运放分类及指标
运放参数及指标定义详解
运放主要指标及定义:单位增益带宽定义为:运放的闭环增益为1倍条件下,将一个恒幅正弦小信号输入到运放的输入端,从运放的输出端测得闭环电压增益下降3db(或是相当于运放输入信号的0.707)所对应的信号频率。
单位增益带宽是一个很重要的指标,对于正弦小信号放大时,单位增益带宽等于输入信号频率与该频率下的最大增益的乘积,换句话说,就是当知道要处理的信号频率和信号需要的增益后,可以计算出单位增益带宽,用以选择合适的运放。
这用于小信号处理中运放选型。
例:某个运放的增益带宽=1MHz,若实际闭环增益=100,则理论处理小信号的最大频率=1MHz/100=10KHz。
转换速率(也称为压摆率)SR:运放转换速率定义为,运放接成闭环条件下,将一个大信号(含阶跃信号)输入到运放的输入端,从运放的输出端 测得运放的输出上升速率。
由于在转换期间,运放的输入级处于开关状态{由于一个大信号(含阶跃信号)接输入端,运放输入级电路迅速从截止状态变成饱和状态,处在放大状态的时间几乎忽略不计,简称处于“开关状态”},所以运放的反馈回路不起作用,也就是转换速率与闭环增益无关。
转换速率对于大信号处 理是一个很重要的指标,对于一般运放转换速率SR<=10V/μs,高速运放的转换速率SR>10V/μs。
目前的高速运放最高转换速率SR 达到6000V/μs。
这用于大信号处理中运放选型。
全功率带宽BW:全功率带宽定义为,在额定的负载时,运放的闭环增益为1倍条件下,将一个恒幅正弦大信号输入到运放的输入端,使运放输出幅度达到最大(允许一定失真)的信号频率。
这个频率受到运放转换速率的限制。
近似地,全功率带宽=转换速率/2πVop(Vop是运放的峰值输出幅度)。
全功率带宽是一个很重要的指标,用于大信号处理中运放选型。
建立时间:在额定的负载时,运放的闭环增益为1倍条件下,将一个阶跃大信号输入到运放的输入端,使运放输出由0增加到某一给定值的所需要的时间。
运算放大器15个常见指标介绍
运算放大器15个常见指标介绍在运放开环使用时,加载在两个输入端之间的直流电压使得放大器直流输出电压为 0。
优劣范围:1µV 以下,属于极优秀的。
100µV 以下的属于较好的。
最大的有几十mV。
对策:1 选择 VOS远小于被测直流量的放大器,2 过运放的调零措施消除这个影响3 如果你仅关心被测信号中的交变成分,你可以在输入端和输出端增加交流耦合电路,将其消除。
如果 IB1=IB2,那么选择 R1=R2//RF,可以使电流形成的失调电压会消失。
但实际中IB1=IB2很难满足失调电压漂移(Offset Voltage Drift)定义:当温度变化(µV/°C)、时间持续(µV/MO)、供电电压(µV/V)等自变量变化时,输入失调电压会发生变化。
后果:很严重。
因为它不能被调零端调零,即便调零完成,它还会带来新的失调。
对策:第一,就是选择高稳定性,也就是上述漂移系数较小的运放。
第二,有些运放具有自归零技术,它能不断地测量失调并在处理信号过程中把当前失调电压减掉。
输入偏置电流(Input bias current, IB)定义:当输出维持在规定的电平时,两个输入端流进电流的平均值。
Ib=(Ib1+Ib2)/2优劣范围:60fA~100µA。
后果:第一,当用放大器接成跨阻放大测量外部微小电流时,过大的输入偏置电流会分掉被测电流,使测量失准。
第二,当放大器输入端通过一个电阻接地时,这个电流将在电阻上产生不期望的输入电压。
对策:为避免输入偏置电流对放大电路的影响,最主要的措施是选择 IB较小的放大器。
输入失调电流(Input offset current, IOS)定义:当输出维持在规定的电平时,两个输入端流进电流的差值。
优劣范围:20fA~100µA。
Ib=Ib1-Ib2后果:失调电流的存在,说明两个输入端客观存在的电流有差异,无法用外部电阻实现匹配抵消偏置电流的影响。
运算放大器参数及分类的介绍
430小组
运算放大器的主要参数
集成运放的参数较多,其中主要参数分为直流 指标和交流指标。
直流参数
• 输入失调电压Vos:输入失调电压定义为集成运放 输出端电压为零时,两个输入端之间所加的补偿电 压。
• 输入失调电压的温度漂移(简称输入失调电压温漂) Vos Drift:输入失调电压的温度漂移定义为在给定 的温度范围内,输入失调电压的变化与温度变化的 比值。
TI通用集成运算放大器命名法则
一、OPAYxxx系列
Y表示通道数:省略此位-单通道 2-双通道 3-三通道 4-四通道
第一个x表示类型:1->FET型 2->双极型 3->COMS(5.5V) 4->高压型(>40V) 5->高功率型(>200mA) 6- >高速型(>50MHz) 7->COMS(12V)
高速运算放大器
• JFET高速放大器 • 电流反馈放大器 • 电压反馈高速放大器 • 全差分放大器 • 视频滤波放大器 • 压控增益放大器
精密运算放大器
• VF、FV转换器 • 比较器 • 差动放大器 • 程控增益放大器 • 电流基准 • 电流检测放大器 • 电压基准 • 功率放大器缓冲器
• 精密对数放大器 • 精密积分放大器转换器 • 精密运算放大器 • 模拟滤波器 • 仪表放大器
代表产品:INA117AM,SM;INA133, INA2133; INA137, INA2137,INA143, INA2143; INA157, INA2157。 INA133/INA2133Z的主要特点: 低的失调电压和漂移:(+/-)450uV, (+/-)5u V/ ℃
精密型运放介绍
运算放大器的分类
运算放大器的分类
运算放大器可以根据其内部电路结构和应用领域来分类,主要分为以下几种:
1. 基本型运算放大器:传统的运算放大器,内部由一个差分放大器和一个级联缓冲器组成,用于放大、滤波、积分、微分等基本电路。
2. 差分型运算放大器:内部电路结构和基本型类似,但增益更高,具有更高的共模抑制比和更低的失调电压。
3. 仪器放大器:专用于测量和检测的放大器,具有高共模抑制比、高精度、低噪音等特点。
4. 高速运算放大器:适用于高速信号处理,具有更高的带宽和更快的响应速度。
5. 低功耗运算放大器:适用于低功率应用,具有低静态电流、低供电电压等特点。
6. 压限放大器:用于对信号进行压限,可保护信号处理电路免受过大电压的损害。
7. 电流型运算放大器:通过输入电流控制输出电压,适用于电流驱动应用。
8. 隔离型运算放大器:可实现输入端和输出端的电气隔离,适用于对输入信号进行隔离和放大的应用。
如何选择适合的运放
如何选择适合的运放在电子设备中,运放(Operational Amplifier,简称Op Amp)是一种重要的电子器件,广泛应用于信号放大、滤波、波形整形等电路中。
正确选择适合的运放对于电路性能的稳定与提高至关重要。
本文将介绍如何选择适合的运放。
一、了解运放的基本参数运放有许多基本参数需要了解,以下是几个重要的参数:1. 增益带宽积(Gain Bandwidth Product,GBW):表示运放的增益与频率的乘积,通常以MHz为单位。
选择运放时,应根据电路所需的最大增益和工作频率来确定适合的GBW值。
2. 输入失调电压(Input Offset Voltage,Vos):表示在两个输入端之间存在的微小电压差,会对输出结果产生影响。
通常以mV为单位,应尽量选择Vos较小的运放。
3. 输入失调电流(Input Offset Current,Ios):表示运放两个输入端之间的电流差异,也会对输出结果产生影响。
通常以nA为单位,应尽量选择Ios较小的运放。
4. 输入偏置电流(Input Bias Current,Ib):表示运放两个输入端的总电流,同样会对输出结果产生影响。
通常以nA为单位,应选择Ib较小的运放。
二、考虑电源电压范围运放通常需要工作在一定的电源电压范围内,过高或过低的电源电压都会影响运放的性能。
因此,在选择运放时,要根据实际应用的电源电压范围来确定适合的运放。
三、确定功耗要求功耗是选择运放时需要考虑的一个重要指标,如果对设备的功耗要求较高,应选择低功耗的运放。
四、选择合适的封装类型运放有多种封装类型,如DIP、SOP、SSOP等。
选择封装类型时,应根据实际使用环境和电路布局来确定合适的封装类型。
五、参考应用案例和厂商手册了解同类产品的应用案例和厂商手册中的参数说明是选择适合运放的有效方法。
可以参考厂商手册中的参数表,并与实际应用需求进行对比和分析。
选择适合的运放是一项重要而复杂的任务,需要结合实际需求和对运放性能的了解。
运放性能参数详解大全
运放参数解析定义全一、单位增益带宽GB单位增益带宽定义为:运放的闭环增益为1倍条件下,将一个恒幅正弦小信号输入到运放的输入端,从运放的输出端测得闭环电压增益下降3db(或是相当于运放输入信号的0.707)所对应的信号频率。
单位增益带宽是一个很重要的指标,对于正弦小信号放大时,单位增益带宽等于输入信号频率与该频率下的最大增益的乘积,换句话说,就是当知道要处理的信号频率和信号需要的增益后,可以计算出单位增益带宽,用以选择合适的运放。
这用于小信号处理中运放选型。
二、运放的带宽是表示运放能够处理交流信号的能力对于小信号,一般用单位增益带宽表示。
单位增益带宽,也叫做增益带宽积,能够大致表示运放的处理信号频率的能力。
例如某个运放的增益带宽=1MHz,若实际闭环增益=100,则理论处理小信号的最大频率1MHz/100=10KHz。
对于大信号的带宽,即功率带宽,需要根据转换速度来计算。
对于直流信号,一般不需要考虑带宽问题,主要考虑精度问题和干扰问题。
1、运放的带宽简单来说就是用来衡量一个放大器能处理的信号的频率范围,带宽越高,能处理的信号频率越高,高频特性就越好,否则信号就容易失真,不过这是针对小信号来说的,在大信号时一般用压摆率(或者叫转换速率)来衡量。
2、比如说一个放大器的放大倍数为n倍,但并不是说对所有输入信号的放大能力都是n倍,当信号频率增大时,放大能力就会下降,当输出信号下降到原来输出的0.707倍时,也就是根号2分之一,或者叫减小了3dB,这时候信号的频率就叫做运放的带宽。
3、当输出信号幅度很小在0.1Vp-p以下时,主要考虑增益带宽积的影响。
就是Gain Bandwidth=放大倍数*信号频率。
当输出信号幅度很大时,主要考虑转换速率Sr的影响,单位是V/uS。
在这种情况下要算功率带宽,FPBW=Sr/2πVp-p。
也就是在设计电路时要同时满足增益带宽和功率带宽。
三、运放关于带宽和增益的主要指标以及定义1、开环带宽:开环带宽定义为,将一个恒幅正弦小信号输入到运放的输入端,从运放的输出端测得开环电压增益从运放的直流增益下降3db(或是相当于运放的直流增益的0.707)所对应的信号频率。
运放技术指标详解
集成运放的主要技术指标集成运放的输入级通常由差分放大电路组成,因此一般具有两个输入端以及一个输出端,还有其他以连接电源电压等的引出端。
两个输入端中,一个与输出端为反相关系,另一个为同相关系,分别称为反相输入端和同相输入端。
运算放大器的符号如下图所示。
其中反相输入端和同相输入端分别用符号“-”和“+”标明。
为了描述集成运放的性能,提出了许多项技术指标,现将常用的几项分别介绍如下:一、开环差模电压增益AodAod是指运放在无外加反馈情况下的直流差模增益,一般用对数表示,单位为分贝。
Aod是决定运放精度的重要因素,理想情况下希望Aod为无穷大。
实际集成运放一般Aod为100dB左右,高质量的集成运Aod可达140dB以上。
二、输入失调电压U10它的定义是,为了使输出电压为零,在输入端所需要加的补偿电压。
其数值表征了输入级差分对管UBE(或场效应管UGS)失配的程度,在一定程度上了反映温漂的大小。
一般运放的U10值为1~10mV,高质量的在1mV以下。
三、输入失调电压温漂ΑU10它表示失调电压在规定工作范围内的温度系数,是衡量运放漂的重要指标。
一般运放为每度10~20μV,高质量的低于每度0.5μV。
这个指标往往比失调电压更为重要,因为可以通过调整电阻的阻值人为地使失调电压等于零,便却无法将失调电压的温漂调至零,甚至不一定能使其降低。
四、输入失调电流I10输入失调电流的定义是当输出电压等于零时,两个输入端偏置电流之差,即I10=|IB1-IB2|(4.4.3)用以描述差分对管输入电流的不对称情况,一般运放为几十至一百纳安,高质量的低于1nA。
五、输入失调电流温漂αI10它代表输入失调电流的湿度系数。
一般为每度几纳安,高质量的只有每度几十皮安。
六、输入偏置电流IIBIIB定义是当输出电压等于零时,两个输入端偏置电流的平均值,这是衡量分对管输入电流绝对值大小的指标,它的值主要决定于集成运放输入级的静态集电极电流及输入级放大管的β值。
运放参数及指标定义详解
运放主要指标及定义:单位增益带宽定义为:运放的闭环增益为1倍条件下,将一个恒幅正弦小信号输入到运放的输入端,从运放的输出端测得闭环电压增益下降3db(或是相当于运放输入信号的0.707)所对应的信号频率。
单位增益带宽是一个很重要的指标,对于正弦小信号放大时,单位增益带宽等于输入信号频率与该频率下的最大增益的乘积,换句话说,就是当知道要处理的信号频率和信号需要的增益后,可以计算出单位增益带宽,用以选择合适的运放。
这用于小信号处理中运放选型。
例:某个运放的增益带宽=1MHz,若实际闭环增益=100,则理论处理小信号的最大频率=1MHz/100=10KHz。
转换速率(也称为压摆率)SR:运放转换速率定义为,运放接成闭环条件下,将一个大信号(含阶跃信号)输入到运放的输入端,从运放的输出端测得运放的输出上升速率。
由于在转换期间,运放的输入级处于开关状态{由于一个大信号(含阶跃信号)接输入端,运放输入级电路迅速从截止状态变成饱和状态,处在放大状态的时间几乎忽略不计,简称处于“开关状态”},所以运放的反馈回路不起作用,也就是转换速率与闭环增益无关。
转换速率对于大信号处理是一个很重要的指标,对于一般运放转换速率SR<=10V/μs,高速运放的转换速率SR>10V/μs。
目前的高速运放最高转换速率SR 达到6000V/μs。
这用于大信号处理中运放选型。
全功率带宽BW:全功率带宽定义为,在额定的负载时,运放的闭环增益为1倍条件下,将一个恒幅正弦大信号输入到运放的输入端,使运放输出幅度达到最大(允许一定失真)的信号频率。
这个频率受到运放转换速率的限制。
近似地,全功率带宽=转换速率/2πVop(Vop是运放的峰值输出幅度)。
全功率带宽是一个很重要的指标,用于大信号处理中运放选型。
建立时间:在额定的负载时,运放的闭环增益为1倍条件下,将一个阶跃大信号输入到运放的输入端,使运放输出由0增加到某一给定值的所需要的时间。
运放的参数
运放的参数运放,即运算放大器,是一种广泛应用于电子电路中的集成电路器件。
它的作用是将输入信号进行放大,并输出到下一级电路中,从而实现信号处理的目的。
在实际应用中,运放的参数是非常重要的,因为它们直接影响到运放的性能和应用效果。
本文将详细介绍运放的参数及其相关知识。
一、运放的基本参数1. 增益增益是运放最基本的参数之一,它表示输出信号与输入信号之间的比值。
增益可以分为直流增益和交流增益两种。
直流增益是指在直流条件下,输出信号与输入信号之间的比值;交流增益是指在交流条件下,输出信号与输入信号之间的比值。
增益通常用分贝表示,即dB=20log(AV),其中AV为增益值。
2. 带宽带宽是指运放能够放大的频率范围。
它是指在增益降低到-3dB时的频率范围。
带宽与增益有密切关系,一般情况下,带宽越大,增益就越小。
因此,在选择运放时,需要根据具体应用场景来确定带宽和增益的要求。
3. 输入阻抗和输出阻抗输入阻抗是指运放输入端的电阻。
它决定了输入信号的大小和输入电路的稳定性。
输出阻抗是指运放输出端的电阻。
它决定了输出信号的大小和输出电路的稳定性。
输入阻抗和输出阻抗越大,运放的性能就越好。
一般情况下,输入阻抗大于1MΩ,输出阻抗小于100Ω。
4. 偏置电压偏置电压是指运放输入端的电压差异。
它是由于运放内部电路不对称所导致的。
偏置电压会对运放的性能产生影响,因此需要尽可能地将其降低。
一般情况下,偏置电压应小于1mV。
5. 偏置电流偏置电流是指运放输入端的电流差异。
它同样是由于运放内部电路不对称所导致的。
偏置电流会对运放的性能产生影响,因此需要尽可能地将其降低。
一般情况下,偏置电流应小于100nA。
二、运放的应用参数1. 非线性失真非线性失真是指运放输出信号与输入信号之间存在非线性关系。
它会导致输出信号失真,影响运放的应用效果。
非线性失真可以通过选择合适的运放来降低。
2. 电源抑制比电源抑制比是指运放输出信号中包含的电源噪声与电源电压之间的比值。
几种常用集成运算放大器的性能参数
几种常用集成运算放大器的性能参数1.通用型运算放大器A741(单运放)、LM358(双运放)、LM324(四运放)及以场效应管为输入级的LF356都属于此种。
它们是口前应用最为广泛的集成运算放大器。
卩通用型运算放大器就是以通用为LI的而设计的。
这类器件的主要特点是价格低廉、产品量大面广, 其性能指标能适合于一般性使用。
例2.高阻型运算放大器,IIB为儿皮安到儿十皮安。
实现这些指标的主要措施是利用场效应管高输入阻抗的特点,用场效应管组成运算放大器的差分输入级。
用FET作输入级,不仅输入阻抗高,输入偏置电流低,而且具有高速、宽带和低噪声等优点,但输入失调电压较大。
常见的集成器件有LF356、LF355、LF347 (四运放)及更高输入阻抗的CA3130、CA3140等。
Q这类集成运算放大器的特点是差模输入阻抗非常高,输入偏置电流非常小,一般rid> (109^1012)3.低温漂型运算放大器在精密仪器、弱信号检测等自动控制仪表中,总是希望运算放大器的失调电压要小且不随温度的变化而变化。
低温漂型运算放大器就是为此而设讣的。
訂前常用的高精度、低温漂运算放大器有0P-07、0P-27、AD508及ill M0SFET组成的斩波稳零型低漂移器件ICL7650等。
4.高速型运算放大器s,BWG>20MHzo PA715等,其SR二50〜70V/u在快速A/D和D/A转换器、视频放大器中,要求集成运算放大器的转换速率SR 一定要高,单位增益带宽BWG 一定要足够大,像通用型集成运放是不能适合于高速应用的场合的。
高速型运算放大器主要特点是具有高的转换速率和宽的频率响应。
常见的运放有LM318、5.低功耗型运算放大器W,可采用单节电池供电。
P A O U前有的产品功耗已达微瓦级,例如ICL7600 的供电电源为1. 5V,功耗为10 u山于电子电路集成化的最大优点是能使复杂电路小型轻便,所以随着便携式仪器应用范围的扩大,必须使用低电源电压供电、低功率消耗的运算放大器相适用。
运放种类
运放种类
双极型运放:一般输入偏置电流及器件功耗较大,但由于采用多种改进技术,所以种类多、功能强。
CMOS型运放:输入阻抗高、功耗小,可在低电源电压下工作,初期产品精度低、增益小、速度慢,但目前已有低失调电压、低噪声、高速度、强驱动能力的产品。
BiFET型运放:采用双极型管和单极型管混合搭配的生产工艺,以场效应管作输入级,使输入电阻高达以上。
运放有单运放,双运放,四运放之分。
1)单运放:以标识点开始逆时针转1~8
反向输入端:2 同向输入端:3 补偿端:1,5
正负端:7,4 输出端:6
例如:通用型:CF741
低功耗:CF253
高精度型:CF725
高阻型:TL081
高速型:LM318
宽带型:LF351
2)双运放:以标识点开始逆时针转1~8
反向输入端:2,
6 同向输入端:3,5
正负端:8,
4 输出端:1,7
例如:通用型:LM157
高阻型:TL082
宽带型:LF353
低噪声型:NE5532
3)四运放:以标识点开始逆时针转1~7 8~14
反向输入端:2,6,9,
13 同向输入端:3,5,10,13
正负端:4,
11 输出端:1,7,8,14
例如:通用型:LM324
高阻型:TL084
宽带型:LF347
低噪型:OPA4131。
运放主要参数
运放主要参数
1. 增益:运放的增益是指输入信号与输出信号之间的比例关系。
增益通常以分贝(dB)为单位表示。
2. 带宽:运放的带宽是指它能够放大的频率范围。
带宽通常以赫兹(Hz)为单位表示。
3. 输入阻抗:运放的输入阻抗是指它对输入信号的电阻。
输入阻抗通常以欧姆(Ω)为单位表示。
4. 输出阻抗:运放的输出阻抗是指它对输出信号的电阻。
输出阻抗通常以欧姆(Ω)为单位表示。
5. 偏置电压:运放的偏置电压是指在没有输入信号时,输出电压的偏移量。
偏置电压通常以毫伏(mV)为单位表示。
6. 偏置电流:运放的偏置电流是指在没有输入信号时,运放输入端的电流。
偏置电流通常以微安(μA)为单位表示。
7. 噪声:运放的噪声是指在输出信号中存在的随机电压或电流。
噪声通常以分贝(dB)为单位表示。
8. 失调电压:运放的失调电压是指在输入信号相等时,输出电压之间的差异。
失调电压通常以毫伏(mV)为单位表示。
9. 失调电流:运放的失调电流是指在输入信号相等时,运放输入端的电流之间的差异。
失调电流通常以微安(μA)为单位表示。
10. 过载电压:运放的过载电压是指它能够承受的最大压力。
运算放大器分类及参数
运算放大器分类及作用1.模拟运放的分类及特点模拟运算放大器从诞生至今,已有40多年的历史了。
最早的工艺是采用硅NPN工艺,后来改进为硅NPN-PNP工艺(后面称为标准硅工艺)。
在结型场效应管技术成熟后,又进一步的加入了结型场效应管工艺。
当MOS管技术成熟后,特别是CMOS技术成熟后,模拟运算放大器有了质的飞跃,一方面解决了低功耗的问题,另一方面通过混合模拟与数字电路技术,解决了直流小信号直接处理的难题。
经过多年的发展,模拟运算放大器技术已经很成熟,性能曰臻完善,品种极多。
这使得初学者选用时不知如何是好。
为了便于初学者选用,本文对集成模拟运算放大器采用工艺分类法和功能/性能分类分类法等两种分类方法,便于读者理解,可能与通常的分类方法有所不同。
1.1.根据制造工艺分类根据制造工艺,目前在使用中的集成模拟运算放大器可以分为标准硅工艺运算放大器、在标准硅工艺中加入了结型场效应管工艺的运算放大器、在标准硅工艺中加入了MOS工艺的运算放大器。
按照工艺分类,是为了便于初学者了解加工工艺对集成模拟运算放大器性能的影响,快速掌握运放的特点。
标准硅工艺的集成模拟运算放大器的特点是开环输入阻抗低,输入噪声低、增益稍低、成本低,精度不太高,功耗较高。
这是由于标准硅工艺的集成模拟运算放大器内部全部采用NPN-PNP管,它们是电流型器件,输入阻抗低,输入噪声低、增益低、功耗高的特点,即使输入级采用多种技术改进,在兼顾起啊挺能的前提下仍然无法摆脱输入阻抗低的问题,典型开环输入阻抗在1M欧姆数量级。
为了顾及频率特性,中间增益级不能过多,使得总增益偏小,一般在80~110dB之间。
标准硅工艺可以结合激光修正技术,使集成模拟运算放大器的精度大大提高,温度漂移指标目前可以达到0.15ppm。
通过变更标准硅工艺,可以设计出通用运放和高速运放。
典型代表是LM324。
在标准硅工艺中加入了结型场效应管工艺的运算放大器主要是将标准硅工艺的集成模拟运算放大器的输入级改进为结型场效应管,大大提高运放的开环输入阻抗,顺带提高通用运放的转换速度,其它与标准硅工艺的集成模拟运算放大器类似。
运算放大器的性能指标
运算放⼤器的性能指标⼀.直流指标(静态指标)1.输⼊失调电压(Input offset voltage)2.输⼊失调电压的温漂在实际当中,每个芯⽚的输⼊失调电压并⾮固定不变,输⼊失调电压会随温度的变化⽽漂移,这个参数相当于是对输⼊失调电压的进⼀步补充。
以上参数有些datasheet中除了会给出典型的值外,还会给出不同的输⼊失调电压下的芯⽚的分布⽐例和不同温度的会出现温漂的芯⽚的分布⽐例,⼀般都是符合正态分布的。
3.输⼊偏置电流(Input bias current)理想的运放输⼊阻抗⽆穷⼤,因此不会有电流流⼊输⼊端,⼀般情况下,CMOS和JFET的偏置电流⽐双极性的都要⼩,偏置电流⼀般⽆需考虑。
输⼊偏置电流的值应该是(Ib+ +Ib-)/2.4.输⼊失调电流(Input offset current)输⼊失调电流的值为(Ib+- Ib-)对于⼩信号的处理,运放的选择要选择偏置电流⽐较⼩的。
对于偏置电流的另外⼀种解决⽅案为在地和同相端之间接⼀格电阻,电阻的⼤⼩为Req=R1//R2.5.输⼊共模电压Vicm(Input Voltage common-mode Range)共模输⼊电压Vicm被定义为⼀个电压范围:当超过该范围时,运放停⽌⼯作。
如果输⼊的电压不在此范围之类,运放将停⽌⼯作。
对于有不同输⼊级的运放,其输⼊共模电压是不⼀样的。
由于运放向单电源低电压趋势发展,所以该参数越来越重要。
这个参数是运放选择时⾮常重要的⼀个参数,有些信号通过运放之后可能会出现削顶的情况,可能就是因为这个参数选的不好。
6.共模抑制⽐CMRR (Common-Mode Rejection)共模抑制⽐的定义:差分电压放⼤倍数与共模电压放⼤倍数之⽐(理想运放的这个值为⽆穷⼤,实际中⼀般是数万倍),为了说明差分放⼤电路抑制共模信号及放⼤查分信号的能⼒。
这个性能主要是指运放在差分输⼊的情况下,对共模⼲扰的抑制性能,⼀般⽤单位db来表⽰,这个值⼀般在80db-120db之间。
运放的主要参数及选型
运放的主要参数介绍本节以《中国集成电路大全》集成运算放大器为主要参考资料,同时参考了其它相关资料.集成运放的参数较多,其中主要参数分为直流指标和交流指标。
其中主要直流指标有输入失调电压、输入失调电压的温度漂移(简称输入失调电压温漂)、输入偏置电流、输入失调电流、输入偏置电流的温度漂移(简称输入失调电流温漂)、差模开环直流电压增益、共模抑制比、电源电压抑制比、输出峰-峰值电压、最大共模输入电压、最大差模输入电压。
主要交流指标有开环带宽、单位增益带宽、转换速率SR、全功率带宽、建立时间、等效输入噪声电压、差模输入阻抗、共模输入阻抗、输出阻抗。
1.直流指标输入失调电压VIO:输入失调电压定义为集成运放输出端电压为零时,两个输入端之间所加的补偿电压。
输入失调电压实际上反映了运放内部的电路对称性,对称性越好,输入失调电压越小。
输入失调电压是运放的一个十分重要的指标,特别是精密运放或是用于直流放大时。
输入失调电压与制造工艺有一定关系,其中双极型工艺(即上述的标准硅工艺)的输入失调电压在±1~10mV之间;采用场效应管做输入级的,输入失调电压会更大一些。
对于精密运放,输入失调电压一般在1mV以下。
输入失调电压越小,直流放大时中间零点偏移越小,越容易处理。
所以对于精密运放是一个极为重要的指标。
输入失调电压的温度漂移(简称输入失调电压温漂)αVIO:输入失调电压的温度漂移定义为在给定的温度范围内,输入失调电压的变化与温度变化的比值。
这个参数实际是输入失调电压的补充,便于计算在给定的工作范围内,放大电路由于温度变化造成的漂移大小。
一般运放的输入失调电压温漂在±10~20μV/℃之间,精密运放的输入失调电压温漂小于±1μV/℃。
输入偏置电流IIB:输入偏置电流定义为当运放的输出直流电压为零时,其两输入端的偏置电流平均值。
输入偏置电流对进行高阻信号放大、积分电路等对输入阻抗有要求的地方有较大的影响。
超强总结:25个运放参数详解(收藏)
超强总结:25个运放参数详解(收藏)1、输入偏置电流和输入失调电流一般运放的datasheet中会列出众多的运放参数,有些易于理解,我们常关注,有些可能会被忽略了。
在接下来的一些主题里,将对每一个参数进行详细地说明和分析。
力求在原理和对应用的影响上把运放参数阐述清楚。
由于本人的水平有限,写的博文中难免有些疏漏,希望大家批评指正。
第一节要说明的是运放的输入偏置电流Ib和输入失调电流Ios .众说周知,理想运放是没有输入偏置电流Ib和输入失调电流Ios。
但每一颗实际运放都会有输入偏置电流Ib和输入失调电流Ios .我们可以用下图中的模型来说明它们的定义。
输入偏置电流Ib是由于运放两个输入极都有漏电流(我们暂且称之为漏电流)的存在。
我们可以理解为,理想运放的各个输入端都串联进了一个电流源,这两个电流源的电流值一般为不相同。
也就是说,实际的运入,会有电流流入或流出运放的输入端的(与理想运放的虚断不太一样)。
那么输入偏置电流就定义这两个电流的平均值,这个很好理解。
输入失调电流呢,就定义为两个电流的差。
说完定义,下面我们要深究一下这个电流的来源。
那我们就要看一下运入的输入级了,运放的输入级一般采用差分输入(电压反馈运放)。
采用的管子,要么是三级管bipolar,要么是场效应管FET。
如下图所示,对于bipolar,要使其工作在线性区,就要给基极提供偏置电压,或者说要有比较大的基极电流,也就是常说的,三极管是电流控制器件。
那么其偏置电流就来源于输入级的三极管的基极电流,由于工艺上很难做到两个管子的完全匹配,所以这两个管子Q1和Q2的基极电流总是有这么点差别,也就是输入的失调电流。
Bipolar输入的运放这两个值还是很可观的,也就是说是比较大的,进行电路设计时,不得不考虑的。
而对于FET输入的运放,由于其是电压控制电流器件,可以说它的栅极电流是很小很小的,一般会在fA级,但不幸的是,它的每个输入引脚都有一对ESD保护二极管。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
运算放大器分类:
一:性能指标分类
1.通用型运算放大器
通用型运算放大器就是以通用为目的而设计的。
这类器件的主要特点是价格低廉、产品量大面广,其性能指标能适合于一般性使用。
例μA741(单运放)、LM358(双运放)、LM324(四运放)以及场效应管为输入级的LF356都属于此种。
它们是目前应用最为广泛的集成运算放大器。
2.高阻型运算放大器
这类集成运算放大器的特点是差模输入阻抗非常高,输入偏置电流非常小,一般rid>1GΩ~1TΩ,IB为几皮安到几十皮安。
实现这些指标的主要措施是利用场效应管高输入阻抗的特点,用场效应管组成运算放大器的差分输入级。
用FET作输入级,不仅输入阻抗高,输入偏置电流低,而且具有高速、宽带和低噪声等优点,但输入失调电压较大。
常见的集成器件有LF355、LF347(四运放)及更高输入阻抗的CA3130、CA3140等。
3.低温漂型运算放大器
在精密仪器、弱信号检测等自动控制仪表中,总是希望运算放大器的失调电压要小且不随温度的变化而变化。
低温漂型运算放大器就是为此而设计的。
目前常用的高精度、低温漂运算放大器有OP07、OP27、AD508及由MOSFET组成的斩波稳零型低漂移器件ICL7650等。
4.高速型运算放大器
在快速A/D和D/A转换器、视频放大器中,要求集成运算放大器的转换速率SR
一定要高,单位增益带宽BWG一定要足够大,像通用型集成运放是不能适合于高速应用的场合的。
高速型运算放大器主要特点是具有高的转换速率和宽的频率响应。
常见的运放有LM318、μA715等,其SR=50~70V/ms,BWG>20MHz。
5.低功耗型运算放大器
由于电子电路集成化的最大优点是能使复杂电路小型轻便,所以随着便携式仪器应用范围的扩大,必须使用低电源电压供电、低功率消耗的运算放大器相适用。
常用的运算放大器有TL-022C、TL-060C等,其工作电压为±2V~±18V,消耗电流为50~250μA。
目前有的产品功耗已达μW级,例如ICL7600的供电电源为1.5V,功耗为10mW,可采用单节电池供电。
6.高压大功率型运算放大器
运算放大器的输出电压主要受供电电源的限制。
在普通的运算放大器中,输出电压的最大值一般仅几十伏,输出电流仅几十毫安。
若要提高输出电压或增大输出电流,集成运放外部必须要加辅助电路。
高压大电流集成运算放大器外部不需附加任何电路,即可输出高电压和大电流。
例如D41集成运放的电源电压可达±150V,μA791集成运放的输出电流可达1A。
7. 低输入偏流型
当运放的输入偏流为零时,便是理想的运放。
其输入偏流IB ,是用运放的两个输入端电流平均值来定义的,因此该值越小,性能越高。
当环境温度T=25℃时,不同结构不同类型的低输入偏流型运放,其偏流值应在以下规定范围内:双极型运放:25nA~lμA 场效应管输入型运放:1μμA~50μμA MOS输入型运放:0.1μμA CMOS输入型运放:0.1μμA 采用低偏流放大器的电路有:小电流测定电路、需要高阻抗的电路、积分器、电流/电压转换器、高阻抗转换器等
8. 多元型
多元集成运放也叫复合集成运放,它是在一个芯片上同时集成2个或2个以上独立的集成运放。
主要产品有F747,F1437,F1537,F1558,F347,F4558,XFC80,BG320,56353等。
9. 单电源型
一般集成运放都是采用双电源工作的,若用单电源,则需在电路上采取分压的办法。
双电源集成运放有正、负供电系统,必然增加设备的体积和重量,因此在某些场合需要单电源工作的运放,如航空航天及野外使用,对电源的体积、重量要求轻的电子设各。
主要产品有F3140,F124,F158,F358,7XC348,SF324等。
10. 跨导型
这是利用输入电压来控制输出电流的集成运放,跨导可以通过外加偏置的方法来改变,输出电流能够在很宽范围内变化。
主要产品有F3401,MC3401,LM3900等。
11. 程控型
程控型集成运放能用外部电路控制其工作状态。
这种集成运放当偏置电流值改变时,它的参数也将随着变化,使用灵活,特别适用于测量电路。
高精密运算放大器、射频放大器、宽带放大器、仪表放大器、低输入失调电压型、高输出电流型、低噪型、组件型和其它放大器
二:原理分类
1.双极型运放:一般输入偏置电流及器件功耗较大,但由于采用多种改进技术,所以种类多、功能强。
2.CMOS型运放:输入阻抗高、功耗小,可在低电源电压下工作,初期产品精度低、增益小、速度慢,但目前已有低失调电压、低噪声、高速度、强驱动能力的产品。
3.BiFET型运放:采用双极型管和单极型管混合搭配的生产工艺,以场效应管作输入级,输入电阻高。
三:通道数分类
运放有单运放,双运放,四运放之分。
1)单运放:以标识点开始逆时针转1~8
反向输入端:2同向输入端:3补偿端:1,5
正负端:7,4输出端:6
例如:通用型:CF741
低功耗:CF253
高精度型:CF725
高阻型:TL081
高速型:LM318
宽带型:LF351
2)双运放:以标识点开始逆时针转1~8
反向输入端:2,6同向输入端:3,5
正负端:8,4输出端:1,7
例如:通用型:LM157
高阻型:TL082
宽带型:LF353
低噪声型:NE5532
3)四运放:以标识点开始逆时针转1~7 8~14
反向输入端:2,6,9,13同向输入端:3,5,10,13 正负端:4,11输出端:1,7,8,14
例如:通用型:LM324
高阻型:TL084
宽带型:LF347
低噪型:OPA4131
运算放大器性能指标:
1.共模输入电阻(RINCM)
该参数表示运算放大器工作在线性区时,输入共模电压范围与该范围内偏置电流的变化量之比。
2.直流共模抑制(CMRDC)
该参数用于衡量运算放大器对作用在两个输入端的相同直流信号的抑制能力。
3.交流共模抑制(CMRAC)
CMRAC用于衡量运算放大器对作用在两个输入端的相同交流信号的抑制能力,是差模开环增益除以共模开环增益的函数。
4.增益带宽积(GBW)
增益带宽积AOL * ƒ是一个常量,定义在开环增益随频率变化的特性曲线中以
-20dB/十倍频程滚降的区域。
5.输入偏置电流(IB)
该参数指运算放大器工作在线性区时流入输入端的平均电流。
6.输入偏置电流温漂(TCIB)
该参数代表输入偏置电流在温度变化时产生的变化量。
TCIB通常以pA/°C为单位表示。
7.输入失调电流(IOS)
该参数是指流入两个输入端的电流之差。
8.输入失调电流温漂(TCIOS)
该参数代表输入失调电流在温度变化时产生的变化量。
TCIOS通常以pA/°C为单位表示。
9.差模输入电阻(RIN)
该参数表示输入电压的变化量与相应的输入电流变化量之比,电压的变化导致电流的变化。
在一个输入端测量时,另一输入端接固定的共模电压。
10.输出阻抗(ZO)
该参数是指运算放大器工作在线性区时,输出端的内部等效小信号阻抗。
11.输出电压摆幅(VO)
该参数是指输出信号不发生箝位的条件下能够达到的最大电压摆幅的峰峰值,VO一般定义在特定的负载电阻和电源电压下。
12.功耗(Pd)
表示器件在给定电源电压下所消耗的静态功率,Pd通常定义在空载情况下。
13.电源抑制比(PSRR)
该参数用来衡量在电源电压变化时运算放大器保持其输出不变的能力,PSRR通常用电源电压变化时所导致的输入失调电压的变化量表示。
14.转换速率/压摆率(SR)
该参数是指输出电压的变化量与发生这个变化所需时间之比的最大值。
SR通常以V/µs为单位表示,有时也分别表示成正向变化和负向变化。
15.电源电流(ICC、IDD)
该参数是在指定电源电压下器件消耗的静态电流,这些参数通常定义在空载情况下。
16.单位增益带宽(BW)
该参数指开环增益大于1时运算放大器的最大工作频率。
17.输入失调电压(VOS)
该参数表示使输出电压为零时需要在输入端作用的电压差。
18.输入失调电压温漂(TCVOS)
该参数指温度变化引起的输入失调电压的变化,通常以µV/°C为单位表示。
19.输入电容(CIN)
CIN表示运算放大器工作在线性区时任何一个输入端的等效电容(另一输入端接地)。
20.输入电压范围(VIN)
该参数指运算放大器正常工作(可获得预期结果)时,所允许的输入电压的范围,VIN通常定义在指定的电源电压下。
21.输入电压噪声密度(eN)
对于运算放大器,输入电压噪声可以看作是连接到任意一个输入端的串联噪声电
压源,eN通常以nV / 根号Hz 为单位表示,定义在指定频率。
22.输入电流噪声密度(iN)
对于运算放大器,输入电流噪声可以看作是两个噪声电流源,连接到每个输入端和公共端,通常以pA / 根号Hz 为单位表示,定义在指定频率。
23.通道数
24.电源电压(最小电压/最大电压)
25.输出电流
26.输出电压
27.静态电流(最大值)断电静态电流(典型值)
28.价格。