμ+-∉a ,由于这是小概率事件,就拒绝统计假设.⑵“3σ”原则的应用:若随机变量ξ服从正态分布),(2σμN 则 ξ落在)3,3(σμσμ+-内的概率为99.7% 亦即落在)3,3(σμσμ+-之外的概率为0.3%,此为小概率事件,如果此事件发生了,就说明此种产品不合格(即ξ不服从正态分布).S 阴=0.5S a =0.5+S。
高中概率知识点、考点、易错点归纳,精品资料
高中数学第十一章-概率知识要点3.1.随机事件的概率3.1.1 随机事件的概率1、必然事件:一般地,把在条件S 下,一定会发生的事件叫做相对于条件S 的必然事件。
2、不可能事件:把在条件S 下,一定不会发生的事件叫做相对于条件S 的不可能事件。
3、确定事件:必然事件和不可能事件统称相对于条件S 的确定事件。
4、随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件。
5、频数:在相同条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A出现的次数n A 为事件A 出现的频数。
6、频率:事件A 出现的比例()=A nn A nf。
7、概率:随机事件A 的概率是频率的稳定值,反之,频率是概率的近似值.3.1.2 概率的意义1、概率的正确解释:随机事件在一次试验中发生与否是随机的,但随机性中含有规律性。
认识了这种随机中的规律性,可以比较准确地预测随机事件发生的可能性。
2、游戏的公平性:抽签的公平性。
3、决策中的概率思想:从多个可选答案中挑选出正确答案的决策任务,那么“使得样本出现的可能性最大”可以作为决策的准则。
——极大似然法、小概率事件4、天气预报的概率解释:明天本地降水概率为70%解释是“明天本地下雨的机会是70%”。
5、试验与发现:孟德尔的豌豆试验。
6、遗传机理中的统计规律。
3.1.3 概率的基本性质1、事件的关系与运算(1)包含。
对于事件A 与事件B ,如果事件A 发生,则事件B 一定发生,称事件B 包含事件A (或事件A 包含于事件B ),记作(B A 或A B)。
不可能事件记作。
(2)相等。
若BA AB 且,则称事件A 与事件B 相等,记作A=B 。
(3)事件A 与事件B 的并事件(和事件):某事件发生当且仅当事件A 发生或事件B 发生。
(4)事件A 与事件B 的交事件(积事件):某事件发生当且仅当事件A 发生且事件B 发生。
(5)事件A 与事件B 互斥:A B 为不可能事件,即=A B ,即事件A 与事件B 在任何一次试验中并不会同时发生。
高中概率知识点总结
高中概率知识点总结一、基本概念1.试验和事件试验是指符合以下条件的事件:a. 可以在相同条件下重复进行;b. 试验的结果有多种可能性;c. 试验的结果只能是确定的一个结果。
事件是试验的结果,是试验中我们关心的可能性。
2.样本空间样本空间是指试验的所有可能结果所组成的集合,通常用S表示。
例如,掷一枚硬币的样本空间为S={正面,反面}。
3.事件的概率事件的概率是指事件发生的可能性大小,通常用P(A)表示事件A的概率。
概率的取值范围在0到1之间,且P(S)=1。
二、概率的计算1.古典概率古典概率也称为理论概率,是指根据试验的基本原理,计算事件的概率。
计算公式为P(A)=n(A)/n(S),其中n(A)表示事件A发生的次数,n(S)表示样本空间S的元素个数。
2.几何概率几何概率是利用图形的面积、长度等几何意义来计算事件的概率。
例如,掷硬币时正面朝上的概率可以利用几何概率来计算。
3.频率概率频率概率是利用试验次数与事件发生次数的比值来计算事件的概率。
计算公式为P(A)=n(A)/n,其中n为试验次数,n(A)为事件A发生的次数。
4.条件概率条件概率是指在事件B已经发生的条件下,事件A发生的概率。
计算公式为P(A|B)=P(AB)/P(B),其中P(AB)表示事件A和B同时发生的概率,P(B)表示事件B发生的概率。
5.独立事件独立事件是指事件A的发生不会对事件B的发生产生影响,事件A和B同时发生的概率等于事件A和事件B分别发生的概率的乘积。
计算公式为P(AB)=P(A)P(B)。
三、概率的性质1.互斥事件和对立事件互斥事件是指事件A和事件B不可能同时发生,即P(AB)=0;对立事件是指事件A和事件B中有一个必然发生,即P(A)+P(B)=1。
2.概率的加法规则概率的加法规则是指事件A和事件B的概率之和等于事件A和事件B的并集概率。
计算公式为P(A∪B)=P(A)+P(B)-P(AB)。
3.条件概率的乘法规则条件概率的乘法规则是指事件A和事件B的乘积等于事件B的概率乘以事件A在事件B 发生的条件下的概率。
高中数学概率知识点总结
高中数学概率知识点总结
概率:
(1)定义:概率是衡量事件发生机会的定量抽象概念,它的数值介于
0~1之间。
(2)计算:概率的计算是利用实验结果来进行估计,一般用实验次数
或者结果的出现次数来表示,可用分子/分母方法表示,也可用贝叶斯
公式表示。
(3)贝叶斯公式:其公式定义为A事件出现时,B事件发生的概率为
贝叶斯公式:P(B|A)= P(AB)/P(A),即给定条件概率=条件概
率乘以全概率之比
(4)独立性:指两个不同事件发生,一件不会影响另一件的概率,也
就是独立的概率乘积定理,即P(AB)=P(A)*P(B)
(5)概率的计算思路:一般要计算事件发生的概率,需要先求出事件
的总样本数(全概率)和有关的条件,然后使用贝叶斯公式进行计算。
(6)误差准则:误差准则主要用于统计和概率研究中,用以测量数据
拟合度,是表示估计与真值之间误差的概率统计指标。
(7)互不全依概念:指由概率组成的两个不相容的概率事件,要么其
中一件发生,要么全部都不发生,这就是互不全依概念。
(8)蒙特卡洛定理:蒙特卡洛定理可以是复杂的事件用简单形式表示,根据这个理论,复杂的不确定性事件可以采用大量模拟实验,用均值
和方差来近似求解,其主要方法有统计量估计法和极大似然法等。
(9)概率分布:概率分布是指某一统计性质随着样本数据的变化,呈
现出概率分布特征的一种分布,常见的有正态分布和泊松分布等。
(10)贝叶斯公式的应用:贝叶斯公式可以用于把模糊的一组可能性
转换为概率,可以应用于统计诊断、统计鉴定等方面,有重要作用。
高中概率知识点总结WORD
高中概率知识点总结WORD一、概率的基本概念1. 随机现象随机现象是指在一定条件下,具有多种结果,但不能预先确定具体结果的现象。
例如抛硬币、掷骰子等都属于随机现象。
2. 样本空间样本空间是指随机试验的所有可能结果组成的集合。
通常用S表示,例如掷一枚硬币的样本空间为S={正面,反面}。
3. 事件事件是样本空间的子集,即由样本空间中的若干个元素组成的集合。
事件的发生与不发生是由具体情况来决定的,事件的发生称为"有利事件",不发生称为"不利事件"。
4. 概率概率是事件在随机试验中发生的可能性的大小。
通常用P(A)表示,表示事件A发生的概率。
5. 古典概率古典概率是指在条件确定,具有等可能性的随机事件中,某一事件发生的概率。
通常用公式P(A)=n(A)/n(S)表示,其中n(A)表示事件A的样本点个数,n(S)表示样本空间的样本点个数。
6. 频率概率频率概率是指在长期重复进行的随机试验中,事件A发生的次数与试验的总次数之比。
通常用公式P(A)=lim(n->∞)n(A)/n表示,其中n(A)表示事件A发生的次数,n表示试验的总次数。
7. 几何概型概率几何概型概率是指在几何图形中事件A所占的面积的比率。
8. 概率的性质概率具有以下的基本性质:(1)非负性,即P(A)≥0;(2)规范性,即P(S)=1;(3)可列可加性,即若A1, A2…An是两两互不相容的事件,则P(A1∪A2∪…∪An)=P(A1)+P(A2)+…+P(An)。
二、概率的计算方法1. 等可能事件的概率计算方法若有n个等可能事件,每一个事件发生的概率都相等,那么这n个事件的概率都是1/n。
2. 互不相容事件的概率计算方法若有n个互不相容的事件A1, A2,…,An,它们的和事件S,则S=∪(i=1)^n Ai,此时事件S的概率为P(S)=P(A1)+P(A2)+…+P(An)。
3. 事件的互斥与独立性(1)事件的互斥:若事件A和B互斥,则P(A∪B)=P(A)+P(B)。
高考概率知识点梳理
高考概率知识点梳理一、基本概念概率是描述事件发生可能性的数学工具,用来衡量事件发生的相对频率。
在高考中,概率是数学考试中的一个重要知识点,掌握概率的基本概念是解题的基础。
二、概率的计算方法1. 等可能事件的概率计算:当事件的每个结果发生的可能性相等时,可以使用等可能性原则进行计算,即事件发生的概率等于有利结果数除以总结果数。
2. 互斥事件的概率计算:互斥事件是指两个事件不可能同时发生的情况,比如掷一枚骰子得到偶数和得到奇数。
对于互斥事件,可以将它们的概率相加。
3. 独立事件的概率计算:独立事件是指一个事件的发生不受另一个事件发生与否的影响,比如连续掷两次硬币得到正面。
对于独立事件,可以将它们的概率相乘。
三、排列组合与概率排列组合是概率问题中常用的解决方法之一。
排列是指从给定的元素中按照一定的顺序选取若干个元素的方式,组合是指从给定的元素中无序地选取若干个元素的方式。
1. 排列排列中的元素是有顺序的,因此从n个元素中选取r个元素的排列数可以用公式P(n,r) = n! / (n-r)!来计算。
在概率问题中,排列数可以用来计算事件发生的有序情况。
2. 组合组合中的元素是无序的,因此从n个元素中选取r个元素的组合数可以用公式C(n,r) = n! / [r!(n-r)!]来计算。
在概率问题中,组合数可以用来计算事件发生的无序情况。
四、条件概率与事件的独立性条件概率是指在已知某个事件发生的条件下,另一个事件发生的概率。
条件概率可以用公式P(A|B) = P(A∩B) / P(B)进行计算。
在概率问题中,条件概率常用于解决具有一定条件限制的问题。
事件的独立性是指两个事件之间互不影响的性质。
如果两个事件A 和B是独立事件,那么P(A∩B) = P(A) * P(B)。
在概率问题中,判断事件的独立性对于计算复杂问题的概率非常重要。
五、概率的应用概率在现实生活中有着广泛的应用,高考中也常涉及到概率的应用问题。
1. 生日问题:计算一个班级中至少有两个学生生日相同的概率。
概率高中知识点总结
概率高中知识点总结1. 基本概念概率是指某种可能事件发生的程度或可能性的度量。
在数学上,概率可以用数值来表示,一般用P(A)来表示事件A发生的概率。
样本空间:在进行一次随机实验时,可能出现的所有结果的集合称为样本空间,通常用S表示。
事件:在样本空间S中的一个子集称为一个事件,通常用A、B、C...来表示。
如果事件A发生,则称A发生。
基本事件:样本空间中的每个元素称为一个基本事件,基本事件是不可再分解的。
互斥事件:两个事件A、B不可能同时发生,则称A和B是互斥事件。
对立事件:事件A发生的概率加事件A不发生的概率等于1,称为对立事件。
事件A与其对立事件搭配,如A发生的概率为P(A),A不发生的概率为1-P(A)。
2. 概率计算概率计算是概率论中的一个重要内容,主要涉及到概率的计算方法和技巧。
加法原理:设A、B是两个事件,那么P(A∪B) = P(A) + P(B) - P(A∩B)。
其中P(A∩B)表示事件A和B同时发生的概率。
乘法原理:设A、B是两个事件,那么P(A∩B) = P(A) * P(B|A)。
其中P(B|A)表示在事件A发生的条件下,事件B发生的概率。
全概率公式:设A1、A2、...、An为一个样本空间S的一个分割,那么对任意事件B来说,有P(B) = ∑P(B|Ai)*P(Ai)。
3. 概率分布概率分布是指随机变量取各个不同的可能值时,这些值对应的概率。
在高中数学中,我们主要学习了离散型随机变量的概率分布。
离散型随机变量:如果一个随机变量取值为有限个或者可列个,那么称这个随机变量是离散型的。
概率质量函数:对离散型随机变量X来说,概率质量函数P(X=x) = P(X=x)。
期望和方差:对于离散型随机变量X,它的期望和方差分别为E(X) = ∑x*P(X=x)和Var(X)= E(X^2)-[E(X)]^2。
4. 期望和方差期望和方差是描述随机变量分布特征的重要统计量。
期望:对于一个离散型随机变量X,它的期望E(X) = ∑x*P(X=x)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学第十一章-概率知识要点3.1.随机事件的概率3.1.1 随机事件的概率1、必然事件:一般地,把在条件S 下,一定会发生的事件叫做相对于条件S 的必然事件。
2、不可能事件:把在条件S 下,一定不会发生的事件叫做相对于条件S 的不可能事件。
3、确定事件:必然事件和不可能事件统称相对于条件S 的确定事件。
4、随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件。
5、频数:在相同条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数。
6、频率:事件A 出现的比例()=A n n A nf。
7、概率:随机事件A 的概率是频率的稳定值,反之,频率是概率的近似值.3.1.2 概率的意义1、概率的正确解释:随机事件在一次试验中发生与否是随机的,但随机性中含有规律性。
认识了这种随机中的规律性,可以比较准确地预测随机事件发生的可能性。
2、游戏的公平性:抽签的公平性。
3、决策中的概率思想:从多个可选答案中挑选出正确答案的决策任务,那么“使得样本出现的可能性最大”可以作为决策的准则。
——极大似然法、小概率事件4、天气预报的概率解释:明天本地降水概率为70%解释是“明天本地下雨的机会是70%”。
5、试验与发现:孟德尔的豌豆试验。
6、遗传机理中的统计规律。
3.1.3 概率的基本性质 1、事件的关系与运算(1)包含。
对于事件A 与事件B ,如果事件A 发生,则事件B 一定发生,称事件B 包含事件A (或事件A 包含于事件B ),记作(B A ⊇⊆或A B)。
不可能事件记作∅。
(2)相等。
若B A A B ⊇⊇且,则称事件A 与事件B 相等,记作A=B 。
(3)事件A 与事件B 的并事件(和事件):某事件发生当且仅当事件A 发生或事件B 发生。
(4)事件A 与事件B 的交事件(积事件):某事件发生当且仅当事件A 发生且事件B 发生。
(5)事件A 与事件B 互斥:A B 为不可能事件,即=A B ∅,即事件A 与事件B 在任何一次试验中并不会同时发生。
(6)事件A 与事件B 互为对立事件:A B 为不可能事件,A B 为必然事件,即事件A 与事件B 在任何一次试验中有且仅有一个发生。
2、概率的几个基本性质 (1)0()1P A ≤≤.(2)必然事件的概率为1.()1P E =. (3)不可能事件的概率为0. ()0P F =. (4)事件A 与事件B 互斥时,P(AB)=P(A)+P(B)——概率的加法公式。
(5)若事件B 与事件A 互为对立事件,,则A B 为必然事件,()1P A B =.3.2 古典概型3.2.1 古典概型 1、基本事件: 基本事件的特点:(1)任何两个事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本时间的和。
2、古典概型:(1)试验中所有可能出现的基本事件只有有限个;(2)每个基本事件出现的可能性相等。
具有这两个特点的概率模型称为古典概型。
3、公式:()=A P A 包含的基本事件的个数基本事件的总数3.2.2 (整数值)随机数的产生如何用计算器产生指定的两个整数之间的取整数值的随机数?——书上例题。
3.3 几何概型3.3.1 几何概型1、几何概型:每个事件发生的概率只有与构成该事件区域的长度(面积或体积)成比例的概率模型。
2、几何概型中,事件A 发生的概率计算公式:()P A =构成事件A 的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积)3.3.2 均匀随机数的产生常用的是[]0,1上的均匀随机数,可以用计算器来产生0~1之间的均匀随机数。
本章知识小结(1)在具体情境中,了解随机事件发生的不确定性和频率的稳定性,进一步了解概率的意义以及频率与概率的区别。
(2)通过实例,了解两个互斥事件的概率加法公式。
(3)通过实例,理解古典概型及其概率计算公式,会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。
(4)了解随机数的意义,能运用模拟方法(包括计算器产生随机数来进行模拟)估计概率,初步体会几何概型的意义(参见例3)。
(5)通过阅读材料,了解人类认识随机现象的过程。
重难点的归纳:重点:1、了解随机事件发生的不确定性和频率的稳定性,正确理解概率的意义.2、理解古典概型及其概率计算公式.3、关于几何概型的概率计算4、体会随机模拟中的统计思想:用样本估计总体.难点:1、理解频率与概率的关系.2、设计和运用模拟方法近似计算概率.3、把求未知量的问题转化为几何概型求概率的问题.(二)高考概率概率考试内容:随机事件的概率.等可能性事件的概率.互斥事件有一个发生的概率.相互独立事件同时发生的概率.独立重复试验.考试要求:(1)了解随机事件的发生存在着规律性和随机事件概率的意义.(2)了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。
(3)了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率.(4)会计算事件在n 次独立重复试验中恰好发生κ次的概率.以下归纳9个常见考点:解析概率与统计试题是高考的必考内容。
它是以实际应用问题为载体,以排列组合和概率统计等知识为工具,以考查对五个概率事件的判断识别及其概率的计算和随机变量概率分布列性质及其应用为目标的中档师,预计这也是今后高考概率统计试题的考查特点和命题趋向。
下面对其常见题型和考点进行解析。
考点1考查等可能事件概率计算。
在一次实验中可能出现的结果有n个,而且所有结果出现的可能性都相等。
如果事件A包含的结果有m个,那么()mP An。
这就是等可能事件的判断方法及其概率的计n算公式。
高考常借助不同背景的材料考查等可能事件概率的计算方法以及分析和解决实际问题的能力。
例1(2004 天津)从4名男生和2名女生中任3人参加演讲比赛.(I)求所选3人都是男生的概率;(II)求所选3人中恰有1名女生的概率;(III)求所选3人中至少有1名女生的概率.考点2 考查互斥事件至少有一个发生与相互独立事件同时发生概率计算。
不可能同时发生的两个事件A、B叫做互斥事件,它们至少有一个发生的事件为A+B,用概率的加法公式P(A+B)=P(A)+P(B)计算。
事件A(或B)是否发生对事件B(或A)发生的概率没有影响,则A、B叫做相互独立事件,它们同时发生的事件为AB。
用概率的乘法公式P(AB)=P(A)P(B)计算。
高考常结合考试竞赛、上网工作等问题对这两个事件的识别及其概率的综合计算能力进行考查。
例2.(2005 全国卷Ⅲ)设甲、乙、丙三台机器是否需要照顾相互之间没有影响。
已知在某一小时内,甲、乙都需要照顾的概率为0.05,甲、丙都需要照顾的概率为0.1,乙、丙都需要照顾的概率为0.125,(Ⅰ)求甲、乙、丙每台机器在这个小时内需要照顾的概率分别是多少;(Ⅱ)计算这个小时内至少有一台需要照顾的概率。
考点3 考查对立事件概率计算。
必有一个发生的两个互斥事件A、B叫做互为对立事件。
用概率的减法公式P(A)=1-P(A)计算其概率。
高考常结合射击、电路、交通等问题对对立事件的判断识别及其概率计算进行考查。
例3.(2005 福建卷文)甲、乙两人在罚球线投球命中的概率分别为122和5。
(Ⅰ)甲、乙两人在罚球线各投球一次,求恰好命中一次的概率;(Ⅱ)甲、乙两人在罚球线各投球二次,求这四次投球中至少一次命中的概率;考点4 考查独立重复试验概率计算。
若n次重复试验中,每次试验结果的概率都不依赖其它各次试验的结果,则此试验叫做n次独立重复试验。
若在1次试验中事件A发生的概率为P,则在n次独立重复试验中,事件A恰好发生k次的概率为Pn(k)=n ()(1)k k n knP A C p p-=-。
高考结合实际应用问题考查n次独立重复试验中某事件恰好发生k次的概率的计算方法和化归转化、分类讨论等数学思想方法的应用。
例4.(2005 湖北卷)某会议室用5盏灯照明,每盏灯各使用灯泡一只,且型号相同。
假定每盏灯能否正常照明只与灯泡的寿命有关,该型号的灯泡寿命为1年以上的概率为p1,寿命为2年以上的概率为p2。
从使用之日起每满1年进行一次灯泡更换工作,只更换已坏的灯泡,平时不换。
(Ⅰ)在第一次灯泡更换工作中,求不需要换灯泡的概率和更换2只灯泡的概率;(Ⅱ)在第二次灯泡更换工作中,对其中的某一盏灯来说,求该盏灯需要更换灯泡的概率;(Ⅲ)当p1=0.8,p2=0.3时,求在第二次灯泡更换工作,至少需要更换4只灯泡的概率(结果保留两个有效数字)考点5考查随机变量概率分布与期望计算。
解决此类问题时,首先应明确随机变量可能取哪些值,然后按照相互独立事件同时发生概率的法公式去计算这些可能取值的概率值即可等到分布列,最后根据分布列和期望、方差公式去获解。
以此考查离散型随机变量分布列和数学期望等概念和运用概率知识解决实际问题的能力。
例5.(2005 湖北卷)某地最近出台一项机动车驾照考试规定;每位考试者一年之内最多有4次参加考试的机会,一旦某次考试通过,使可领取驾照,不再参加以后的考试,否则就一直考到第4次为止。
如果李明决定参加驾照考试,设他每次参加考试通过的概率依次为0.6,0.7,0.8,0.9,求在一年内李明参加驾照考试次数ξ的分布列和ξ的期望,并求李明在一年内领到驾照的概率。
考点6考查随机变量概率分布列与其他知识点结合1、考查随机变量概率分布列与函数结合。
例 6.(2005 湖南卷)某城市有甲、乙、丙3个旅游景点,一位客人游览这三个景点的概率分别是0.4,0.5,0.6,且客人是否游览哪个景点互不影响,设ξ表示客人离开该城市时游览的景点数与没有游览的景点数之差的绝对值。
(Ⅰ)求ξ的分布及数学期望;(Ⅱ)记“函数f(x)=x2-3ξx+1在区间[2,+∞)上单调递增”为事件A,求事件A的概率。
2、考查随机变量概率分布列与数列结合。
例7甲乙两人做射击游戏,甲乙两人射击击中与否是相互独立事件,规则如下:若射击一次击中,原射击者继续射击,若射击一次不中,就由对方接替射击。
已知甲乙两人射击一次击中的概率均为7,且第一次由甲开始射击。
(1)求前4次射击中,甲恰好射击3次的概率。
(2)若第n次由甲射击的概率为an ,求数列{an}的通项公式;求lim a n,并说明极n→∞限值的实际意义。
3、考查随机变量概率分布列与线形规划结合。
例8(2005 辽宁卷)某工厂生产甲、乙两种产品,每种产品都是经过第一和第二工序加工而成,两道工序的加工结果相互独立,每道工序的加工结果均有A、B两个等级对每种产品,两道工序的加工结果都为A级时,产品为一等品,其余均为二等品。
(Ⅰ)已知甲、乙两种产品每一道工序的加工结果为A级的概率如表一所示,分别求生产出的甲、乙产品为一等品的概P(甲)、P(乙);(Ⅱ)已知一件产品的利润如表二所示,用ξ、η分别表示一件甲、乙产品的利润,在(I)的条件下,求ξ、η的分布列及Eξ、Eη;(Ⅲ)已知生产一件产品需用的工人数和资金额如表三所示.该工厂有工人40名,可用资金60万元。