2018年初中数学联赛试题及参考答案_一_

合集下载

2018年全国初中数学联合竞赛试题(含解答)

2018年全国初中数学联合竞赛试题(含解答)

2018年全国初中数学联合竞赛试题(含解答)2018年全国初中数学联合竞赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准。

第一试,选择题和填空题只设7分和0分两档;第二试各题,请严格按照本评分标准规定的评分档次给分,不要再增加其他中间档次。

如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数。

第一试一、选择题(本题满分42分,每小题7分)1.已知$x,y,z$满足$\frac{2355x-y}{y+2z}=\frac{x}{z-z^2}$,则$\frac{y+2z}{3x-y-z}$的值为()A) 1.(B) $\frac{5}{3}$。

(C) $-\frac{1}{3}$。

(D) $-\frac{3}{5}$.答】B.解:由$\frac{2355x-y}{y+2z}=\frac{x}{z-z^2}$,得$5x-3y=3xz-3xz^2$,即$y=\frac{5}{3}x-\frac{3}{3}z+\frac{3}{3}xz^2$,所以$\frac{y+2z}{3x-y-z}=\frac{\frac{5}{3}x+\frac{1}{3}z}{\frac{4}{3}x-\frac{2}{3}z}=\frac{5}{3}$,故选(B)。

注:本题也可用特殊值法来判断。

2.当$x$分别取值$1,\frac{1}{2},\frac{1}{3},\cdots,\frac{1}{2005},\frac{1}{2006}, \frac{1}{2007}$时,计算$\frac{1}{2007}+\frac{x}{21+x^2}$代数式的值,将所得的结果相加,其和等于()A) $-1$。

(B) $1$。

(C) $0$。

(D) $2007$.答】C.解:$\frac{1}{2007}+\frac{x}{21+x^2}=\frac{1}{21}\left(\frac{21}{ 2007}+\frac{21x}{21+x^2}\right)=\frac{1}{21}\left(\frac{1}{1+x ^{-2}}\right)$,所以当$x=1,\frac{1}{2},\frac{1}{3},\cdots,\frac{1}{2005},\frac{1}{200 6},\frac{1}{2007}$时,计算所得的代数式的值之和为$0$,故选(C)。

2018全国初中数学竞赛试题及参考答案

2018全国初中数学竞赛试题及参考答案

中国教育学会中学数学教学专业委员会“《数学周报》杯”2018年全国初中数学竞赛试题答题时注意:1.用圆珠笔或钢笔作答; 2.解答书写时不要超过装订线; 3.草稿纸不上交.一、选择题<共5小题,每小题7分,共35分. 每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)qfRgF4dw271.设1a =,则代数式32312612a a a +--的值为( >.<A )24 <B )25 <C )10 <D )122.对于任意实数a b c d ,,,,定义有序实数对a b (,)与c d (,)之间的运算“△”为:<a b ,)△<c d ,)=<ac bd ad bc ++,).如果对于任意实数u v ,, 都有<u v ,)△<x y ,)=<u v ,),那么<x y ,)为( >.qfRgF4dw27<A )<0,1) <B )<1,0) <C )<﹣1,0) <D )<0,-1)3.若1x >,0y >,且满足3y y x xy x x y==,,则x y +的值为( >.<A )1 <B )2 <C )92<D )1124.点D E ,分别在△ABC 的边AB AC ,上,BE CD ,相交于点F ,设1234BDF BCF CEF EADF S S S S S S S S ∆∆∆====四边形,,,,则13S S 与24S S 的大小关系为( >.<A )1324S S S S < <B )1324S S S S = <C )1324S S S S > <D )不能确定5.设3333111112399S =++++,则4S 的整数部分等于( >. <A )4 <B )5 <C )6 <D )7 二、填空题<共5小题,每小题7分,共35分)6.若关于x 的方程2(2)(4)0x x x m --+=有三个根,且这三个根恰好可以作为一个三角形的三条边的长,则m 的取值范围是 .7.一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,2,3,3,4;另一枚质地均匀的正方体骰子的六个面上的数字分别是1,3,4,5,6,8. 同时掷这两枚骰子,则其朝上的面两数字之和为奇数的概率是 .NW2GT2oy018.如图,点A B ,为直线y x =上的两点,过A B ,两点分别作y 轴的平行线交双曲线1y x=<x >0)于C D ,两点. 若2BD AC =,则224OC OD - 的值为 .NW2GT2oy019.若112y x x =-+-的最大值为a ,最小值为b ,则22a b +的值为 .10.如图,在Rt △ABC 中,斜边AB 的长为35,正方形CDEF 内接于△ABC ,且其边长为12,则△ABC 的周长为 .NW2GT2oy01三、解答题<共4题,每题20分,共80分)11.已知关于x 的一元二次方程20x cx a ++=的两个整数根恰好比方程20x ax b ++=的两个根都大1,求a b c ++的值.12.如图,点H 为△ABC 的垂心,以AB 为直径的⊙1O 和△BCH 的外接圆⊙2O 相交于点D ,延长AD 交CH 于点P ,求证:点P 为CH 的中点.13.如图,点A 为y 轴正半轴上一点,A B ,两点关于x 轴对称,过点A 任作直线交抛物线<第8题)<第10题)<第12题)223y x =于P ,Q 两点. <1)求证:∠ABP =∠ABQ ;<2)若点A 的坐标为<0,1),且∠PBQ =60º,试求所有满足条件的直线PQ 的函数解读式.14.如图,△ABC 中,60BAC ∠=︒,2AB AC =.点P 在△ABC 内,且352PA PB PC ===,,,求△ABC 的面积.中国教育学会中学数学教学专业委员会“《数学周报》杯”2018年全国初中数学竞赛试题参考答案 一、选择题1.A解:因为71a =-, 17a +=, 262a a =-, 所以322312612362126261261260662126024.a a a a a a a a a a a +--=-+---=--+=---+=()()()2.B解:依定义的运算法则,有ux vy u vx uy v +=⎧⎨+=⎩,,即(1)0(1)0u x vy v x uy -+=⎧⎨-+=⎩,对任何实数u v ,都成立. 由于实数u v ,的任意性,得<x y ,)=<1,0).3.C<第13题)<第14题)解:由题设可知1y y x -=,于是341y y x yx x -==,所以 411y -=, 故12y =,从而4x =.于是92x y +=.4.C解:如图,连接DE ,设1DEF S S ∆'=,则1423S S EF S BF S '==,从而有1324S S S S '=.因为11S S '>,所以1324S S S S >.5.A解:当2 3 99k =,,,时,因为()()()32111112111k k k k k k k ⎡⎤<=-⎢⎥-+-⎣⎦, 所以 3331111115111239922991004S ⎛⎫<=++++<+-< ⎪⨯⎝⎭. 于是有445S <<,故4S 的整数部分等于4.二、填空题 6.3<m ≤4解:易知2x =是方程的一个根,设方程的另外两个根为12 x x ,,则124x x +=,12x x m =.显然1242x x +=>,所以122x x -<, 164m ∆=-≥0,即 ()2121242x x x x +-<,164m ∆=-≥0,所以1642m -<, 164m ∆=-≥0,<第4题)解之得 3<m ≤4.7.19解: 在36对可能出现的结果中,有4对:<1,4),<2,3),<2,3),<4,1)的和为5,所以朝上的面两数字之和为5的概率是41369=.NW2GT2oy01 8.6解:如图,设点C 的坐标为a b (,),点D 的坐标为c d (,),则点A 的坐标为a a (,),点B 的坐标为.c c (,) 因为点C D ,在双曲线1y x=上,所以11ab cd ==,.由于AC a b =-,BD c d =-, 又因为2BD AC =,于是 22222242c d a b c cd d a ab b -=--+=-+,(),所以 22224826a b c d ab cd +-+=-=()(),即224OC OD -=6.9.32解:由1x -≥0,且12x -≥0,得12≤x ≤1.22213113122()2222416y x x x =+-+-=+--+. 由于13124<<,所以当34x =时,2y 取到最大值1,故1a =. 当12x =或1时,2y 取到最小值12,故22b =. 所以,2232a b +=. 10.84解:如图,设BC =a ,AC =b ,则<第8题)22235a b +==1225. ①又Rt △AFE ∽Rt △ACB ,所以FE AF CB AC =,即1212b a b-=,故 12()a b ab +=. ② 由①②得2222122524a b a b ab a b +=++=++()(), 解得a +b =49<另一个解-25舍去),所以493584a b c ++=+=.三、解答题11.解:设方程20x ax b ++=的两个根为αβ,,其中αβ,为整数,且α≤β,则方程20x cx a ++=的两根为11αβ++,,由题意得()()11a a αβαβ+=-++=,,两式相加得 2210αβαβ+++=, 即 (2)(2)3αβ++=,所以 2123αβ+=⎧⎨+=⎩,; 或232 1.αβ+=-⎧⎨+=-⎩,解得 11αβ=-⎧⎨=⎩,; 或53.αβ=-⎧⎨=-⎩,又因为[11]a b c αβαβαβ=-+==-+++(),,()(),所以 012a b c ==-=-,,;或者8156a b c ===,,,故3a b c ++=-,或29.12.证明:如图,延长AP 交⊙2O 于点Q ,连接 AH BD QB QC QH ,,,,. <第10题)因为AB 为⊙1O 的直径, 所以∠ADB =∠BDQ =90°, 故BQ 为⊙2O 的直径. 于是CQ BC BH HQ ⊥⊥,.又因为点H 为△ABC 的垂心,所以.AH BC BH AC ⊥⊥,所以AH ∥CQ ,AC ∥HQ ,四边形ACQH 为平行四边形. 所以点P 为CH 的中点.13.解:<1)如图,分别过点P Q , 作y 轴的垂线,垂足分别为C D , .设点A 的坐标为<0,t ),则点B 的坐标为<0,-t ).设直线PQ 的函数解读式为y kx t =+,并设P Q,的坐标分别为 P P x y (,),Q Q x y (,).由223y kx t y x =+⎧⎪⎨=⎪⎩,, 得 2203x kx t --=,于是 32P Q x x t =-,即 23P Q t x x =-.于是 222323P P Q Qx t y t BC BD y t x t ++==++22222()333.222()333P P Q P P Q P QQ P Q Q Q P x x x x x x x x x x x x x x --===--- 又因为PQx PCQD x =-,所以BC PC BDQD=.因为∠BCP =∠90BDQ =︒,所以△BCP ∽△BDQ , 故∠ABP =∠ABQ .<第12题)<第13题)<2)解法一 设PC a =,DQ b =,不妨设a ≥b >0,由<1)可知∠ABP =∠30ABQ =︒,BC ,BD ,所以AC 2-,AD =2.因为PC ∥DQ ,所以△ACP ∽△ADQ .于是PCACDQAD =,即a b =,所以a b +=.由<1)中32P Q x x t =-,即32ab -=-,所以322ab a b =+=, 于是可求得2a b =将2b =代入223y x =,得到点Q 的坐标,12).再将点Q 的坐标代入1y kx =+,求得3k =-所以直线PQ 的函数解读式为1y x =+.根据对称性知,所求直线PQ 的函数解读式为1y x =+,或1y +. 解法二 设直线PQ 的函数解读式为y kx t =+,其中1t =. 由<1)可知,∠ABP =∠30ABQ =︒,所以2BQ DQ =.故 2Q x = 将223Q Q y x =代入上式,平方并整理得4241590Q Q x x -+=,即22(43)(3)0Q Q x x --=.所以 2Q x =又由 (1>得3322P Q x x t =-=-,32P Q x x k +=.若32Q x =,代入上式得 3P x =-, 从而 23()33P Q k x x =+=-.同理,若3Q x =, 可得32P x =-, 从而 23()33P Q k x x =+=.所以,直线PQ 的函数解读式为313y x =-+,或313y x =+. 14.解:如图,作△ABQ ,使得QAB PAC ABQ ACP ∠=∠∠=∠,,则△ABQ ∽△ACP . 由于2AB AC =,所以相似比为2. 于是22324AQ AP BQ CP ====,.60QAP QAB BAP PAC BAP BAC ∠=∠+∠=∠+∠=∠=︒.由:2:1AQ AP =知,90APQ ∠=︒,于是33PQ AP ==.所以 22225BP BQ PQ ==+,从而90BQP ∠=︒. 于是222()2883AB PQ AP BQ =++=+ .故 213673sin 60282ABC S AB AC AB ∆+=⋅︒==. 申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。

2018年上海市初中数学竞赛(第1试 含答案)

2018年上海市初中数学竞赛(第1试 含答案)

2018年上海市初中数学竞赛(第一试)1.已知1.1=a ,9.01.1=b ,1.19.0=c ,则将a 、b 、c 从小到大排列,并用“<”表示是 .2.若16842321321161814121218x x x x x x x a +++++++++=-=-,则a 的值是 . 3.已知a 为无理数,且525102-+-+=b a ab b a b a ,则ba 的值为 . 4.由1-=x y 的图象与2=y 的图象围成的图形的面积是 .5.三角形的三条边a ,b ,c 满足7531≤≤≤≤≤≤c b a ,当此三角形的面积最大时,它的周长是 .6.方程2002111=+y x 的正整数解构成的有序数组(x ,y )共有 组. 7.如图,在△ABC 中,F 、G 是BC 边上两点,使∠B 、∠C 的平分线BE 、CD 分别垂直AG ,AF (E 、D 为垂足).若△ABC 的周长为22,BC 边长为9,则DE 的长为 .8.已知二次函数c bx ax y ++=2(其中a 为正整数)经过点A (1-,4)与点B (2,1),且与x 轴有两个不同的交点,则c b +的最大值为 .9.如图,点P 、Q 在△ABC 的AC 边上,且AP ∶PQ ∶QC=1∶2∶3,点R 在BC 边上,且BR ∶RC=1∶2,AR 与BP 、BQ 分别相交于D 、E ,则S PQED ∶S △ABC = .10.整数x 、y 满足x xy y x 10244522<+++,则y x +的值是 .11.设abc d 是一个四位数,且满足d c ab d c b a ⋅==+++(ab 表示为两位数),则具有上述性质的最大四位数是 .12.已知m 、n 是正整数,且n m ≥.由mn 5个单位正方体组成长、宽、高顺次为m 、n 、5的长方体,将此长方体相交于某一顶点三个面涂色,若恰有一半的单位正方体各面都没有涂到颜色,则有序数组(m ,n )= .13.在△ABC 中,点D 、E 、F 顺次在边AB 、BC 、CA 上,设AB p AD ⋅=,BC q BE ⋅=,CA r CF ⋅=,其中p 、q 、r 是正数,且使32=++r q p ,52222=++r q p ,则S △DEF ∶S △ABC = .14.已知a 、b 、c 都是整数,且对一切实数x ,))((2)2002)((c x b x x a x --=---都成立,则这样的有序数组(a ,b ,c )共有 组.15.如图,I 是Rt △ABC (︒=∠90C )的内心,过I 作直线EF ∥AB ,分别交CA 、CB 于E 、F .已知m EI =,n IF =,则用m 、n 表示S △ABC = .答案:1.c<a<b ;2.8;3.-1;4.7;5.348+;6.81;7.2;8.-4;9.5∶24;10.-5;11.1863;12.(16,3)或(6,4);13.16∶45;14.4;15.)(2)(22222n m n m n m mn ++++.。

2018年全国初中数学联赛试题B

2018年全国初中数学联赛试题B

试卷编号:19402018年全国初中数学联赛试题B班级:_____学号:_____姓名:_____成绩:_____一、选择题共6小题。

在每小题列出的四个选项中,选出符合题目要求的一项。

1.满足(x2+x−1)x+2=1的整数x的个数为( )(A)1(B)2(C)3(D)42.已知x1,x2,x3(x1<x2<x3)为关于x的方程x3−3x2+(a+2)x−a=0的三个实数根,则4x1−x21+x22+x23=( )(A)5(B)6(C)7(D)83.已知点E,F分别在正方形ABCD的边CD,AD上,CD=4CE,∠EFB=∠FBC,则tan∠ABF=( )(A)12(B)35(C)√22(D)√324.方程√3+√9+x=3√x的实数根的个数为( )(A)0(B)1(C)2(D)35.设a,b,c为三个实数,它们中任何一个数加上其余两数之积的2017倍都等于2018,则这样的三元数组(a,b,c)的个数为( )(A)4(B)5(C)6(D)76.已知实数a,b满足a3−3a2+5a=1,b3−3b2+5b=5,则a+b=( )(A)2(B)3(C)4(D)5二、填空题共4小题。

7.已知p,q,r为素数,且pqr整除pq+qr+rp−1,则p+q+r=_____.8.已知两个正整数的和比它们的积小1000,若其中较大的数是完全平方数,则较小的数为_____.9.已知D是△ABC内一点,E是AC的中点,AB=6,BC=10,∠BAD=∠BCD,∠EDC=∠ABD,则DE=_____.10.已知二次函数y=x2+2(m+2n+1)x+(m2+4n2+50)的图象在x轴的上方,则满足条件的正整数对(m,n)的个数为_____.三、解答题共3小题。

解答应写出文字说明、演算步骤或证明过程。

11.若实数a,b,c满足(a+b+c)(1a+b−5c +1b+c−5a+1c+a−5b)=95,求(a+b+c)(1a +1b+1c)的值.12.如图,点E在四边形ABCD的边AB上,△ABC和△CDE都是等腰直角三角形,AB=AC,DE=DC.(1)证明:AD∥BC;(2)设AC与DE交于点P,如果∠ACE=30◦,求DPPE.13.设x是一个四位数,x的各位数字之和为m,x+1的各位数字之和为n,并且m与n的最大公约数是一个大于2的素数.求x.。

2018年初中数学联赛试题及答案

2018年初中数学联赛试题及答案

2018年初中数学联赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试(A)一、选择题:(本题满分42分,每小题7分)1.设二次函数2222a ax x y ++=的图象的顶点为A ,与x 轴的交点为C B ,.当△ABC 为等边三角形时,其边长为 ( )A.6.B.22.C.32.D.23. 【答】C.由题设知)2,(2a a A --.设)0,(1x B ,)0,(2x C ,二次函数的图象的对称轴与x 轴的交点为D ,则222212212122444)(||a a a x x x x x x BC =⨯-=-+=-=.又BC AD 23=,则22223|2|a a ⋅=-,解得62=a 或02=a (舍去).所以,△ABC 的边长3222==a BC .2.如图,在矩形ABCD 中,BAD ∠的平分线交BD 于点E ,1AB =,15CAE ∠=︒,则BE =( ). B.22. C.12-.1.【答】D.延长AE 交BC 于点F ,过点E 作BC 的垂线,垂足为H .由已知得︒=∠=∠=∠=∠45HEF AFB FAD BAF ,1==AB BF , ︒=∠=∠30ACB EBH .设x BE =,则2xHE HF ==,23x BH =. 因为HF BH BF +=,所以2231xx +=,解得13-=x .所以 13-=BE .3.设q p ,均为大于3的素数,则使2245q pq p ++为完全平方数的素数对),(q p 的个数为( ) A.1. B.2. C.3. D.4.【答】B.设22245m q pq p =++(m 为自然数),则22)2(m pq q p =++,即pq q p m q p m =++--)2)(2(.由于q p ,为素数,且q q p m p q p m >++>++2,2,所以21m p q --=,2m p q pq ++=,从而0142=---q p pq ,即9)2)(4(=--q p ,所以(,)(5,11)p q =或(7,5).所以,满足条件的素数对),(q p 的个数为2.4.若实数b a ,满足2=-b a ,4)1()1(22=+--ab b a ,则=-55b a ( )A.46.B.64.C.82.D.128. 【答】C.由条件4)1()1(22=+--ab b a 得04223322=-+----b a ab b a b a ,即 0]3))[((]4)[(2)(22=+--++---ab b a b a ab b a b a ,又2=-b a ,所以0]34[2]44[22=+++-ab ab ,解得1=ab .所以222()26a b a b ab +=-+=,332()[()3]14a b a b a b ab -=--+=,82)())((22332255=---+=-b a b a b a b a b a .5.对任意的整数y x ,,定义xy y x y x -+=@,则使得(@)@(@)@x y z y z x +(@)@z x y +0=的整数组),,(z y x 的个数为 ( )A.1.B.2.C.3.D.4.【答】D.z xy y x z xy y x z xy y x z y x )()(@)(@)@(-+-+-+=-+=xyz zx yz xy z y x +---++=,由对称性,同样可得xyz zx yz xy z y x x z y +---++=@)@(,xyz zx yz xy z y x y x z +---++=@)@(.所以,由已知可得 0=+---++xyz zx yz xy z y x ,即1)1)(1)(1(-=---z y x . 所以,z y x ,,为整数时,只能有以下几种情况:⎪⎩⎪⎨⎧-=-=-=-,11,11,11z y x 或⎪⎩⎪⎨⎧=--=-=-,11,11,11z y x 或⎪⎩⎪⎨⎧=-=--=-,11,11,11z y x 或⎪⎩⎪⎨⎧-=--=--=-,11,11,11z y x 所以,)0,2,2(),,(=z y x 或)2,0,2(或)2,2,0(或)0,0,0(,故共有4个符合要求的整数组.6.设20501202012019120181++++=M ,则M1的整数部分是 ( ) A.60. B.61. C.62. D.63.【答】B.因为3320181⨯<M ,所以335613320181=>M . 又)205012032120311()203012019120181(+++++++= M83230134520205011320301=⨯+⨯>, 所以13451185611345832301=<M ,故M1的整数部分为61.二、填空题:(本题满分28分,每小题7分)1.如图,在平行四边形ABCD 中,AB BC 2=,AB CE ⊥于E ,F 为AD 的中点,若︒=∠48AEF ,则=∠B _______.【答】84︒. 设BC 的中点为G ,连结FG 交CE 于H ,由题设条件知FGCD 为菱形. 由DC FG AB ////及F 为AD 的中点,知H 为CE 的中点. 又AB CE ⊥,所以FG CE ⊥,所以FH 垂直平分CE ,故 ︒=∠=∠=∠=∠48AEF EFG GFC DFC . 所以︒=︒⨯-︒=∠=∠84482180FGC B .2.若实数y x ,满足2154133=+++)(y x y x ,则y x +的最大值为 . 【答】3.由2154133=+++)(y x y x 可得22115()()()42x y x xy y x y +-+++=,即 22115()()42x y x xy y +-++=. ①令k y x =+,注意到2222131()04244y x xy y x y -++=-++>,故0>=+k y x .又因为22211()344x xy y x y xy -++=+-+,故由①式可得3115342k xyk k -+=,所以kk k xy 3215413-+=. 于是,y x ,可看作关于t 的一元二次方程032154132=-++-kk k kt t 的两根,所以 3211542()403k k k k+-∆=--⋅≥, 化简得 0303≤-+k k ,即0)103)(3(2≤++-k k k ,所以30≤<k . 故y x +的最大值为3.B3.没有重复数字且不为5的倍数的五位数的个数为 . 【答】21504.显然首位数字不能为0,末位不能为0和5.当首位数字不为5时,则首位只能选0,5之外的8个数.相应地个位数只能选除0,5及万位数之外的7个数,千位上只能选万位和个位之外的8个数,百位上只能选剩下的7个数,十位上只能选剩下的6个数.所以,此时满足条件的五位数的个数为1881667878=⨯⨯⨯⨯个.当首位数字为5时,则个位有8个数可选,依次千位有8个数可选,百位有7个数可选, 十位有6个数可选.所以,此时满足条件的五位数的个数为26886788=⨯⨯⨯个.所以,满足条件的五位数的个数为21504268818816=+(个).4.已知实数c b a ,,满足0a b c ++=,2221a b c ++=,则=++abcc b a 555 .【答】52. 由已知条件可得21)]()[(212222-=++-++=++c b a c b a ca bc ab ,abc c b a 3333=++,所以 555c b a ++)]()()([))((332332332333222b a c c a b c b a c b a c b a +++++-++++= 2222223[()()()]abc a b a b a c a c b c b c =-+++++)(3222222a c b b c a c b a abc +++=abc abc abc ca bc ab abc abc 25213)(3=-=+++=.所以 25555=++abc c b a .第一试(B)一、选择题:(本题满分42分,每小题7分) 1.满足1)1(22=-++x x x 的整数x 的个数为 ( )A.1.B.2.C.3.D.4. 【答】C.当02=+x 且012≠-+x x 时,2-=x . 当112=-+x x 时,2-=x 或1=x . 当112-=-+x x 且2+x 为偶数时,0=x . 所以,满足条件的整数x 有3个.2.已知123123,,()x x x x x x <<为关于x 的方程323(2)0x x a x a -++-=的三个实数根,则22211234x x x x -++= ( )A.5.B.6.C.7.D.8.【答】A.方程即0)2)(1(2=+--a x x x ,它的一个实数根为1,另外两个实数根之和为2,其中必有一根小于1,另一根大于1,于是2,1312=+=x x x ,故2221123313113114()()412()41x x x x x x x x x x x x -++=+-++=-++312()15x x =++=.3.已知点E ,F 分别在正方形ABCD 的边CD ,AD 上,CE CD 4=,FBC EFB ∠=∠,则 =∠ABF tan ( )A.21. B.53. C.22. D.23. 【答】B.不妨设4=CD ,则3,1==DE CE .设x DF =,则x AF -=4,92+=x EF .作EF BH ⊥于点H .因为AFB FBC EFB ∠=∠=∠,BHF BAF ∠=︒=∠90,BF 公共,所以△BAF ≌△BHF ,所以4==BA BH .由BCE DEF BEF ABF ABCD S S S S S ∆∆∆∆+++=四边形得14213219421)4(421422⋅⋅+⋅⋅++⋅⋅+-⋅⋅=x x x , 解得58=x .所以5124=-=x AF ,53tan ==∠AB AF ABF .4.=( )A.0.B.1.C.2.D.3.【答】B.令y =0y ≥,且29x y =-=1y =或6y =,从而可得8x =-或27x =.检验可知:8x =-是增根,舍去;27x =是原方程的实数根. 所以,原方程只有1个实数根.5.设c b a ,,为三个实数,它们中任何一个数加上其余两数之积的2017倍都等于2018,则这样的三元数组),,(c b a 的个数为 ( )A.4.B.5.C.6.D.7. 【答】B.由已知得, 20182017=+bc a ,20182017=+ac b ,20182017=+ab c ,两两作差,可得0)20171)((=--c b a ,0)20171)((=--a c b ,0)20171)((=--b a c .E由0)20171)((=--c b a ,可得 b a =或20171=c . (1)当c b a ==时,有020*******=-+a a ,解得1=a 或20172018-=a . (2)当c b a ≠=时,解得20171==b a , 201712018-=c . (3)当b a ≠时,20171=c ,此时有:201712018,20171-==b a ,或20171,201712018=-=b a . 故这样的三元数组),,(c b a 共有5个.6.已知实数b a ,满足15323=+-a a a ,55323=+-b b b ,则=+b a ( ) A.2. B.3. C.4. D.5.【答】A.有已知条件可得 2)1(2)1(3-=-+-a a ,2)1(2)1(3=-+-b b ,两式相加得33(1)2(1)(1)2(1)0a a b b -+-+-+-=,因式分解得22(2)[(1)(1)(1)(1)2]0a b a a b b +-----+-+=. 因为02)1(43)]1(21)1[(2)1()1)(1()1(2222>+-+---=+-+----b b a b b a a , 所以 02=-+b a ,因此 2=+b a .二、填空题:(本题满分28分,每小题7分)1.已知r q p ,,为素数,且pqr 整除1-++rp qr pq ,则=++r q p _______. 【答】10. 设11111pq qr rp k pqr p q r pqr++-==++-,由题意知k 是正整数,又2,,≥r q p ,所以23<k ,从而1=k ,即有pqr rp qr pq =-++1,于是可知r q p ,,互不相等.当r q p <<≤2时, qr rp qr pq pqr 31<-++=,所以3<q ,故2=q .于是222qr qr q r =++1-,故3)2)(2(=--r q ,所以32,12=-=-r q ,即5,3==r q ,所以,)5,3,2(),,(=r q p .再由r q p ,,的对称性知,所有可能的数组(,,)p q r 共有6组,即(2,3,5),)3,5,2(,)5,2,3(,)2,5,3(,)3,2,5(,)2,3,5(.于是10=++r q p .2.已知两个正整数的和比它们的积小1000,若其中较大的数是完全平方数,则较小的数为 . 【答】8.设这两个数为)(,22n m n m >,则 100022-=+n m n m ,即2(1)(1)1001m n --=.又100110011143791117713=⨯=⨯=⨯=⨯,所以 2(1,1)m n --=(1001,1)或(143,7)或(91,11)或(77,13),验证可知只有)7,143()1,1(2=--n m 满足条件,此时8,1442==n m .3.已知D 是△ABC 内一点,E 是AC 的中点,6AB =,10BC =,BCD BAD ∠=∠,ABD EDC ∠=∠,则=DE .【答】4.延长CD 至F ,使DC DF =,则AF DE //且AF DE 21=,所以ABD EDC AFD ∠=∠=∠,故D B F A ,,,四点共圆,于是BCD BAD BFD ∠=∠=∠,所以10==BC BF ,且FC BD ⊥,故90FAB FDB ∠=∠=︒.又6=AB ,故861022=-=AF ,所以421==AF DE .4.已知二次函数)504()12(2222++++++=n m x n m x y 的图象在x 轴的上方,则满足条件的正整数对),(n m 的个数为 .【答】15.因为二次函数的图象在x 轴的上方,所以0)504(4)]12(2[222<++-++=∆n m n m ,整理得49424<++n m mn ,即251)12)(1(<++n m .因为n m ,为正整数,所以25)12)(1(≤++n m . 又21≥+m ,所以22512<+n ,故5≤n . 当1=n 时,3251≤+m ,故322≤m ,符合条件的正整数对),(n m 有7个;当2=n 时,51≤+m ,故4≤m ,符合条件的正整数对),(n m 有4个;当3=n 时,7251≤+m ,故718≤m ,符合条件的正整数对),(n m 有2个; 当4=n 时,9251≤+m ,故917≤m ,符合条件的正整数对),(n m 有1个;当5=n 时,11251≤+m ,故1114≤m ,符合条件的正整数对),(n m 有1个.综合可知:符合条件的正整数对),(n m 有7+4+2+1+1=15个.第二试 (A )一、(本题满分20分)设d c b a ,,,为四个不同的实数,若b a ,为方程011102=--d cx x 的根,d c ,为方程011102=--b ax x 的根,求d c b a +++的值.解 由韦达定理得10a b c +=,10c d a +=,两式相加得)(10c a d c b a +=+++.……………………5分因为a 是方程011102=--d cx x 的根,所以011102=--d ac a ,又c a d -=10,所以010111102=-+-ac c a a . ① ……………………10分类似可得 010111102=-+-ac a c c . ② ……………………15分 ①-②得 0)121)((=-+-c a c a .因为c a ≠,所以121=+c a ,所以1210)(10=+=+++c a d c b a . ……………………20分二、(本题满分25分)如图,在扇形OAB 中,︒=∠90AOB ,12=OA ,点C 在OA 上,4=AC ,点D 为OB 的中点,点E 为弧AB 上的动点,OE 与CD 的交点为F .(1)当四边形ODEC 的面积S 最大时,求EF ;(2)求DE CE 2+的最小值.解 (1)分别过E O ,作CD 的垂线,垂足为N M ,. 由8,6==OC OD ,得10=CD .所以)(21EN OM CD S S S ECD OCD +⋅=+=∆∆ 6012102121=⨯⨯=⋅≤OE CD , ……………………5分 当DC OE ⊥时,S 取得最大值60.此时,536108612=⨯-=-=OF OE EF . ……………………10分 (2)延长OB 至点G ,使12==OB BG ,连结GE GC ,. 因为21==OG OE OE OD ,EOG DOE ∠=∠,所以△ODE ∽△OEG ,所以21=EG DE ,故DE EG 2=.……………………20分所以108824222=+=≥+=+CG EG CE DE CE ,当G E C ,,三点共线时等号成立.故DE CE 2+的最小值为108. ……………………25分C三、(本题满分25分)求所有的正整数n m ,,使得22233)(n m n m n m +-+是非负整数.解 记22233)(n m n m n m S +-+=,则22222)(3)()(]3))[((nm mn n m mn n m n m n m mn n m n m S +-+-+=+--++=. 因为n m ,为正整数,故可令pqn m mn =+,q p ,为正整数,且1),(=q p . 于是 22223)(3)(pq pq n m p q p q n m S +-+=--+=.因为S 为非负整数,所以2|q p ,又1),(=q p ,故1=p ,即mn n m |)(+. ①……………………10分所以nm mn n n m n +-=+2是整数,所以2|)(n n m +,故n m n +≥2,即n m n ≥-2. 又由0≥S ,知02233≥-+n m n m . ② 所以n m m n m m n m n 2223223)(≥-=-≥,所以m n ≥.由对称性,同理可得n m ≥,故n m =. ……………………20分 把n m =代入①,得m |2,则2≥m .把n m =代入②,得0243≥-m m ,即2≤m . 故2=m .所以,满足条件的正整数n m ,为2=m ,2=n . ……………………25分第二试 (B )一、(本题满分20分)若实数c b a ,,满足59)515151)((=-++-++-+++b a c a c b c b a c b a ,求)111)((cb ac b a ++++的值.解 记x c b a =++,y ca bc ab =++,z abc =,则)616161()515151)((cx b x a x x b a c a c b c b a c b a -+-+-=-++-++-+++abc x ca bc ab x c b a x ca bc ab x c b a x x 216)(36)(6)](36)(123[232-+++++-+++++-=23(936)536216x x y x xy z-+=-+-, ……………………10分结合已知条件可得23(936)95362165x x y x xy z -+=-+-,整理得z xy 227=.所以 227)111)((==++++z xy c b a c b a . ……………………20分二、(本题满分25分)如图,点E 在四边形ABCD 的边AB 上,△ABC 和△CDE 都是等腰直角三角形,AC AB =,DC DE =.(1)证明:BC AD //;(2)设AC 与DE 交于点P ,如果︒=∠30ACE ,求PEDP. 解 (1)由题意知45ACB DCE ∠=∠=︒,BC =,EC =,所以DCA ECB ∠=∠,AC DCBC EC=,所以△ADC ∽△BEC ,故DAC ∠= 45EBC ∠=︒,所以ACB DAC ∠=∠,所以BC AD //.……………………10分(2)设x AE =,因为︒=∠30ACE ,可得x AC 3=,2CE x =,DE DC ==.因为90EAP CDP ∠=∠=︒,EPA CPD ∠=∠,所以△APE ∽△DPC ,故可得DPC APE S S ∆∆=21. ……………………15分 又223x S S S ACE APE EPC ==+∆∆∆,2x S S S CDE DPC EPC ==+∆∆∆,于是可得 2)32(x S DPC -=∆,2)13(x S EPC -=∆. ……………………20分所以2131332-=--==∆∆EPC DPC S S PE DP . ……………………25分 三、(本题满分25分)设x 是一个四位数,x 的各位数字之和为m ,1+x 的各位数字之和为n ,并且m 与n 的最大公约数是一个大于2的素数.求x .解 设abcd x =,由题设知m 与n 的最大公约数),(n m 为大于2的素数.若9≠d ,则1+=m n ,所以(,)1m n =,矛盾,故9=d . ……………………5分 若9≠c ,则891-=-+=m m n ,故(,)(,8)m n m =,它不可能是大于2的素数,矛盾,故9=c .……………………10分若9=b ,显然9≠a ,所以269991-=---+=m m n ,故(,)(,26)13m n m ==,但此时可得13≥n ,363926>≥+=n m ,矛盾. ……………………15分若9≠b ,则17991-=--+=m m n ,故(,)m n (,17)17m ==,只可能34,17==m n . ……………………20分 于是可得8899=x 或9799. ……………………25分。

2018年初中数学联赛试题及答案

2018年初中数学联赛试题及答案

2018年初中数学联赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试(A)一、选择题:(本题满分42分,每小题7分)1.设二次函数2222a ax x y ++=的图象的顶点为A ,与x 轴的交点为C B ,.当△ABC 为等边三角形时,其边长为 ( )A.6.B.22.C.32.D.23. 【答】C.由题设知)2,(2a a A --.设)0,(1x B ,)0,(2x C ,二次函数的图象的对称轴与x 轴的交点为D ,则222212212122444)(||a a a x x x x x x BC =⨯-=-+=-=.又BC AD 23=,则22223|2|a a ⋅=-,解得62=a 或02=a (舍去).所以,△ABC 的边长3222==a BC .2.如图,在矩形ABCD 中,BAD ∠的平分线交BD 于点E ,1AB =,15CAE ∠=︒,则BE =( ). B.22. C.12-.1.【答】D.延长AE 交BC 于点F ,过点E 作BC 的垂线,垂足为H .由已知得︒=∠=∠=∠=∠45HEF AFB FAD BAF ,1==AB BF , ︒=∠=∠30ACB EBH .设x BE =,则2xHE HF ==,23x BH =. 因为HF BH BF +=,所以2231xx +=,解得13-=x .所以 13-=BE .3.设q p ,均为大于3的素数,则使2245q pq p ++为完全平方数的素数对),(q p 的个数为( ) A.1. B.2. C.3. D.4.【答】B.设22245m q pq p =++(m 为自然数),则22)2(m pq q p =++,即pq q p m q p m =++--)2)(2(.由于q p ,为素数,且q q p m p q p m >++>++2,2,所以21m p q --=,2m p q pq ++=,从而0142=---q p pq ,即9)2)(4(=--q p ,所以(,)(5,11)p q =或(7,5).所以,满足条件的素数对),(q p 的个数为2.4.若实数b a ,满足2=-b a ,4)1()1(22=+--ab b a ,则=-55b a ( )A.46.B.64.C.82.D.128. 【答】C.由条件4)1()1(22=+--ab b a 得04223322=-+----b a ab b a b a ,即 0]3))[((]4)[(2)(22=+--++---ab b a b a ab b a b a ,又2=-b a ,所以0]34[2]44[22=+++-ab ab ,解得1=ab .所以222()26a b a b ab +=-+=,332()[()3]14a b a b a b ab -=--+=,82)())((22332255=---+=-b a b a b a b a b a .5.对任意的整数y x ,,定义xy y x y x -+=@,则使得(@)@(@)@x y z y z x +(@)@z x y +0=的整数组),,(z y x 的个数为 ( )A.1.B.2.C.3.D.4.【答】D.z xy y x z xy y x z xy y x z y x )()(@)(@)@(-+-+-+=-+=xyz zx yz xy z y x +---++=,由对称性,同样可得xyz zx yz xy z y x x z y +---++=@)@(,xyz zx yz xy z y x y x z +---++=@)@(.所以,由已知可得 0=+---++xyz zx yz xy z y x ,即1)1)(1)(1(-=---z y x . 所以,z y x ,,为整数时,只能有以下几种情况:⎪⎩⎪⎨⎧-=-=-=-,11,11,11z y x 或⎪⎩⎪⎨⎧=--=-=-,11,11,11z y x 或⎪⎩⎪⎨⎧=-=--=-,11,11,11z y x 或⎪⎩⎪⎨⎧-=--=--=-,11,11,11z y x 所以,)0,2,2(),,(=z y x 或)2,0,2(或)2,2,0(或)0,0,0(,故共有4个符合要求的整数组.6.设20501202012019120181++++=M ,则M1的整数部分是 ( ) A.60. B.61. C.62. D.63.【答】B.因为3320181⨯<M ,所以335613320181=>M . 又)205012032120311()203012019120181(+++++++= M83230134520205011320301=⨯+⨯>, 所以13451185611345832301=<M ,故M1的整数部分为61.二、填空题:(本题满分28分,每小题7分)1.如图,在平行四边形ABCD 中,AB BC 2=,AB CE ⊥于E ,F 为AD 的中点,若︒=∠48AEF ,则=∠B _______.【答】84︒. 设BC 的中点为G ,连结FG 交CE 于H ,由题设条件知FGCD 为菱形. 由DC FG AB ////及F 为AD 的中点,知H 为CE 的中点. 又AB CE ⊥,所以FG CE ⊥,所以FH 垂直平分CE ,故 ︒=∠=∠=∠=∠48AEF EFG GFC DFC . 所以︒=︒⨯-︒=∠=∠84482180FGC B .2.若实数y x ,满足2154133=+++)(y x y x ,则y x +的最大值为 . 【答】3.由2154133=+++)(y x y x 可得22115()()()42x y x xy y x y +-+++=,即 22115()()42x y x xy y +-++=. ①令k y x =+,注意到2222131()04244y x xy y x y -++=-++>,故0>=+k y x .又因为22211()344x xy y x y xy -++=+-+,故由①式可得3115342k xyk k -+=,所以kk k xy 3215413-+=. 于是,y x ,可看作关于t 的一元二次方程032154132=-++-kk k kt t 的两根,所以 3211542()403k k k k+-∆=--⋅≥, 化简得 0303≤-+k k ,即0)103)(3(2≤++-k k k ,所以30≤<k . 故y x +的最大值为3.B3.没有重复数字且不为5的倍数的五位数的个数为 . 【答】21504.显然首位数字不能为0,末位不能为0和5.当首位数字不为5时,则首位只能选0,5之外的8个数.相应地个位数只能选除0,5及万位数之外的7个数,千位上只能选万位和个位之外的8个数,百位上只能选剩下的7个数,十位上只能选剩下的6个数.所以,此时满足条件的五位数的个数为1881667878=⨯⨯⨯⨯个.当首位数字为5时,则个位有8个数可选,依次千位有8个数可选,百位有7个数可选, 十位有6个数可选.所以,此时满足条件的五位数的个数为26886788=⨯⨯⨯个.所以,满足条件的五位数的个数为21504268818816=+(个).4.已知实数c b a ,,满足0a b c ++=,2221a b c ++=,则=++abcc b a 555 .【答】52. 由已知条件可得21)]()[(212222-=++-++=++c b a c b a ca bc ab ,abc c b a 3333=++,所以 555c b a ++)]()()([))((332332332333222b a c c a b c b a c b a c b a +++++-++++= 2222223[()()()]abc a b a b a c a c b c b c =-+++++)(3222222a c b b c a c b a abc +++=abc abc abc ca bc ab abc abc 25213)(3=-=+++=.所以 25555=++abc c b a .第一试(B)一、选择题:(本题满分42分,每小题7分) 1.满足1)1(22=-++x x x 的整数x 的个数为 ( )A.1.B.2.C.3.D.4. 【答】C.当02=+x 且012≠-+x x 时,2-=x . 当112=-+x x 时,2-=x 或1=x . 当112-=-+x x 且2+x 为偶数时,0=x . 所以,满足条件的整数x 有3个.2.已知123123,,()x x x x x x <<为关于x 的方程323(2)0x x a x a -++-=的三个实数根,则22211234x x x x -++= ( )A.5.B.6.C.7.D.8.【答】A.方程即0)2)(1(2=+--a x x x ,它的一个实数根为1,另外两个实数根之和为2,其中必有一根小于1,另一根大于1,于是2,1312=+=x x x ,故2221123313113114()()412()41x x x x x x x x x x x x -++=+-++=-++312()15x x =++=.3.已知点E ,F 分别在正方形ABCD 的边CD ,AD 上,CE CD 4=,FBC EFB ∠=∠,则 =∠ABF tan ( )A.21. B.53. C.22. D.23. 【答】B.不妨设4=CD ,则3,1==DE CE .设x DF =,则x AF -=4,92+=x EF .作EF BH ⊥于点H .因为AFB FBC EFB ∠=∠=∠,BHF BAF ∠=︒=∠90,BF 公共,所以△BAF ≌△BHF ,所以4==BA BH .由BCE DEF BEF ABF ABCD S S S S S ∆∆∆∆+++=四边形得14213219421)4(421422⋅⋅+⋅⋅++⋅⋅+-⋅⋅=x x x , 解得58=x .所以5124=-=x AF ,53tan ==∠AB AF ABF .4.=( )A.0.B.1.C.2.D.3.【答】B.令y =0y ≥,且29x y =-=1y =或6y =,从而可得8x =-或27x =.检验可知:8x =-是增根,舍去;27x =是原方程的实数根. 所以,原方程只有1个实数根.5.设c b a ,,为三个实数,它们中任何一个数加上其余两数之积的2017倍都等于2018,则这样的三元数组),,(c b a 的个数为 ( )A.4.B.5.C.6.D.7. 【答】B.由已知得, 20182017=+bc a ,20182017=+ac b ,20182017=+ab c ,两两作差,可得0)20171)((=--c b a ,0)20171)((=--a c b ,0)20171)((=--b a c .E由0)20171)((=--c b a ,可得 b a =或20171=c . (1)当c b a ==时,有020*******=-+a a ,解得1=a 或20172018-=a . (2)当c b a ≠=时,解得20171==b a , 201712018-=c . (3)当b a ≠时,20171=c ,此时有:201712018,20171-==b a ,或20171,201712018=-=b a . 故这样的三元数组),,(c b a 共有5个.6.已知实数b a ,满足15323=+-a a a ,55323=+-b b b ,则=+b a ( ) A.2. B.3. C.4. D.5.【答】A.有已知条件可得 2)1(2)1(3-=-+-a a ,2)1(2)1(3=-+-b b ,两式相加得33(1)2(1)(1)2(1)0a a b b -+-+-+-=,因式分解得22(2)[(1)(1)(1)(1)2]0a b a a b b +-----+-+=. 因为02)1(43)]1(21)1[(2)1()1)(1()1(2222>+-+---=+-+----b b a b b a a , 所以 02=-+b a ,因此 2=+b a .二、填空题:(本题满分28分,每小题7分)1.已知r q p ,,为素数,且pqr 整除1-++rp qr pq ,则=++r q p _______. 【答】10. 设11111pq qr rp k pqr p q r pqr++-==++-,由题意知k 是正整数,又2,,≥r q p ,所以23<k ,从而1=k ,即有pqr rp qr pq =-++1,于是可知r q p ,,互不相等.当r q p <<≤2时, qr rp qr pq pqr 31<-++=,所以3<q ,故2=q .于是222qr qr q r =++1-,故3)2)(2(=--r q ,所以32,12=-=-r q ,即5,3==r q ,所以,)5,3,2(),,(=r q p .再由r q p ,,的对称性知,所有可能的数组(,,)p q r 共有6组,即(2,3,5),)3,5,2(,)5,2,3(,)2,5,3(,)3,2,5(,)2,3,5(.于是10=++r q p .2.已知两个正整数的和比它们的积小1000,若其中较大的数是完全平方数,则较小的数为 . 【答】8.设这两个数为)(,22n m n m >,则 100022-=+n m n m ,即2(1)(1)1001m n --=.又100110011143791117713=⨯=⨯=⨯=⨯,所以 2(1,1)m n --=(1001,1)或(143,7)或(91,11)或(77,13),验证可知只有)7,143()1,1(2=--n m 满足条件,此时8,1442==n m .3.已知D 是△ABC 内一点,E 是AC 的中点,6AB =,10BC =,BCD BAD ∠=∠,ABD EDC ∠=∠,则=DE .【答】4.延长CD 至F ,使DC DF =,则AF DE //且AF DE 21=,所以ABD EDC AFD ∠=∠=∠,故D B F A ,,,四点共圆,于是BCD BAD BFD ∠=∠=∠,所以10==BC BF ,且FC BD ⊥,故90FAB FDB ∠=∠=︒.又6=AB ,故861022=-=AF ,所以421==AF DE .4.已知二次函数)504()12(2222++++++=n m x n m x y 的图象在x 轴的上方,则满足条件的正整数对),(n m 的个数为 .【答】15.因为二次函数的图象在x 轴的上方,所以0)504(4)]12(2[222<++-++=∆n m n m ,整理得49424<++n m mn ,即251)12)(1(<++n m .因为n m ,为正整数,所以25)12)(1(≤++n m . 又21≥+m ,所以22512<+n ,故5≤n . 当1=n 时,3251≤+m ,故322≤m ,符合条件的正整数对),(n m 有7个;当2=n 时,51≤+m ,故4≤m ,符合条件的正整数对),(n m 有4个;当3=n 时,7251≤+m ,故718≤m ,符合条件的正整数对),(n m 有2个; 当4=n 时,9251≤+m ,故917≤m ,符合条件的正整数对),(n m 有1个;当5=n 时,11251≤+m ,故1114≤m ,符合条件的正整数对),(n m 有1个.综合可知:符合条件的正整数对),(n m 有7+4+2+1+1=15个.第二试 (A )一、(本题满分20分)设d c b a ,,,为四个不同的实数,若b a ,为方程011102=--d cx x 的根,d c ,为方程011102=--b ax x 的根,求d c b a +++的值.解 由韦达定理得10a b c +=,10c d a +=,两式相加得)(10c a d c b a +=+++.……………………5分因为a 是方程011102=--d cx x 的根,所以011102=--d ac a ,又c a d -=10,所以010111102=-+-ac c a a . ① ……………………10分类似可得 010111102=-+-ac a c c . ② ……………………15分 ①-②得 0)121)((=-+-c a c a .因为c a ≠,所以121=+c a ,所以1210)(10=+=+++c a d c b a . ……………………20分二、(本题满分25分)如图,在扇形OAB 中,︒=∠90AOB ,12=OA ,点C 在OA 上,4=AC ,点D 为OB 的中点,点E 为弧AB 上的动点,OE 与CD 的交点为F .(1)当四边形ODEC 的面积S 最大时,求EF ;(2)求DE CE 2+的最小值.解 (1)分别过E O ,作CD 的垂线,垂足为N M ,. 由8,6==OC OD ,得10=CD .所以)(21EN OM CD S S S ECD OCD +⋅=+=∆∆ 6012102121=⨯⨯=⋅≤OE CD , ……………………5分 当DC OE ⊥时,S 取得最大值60.此时,536108612=⨯-=-=OF OE EF . ……………………10分 (2)延长OB 至点G ,使12==OB BG ,连结GE GC ,. 因为21==OG OE OE OD ,EOG DOE ∠=∠,所以△ODE ∽△OEG ,所以21=EG DE ,故DE EG 2=.……………………20分所以108824222=+=≥+=+CG EG CE DE CE ,当G E C ,,三点共线时等号成立.故DE CE 2+的最小值为108. ……………………25分C三、(本题满分25分)求所有的正整数n m ,,使得22233)(n m n m n m +-+是非负整数.解 记22233)(n m n m n m S +-+=,则22222)(3)()(]3))[((nm mn n m mn n m n m n m mn n m n m S +-+-+=+--++=. 因为n m ,为正整数,故可令pqn m mn =+,q p ,为正整数,且1),(=q p . 于是 22223)(3)(pq pq n m p q p q n m S +-+=--+=.因为S 为非负整数,所以2|q p ,又1),(=q p ,故1=p ,即mn n m |)(+. ①……………………10分所以nm mn n n m n +-=+2是整数,所以2|)(n n m +,故n m n +≥2,即n m n ≥-2. 又由0≥S ,知02233≥-+n m n m . ② 所以n m m n m m n m n 2223223)(≥-=-≥,所以m n ≥.由对称性,同理可得n m ≥,故n m =. ……………………20分 把n m =代入①,得m |2,则2≥m .把n m =代入②,得0243≥-m m ,即2≤m . 故2=m .所以,满足条件的正整数n m ,为2=m ,2=n . ……………………25分第二试 (B )一、(本题满分20分)若实数c b a ,,满足59)515151)((=-++-++-+++b a c a c b c b a c b a ,求)111)((cb ac b a ++++的值.解 记x c b a =++,y ca bc ab =++,z abc =,则)616161()515151)((cx b x a x x b a c a c b c b a c b a -+-+-=-++-++-+++abc x ca bc ab x c b a x ca bc ab x c b a x x 216)(36)(6)](36)(123[232-+++++-+++++-=23(936)536216x x y x xy z-+=-+-, ……………………10分结合已知条件可得23(936)95362165x x y x xy z -+=-+-,整理得z xy 227=.所以 227)111)((==++++z xy c b a c b a . ……………………20分二、(本题满分25分)如图,点E 在四边形ABCD 的边AB 上,△ABC 和△CDE 都是等腰直角三角形,AC AB =,DC DE =.(1)证明:BC AD //;(2)设AC 与DE 交于点P ,如果︒=∠30ACE ,求PEDP. 解 (1)由题意知45ACB DCE ∠=∠=︒,BC =,EC =,所以DCA ECB ∠=∠,AC DCBC EC=,所以△ADC ∽△BEC ,故DAC ∠= 45EBC ∠=︒,所以ACB DAC ∠=∠,所以BC AD //.……………………10分(2)设x AE =,因为︒=∠30ACE ,可得x AC 3=,2CE x =,DE DC ==.因为90EAP CDP ∠=∠=︒,EPA CPD ∠=∠,所以△APE ∽△DPC ,故可得DPC APE S S ∆∆=21. ……………………15分 又223x S S S ACE APE EPC ==+∆∆∆,2x S S S CDE DPC EPC ==+∆∆∆,于是可得 2)32(x S DPC -=∆,2)13(x S EPC -=∆. ……………………20分所以2131332-=--==∆∆EPC DPC S S PE DP . ……………………25分 三、(本题满分25分)设x 是一个四位数,x 的各位数字之和为m ,1+x 的各位数字之和为n ,并且m 与n 的最大公约数是一个大于2的素数.求x .解 设abcd x =,由题设知m 与n 的最大公约数),(n m 为大于2的素数.若9≠d ,则1+=m n ,所以(,)1m n =,矛盾,故9=d . ……………………5分 若9≠c ,则891-=-+=m m n ,故(,)(,8)m n m =,它不可能是大于2的素数,矛盾,故9=c .……………………10分若9=b ,显然9≠a ,所以269991-=---+=m m n ,故(,)(,26)13m n m ==,但此时可得13≥n ,363926>≥+=n m ,矛盾. ……………………15分若9≠b ,则17991-=--+=m m n ,故(,)m n (,17)17m ==,只可能34,17==m n . ……………………20分 于是可得8899=x 或9799. ……………………25分。

2018年全国初中数学联赛试题-含详细解析

2018年全国初中数学联赛试题-含详细解析

2018年初中数学联赛试题(北京)2018年初中数学联赛试题及答案详解说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第 二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答 不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相 应的分数.第一试(A)一、选择题:(本题满分42分,每小题7分)1.设二次函数2222a y x ax =++的图象的顶点为A ,与x 轴的交点为B ,C .当ABC △为等边三角形时,其边长为()A ..D .【答】C.由题设知2(,)2a A a --,设(,0),(,0)B x C x ,二次函数的图象的对称轴与x 轴的交点为D ,则12||BC x x =-=又AD =,则2||2a -=26a =或20a =(舍去)所以△ABC 的边长BC ==. 2.如图,在矩形ABCD 中,BAD ∠的平分线交BD 于点E ,115AB CAE =∠=︒,,则BE =()A .C 1D 1 【答】D.延长AE 交BC 于点F ,过点E 作BC 的垂线,垂足为H .由已知得∠BAF = ∠F AD = ∠AFB = ∠HEF =45︒,BF =AB =1,∠EBH = ∠ACB =30︒.设BE =x ,则HF =HE =2x,BH因为BF=BH+HF ,所以12x=,解得1BE x ==. 3.设p q ,均为大于3的素数,则使2254p pq q ++为完全平方数的素数对(p ,q )的个数为()A .1B .2C .3D .4 答案:B设22254p pq q m ++=(m 为自然数),则22(2)p q pq m ++=,即(2)(2)m p q m p p pq --++= 由于p ,q 为素数,且2,2m q p p m q p q ++>++>,所以21m q p --=,2m q p pq ++=,从而2410pq p p ---=,即(4)(2)9p q --=,所以(p ,q )=(5,11)或(7,5).所以,满足条件的素数对(p ,q )的个数为2. 4.若实数a ,b 满足2a b -=,()()22114a b ba-+-=,则55a b -=()A .46B .64C .82D .128【答】C.由条件()()22114a b ba-+-=得22332240a b a b ab a b ----+-=,即22()2[()4]()[()3]0a b a b ab a b a b ab ---++--+=又2a b -=,所以22[44]2[43]0ab ab -+++=,解得1ab =,所以222()26a b a b ab +=-+=33255223322()[()3]14,()()()82a b a b a b ab a b a b a b a b a b -=--+=-=+---=. 5.对任意的整数x ,y ,定义@x y x y xy =+-,则使得()()@@@@x y z y z x ++()@@0z x y =的整数组(x ,y ,z )的个数为() A .1B .2C .3D .4 答案:D()()()(@@@)x y z x y xy z x y xy z x y xy z x y z xy yz zx xyz =+-=+-+-+-=++---+,由对称性,同样可得()()@@@@.y z x x y z xy yz zx xyz z x y x y z xy yz zx xyz =++---+=++---+,所以,由已知可得0111 1.()()()x y z xy yz zx xyz x y z ++---+=---=-,即所以,x,y,z 为整数时,只能有以下几种情况:111111x y z -=⎧⎪-=⎨⎪-=-⎩,或111111x y z -=⎧⎪-=-⎨⎪-=⎩,或111111x y z -=-⎧⎪-=⎨⎪-=⎩或111111x y z -=-⎧⎪-=-⎨⎪-=-⎩所以,(x ,y ,z )=(2,2,0)或(2,0,2)或(0,2,2)或(0,0,0),故共有4个符合要求的整数组. 6.设11112018201920202050M =++++,则1M的整数部分是() A .60B .61C .62D .63 答案:B 因为1120185336120183333M M <⨯⇒>= 又111111()()201820192030203120322050M =+++++++11134513202030205083230>⨯+⨯=所以18323011856113451345M <=,故的整数部分为61.二、填空题:(本题满分28分,每小题7分)7.如图,在平行四边形ABCD 中,2BC AB CE AB =⊥,于E ,F 为AD 的中点,若AEF ∠48=︒,则B ∠=. 【答】84°.设BC 的中点为G ,连结FG 交CE 于H ,由题设条件知FGCD 为菱形由AB ∥FG ∥DC 及F 为AD 的中点,知H 为CE 的中点. 又CE ⊥AB ,所以CE ⊥FG ,所以FH 垂直平分CE ,故∠DF =∠GFC =∠EFG =∠AEF =48°.所以∠B =∠FGC =180248=84-⋅8.若实数x y ,满足()3311542x y x y+++=,则x y +的最大值为.【答】3.由3115()42x y x y 3+++=可得22115()()()42x y x xy y x y +-+++=,即22115()()42x y x xy y +-++= 令x y k +=,注意到2222131()04244y x xy y x y -++=-++>,故0x y k +=> 又因为22211()344x xy y x y xy -++=+-+,故由①式可得3115342k xyk k -+=,所以3115423k k xy k+==于是,x ,y 可看作关于t 的一元二次方程321154203k k t kt k+=-+=的两根,所以 化简得3211542()403k k k k+=∆=--⋅≥,化简得3300k k +-≤,即2(3)(310)003k k k k -++≤⇒<≤ 故x + y 的最大值为3.思路:从目标出发,判别式法,因式分解 9.没有重复数字且不为5的倍数的五位数的个数为.【答】21504.显然首位数字不能为0,末位不能为0和5.当首位数字不为5时,则首位只能选0,5之外的8个数.相应地个位数只能选除0,5及万位数之外的7个数,千位上只能选万位和个位之外的8个数,百位上只能选剩下的7个数,十位上只能选剩下的6个数.所以,此时满足条件的五位数的个数为87876⨯⨯⨯⨯=18816个.当首位数字为5时,则个位有8个数可选,依次千位有8个数可选,百位有7个数可选,十位有6个数可选.所以,此时满足条件的五位数的个数为8876⨯⨯⨯=2688个.所以,满足条件的五位数的个数为18816+2688=21504(个).10. 已知实数a b c ,,满足0a b c ++=,2221a b c ++=,则555a b c abc++=.答案:52由已知条件可得222233311[()()],322ab bc ac a b c a b c a b c abc ++=++-++=-++=,所以555222333233233233()()[()()()]a b c a b c a b c a b c b a c c a b ++=++++-+++++ 2222222222223[()()()]3()abc a b a b a c a c b c b c abc a b c a c b b c a =-+++++=+++3()abc abc ab bc ca =+++.所以55552a b c abc ++=第一试(B)一、选择题:(本题满分42分,每小题7分) 1.满足()2211x x x ++-=的整数x 的个数为()A .1B .2C .3D .4 答案:C当20x +=且210x x +-≠时,2x =- 当211x x +-=时,2x =-或1x = 当211x x +-=-且2x +为偶数时0x = 所以,满足条件的整数x 有3个 2.已知123x x x ,,(123x x x <<)为关于x 的方程()32320x x a x a -++-=的三个实数根,则22211234x x x x -++=() A .5B .6C .7D .8解析:方程即2(1)(2)0x x x a --+=,它的一个实数根为1,另外两个实数根之和为2,其中必有一根小于1,另一根大于1,于是2131,2x x x =+=,故222112331311314()()412()15x x x x x x x x x x x -++=+-++=++=3. 已知点E F ,分别在正方形ABCD 的边CD ,AD 上,4CD CE EFB FBC =∠=∠,,则t a n ABF ∠=() A .12B .35C .D解析:不妨设4CD =,则1,3CE DE ==设DF x =,则4,AF x EF =-作BH EF ⊥与点H ,因为,90,EFB FBC AFB BAF BHF BF ∠=∠=∠∠==∠公共,所以BAF BHF ∆≅∆,所以4BH BA ==由ABF BEF DEF BCE ABCD S S S S S ∆∆∆∆=+++四边形得2111144(4)43412222x x =⋅⋅-+⋅⋅⋅+⋅⋅,解得85x =所以1245AF x =-=,3tan 5AF ABF AB ∠==.4.方程()A .0B .1C .2D .3解析:令y 0y ≥,且29x y =- 解得1,6y or y ==,从而8x =-或27x =检验可知:8x =-是增根,舍去;27x =是原方程的实数根. 所以,原方程只有1个实数根.5.设a ,b ,c 为三个实数,它们中任何一个数加上其余两数之积的2017倍都等于2018,则这样的三元数组(a ,b ,c )的个数为() A .4B .5C .6D .7解析:由已知得, 201720182017201820172018a bc b ac c ab +=+=+=,,,两两作差,可得12017012()()()(0170120170)(.)()a b c b c a c a b --=--=--=,, 由120()()170a b c --=,可得1,2017a b or c ==(1)当a b c ==时,有2201720180a a +-=,解得a =1,或20182017a =- (2)当 abc =≠时,解得12017a b ==,120182017c =- (3)当a b ≠时,12017c =,此时有:12017a =,120182017b =-,或120182017a =-,12017b = 故这样的三元数组(a ,b ,c )共有5个. 6.已知实数a ,b 满足3232351355a a a b b b -+=-+=,,则a b +=()A .2B .3C .4D .5【答】A.有已知条件可得331212()()()(1212)a a b b -+-=--+-=,,两式相加得33121121()()()()0a a b b -+-+-+-=,因式分解得22211()[()()()2()11]0a b a a b b +-----+-+=因为2222()()()()[13111121(1)(1)4(202)a a b b a b b ----+-+=---+-+>所以20a b +-=,因此2a b +=.二、填空题:(本题满分28分,每小题7分) 7.已知p q r ,,为素数,且pqr 整除1pq qr rp ++-,则p q r ++=.【答】10. 设11111pq qr rp k pqr p q r pqr ++-==++-,由题意知k 是正整数,又,,2p q r ≥,所以32k < 而1k =,即有1pq qr rp pqr ++-=,于是可知,,p q r 互不相等.当2p q r ≤<<时,13pqr pq qr rp qr =++-<,所以3q <,故 2q =.于是2221qr qr q r =++-故2)23()(q r --=,所以21,23q r -=-=,即 3,5q r ==,所以,()(),,2,3,5p q r =. 再由 ,,p q r 的对称性知,所有可能的数组( ,,p q r )共有6组,即()()()()()() 2,3,5?2,5,33,2,53,5,25,2,35,3,2.,,,,, 于是10p q r ++=. 8.已知两个正整数的和比它们的积小1000,若其中较大的数是完全平方数,则较小的数为.【答】8.设这两个数为22),(m n m n >,则221000m n m n +=-,即2()110(101)m n --= 又100110011143791117713=⨯=⨯=⨯=⨯,所以()21,1()1001,1m n --=或(143,7)或 (91,11)(77,13),验证可知只有()21,(1143,)7m n --=满足条件,此时2144,8m n ==. .9.已知D 是ABC △内一点,E 是AC 的中点,610AB BC BAD BCD ==∠=∠,,,EDC ∠=ABD ∠,则DE =.【答】4.1//2CD F DF DC DE AF DE AF ==延长至,使,则且 ,,,AFD EDC ABD A F B D ∠=∠=∠所以,故四点共圆,于是 10BFD BAD BCD BF BC BD FC ∠=∠=∠==,所以,且⊥,90.FAB FDB ∠=∠=︒故6AB AF =又,故,所以14.2DE AF ==已知二次函数()()222221450y x m n x m n =++++++的图象在x 轴的上方,则满足条件的正整数对(m ,n)的个数为. 解析:16.因为二次函数的图象在x 轴的上方,所以222[()](22)144500m n m n ∆=++-++<,整理得 42449mn m n ++<,即()(5122)11m n ++<.因为,m n 为正整数,所以()(122.)15m n <++ 又12m +≥,所以25212n +<,故5n ≤. 当n=1时,1m +253≤,故223m ≤,符合条件的正整数对(m,n)有8个;当n=2时,1m +5≤,故m ≤4,符合条件的正整数对(m,n)有4个; 当n=3时,1m +257≤,故187m ≤,符合条件的正整数对(m,n)有1个;当n=4时,1m +259≤,故179m ≤,符合条件的正整数对(m,n)有1个;当n=5时,1m +2511≤,故1411m ≤,符合条件的正整数对(m,n)有1个综合可知:符合条件的正整数对(m,n)有8421116++++=个第二试(A)一、(本题满分20分)设a ,b ,c ,d 为四个不同的实数,若a ,b 为方程210110x cx d --=的根, c ,d 为方程2100x ax b --=的根,求a b c d +++的值.解由韦达定理得1010a b c c d a +=+=,,两式相加得1)0(a b c d a c +++=+.因为a 是方程210110x cx d --=的根,所以210110a ac d --=,又10d a c =-,所以 211011100.a a c ac -+-=①类似可得211011100.c c a ac -+-=②①-②得)((1210)a c a c -+-=因为a c ≠,所以121a c +=,所以(11210)0a b c d a c +++=+=.二、(本题满分25分)如图,在扇形OAB 中,9012AOB OA ∠=︒=,,点C 在OA 上,4AC =, 点D 为OB 的中点,点E 为弧AB 上的动点,OE 与CD 的交点为F . (1)当四边形ODEC 的面积S 最大时,求EF ; (2)求2CE DE +的最小值.解 (1)分别过O ,E 作CD 的垂线,垂足为M ,N . 由6,8OD OC ==,得10CD =.所以(111101260222)DOCD DECD S S S CD OM EN CD OE =+=⨯+≤⨯=⋅⋅=当OE DC ⊥时,S 取得最大值60.683612=105EF OE OF ⋅=-=-此时,212,.OB G BG OB GC GE ==()延长至点,使,连结 因为1,2OD OE DOE EOG OE OG ==∠=∠,所以ODE OEG ∽,所以12DE EG =故2EG DE =,所以2CE DE CE EG CG +=+≥C ,E ,G 三点共线时等号成立2CE DE +故的最小值为.三、(本题满分25分)求所有的正整数m ,n ,使得()33222m n m n m n +-+是非负整数.解:记()33222m n m n S m n +-=+,则()2222332222()[()3]3()()m n m n mn m n m n m n mn mn S m n m n m n m n m n ++--+-⎛⎫===+-- ⎪+++⎝⎭+,,(,?,,1).mnm n p q p q p q m n==+因为为正整数,故可令为正整数,且 于是222233()()q q pq q S m n m n p p p +=+--=+-因为S 是非负整数,所以2|p q ,11()() .|p q p m n mn ==+,又,故,即①所以2n mn n m n m n=-++是整数,所以2()|m n n +,故2n m n ≥+,即2n m n -≥ 332200.S m n m n +-≥≥又由,知②3223222³(.)n m n m m n m m n n m --≥≥=≥所以,所以³m n m n =由对称性,同理可得,故34|2 2.20 2.m n m m m n m m m =≥=≥-≤把代入①,得,则把代入②,得,即 2.m =故,2 2.m n m n ==所以,满足条件的正整数为,第二试(B)一、(本题满分20分)若实数a ,b ,c 满足()11195555a b c a b c b c a c a b ⎛⎫++++= ⎪+-+-+-⎝⎭,求()111a b c a b c ⎛⎫++++⎪⎝⎭的值. 解:a b c x ab bc ca y abc z ++=++==记,,,则()111111555666a b c x a b c b c a c a b x a x b x c ⎛⎫⎛⎫++++=++⎪ ⎪+-+-+----⎝⎭⎝⎭22323[312()36()](936)6()36()216536216x x a b x ab bc ca x x y x a b c x ab bc ca x abc x xy z -+++++-+==++++++--+- 结合已知条件可得23(936)95362165x x y x xy z -+=-+-,整理得272xy z = 所以()111272xy a b c a b c z ⎛⎫++++==⎪⎝⎭.二、(本题满分25分)如图,点E 在四边形ABCD 的边AB 上,ABC △和CDE △都是等腰直角三 角形,AB AC DE DC ==,. (1)证明:AD BC ∥;(2)设AC 与DE 交于点P ,如果30ACE ∠=︒,求DPPE.145,,ACB DCE BC EC ∠=∠=︒==解()由题意知,所以,AC DCDCA ECB BC EC∠=∠=,所以ADC BEC ∆∆∽,故45DAC EBC ∠=∠=,所以DAC ACB ∠=∠,所以AD BC ∥(2)设AE x =,因为30ACE ∠=,可得,2,AC CE x DE DC === 因为90,EAP CDP EPA CPD ∠=∠=∠=∠,所以APE DPC ∆∆∽,故可得12APE DPC S S ∆∆=又22,=EPC APE AEC EPC DPC CDE S S S S S S x ∆∆∆∆∆∆+==+=,于是可得2(2DPC S x ∆=,21)EPC S x ∆=所以DPC EPC S DP PE S ∆∆==三、(本题满分25分)设x 是一个四位数,x 的各位数字之和为1m x +,的各位数字之和为n ,并 且m 与n 的最大公约数是一个大于2的素数.求x .( ,.) 2x abcd m n m n =解设,由题设知与的最大公约数为大于的素数 91,19(.)d n m m n d ≠=+==若,则,所以,矛盾,故()(9198,,829.)c n m m m n m c ≠=+-=-==若,则,故,它不可能是大于的素数,矛盾,故991()(99926,, 2613)b a n m m m n m =≠=+---=-==若,显然,所以,故,但此时可得13263936.n m n ≥=+≥>,,矛盾若9199()()17,,171717,34b n m m m n m n m ≠=+--=-====,则,故,只可能88999799.x =于是可得或。

山东泰安市2018年中考数学试题(含答案)

山东泰安市2018年中考数学试题(含答案)

泰安市2018年初中学业水平考试数学试题一、选择题(本大题共12个小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对3分,选错、不选或选出的答案超过一个,均记零分)1. 计算:的结果是()A. -3B. 0C. -1D. 3【答案】D【解析】分析:根据相反数的概念、零指数幂的运算法则计算即可.详解:原式=2+1=3.故选D.点睛:本题考查的是零指数幂的运算,掌握任何非零数的零次幂等于1是解题的关键.2. 下列运算正确的是()A. B. C. D.【答案】D【解析】分析:根据合并同类项法则、同底数幂的乘、除法法则、积的乘方法则计算,判断即可.详解:2y3+y3=3y3,故A错误;y2•y3=y5,故B错误;(3y2)3=27y6,故C错误;y3÷y﹣2=y3﹣(﹣2)=y5.故D正确.故选D.点睛:本题考查的是合并同类项、同底数幂的乘法、积的乘方、同底数幂的除法,掌握它们的运算法则是解题的关键.3. 如图是下列哪个几何体的主视图与俯视图()A. B. C. D.【答案】C【解析】分析:直接利用主视图以及俯视图的观察角度结合结合几何体的形状得出答案.详解:由已知主视图和俯视图可得到该几何体是圆柱体的一半,只有选项C符合题意.故选C.点睛:本题主要考查了由三视图判断几何体,正确掌握常见几何体的形状是解题的关键.4. 如图,将一张含有角的三角形纸片的两个顶点叠放在矩形的两条对边上,若,则的大小为()A. B. C. D.【答案】A【解析】分析:依据平行线的性质,即可得到∠2=∠3=44°,再根据三角形外角性质,可得∠3=∠1+30°,进而得出结论.详解:如图,∵矩形的对边平行,∴∠2=∠3=44°,根据三角形外角性质,可得:∠3=∠1+30°,∴∠1=44°﹣30°=14°.故选A.点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,同位角相等.5. 某中学九年级二班六级的8名同学在一次排球垫球测试中的成绩如下(单位:个)35 38 42 44 40 47 45 45则这组数据的中位数、平均数分别是()A. 42、42B. 43、42C. 43、43D. 44、43【答案】B【解析】分析:根据中位线的概念求出中位数,利用算术平均数的计算公式求出平均数.详解:把这组数据排列顺序得:3538404244454547,则这组数据的中位数为:=43,=(35+38+42+44+40+47+45+45)=42.故选B.点睛:本题考查的是中位数的确定、算术平均数的计算,掌握中位数的概念、算术平均数的计算公式是解题的关键.6. 夏季来临,某超市试销、两种型号的风扇,两周内共销售30台,销售收入5300元,型风扇每台200元,型风扇每台150元,问、两种型号的风扇分别销售了多少台?若设型风扇销售了台,型风扇销售了台,则根据题意列出方程组为()A. B.C. D.【答案】C【解析】分析:直接利用两周内共销售30台,销售收入5300元,分别得出等式进而得出答案.详解:设A型风扇销售了x台,B型风扇销售了y台,则根据题意列出方程组为:.故选C.点睛:本题主要考查了由实际问题抽象出二元一次方程组,正确得出等量关系是解题的关键.7. 二次函数的图象如图所示,则反比例函数与一次函数在同一坐标系内的大致图象是()A. B. C. D.【答案】C【解析】分析:首先利用二次函数图象得出a,b的取值范围,进而结合反比例函数以及一次函数的性质得出答案.详解:由二次函数开口向上可得:a>0,对称轴在y轴左侧,故a,b同号,则b>0,故反比例函数y=图象分布在第一、三象限,一次函数y=ax+b经过第一、二、三象限.故选C.点睛:本题主要考查了二次函数、一次函数、反比例函数的图象,正确得出a,b的取值范围是解题的关键.8. 不等式组有3个整数解,则的取值范围是()A. B. C. D.【答案】B【解析】分析:解不等式组,可得不等式组的解,根据不等式组有3个整数解,可得答案.详解:不等式组,由﹣x<﹣1,解得:x>4,由4(x﹣1)≤2(x﹣a),解得:x≤2﹣a,故不等式组的解为:4<x≤2﹣a,由关于x的不等式组有3个整数解,得:7≤2﹣a<8,解得:﹣6<a≤﹣5.故选B.点睛:本题考查了解一元一次不等式组,利用不等式的解得出关于a的不等式是解题的关键.9. 如图,与相切于点,若,则的度数为()A. B. C. D.【答案】A【解析】分析:连接OA、OB,由切线的性质知∠OBM=90°,从而得∠ABO=∠BAO=50°,由三角形内角和定理知∠AOB=80°,根据圆周角定理可得答案.详解:如图,连接OA、OB.∵BM是⊙O的切线,∴∠OBM=90°.∵∠MBA=140°,∴∠ABO=50°.∵OA=OB,∴∠ABO=∠BAO=50°,∴∠AOB=80°,∴∠ACB=∠AOB=40°.故选A.10. 一元二次方程根的情况是()A. 无实数根B. 有一个正根,一个负根C. 有两个正根,且都小于3D. 有两个正根,且有一根大于3【答案】D【解析】分析:直接整理原方程,进而解方程得出x的值.详解:(x+1)(x﹣3)=2x﹣5整理得:x2﹣2x﹣3=2x﹣5,则x2﹣4x+2=0,(x﹣2)2=2,解得:x1=2+>3,x2=2﹣,故有两个正根,且有一根大于3.故选D.点睛:本题主要考查了一元二次方程的解法,正确解方程是解题的关键.11. 如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,经过平移后得到,若上一点平移后对应点为,点绕原点顺时针旋转,对应点为,则点的坐标为()A. B. C. D.【答案】A【解析】分析:由题意将点P向下平移5个单位,再向左平移4个单位得到P1,再根据P1与P2关于原点对称,即可解决问题.详解:由题意将点P向下平移5个单位,再向左平移4个单位得到P1.∵P(1.2,1.4),∴P1(﹣2.8,﹣3.6).∵P1与P2关于原点对称,∴P2(2.8,3.6).故选A.12. 如图,的半径为2,圆心的坐标为,点是上的任意一点,,且、与轴分别交于、两点,若点、点关于原点对称,则的最小值为()A. 3B. 4C. 6D. 8【答案】C【解析】分析:连接OP.由直角三角形斜边上的中线等于斜边的一半,得到OP=AB,当OP最短时,AB最短.连接OM交⊙M于点P,则此时OP最短,且OP=OM-PM,计算即可得到结论.详解:连接OP.∵P A⊥PB,OA=OB,∴OP=AB,当OP最短时,AB最短.连接OM交⊙M于点P,则此时OP最短,且OP=OM-PM==3,∴AB的最小值为2OP=6.故选C.点睛:本题考查了直角三角形斜边上中线的性质以及两点间的距离公式.解题的关键是利用直角三角形斜边上中线等于斜边的一半把AB的长转化为2OP.二、填空题(本大题共6小题,满分18分.只要求填写最后结果,每小题填对得3分)13. 一个铁原子的质量是,将这个数据用科学记数法表示为__________.【答案】【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值<1时,n是负数;n的绝对值等于第一个非零数前零的个数.详解:0.000000000000000000000000093=9.3×10﹣26.故答案为:9.3×10﹣26.点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14. 如图,是的外接圆,,,则的直径..为__________.【答案】【解析】分析:连接OB,OC,依据△BOC是等腰直角三角形,即可得到BO=CO=BC•cos45°=2,进而得出⊙O的直径为4.详解:如图,连接OB,OC.∵∠A=45°,∴∠BOC=90°,∴△BOC是等腰直角三角形.又∵BC=4,∴BO=CO=BC•cos45°=2,∴⊙O的直径为4.故答案为:4.点睛:本题主要考查了三角形的外接圆以及圆周角定理的运用,三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.15. 如图,在矩形中,,,将矩形沿折叠,点落在处,若的延长线恰好过点,则的值为__________.【答案】【解析】分析:先利用勾股定理求出A'C,进而利用勾股定理建立方程求出AE,即可求出BE,最后用三角函数即可得出结论.详解:由折叠知,A'E=AE,A'B=AB=6,∠BA'E=90°,∴∠BA'C=90°.在Rt△A'CB 中,A'C==8,设AE=x,则A'E=x,∴DE=10﹣x,CE=A'C+A'E=8+x.在Rt△CDE中,根据勾股定理得:(10﹣x)2+36=(8+x)2,∴x=2,∴AE=2.在Rt△ABE 中,根据勾股定理得:BE==2,∴sin∠ABE==.故答案为:.点睛:本题主要考查了折叠的性质,勾股定理,锐角三角函数,充分利用勾股定理求出线段AE是解答本题的关键.16. 如图,在中,,,,点是边上的动点(不与点重合),过作,垂足为,点是的中点,连接,设,的面积为,则与之间的函数关系式为__________.【答案】【解析】分析:由=,CD=x,得到DE=,CE=,则BE=10-,由ΔDEB 的面积S等于△BDE面积的一半,即可得出结论.详解:∵DE⊥BC,垂足为E,∴tan∠C==,CD=x,∴DE=,CE=,则BE=10-,∴S=S△BED=(10-)•化简得:.故答案为:.点睛:本题考查了动点问题的函数解析式,解题的关键是设法将BE与DE都用含有x的代数式表示.17. 《九章算术》是中国传统数学最重要的著作,在“勾股”章中有这样一个问题:“今有邑方二百步,各中开门,出东门十五步有木,问:出南门几步而见木?”用今天的话说,大意是:如图,是一座边长为200步(“步”是古代的长度单位)的正方形小城,东门位于的中点,南门位于的中点,出东门15步的处有一树木,求出南门多少步恰好看到位于处的树木(即点在直线上)?请你计算的长为__________步.【答案】【解析】分析:由正方形的性质得到∠EDG=90°,从而∠KDC+∠HDA=90°,再由∠C+∠KDC=90°,得到∠C=∠HDA,即有△CKD∽△DHA,由相似三角形的性质得到CK:KD=HD:HA,求解即可得到结论.详解:∵DEFG是正方形,∴∠EDG=90°,∴∠KDC+∠HDA=90°.∵∠C+∠KDC=90°,∴∠C=∠HDA.∵∠CKD=∠DHA=90°,∴△CKD∽△DHA,∴CK:KD=HD:HA,∴CK:100=100:15,解得:CK=.故答案为:.点睛:本题考查了相似三角形的应用.解题的关键是证明△CKD∽△DHA.三、解答题(本大题共7小题,满分66分.解答应写出文字说明、证明过程或演算步骤.)18. 先化简,再求值:,其中.【答案】.【解析】分析:先根据分式的混合运算顺序和运算法则化简原式,再将m的值代入计算可得.详解:原式=÷(﹣)=÷=•=﹣=当m=﹣2时,原式=﹣=﹣=﹣1+2=.点睛:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.19. 文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)【答案】(1)甲种图书售价每本28元,乙种图书售价每本20元;(2)甲种图书进货533本,乙种图书进货667本时利润最大.【解析】分析:(1)乙种图书售价每本元,则甲种图书售价为每本元,根据“用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本”列出方程求解即可;(2)设甲种图书进货本,总利润元,根据题意列出不等式及一次函数,解不等式求出解集,从而确定方案,进而求出利润最大的方案.详解:(1)设乙种图书售价每本元,则甲种图书售价为每本元.由题意得:,解得:.经检验,是原方程的解.所以,甲种图书售价为每本元,答:甲种图书售价每本28元,乙种图书售价每本20元.(2)设甲种图书进货本,总利润元,则.又∵,解得:.∵随的增大而增大,∴当最大时最大,∴当本时最大,此时,乙种图书进货本数为(本).答:甲种图书进货533本,乙种图书进货667本时利润最大.点睛:本题考查了一次函数的应用,分式方程的应用,一元一次不等式的应用,理解题意找到题目蕴含的相等关系或不等关系是解应用题的关键.20. 为增强学生的安全意识,我市某中学组织初三年级1000名学生参加了“校园安全知识竞赛”,随机抽取了一个班学生的成绩进行整理,分为,,,四个等级,并把结果整理绘制成条形统计图与扇形统计图(部分),请依据如图提供的信息,完成下列问题:(1)请估计本校初三年级等级为的学生人数;(2)学校决定从得满分的3名女生和2名男生中随机抽取3人参加市级比赛,请求出恰好抽到2名女生和1名男生的概率.【答案】(1)估计该校初三等级为的学生人数约为125人;(2)恰有2名女生,1名男生的概率为.【解析】分析:(1)先根据C等级人数及其所占百分比求得总人数,用总人数减去B、C、D的人数求得A等级人数,再用总人数乘以样本中A等级人数所占比例;(2)列出从3名女生和2名男生中随机抽取3人的所有等可能结果,再从中找到恰好抽到2名女生和1名男生的结果数,根据概率公式计算可得.详解:(1)∵所抽取学生的总数为8÷20%=40人,∴该班级等级为A的学生人数为40﹣(25+8+2)=5人,则估计本校初三年级等级为A的学生人数为1000×=125人;(2)设两位满分的男生记为A1、A2、三位满分的女生记为B1、B2、B3,从这5名同学中选3人的所有等可能结果为:(B1,B2,B3)、(A2,B2,B3)、(A2,B1,B3)、(A2,B1,B2)、(A1,B2,B3)、(A1,B1,B3)、(A1,B1,B2)、(A1,A2,B3)、(A1,A2,B2)、(A1,A2,B1),其中恰好有2名女生、1名男生的结果有6种,所以恰好抽到2名女生和1名男生的概率为=.点睛:本题考查了列表法或树状图法求概率以及条形统计图与扇形统计图.用到的知识点为:概率=所求情况数与总情况数之比.21. 如图,矩形的两边、的长分别为3、8,是的中点,反比例函数的图象经过点,与交于点.(1)若点坐标为,求的值及图象经过、两点的一次函数的表达式;(2)若,求反比例函数的表达式.【答案】(1),;(2).【解析】分析:(1)由已知求出A、E的坐标,即可得出m的值和一次函数函数的解析式;(2)由,得到,由,得到.设点坐标为,则点坐标为,代入反比例函数解析式即可得到结论.详解:(1)∵为的中点,∴.∵反比例函数图象过点,∴.设图象经过、两点的一次函数表达式为:,∴,解得,∴.(2)∵,∴.∵,∴,∴.设点坐标为,则点坐标为.∵两点在图象上,∴,解得:,∴,∴,∴.点睛:本题考查了矩形的性质以及反比例函数一次函数的解析式.解题的关键是求出点A、E、F的坐标.22. 如图,中,是上一点,于点,是的中点,于点,与交于点,若,平分,连接,.(1)求证:;(2)小亮同学经过探究发现:.请你帮助小亮同学证明这一结论.(3)若,判定四边形是否为菱形,并说明理由.【答案】(1)证明见解析;(2)证明见解析;(3)四边形是菱形,理由见解析. 【解析】分析:(1)由条件得出∠C=∠DHG=90°,∠CGE=∠GED,由F是AD的中点,FG∥AE,即可得到FG是线段ED的垂直平分线,进而得到GE=GD,∠CGE=∠GDE,利用AAS即可判定△ECG≌△GHD;(2)过点G作GP⊥AB于P,判定△CAG≌△P AG,可得AC=AP,由(1)可得EG=DG,即可得到Rt△ECG≌Rt△GPD,依据EC=PD,即可得出AD=AP+PD=AC+EC;(3)由∠B=30°,可得∠ADE=30°,进而得到AE=AD,故AE=AF=FG,再根据四边形AECF是平行四边形,即可得到四边形AEGF是菱形.详解:(1)∵AF=FG,∴∠F AG=∠FGA.∵AG平分∠CAB,∴∠CAG=∠FGA,∴∠CAG=∠FGA,∴AC∥FG.∵DE⊥AC,∴FG⊥DE.∵FG⊥BC,∴DE∥BC,∴AC⊥BC,∴∠C=∠DHG=90°,∠CGE=∠GED.∵F是AD的中点,FG∥AE,∴H是ED的中点,∴FG是线段ED的垂直平分线,∴GE=GD,∠GDE=∠GED,∴∠CGE=∠GDE,∴△ECG≌△GHD;(2)过点G作GP⊥AB于P,∴GC=GP,而AG=AG,∴△CAG≌△P AG,∴AC=AP,由(1)可得EG=DG,∴Rt△ECG≌Rt△GPD,∴EC=PD,∴AD=AP+PD=AC+EC;(3)四边形AEGF是菱形.证明如下:∵∠B=30°,∴∠ADE=30°,∴AE=AD,∴AE=AF=FG,由(1)得AE∥FG,∴四边形AECF是平行四边形,∴四边形AEGF是菱形.点睛:本题属于四边形综合题,主要考查了菱形的判定、全等三角形的判定和性质,线段垂直平分线的判定与性质以及含30°角的直角三角形的性质的综合运用,利用全等三角形的对应边相等,对应角相等是解决问题的关键.23. 如图,在平面直角坐标系中,二次函数交轴于点、,交轴于点,在轴上有一点,连接.(1)求二次函数的表达式;(2)若点为抛物线在轴负半轴上方的一个动点,求面积的最大值;(3)抛物线对称轴上是否存在点,使为等腰三角形,若存在,请直接写出所有点的坐标,若不存在请说明理由.【答案】(1)二次函数的解析式为;(2)当时,的面积取得最大值;(3)点的坐标为,,.【解析】分析:(1)把已知点坐标代入函数解析式,得出方程组求解即可;(2)根据函数解析式设出点D坐标,过点D作DG⊥x轴,交AE于点F,表示△ADE的面积,运用二次函数分析最值即可;(3)设出点P坐标,分P A=PE,P A=AE,PE=AE三种情况讨论分析即可.详解:(1)∵二次函数y=ax2+bx+c经过点A(﹣4,0)、B(2,0),C(0,6),∴,解得:,所以二次函数的解析式为:y=;(2)由A(﹣4,0),E(0,﹣2),可求AE所在直线解析式为y=,过点D作DN⊥x轴,交AE于点F,交x轴于点G,过点E作EH⊥DF,垂足为H,如图,设D(m,),则点F(m,),∴DF=﹣()=,∴S△ADE=S△ADF+S△EDF=×DF×AG+DF×EH=×DF×AG+×DF×EH=×4×DF=2×()=,∴当m=时,△ADE的面积取得最大值为.(3)y=的对称轴为x=﹣1,设P(﹣1,n),又E(0,﹣2),A(﹣4,0),可求P A=,PE=,AE=,分三种情况讨论:当P A=PE时,=,解得:n=1,此时P(﹣1,1);当P A=AE时,=,解得:n=,此时点P坐标为(﹣1,);当PE=AE时,=,解得:n=﹣2,此时点P坐标为:(﹣1,﹣2).综上所述:P点的坐标为:(﹣1,1),(﹣1,),(﹣1,﹣2).点睛:本题主要考查二次函数的综合问题,会求抛物线解析式,会运用二次函数分析三角形面积的最大值,会分类讨论解决等腰三角形的顶点的存在问题时解决此题的关键.24. 如图,在菱形ABCD中,AC与BD交于点O,E是BD上一点,EF//AB,∠EAB=∠EBA,过点B作DA的垂线,交DA的延长线于点G.(1)∠DEF和∠AEF是否相等?若相等,请证明;若不相等,请说明理由;(2)找出图中与ΔAGB相似的三角形,并证明;(3)BF的延长线交CD的延长线于点H,交AC于点M.求证:BM2=MF⋅MH.【答案】(1),理由见解析;(2),证明见解析;(3)证明见解析.【解析】分析:(1)先判断出∠DEF=∠EBA,∠AEF=∠EAB,即可得出结论;(2)先判断出∠GAB=∠ABE+∠ADB=2∠ABE,进而得出∠GAB=∠AEO,即可得出结论;(3)先判断出BM=DM,∠ADM=∠ABM,进而得出∠ADM=∠H,判断出△MFD∽△MDH,即可得出结论.详解:(1)∠DEF=∠AEF,理由如下:∵EF∥AB,∴∠DEF=∠EBA,∠AEF=∠EAB.∵∠EAB=∠EBA,∴∠DEF=∠AEF;(2)△EOA∽△AGB,理由如下:∵四边形ABCD是菱形,∴AB=AD,AC⊥BD,∴∠GAB=∠ABE+∠ADB=2∠ABE.∵∠AEO=∠ABE+∠BAE=2∠ABE.∵∠GAB=∠AEO,∠GAB=∠AOE=90°,∴△EOA∽△AGB;(3)如图,连接DM.∵四边形ABCD是菱形,由对称性可知,BM=DM,∠ADM=∠ABM.∵AB∥CH,∴∠ABM=∠H,∴∠ADM=∠H.∵∠DMH=∠FMD,∴△MFD∽△MDH,∴,∴DM2=MF•MH,∴BM2=MF•MH.点睛:本题是相似形综合题,主要考查了菱形的性质,对称性,相似三角形的判定和性质,判断出△EOA∽△AGB是解答本题的关键.。

2018年新知杯上海市初中数学竞赛试题及答案

2018年新知杯上海市初中数学竞赛试题及答案

2018年新知杯上海市初中数学竞赛参考解答一、填空题(第1-5小题每题8分,第6-10小题每题10分,共90分) 1、对于任意实数a,b ,定义,a ∗b=a (a +b ) +b, 已知a ∗2.5=28.5,则实数a 的值是 。

【答案】4,132-2、在三角形ABC 中,22b 1,,2a AB BC a CA =-==,其中a,b 是大于1的整数,则b-a= 。

【答案】03、一个平行四边形可以被分成92个边长为1的正三角形,它的周长可能是 。

【答案】50,944、已知关于x 的方程4322(3)(2)20x x k x k x k ++++++=有实根,并且所有实根的乘积为−2,则所有实根的平方和为 。

【答案】55、如图,直角三角形ABC 中, AC=1,BC =2,P 为斜边AB 上一动点。

PE ⊥BC ,PF ⊥CA ,则线段EF 长的最小值为 。

6、设a ,b 是方程26810x x ++=的两个根,c ,d 是方程28610x x -+=的两个根,则(a+ c )( b + c )( a − d )( b − d )的值 。

【答案】2772第五题图BA7在平面直角坐标系中有两点P (-1,1) , Q (2,2),函数y =kx −1 的图像与线段PQ 延长线相交(交点不包括Q ),则实数k 的取值范围是 。

【答案】1332k <<8方程xyz =2018的所有整数解有 组。

【答案】729如图,四边形ABCD 中AB =BC =CD ,∠ABC =78°,∠BCD =162°。

设AD ,BC 延长线交于E ,则∠AEB = 。

【答案】21°10、如图,在直角梯形ABCD 中,∠ABC =∠BCD = 90°,AB =BC =10,点M 在BC 上,使得ΔADM 是正三角形,则ΔABM 与ΔDCM 的面积和是 。

【答案】300-二、(本题15分)如图,ΔABC 中∠ACB =90°,点D 在CA 上,使得CD =1, AD =3,并且∠BDC =3∠BAC ,求BC 的长。

2018年初中数学联赛试题(含答案)

2018年初中数学联赛试题(含答案)

12018年初中数学联赛试题说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试(A)一、选择题:(本题满分42分,每小题7分)1.设二次函数2222a y x ax =++的图象的顶点为A ,与x 轴的交点为B ,C .当△ABC 为等边三角形时,其边长为( )A.6B.22C.23D.322.如图,在矩形ABCD 中,∠BAD 的平分线交BD 于点E ,AB =1,∠CAE =15°,则BE=( )A.33 B.222-1 33.设p ,q 均为大于3的素数,则使p 2+5pq+4q 2为完全平方数的素数对(p ,q )的个2数为( )A.1B.2C.3D.44.若实数a ,b 满足a-b=2,()()22114a b ba-+-=,则a 5-b 5=( )A.46B.64C.82D.1285.对任意的整数x ,y ,定义xy =x +y -xy ,则使得(xy )z +(yz )x +(zx )y =0的整数组(x ,y ,z )的个数为( )A.1B.2C.3D.46.设11112018201920202050M =++++,则1M的整数部分是( ) A.60 B.61 C.62 D.63二、填空题:(本题满分28分,每小题7分)1.如图,在平行四边形ABCD 中,BC =2AB ,CE ⊥AB 于E ,F 为AD 的中点,若∠AEF=48°,则∠B=_______.32.若实数x ,y 满足()3311542x y x y +++=,则x +y 的最大值为_______. 3.没有重复数字且不为5的倍数的五位数的个数为_______.4.已知实数a ,b ,c 满足a +b +c =0,a 2+b 2+c 2=1,则555a b cabc++=_______.第一试(B)一、选择题:(本题满分42分,每小题7分)1.满足(x 2+x-1)x+2的整数x 的个数为( )A.1B.2C.3D.42.已知x 1,x 2,x 3 (x 1<x 2<x 3)为关于x 的方程x 3-3x 2+(a+2)x-a=0的三个实数根,则22211234x x x x -++=( )A.5B.6C.7D.83.已知点E ,F 分别在正方形ABCD 的边CD ,AD 上,CD=4CE ,∠EFB=∠FBC ,则tan ∠AB F =( )4A.12B.35C.2D.24.=的实数根的个数为( )A.0B.1C.2D.35.设a ,b ,c 为三个实数,它们中任何一个数加上其余两数之积的2017倍都等于2018,则这样的三元数组(a ,b ,c )的个数为( )A.4B.5C.6D.76.已知实数a ,b 满足a 3-3a 2+5a=1,b 3-3b 2+5b=5,则a +b =( )A.2B.3C.4D.5二、填空题:(本题满分28分,每小题7分)1.已知p ,q ,r 为素数,且pqr 整除pq +qr +rp -1,则p +q +r =_______.2.已知两个正整数的和比它们的积小1000,若其中较大的数是完全平方数,则较小的数为_______.3.已知D是△ABC内一点,E是AC的中点,AB=6,BC=10,∠BAD=∠BCD,∠EDC=∠ABD,则DE =_______.4.已知二次函数y=x2+2(m+2n+1)x+(m2+4n2+50)的图象在x轴的上方,则满足条件的正整数对(m,n)的个数为_______.第二试(A)一、(本题满分20分)设a,b,c,d为四个不同的实数,若a,b为方程x2-10cx-11d=0的根,c,d为方程x2-10ax-b=0的根,求a+b+c+d的值.二、(本题满分25分)如图,在扇形OAB中,∠AOB=90°,OA=12,点C在OA 上,AC=4,点D为OB的中点,点E为弧AB上的动点,OE与CD的交点为F.56(1)当四边形ODEC 的面积S 最大时,求EF ; (2)求CE +2DE 的最小值.三、(本题满分25分)求所有的正整数m ,n ,使得()33222m n m n m n +-+是非负整数.第二试(B )一、(本题满分20分)若实数a ,b ,c 满足(a+b+c)11195555a b c b c a c a b ⎛⎫++= ⎪+-+-+-⎝⎭,求(a+b+c)111a b c ⎛⎫++ ⎪⎝⎭的值.二、(本题满分25分)如图,点E在四边形ABCD的边AB上,△ABC和△CDE都是等腰直角三角形,AB=AC,DE=DC.. (1)证明:ADBC;(2)设AC与DE交于点P,如果∠ACE=30°,求DPPE三、(本题满分25分)设x是一个四位数,x的各位数字之和为m,x+1的各位数字之和为n,并且m与n的最大公约数是一个大于2的素数.求x.7。

2018年“大梦杯”福建省初中数学竞赛试题(学生版)

2018年“大梦杯”福建省初中数学竞赛试题(学生版)

2018年“大梦杯”福建省初中数学竞赛试题考试时间2018年3月18日9∶00-11∶00满分150分一、选择题(共5小题,每小题7分,共35分)。

每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的。

请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)1.若关于x 的方程244310x mx m +--=有两个相等的实数根,则32442m m m ++-的值为()A .3-B .2-C .1-D .12.如图,ABCD 、DEFG 都是正方形,边长分别为m 、n(m n <)。

坐标原点O 为AD 的中点,A 、D 、E 在y 轴上。

若二次函数2y ax =的图像过C 、F 两点,则n m =()A .31+B .21+C .231-D .221-3.如图,G 为ABC △的重心,点D 在CB 延长线上,且12BD BC =,过D 、G 的直线交AC 于点E ,则AE AC =()A .25B .35C .37D .474.如图,H 、O 分别为ABC △的垂心、外心,45BAC ∠=︒,若ABC △外接圆的半径为2,则AH =()A .23B .22C .4D .31+5.满足方程22419151x xy y -+=的整数对()x y ,有()A .0对B .2对C .4对D .6对二、填空题(共5小题,每小题7分,共35分)6.已知a ,b ,c 为正整数,且a b c >>。

若b c +,a c +,a b +是三个连续正整数的平方,则222a b c ++的最小值为。

7.如图,ABCD 为矩形,E 为对角线AC 的中点,A 、B 在x 轴上。

若函数4y x=(0x >)的图像过D 、E 两点,则矩形ABCD 的面积为。

8.如图,ABC △是边长为8的正三角形,D 为AB 边上一点,1O ⊙为ACD △的内切圆,2O ⊙为CDB △的边DB 上的旁切圆。

2018年全国初中数学竞赛复赛试题(广西赛区)

2018年全国初中数学竞赛复赛试题(广西赛区)

2018年全国初中数学竞赛复赛试题(广西赛区)(全卷满分120分,考试时间120分钟)一、填空题:(每题6分,共30分)1、如果有理数a 、b 、c 、d 使得1abcd abcd =-,则a b cd a b c d+++的最大值是____。

2、已知一个菱形的一条对角线的长是另一条对角线的长的两倍,如果这个菱形的面积是S ,则这个菱形的边长为______。

3、二次函数y =ax 2+bx +c 的图象如图所示,则化简4、在一个圆形时钟的表面,OA 表示秒针,OB 表示分针(O 为两 针的旋转中心),若现在时间恰好是12点整,则经过_____秒钟后,第一次出现OA 垂直OB 。

5.有一副扑克牌,它的排列顺序是:第一张是大王,第二张是小王,然后是黑桃、红桃、方块、梅花四种花色排列,每种花色又按A 、2、3、……、J 、Q 、K 的顺序排列。

某人从上到下把第一张丢掉,把第二张放到最底层,再第三张丢掉,第四张放到最底层,……如此下去,直到最后只剩下一张牌,则这张牌是___。

二、单选题:(每题6分,共30分)6、如图,有一块矩形纸片ABCD ,AB =8,AD =6,将纸片折叠,使得AD 落在AB 边上,折痕为AE ,再将△ADE 沿DE 向右翻折,AE 与BC 交于F ,则△CEF 的面积为( ) C C E E D C(A )2 (B )4 (C )6 (D )87、若M =(2x 2-8xy +8y 2)+x 2-4x +y 2+6y +13(x ,y 是实数),则M 的值一定是( )(A )正数 (B )负数 (C )零 (D )整数8、已知点I 是锐角△ABC 的内心,A 1、B 1、C 1分别是点I 关于边BC 、CA 、AB 的对称点,若点B 在△A 1B 1C 1的外接圆上,则∠ABC 等于( )(A )30° (B )45° (C )60° (D )90°9、设2221114834441004A ⎛⎫=⨯+++ ⎪---⎝⎭ ,利用等式()211114224n n n =--+- O -1-1(n≥3),则与A最接近的正整数是()(A)18(B)20(C)24(D)2510、设a,b是正整数,且满足56≤a+b≤59,0.9<ab<0.91,则b2-a2等于()(A)171 (B)177 (C)180 (D)182三、解答题:(每20分,共60分,要求写出解题的主要步骤)11、某商店出售铅笔,每支售价为0.20元,一打(12支)售价为2.00元,如果一次买10打以上,可按每打1.80元付款。

2018年太原市初中数学竞赛试题(含答案)

2018年太原市初中数学竞赛试题(含答案)

2018年太原市初中数学竞赛一、选择题(每小题7分,共42分)1.若x+y=1,x3+y3=13,则x5+y5的值是().(A)11311131 ()()() 8181243243B C D2.已知(x>0),则222241629x xy yx xy y+-+-的值是().(A)241616 ()()() 392527B C D3.在凸多边形中,四边形有两条对角线,五边形有5条对角线.观察探索凸十边形有()条对角线.(A)29 (B)32 (C)35 (D)384.已知△ABC中,AD=8,则△ABC外接圆的半径为().(A)8 (B)9 (C)10 (D)125.若一个正整数能表示为两个正整数的平方差,则称这个正整数为“智慧数”(如3=22-12,16=52-32).已知智慧数按从小到大顺序构成如下数列:3,5,7,8,9,11,12,13,15,16,17,19,20,21,23,24,25,….则第2 006年智慧数是()(A)2 672 (B)2 675 (C)2 677 (D)2 6806.图1是山西省某古宅大院窗棂图案:图形构成10×21的长方形,•空格与实木的宽度均为1,那么,这种窗户的透光率(即空格面积与全部面积之比)是().(A)25(B)345()()7911C D二、填空题(每小题7分,共42分)1.如图2,已知正方形ABCD 的顶点坐标为A (1,1),B (3,1),C (3,3),D (1,3),直线y=2x+b 交AB 于点E ,交CD 于点F .则直线在y 轴上的截距b 的变化范围是_______. 2.一次函数y=ax+b•的图像L 1关于直线y=•-•x•轴对称的图像L 2的函数解析式是____________. 3.不论m 取任何实数,抛物线y=x 2+2mx+m 2+m-1的顶点都在一条直线上,则这条直线的函数解析式是_______. 4.当a<0时,方程x │x │+│x │-x-a=0的解为__________.5.某广场地面铺满了边长为36cm 的正六边形地砖.现在向上抛掷半径为的圆碟,圆碟落地后与地砖间的间隙不相交的概率大约是________.6.将红、白、黄三种小球,装入红、白、黄三个盒子中,•每个盒子中装有相同颜色的小球.已知:(1)黄盒中的小球比黄球多; (2)红盒中的小球与白球不一样多; (3)白球比白盒中的球少.则红、白、黄三个盒子中装有小球的颜色依次是________.三、(16分)将一个三位数abc 的中间数码去掉,成为一个两个数ac ,且满足abc =9ac +4c (•如155=9×15+4×5).试求出所有这样的三位数.四、(16分)已知二次函数y=a x2+4ax+4a-1的图像是C1.(1)求C1关于点R(1,0)中心对称的图像C2的函数解析式;(2)设曲线C1、C2与y轴的交点分别为A、B,当│AB│=18时,求a的值.五、(17分)求方程2x2+5xy+2y2=2 006的所有正整数解.六、(17分)如图3,已知AB为⊙O的弦,M为AB的中点,P为⊙O上任意一点,以点P 为圆心、2MO为半径作圆并交⊙O于点C、D,AC、BD交于点Q,请问:(1)点Q是△PAB的什么“心”?(2)点Q是否在⊙P上?试证明你的结论.提示:(1)三角形的三条高线交于一点,称为垂心定理,此点称为垂心.(2)三角形有内心、外心、重心、垂心等.参考答案一、1.A.由x3+y3=(x+y)(x2-xy+y2)=13,x+y=1,有x2-xy+y2=13.又因x2+2xy+y2=1,则3xy=23,xy=29.由21,,321,.93x y xxyy⎧+==⎧⎪⎪⎪⎨⎨=⎪⎪=⎩⎪⎩解得故x5+y5=321331124324324381+==.2.D由原方程得2(xy)-2=0.=t,则方程变形为2t2-3t-2=0,即(2t+1)(t-2)=0.解得t1=2,t2=-12(舍去),故xy=4.将x=4y代入分式,得222241629x xy yx xy y+-+-=22(161616)16(3249)27yy+-=+-.3.C 画图观察探索知多边形:四五六七八九十对角线条数: 2 5 9 14 20 27 35规律是: 2+3 5+4 9+5 14+6 20+7 27+8 4.D如图,延长AD交外接圆于点E,则AE为直径.联结BE,知△ABE•为直角三角形,•有AB2=AD·AE.因此,半径为12.5.C观察探索规律,知全部智慧数从小到大可按每三个数分一组,从第2•组开始每组的第一个数都是4的倍数.归纳可得第n组的第一个数为4n(n≥2).因2 006=3×668+2,所以,第2 006个智慧数是第669组中的第2•个数,•即为4•×669+1=2 677.6.B观察图1的结构规律,知长方形面积为10×21=210,空格图形面积为2(9+8+7+6+5+4+3+2+1)=90.则透光率=903 2107=.二、1.-3≤b≤-1.由直线y=2x+b随b的数值不同而平行移动,知当直线通过点A时,得b=-1;• 当直线通过点C时,得b=-3.故-3≤b≤-1.2.y=1ax+ba.直线y=ax+b与x轴、y轴的交点分别为A1(-ba,0),B(0,b),则点A1、B2关于直线y=-x•轴对称的点为A2(0,ba),B2(-b,0),利用待定系数法或斜率、截距关系知,过点A2、B2的直线为y=1ax+ba.故一次函数y=ax+b的图像关于直线y=-x轴对称的图像的函数解析式为y=1ax+ba.3.y=-x-1.将二次函数变形为y=(x+m)2+m-1,知抛物线的顶点坐标为,1. x my m=-⎧⎨=-⎩.消去m,得x+y=-1.4.当a<0时,若x≥0,方程为x2-a=0,得x2=a<0,无解;若x<0,方程为-x2-2x-a=0,即 x2+2x+a=0.此时,△=4-4a>0.解得=-15.49欲使圆碟不压地砖间的间隙,则圆碟的圆心必须落在与地砖同中心、•且边与地砖边彼此平行、距离为的小正六边形内(如图).作OC1⊥A1A2,且C1C2.因A1A2=A2O=36,A2C1=18,所以,C12则C2O=C1O-C1C2=又因C22O,所以,B22.而B1B2=B2O,则小正六边形的边长为24cm.故所求概率为P=221222122436B BA A==小正六边形的面积正六边形地砖面积=49.6.黄、红、白.由条件(2)知红盒不装白球,由条件(3)知白盒不装白球,故黄盒装白球.假设白盒装黄球,由条件(3)知白球比黄球少,这与条件(1)矛盾,故白盒装红球,红盒装黄球.三、因abc=100a+10b+c=,ac=10a+c,由题意得100a+10b+c=9(10a+c)+4c.化简得5(a+b )=6c . 这里0≤a 、b 、c ≤9,且a ≠0. 因为5是质数,所以,5,1,2,3,4,5,6,6.5,4,3,2,1,0.c a a b b ==⎧⎧⎨⎨+==⎩⎩故 则abc =155,245,335,425,515,605.四、(1)由y=a (x+2)2-1,可知抛物C 1的顶点为M (-2,-1).由图知点M (-2,-1)关于点R (1,0)中心对称的点为N (4,1),以N (4,1)为顶点,与抛物线C 1关于点R (1,0)中心对称的图像C 2也是抛物线,且C 1与C 2的开口方向相反,故抛物线C 2的函数解析式为y=-a (x-4)2+1,即y=-a x 2+8ax-16a+1.(2)令x=0,得抛物线C 1、C 2与y 轴的交点A 、B 的纵坐标分别为4a-1和-16a+1,故│AB │=│(4a-1)-(-16a+1)│=│20a-2│. 注意到│20a-2│=18.当a ≥110时,有20a-2=18,得a=1; 当a<110时,有2-20a=18,得a=-45.五、方程两端分解因式得(2x+y )(x+2y )=2×17×59. 不妨先设x ≥y ≥1,则有 ① 2x+y ≥x+2y>x+y>1. 由此,只有三种情况: 259,2118,21003,234,217,2 2.x y x y x y x y x y x y +=+=+=⎧⎧⎧⎨⎨⎨+=+=+=⎩⎩⎩或或 由式②、③得x+y=31. 再由31,28259,3;x y x x y y +==⎧⎧⎨⎨+==⎩⎩解得由式④、⑤得x+y=45,与式①矛盾;由式⑥、⑦得x+y=335,与式①矛盾.故原方程的正整数解为2833;28. x xy y==⎧⎧⎨⎨==⎩⎩.六、分析:当点P在弦AB的垂直平分线MO上时,点Q也在直线MO上,此时,PQ⊥AB,•故考虑Q为△PAB的垂心.(1)如图,作⊙O的直径BE,联结PD、DE、EA.因为∠BAE=90°,所以,AE∥MO.因M为AB中点,则AE=2MO.于是,有AE=PD.故四边形APDE为等腰梯形,DE∥PA.又因为∠BDE=90°,BD⊥DE,所以,BD⊥PA,即点Q在△PAB的顶点B到底边PA•的垂线上.联结PE、PC.因AE=PC=2MO,则四边形ACPE也为等腰梯形,所以,PE∥AC.又∠BPE=90°,PE⊥PB,则AC⊥PB,即点Q在△PAB的顶点A到底边PB的垂线上.因Q是△PAB两条高的交点,故Q为△PAB的垂心.(2)联结PQ.根据垂心定理知PQ⊥AB,但AE⊥AB,则PQ∥AE.又因PE∥AC,即有PE∥AQ,则四边形AQPE为平行四边形.所以,PQ=AE=PC=2MO.故点Q在⊙P上.。

初中数学竞赛“《数学周报》杯”2018年全国初中数学竞赛试题(含答案)

初中数学竞赛“《数学周报》杯”2018年全国初中数学竞赛试题(含答案)

初中数学竞赛“《数学周报》杯”2018年全国初中数学竞赛试题(含答案)中国教育学会中学数学教学专业委员会“《数学周报》杯”2018年全国初中数学竞赛试题参考答案答题时注意:1.⽤圆珠笔或钢笔作答.2.解答书写时不要超过装订线. 3.草稿纸不上交.⼀、选择题(共5⼩题,每⼩题6分,满分30分. 以下每道⼩题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有⼀个选项是正确的. 请将正确选项的代号填⼊题后的括号⾥. 不填、多填或错填都得0分)1.已知实数x y ,满⾜ 42424233y y x x -=+=,,则444y x+的值为().(A )7 (B )(C )(D )5 【答】(A )解:因为20x >,2y ≥0,由已知条件得212184x +==, 21122y --+==,所以444y x +=22233y x++- 2226y x=-+=7. 2.把⼀枚六个⾯编号分别为1,2,3,4,5,6的质地均匀的正⽅体骰⼦先后投掷2次,若两个正⾯朝上的编号分别为m ,n ,则⼆次函数2y x mx n =++的图象与x 轴有两个不同交点的概率是().(A )512 (B )49 (C )1736 (D )12(第3题)【答】(C )解:基本事件总数有6×6=36,即可以得到36个⼆次函数. 由题意知=24m n ->0,即2m >4n .通过枚举知,满⾜条件的m n ,有17对. 故1736P =.3.有两个同⼼圆,⼤圆周上有4个不同的点,⼩圆周上有2个不同的点,则这6个点可以确定的不同直线最少有( ).(A )6条(B ) 8条(C )10条(D )12条【答】(B )解:如图,⼤圆周上有4个不同的点A ,B ,C ,D ,两两连线可以确定6条不同的直线;⼩圆周上的两个点E ,F 中,⾄少有⼀个不是四边形ABCD 的对⾓线AC 与BD 的交点,则它与A ,B ,C ,D 的连线中,⾄少有两条不同于A ,B ,C ,D 的两两连线.从⽽这6个点可以确定的直线不少于8条.当这6个点如图所⽰放置时,恰好可以确定8条直线.所以,满⾜条件的6个点可以确定的直线最少有8条.4.已知AB 是半径为1的圆O 的⼀条弦,且1AB a =<.以AB 为⼀边在圆O 内作正△ABC ,点D 为圆O 上不同于点A 的⼀点,且DB AB a ==,DC 的延长线交圆O 于点E ,则AE 的长为().(A(B )1 (C(D )a 【答】(B )解:如图,连接OE ,OA ,OB .设D α∠=,则120ECA EAC α∠=?-=∠.⼜因为()1160180222ABO ABD α∠=∠=?+?- 120α=?-,所以ACE △≌ABO △,于是1AE OA ==.(第4题)5.将1,2,3,4,5这五个数字排成⼀排,最后⼀个数是奇数,且使得其中任意连续三个数之和都能被这三个数中的第⼀个数整除,那么满⾜要求的排法有().(A )2种(B )3种(C )4种(D )5种【答】(D )解:设12345a a a a a ,,,,是1,2,3,4,5的⼀个满⾜要求的排列.⾸先,对于1234a a a a ,,,,不能有连续的两个都是偶数,否则,这两个之后都是偶数,与已知条件⽭盾.⼜如果i a (1≤i ≤3)是偶数,1i a +是奇数,则2i a +是奇数,这说明⼀个偶数后⾯⼀定要接两个或两个以上的奇数,除⾮接的这个奇数是最后⼀个数.所以12345a a a a a ,,,,只能是:偶,奇,奇,偶,奇,有如下5种情形满⾜条件:2,1,3,4,5; 2,3,5,4,1; 2,5,1,4,3; 4,3,1,2,5; 4,5,3,2,1.⼆、填空题(共5⼩题,每⼩题6分,满分30分)6.对于实数u ,v ,定义⼀种运算“*”为:u v uv v *=+.若关于x 的⽅程1()4x a x **=-有两个不同的实数根,则满⾜条件的实数a 的取值范围是.【答】0a >,或1a <-.解:由1()4x a x **=-,得21(1)(1)04a x a x ++++=,依题意有 210(1)(1)0a a a +≠=+-+>?,,解得,0a >,或1a <-.7.⼩王沿街匀速⾏⾛,发现每隔6分钟从背后驶过⼀辆18路公交车,每隔3分钟从迎⾯驶来⼀辆18路公交车.假设每辆18路公交车⾏驶速度相同,⽽且18路公交车总站每隔固定时间发⼀辆车,那么发车间隔的时间是分钟.【答】4.解:设18路公交车的速度是x ⽶/分,⼩王⾏⾛的速度是y ⽶/分,同向⾏驶的相邻两车的间距为s ⽶.每隔6分钟从背后开过⼀辆18路公交车,则s y x =-66.①每隔3分钟从迎⾯驶来⼀辆18路公交车,则s y x =+33.②由①,②可得 x s 4=,所以4=xs.即18路公交车总站发车间隔的时间是4分钟.8.如图,在△ABC 中,AB =7,AC =11,点M 是BC 的中点, AD 是∠BAC 的平分线,MF ∥AD ,则FC 的长为.【答】9.解:如图,设点N 是AC 的中点,连接MN ,则MN ∥AB .⼜//MF AD ,所以 FMN BAD DAC MFN ∠=∠=∠=∠,所以 12FN MN AB ==.因此 1122FC FN NC AB AC =+=+=9.9.△ABC 中,AB =7,BC =8,CA =9,过△ABC 的内切圆圆⼼I 作DE ∥BC ,分别与AB ,AC 相交于点D ,E ,则DE 的长为.【答】163.解:如图,设△ABC 的三边长为a ,b ,c ,内切圆I 的半径为r ,BC 边上的(第8题)(第8题答案)⾼为a h ,则11()22a ABC ah S abc r ==++△,所以a r ah a b c=++.因为△ADE ∽△ABC ,所以它们对应线段成⽐例,因此a a h r DEh BC-=,所以 (1)(1)a a a h r r aDE a a a h h a b c-=?=-=-++ ()a b c a b c +=++,故 879168793DE ?+==++().10.关于x ,y 的⽅程22208()x y x y +=-的所有正整数解为.【答】481603232.x x y y ====??,,,解:因为208是4的倍数,偶数的平⽅数除以4所得的余数为0,奇数的平⽅数除以4所得的余数为1,所以x ,y 都是偶数.设2,2x a y b ==,则22104()a b a b +=-,同上可知,a ,b 都是偶数.设2,2a c b d ==,则2252()c d c d +=-,所以,c ,d 都是偶数.设2,2c s d t ==,则2226()s t s t +=-,于是 22(13)(13)s t -++=2213?,(第9题答案)其中s ,t 都是偶数.所以222(13)213(13)s t -=?-+≤2222131511?-<.所以13s -可能为1,3,5,7,9,进⽽2(13)t +为337,329,313,289,257,故只能是2(13)t +=289,从⽽13s -=7.于是62044s s t t ====??,,;,因此 481603232.x x y y ====??,,,三、解答题(共4题,每题15分,满分60分)11.在直⾓坐标系xOy 中,⼀次函数b kx y +=0k ≠()的图象与x 轴、y 轴的正半轴分别交于A ,B 两点,且使得△OAB 的⾯积值等于3OA OB ++.(1)⽤b 表⽰k ;(2)求△OAB ⾯积的最⼩值.解:(1)令0=x ,得0y b b =>,;令0=y ,得00bx k k=-><,.所以A ,B 两点的坐标分别为0)(0)b AB b k -(,,,,于是,△OAB 的⾯积为 )(21kbb S -?=.由题意,有3)(21++-=-?b kbk b b ,解得 )3(222+-=b b b k ,2b >.……………… 5分(2)由(1)知21(3)(2)7(2)10()222b b b b b S b k b b +-+-+=?-==--21027)72b b =-++=++-≥1027+,当且仅当1022b b -=-时,有S =102+=b ,1-=k 时,不等式中的等号成⽴.所以,△OAB ⾯积的最⼩值为1027+. ……………… 15分12.是否存在质数p ,q ,使得关于x 的⼀元⼆次⽅程20px qx p -+=有有理数根?解:设⽅程有有理数根,则判别式为平⽅数.令2224q p n ?=-=,其中n 是⼀个⾮负整数.则2()()4q n q n p -+=.……………… 5分由于1≤q n -≤q +n ,且q n -与q n +同奇偶,故同为偶数.因此,有如下⼏种可能情形:222q n q n p -=??+=?,, 24q n q n p -=??+=?,, 4q n p q n p -=??+=?,, 22q n p q n p -=??+=?,, 24.q n p q n ?-=?+=?,消去n ,解得22251222222p p p q p q q q p q =+=+===+,,,,.……………… 10分对于第1,3种情形,2p =,从⽽q =5;对于第2,5种情形,2p =,从⽽q =4(不合题意,舍去);对于第4种情形,q 是合数(不合题意,舍去).⼜当2p =,q =5时,⽅程为22520x x -+=,它的根为12122x x ==,,它们都是有理数.综上所述,存在满⾜题设的质数. ……………… 15分13.如图,△ABC 的三边长B C aC Ab A ===,,,a b c ,,都是整数,且a b ,的最⼤公约数为2.点G 和点I 分别为△ABC 的重⼼和内⼼,且90GIC ∠=?.求△ABC 的周长.解:如图,延长GI ,与边BC CA ,分别交于点P Q ,.设重⼼G 在边BC CA ,上的投影分别为E F ,,△ABC 的内切圆的半径为r ,BC CA ,边上的⾼的长分别为a b h h ,,易知CP =CQ ,由PQC GPC GQC S S S =+△△△,可得 ()123a b r GE GF h h =+=+,即 222123A B C A B C A B CS S Sa b c a b=?+ ?++??△△△,从⽽可得 6aba b c a b++=+. ……………… 10分因为△ABC 的重⼼G 和内⼼I 不重合,所以,△ABC 不是正三⾓形,且b a ≠,否则,2a b ==,可得2c =,⽭盾.不妨假设a b >,由于()2a b =,,设()1111221a a b b a b ===,,,,于是有1111126a b ab a b a b =++为整数,所以有11()12a b +,即()24a b +.于是只有1410a b ==,时,可得11c =,满⾜条件.因此有35a b c ++=.所以,△ABC 的周长为35.……………… 15分(第13题)(第13题答案)。

2018年全国初中数学联赛(初三组)初赛试卷含答案

2018年全国初中数学联赛(初三组)初赛试卷含答案

2018年全国初中数学联赛(初三组)初赛试卷含答案2018年全国初中数学联赛(初三组)初赛试卷(考试时间:2018年3月14日下午3:00—5:00)一、选择题(本题满分42分,每小题7分)1、已知实数$a$、$b$满足$|a-3|+|b-2|+1-a+a=3$,则$a+b$等于()A、$-1$B、$2$C、$3$D、$5$2、如图,点$D$、$E$分别在$\triangle ABC$的边$AB$、$AC$上,$BE$、$CD$相交于点$F$,设四边形$EADF$、$\triangle BDF$、$\triangle BCF$、$\triangle CEF$的面积分别为$S_1$、$S_2$、$S_3$、$S_4$,则$\frac{S_1S_3}{S_2S_4}$的大小关系为()A、$S_1S_3>S_2S_4$B、$S_1S_3=S_2S_4$C、$S_1S_3<S_2S_4$ D、不能确定3、对于任意实数$a$,$b$,$c$,$d$,有序实数对$(a,b)$与$(c,d)$之间的运算“$\ast$”定义为:$(a,b)\ast(c,d)=(ac-bd,ad+bc)$。

如果对于任意实数$m$,$n$都有$(m,n)\ast(x,y)=(n,-m)$,那么$(x,y)$为()A、$(1,-1)$B、$(-1,1)$C、$(1,1)$D、$(-1,-1)$4、如图,已知三个等圆$\odot O_1$、$\odot O_2$、$\odot O_3$有公共点$O$,点$A$、$B$、$C$是这些圆的交点,则点$O$一定是$\triangle ABC$的()A、外心B、重心C、内心D、垂心5、已知关于$x$的方程$(x-2)^2-4|x-2|-k=0$有四个根,则$k$的范围为()A、$-1<k<\pi$B、$-\pi<k<\pi$C、$-\frac{\pi}{4}<k<\frac{\pi}{4}$ D、不能确定6、设在一个宽度为$w$的小巷内搭梯子,梯子的脚位于$P$点,小巷两边的墙体垂直于水平的地面。

2018八年级数学竞赛试题(含答案)

2018八年级数学竞赛试题(含答案)

八年级数学竞赛试卷考试时间:100分钟 总分:150分姓名: 班级: 得分:一、选择题(每题5分,共50分)1、下列各式成立的是( )A .a-b+c=a-(b+c )B .a+b-c=a-(b-c )C .a-b-c=a-(b+c )D .a-b+c-d=(a+c )-(b-d )2、已知一次函数y=kx+b 的图象(如图6),当y <0时,x 的取值范围是((A )x >0(B )x <0 (C )x <1 (D )x >1 3、在△ABC 中,∠B =∠C ,与△ABC 全等的三角形有一个角是100100°角对应相等的角是 ( )A.∠AB.∠BC.∠CD.∠B 或∠C4、某校八(2)班的全体同学喜欢的球类运动用图7所示的扇形统计图来表示,下面说法正确的是( )A 、从图中可以直接看出喜欢各种球类的具体人数;B 、从图中可以直接看出全班的总人数;C 、从图中可以直接看出全班同学初中三年来喜欢各种球类的变化情况;D 、从图中可以直接看出全班同学现在喜欢各种球类的人数的大小关系5、已知一次函数y=mx+│m+1│的图像与y 轴交于点(0,3),且y 随x 的增大而减小,则m 的值为( ).A .2B .-4C .-2或-4D .2或-46、设y=ax 15+bx 13+cx 11-5(a 、b 、c 为常数),已知当x=7时,y=7,则x= -7时,y 的值等于( )A 、-7B 、-17C 、17D 、不确定7、已知b>a>0,a 2+b 2=4ab ,则ba b a -+等于( ). A .-21B . 3C .2D .-38、将一个正方形分割成n 个小正方形(n>1),则n 不可能取( ).A .4B .5C .8D .99、若x 取整数,则使分式1-2x 36x +的值为整数的x 值有( ). (A)3个 (B)4个 (C)6个 (D)8个10、已知1x ,2x ,3x 的平均数为5,1y ,2y ,3y 的平均数为7,则1123x y +,2223x y +,3323x y +的平均数为( )(A)31 (B)313 (C)935 (D)17二、填空题(每题8分,共40分)11、点O 为线段 A B 上一点, ∠AOC = 10︒ , ∠COD = 50︒ ,则 ∠BOD = 或A O B12、已知 m >0 ,且对任意整数 k ,2018123k m+均为整数,则 m 的最大值为 . 13、已知某三角形的三条高线长 a ,b ,c 为互不相等的整数,则 a + b + c 的最小值 为 .14、如果用四则运算的加、减、除法定义一种新的运算,对于任意实数x 、y 有则=15、如图5所示,圆的周长为4个单位长度,在圆的4等分点处标上0,1,2,3.先让圆周上数字0所对应的数与数轴上的数-1所对应的点重合,再让数轴按逆时针方向绕在该圆上,那么数轴上的数-2007将与圆周上的数字_________重合.二、简答题(每题20分,共60分) 16、现有两种理财方式供王老师选择.方案一:购买一款分红产品,前三年每年 年初交 10 万元,第 6 年年初返 6 万元,以后每年处返1.5 万元;方案二:购 买一款年利率 5%,满一年计息的储蓄产品,第一年初存款10 万元,接下来 两年每年年初追加本金 10 万元,并将之前的本息全部续存.请问哪个选择更划算?请说明理由.(参考数据:1.054 + 1.053 + 1.052 =3.47563125 )y x yx y x -+=*()()31*191211**017、一筐苹果,若分给全班同学每人3个,则还剩下25 个;若全班同学一起吃,其中5个同学每人每天吃1个,其他同学每人每天吃2个,则恰好用若干天吃完.问筐里最多共有多少个苹果?18、如图所示,有一张长为3、宽为1的长方形纸片,现要在这张纸片上画两个小长方形,使小长方形的每条边都与大长方形的一边平行,并且每个小长方形的长与宽之比也都为3:1,然后把它们剪下,这时,所剪得的两张小长方形纸片的周长之和有最大值.求这个最大值.八年级答案:一、C CADB BDBBA二、11、120度或者140度12、2/3 13、9 14、163/113 15、2 三、1617、18、。

2018年江苏省徐州市中考数学试题及参考答案案

2018年江苏省徐州市中考数学试题及参考答案案

徐州市2018年初中学业水平考试数学试题一、选择题(本大题共有8小题,每小题3分,共24分,在每小题所给出的四个选项中,恰有一项是符合题目要求的)1.(2018江苏徐州中考,1,3分,★☆☆)4的相反数是()A.14B.-14C.4 D.-42.(2018江苏徐州中考,2,3分,★☆☆)下列计算正确的是()A.2a2-a2=1 B.(ab)2=ab2C.a2+a3=a5D.(a2)3=a63.(2018江苏徐州中考,3,3分,★☆☆)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.(2018江苏徐州中考,4,3分,★☆☆)如图是由5个相同的正方体搭成的几何体,其左视图是()A.B.C.D.5.(2018江苏徐州中考,5,3分,★☆☆)抛掷一枚质地均匀的硬币,若前3次都是正面朝上,则第4次正面朝上的概率()A.小于12B.等于12C.大于12D.无法确定6.(2018江苏徐州中考,6,3分,★★☆)某市从不同学校随机抽取100名初中生,对“学校统一使用数学教辅用书的册数”进行调查,统计结果如下:册数0 1 2 3人数13 35 29 23关于这组数据,下列说法正确的是()A.众数是2册B.中位数是2册C.极差是2册D.平均数是2册7.(2018江苏徐州中考,7,3分,★★☆)如图,在平面直角坐标系中,函数y=kx与y=-2x的图像交于A,B两点,过A作y轴的垂线,交函数y=4x的图像于点C,连接BC,则△ABC的面积为()A.2 B.4 C.6 D.88.(2018江苏徐州中考,8,3分)若函数y=kx+b的图像如图所示,则关于x的不等式kx+2b <0的解集为()A.x<3 B.x>3 C.x<6 D.x>6二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程)9.(2018江苏徐州中考,9,3分,★☆☆)五边形的内角和是__________°.10.(2018江苏徐州中考,10,3分,★☆☆)我国自主研发的某型号手机处理器采用10nm 工艺,已知1nm=0.000 000 001m,则10nm用科学记数法可表示为____________m.11.(2018江苏徐州中考,11,3分,★☆☆)化简:32|=__________.12.(2018江苏徐州中考,12,32x-x的取值范围是___________.13.(2018江苏徐州中考,13,3分,★★☆)若2m+n=4,则代数式6-2m-n的值为_________.14.(2018江苏徐州中考,14,3分,★☆☆)若菱形两条对角线的长分别是6cm和8cm,则其面积为___________cm2.15.(2018江苏徐州中考,15,3分,★★☆)如图,Rt△ABC中,∠ABC=90°,D为AC 的中点,若∠C=55°,则∠ABD=__________°.16.(2018江苏徐州中考,16,3分,★★☆)如图,扇形的半径为6,圆心角θ为120°,用这个扇形围成一个圆锥的侧面,所得圆锥的底面半径为__________.17.(2018江苏徐州中考,17,3分,★★★)如图,每个图案均由边长相等的黑、白两色正方形按规律拼接而成,照此规律,第n个图案中白色正方形比黑色正方形多___________个.(用含n的代数式表示)18.(2018江苏徐州中考,18,3分,★★★)如图,AB为⊙O的直径,AB=4,C为半圆AB的中点,P为AC上一动点,延长BP至点Q,使BP•BQ=AB2.若点P由A运动到C,则点Q运动的路径长为___________.三、解答题(本大题共有10小题,共86分.解答时应写出文字说明、证明过程或演算步骤)19.(2018江苏徐州中考,19,10分,★★☆)计算:(1)-12+20180-(12)-138;(2)22a ba b--÷22a ba b+-.20.(2018江苏徐州中考,20,10分,★★☆)(1)解方程:2x2-x-1=0;(2)解不等式组:428,11.36x xx x-⎧⎪-+⎨≤⎪⎩>21.(2018江苏徐州中考,21,7分,★★☆)不透明的袋中装有1个红球与2个白球,这些球除颜色外都相同,将其搅匀.(1)从中摸出1个球,恰为红球的概率等于_________;(2)从中同时摸出2个球,摸到红球的概率是多少?(用画树状图或列表的方法写出分析过程)22.(2018江苏徐州中考,22,7分,★★☆)在“书香校园”活动中,某校为了解学生家庭藏书情况,随机抽取本校部分学生进行调查,并绘制成部分统计图表如下:家庭藏书情况统计表A 0≤m≤2520B 26≤m≤100 aC 101≤m≤20050D m≥20166根据以上信息,解答下列问题:(1)该调查的样本容量为_________,a=__________;(2)在扇形统计图中,“A”对应扇形的圆心角为_________°;(3)若该校有2000名学生,请估计全校学生中家庭藏书200本以上的人数.23.(2018江苏徐州中考,23,8分,★★☆)如图,在矩形ABCD中,AD=4,点E在边AD上,连接CE,以CE为边向右上方作正方形CEFG,作FH⊥AD,垂足为H,连接AF.(1)求证:FH=ED;(2)当AE为何值时,△AEF的面积最大?24.(2018江苏徐州中考,24,8分,★★☆)徐州至北京的高铁里程约为700km,甲、乙两人从徐州出发,分别乘坐“徐州号”高铁A与“复兴号”高铁B前往北京.已知A 车的平均速度比B车的平均速度慢80km/h,A车的行驶时间比B车的行驶时间多40%,两车的行驶时间分别为多少?25.(2018江苏徐州中考,25,8分,★★☆)如图,AB为⊙O的直径,点C在⊙O外,∠ABC的平分线与⊙O交于点D,∠C=90°.(1)CD与⊙O有怎样的位置关系?请说明理由;(2)若∠CDB=60°,AB=6,求AD的长.26.(2018江苏徐州中考,26,8分,★★☆)如图,1号楼在2号楼的南侧,两楼高度均为90m,楼间距为AB.冬至日正午,太阳光线与水平面所成的角为32.3°,1号楼在2号楼墙面上的影高为CA;春分日正午,太阳光线与水平面所成的角为55.7°,1号楼在2号楼墙面上的影高为DA.已知CD=42m.(1)求楼间距AB;(2)若2号楼共30层,层高均为3m,则点C位于第几层?(参考数据:sin32.3°≈0.53,cos32.3°≈0.85,tan32.3°≈0.63,sin55.7°≈0.83,cos55.7°≈0.56,tan55.7°≈1.47)27.(2018江苏徐州中考,27,10分,★★★)如图,在平面直角坐标系中,二次函数y=-x2+6x-5的图像与x轴交于A、B两点,与y轴交于点C,其顶点为P,连接PA、AC、CP,过点C作y轴的垂线l.(1)求点P,C的坐标;(2)直线l上是否存在点Q,使△PBQ的面积等于△PAC的面积的2倍?若存在,求出点Q的坐标;若不存在,请说明理由.28.(2018江苏徐州中考,28,10分,★★★)如图,将等腰直角三角形纸片ABC对折,折痕为CD.展平后,再将点B折叠在边AC上(不与A、C重合),折痕为EF,点B 在AC上的对应点为M,设CD与EM交于点P,连接PF.已知BC=4.(1)若M为AC的中点,求CF的长;(2)随着点M在边AC上取不同的位置,①△PFM的形状是否发生变化?请说明理由;②求△PFM的周长的取值范围.徐州市2018年初中学业水平考试数学试题答案全解全析1.答案:D解析:4与-4只有符号不同,故4的相反数是-4.故选D.考查内容:相反数.命题意图:本题考查学生对相反数的识记,难度较小.2.答案:D解析:2a2-a2=(2-1)a2=a2≠1,故A错误;(ab)2=a2b2≠ab2,故B错误;a2与a3不是同类项,不能合并,故C错误;(a2)3=a2×3=a6,故D正确.故选D.考查内容:整式的加减;幂的乘方;积的乘方.命题意图:本题考查学生对整式运算的掌握,难度较小.3.答案:A解析:A既是轴对称图形,又是中心对称图形;B不是轴对称图形,是中心对称图形;C是轴对称图形,不是中心对称图形;D是轴对称图形,不是中心对称图形.故选A.考查内容:中心对称图形;轴对称图形.命题意图:本题考查学生对中心对称图形与轴对称图形的识记,难度较小.4.答案:A解析:从左边看底层有2个小正方形,最上面的一层左边有1个小正方形.故选A.考查内容:三视图.命题意图:本题考查学生对三视图的掌握,难度较小.5.答案:B解析:每次抛掷硬币都有两种可能:正面向上、反面向上,正面向上的概率是12.故选B.考查内容:概率的简单应用与计算.命题意图:此题主要考查学生对概率计算的掌握,难度较小.6.答案:B解析:在这组数据中,1出现了35次,故其众数是1册;将这组数据按从小到大排列后,第50、51个数的平均数是2,故其中位数是2册;这组数据的极差:3-0=3册;这组数据的平均数是(0×13+1×35+2×29+3×23)÷100=1.62册.故选B.考查内容:极差;众数;中位数;平均数.命题意图:本题考查学生对统计数据的计算,难度中等.7.答案:C解析:∵正比例函数y=kx与反比例函数y=-2x的交点关于原点对称,∴设A点坐标为(x,-2x),则B点坐标为(-x,2x),C(-2x,-2x),∴S△ABC=12×(-2x-x)•(-2x-2x)=12×(-3x)•(-4x)=6.故选C.一题多解:连接OC.由y=kx与y=-2x的图像都是中心对称图形可知,点A和点B关于原点对称,∴OA=OB.∵点A在反比例函数y=-2x的图像上,点C在反比例函数y=4x的图像上,且AC⊥y轴,∴S△AOC=12×2+12×4=3,∴S△ABC=2S△AOC=6.故选C.考查内容:反比例函数;正比例函数;轴对称的性质;全等三角形的性质与判定.命题意图:本题主要考查学生对函数图像对称的掌握,难度中等.8.答案:D解析:∵一次函数y=kx+b经过点(3,0),∴3k+b=0,且k<0,则b=-3k,∴不等式为kx-6k<0,解得x>6.故选D.考查内容:一次函数;一元一次不等式.命题意图:本题主要考查学生掌握一次函数的图像与性质及解一元一次不等式的能力,难度中等.9.答案:540解析:(5-2)•180°=540°.考查内容:多边形的内角和.命题意图:本题考查学生多边形的内角和的掌握,难度较小.10.答案:1×10-8(或10-8)解析:10nm=10×0.000 000 001m=1×101×10-9m=1×10-8m.考查内容:科学记数法.命题意图:本题考查学生对科学记数法的掌握,难度较小.11.答案:23解析:32<0,∴32|=23.考查内容:绝对值;实数的大小比较.命题意图:本题主要考查学生对绝对值的掌握,难度较小.12.答案:x≥2解析:由题意,得x-2≥0,解得x≥2.考查内容:二次根式有意义的条件.命题意图:本题主要考查学生对二次根式有意义的条件的理解,难度较小.13.答案:2解析:∵2m+n=4,∴6-2m-n=6-(2m+n)=6-4=2.考查内容:代数式求值;整体代入.命题意图:本题主要考查学生代数式求值的能力,难度中等.14.答案:24解析:12×6×8=24(cm2).考查内容:菱形面积.命题意图:本题主要考查学生对菱形的性质及面积计算方法的掌握,难度较小.15.答案:35解析:在Rt△ABC中,∠ABC=90°,D为AC的中点,∴BD是中线,∴AD=BD=CD,∴∠DBC=∠C=55°,∴∠ABD=90°-55°=35°.考查内容:直角三角形的性质;等腰三角形的性质;三角形内角和定理.命题意图:本题主要考查学生对直角三角形性质的掌握,难度中等.16.答案:2解析:扇形的弧长=1206180π⨯=4π,∴圆锥的底面半径为4π÷2π=2.考查内容:扇形的弧长公式;圆锥的侧面展开图;圆的周长公式.命题意图:本题主要考查学生对圆锥的有关运算的掌握,难度中等.17.答案:4n+3解析:第1个图形黑、白两色正方形共3×3个,其中黑色1个,白色3×3-1个,第2个图形黑、白两色正方形共3×5个,其中黑色2个,白色3×5-2个,第3个图形黑、白两色正方形共3×7个,其中黑色3个,白色3×7-3个,……,第n个图形黑、白两色正方形共3×(2n+1)个,其中黑色n个,白色3×(2n+1)-n个,即白色正方形5n+3个,黑色正方形n个,故第n个图案中白色正方形比黑色正方形多4n+3个.考查内容:几何图形的变化规律.命题意图:本题考查学生几何图形变化规律的掌握,难度较大.18.答案:4解析:如图1,连接AQ ,AP .∵AB 是直径,∴∠APB=90°.∵BP•BQ=AB 2,∴BP AB =ABBQ.又∵∠ABP=∠QBA ,∴△ABP ∽△QBA ,∴∠QAB=∠APB=90°,∴QA 始终与AB 垂直.如图2,连接OC .∵C 为半圆AB 的中点,∴OC 是△ABQ 的中位线,∴AQ=2OC=4,∴点Q 运动路径长为4.图1 图2考查内容:相似三角形的判定和性质;三角形中位线的性质定理;圆的性质. 命题意图:本题主要考查学生对相似三角形的判定和性质的掌握,难度较大. 19.解析:(1)原式=-1+1-2+2=0; (2)原式=()()a b a b a b+--·2()a b a b-+=2a -2b .考查内容:有理数的乘方;0次幂;立方根;分式的化简.命题意图:本题考查学生对有理数的运算法则和及分式运算的灵活应用,难度中等. 20.解析:(1)这里a=2,b=-1,c=-1, ∴b²-4ac=1-4×2×(-1)=9>0, ∴x=194=134±, ∴x 1=-12,x 2=1. (2)∵解不等式428x x ->,得x >-4. 解不等式1136x x -+≤,得x≤3. ∴不等式组的解集为-4<x≤3.考查内容:解一元二次方程;解一元一次不等式组.命题意图:本题考查学生解一元二次方程和解一元一次不等式组的能力,难度中等. 21.解析:(1)13.(2)画树状图:或列表如下:红球白球1 白球2 红球白球1 +红球白球2+红球白球1 红球+白球1 白球2+白球1 白球2 红球+白球2 白球1 +白球2∴共有6种等可能的结果数,含有红球的有4种情况,∴P(摸到红球)=46=23.答:从中同时摸出2个球,摸到红球的概率是23.考查内容:列举法求概率.命题意图:本题考查用列表法与画树状图求概率,难度中等.22.解析:(1)200 64解法提示:∵“C”有50人,占样本的25%,∴样本=50÷25%=200(人).∵“B”占样本的32%,∴a=200×32%=64(人).(2)36°解法提示:“A”对应的扇形的圆心角=20200×360°=36°.(3)∵D类66人,总共200人,∴全校学生中家庭藏书200本以上的人数为:2000×66200=660(人).答:全校学生中家庭藏书200本以上的人数为660人.考查内容:统计表;扇形统计图.命题意图:本题考查统计表和扇形统计图的综合运用.难度中等.23.解析:(1)证明:∵四边形CEFG是正方形,∴CE=EF ,∵∠FEC=∠FEH+∠CED=90°,∠DCE+∠CED=90°, ∴∠FEH=∠DCE . 在△FEH 和△ECD 中,,,,EF CE FEH DCE FHE D =⎧⎪∠=∠⎨⎪∠=∠⎩∴△FEH ≌△ECD (AAS ), ∴FH=ED .(2)设AE=a ,则ED=FH=4-a , ∴S △AEF =12AE•FH=12a (4-a )=-12(a -2)2+2, ∴当AE=2时,△AEF 的面积最大.考查内容:正方形的性质;矩形的性质;全等三角形的判定和性质;三角形的面积. 命题意图:本题考查学生对正方形、矩形、全等三角形等知识的掌握,难度中等. 24.解析:设B 车行驶的时间为t 小时,则A 车行驶的时间为1.4t 小时,根据题意,得700t -7001.4t=80, 解这个方程,得t=2.5.经检验,t=2.5是原方程的解,且符合题意, ∴1.4t=3.5.答:A 车行驶的时间为2.5小时,B 车行驶的时间为3.5小时. 考查内容:分式方程的应用.命题意图:本题考查分式方程的应用,难度中等. 25.解析:(1)相切.理由如下: 连接OD .∵BD 是∠ABC 的平分线, ∴∠CBD=∠ABD . 又∵OD=OB , ∴∠ODB=∠ABD , ∴∠ODB=∠CBD ,∴OD∥CB,∴∠ODC=∠C=90°,∴CD与⊙O相切.(2)若∠CDB=60°,可得∠ODB=30°,∴∠AOD=60°,又∵AB=6,∴AO=3,∴AD的长为:603 180π⨯⨯=π.考查内容:圆的切线的判定;等腰三角形的性质;圆周角定理.命题意图:本题主要考查与圆的切线的判定,难度中等偏上.26.解析:(1)如图,过点C作CE⊥PB,垂足为E,过点D作DF⊥PB,垂足为F,则∠CEP=∠PFD=90°.由题意可知,设AB=x,在Rt△PCE中,tan32.3°=PEx,∴PE=x•tan32.3°.同理可得:在Rt△PDF中,tan55.7°=PFx,∴PF=x•tan55.7°,由PF-PE=EF=CD=42,可得x•tan55.7°-x•tan32.3°=42,解得:x=50,∴楼间距AB=50m.(2)由(1)可得:PE=50•tan32.3°=31.5m,∴CA=EB=90-31.5=58.5m,由于2号楼每层3m,可知点C位于20层.归纳总结:锐角三角函数的实际问题,有图的要先将题干中的已知量在图中表示出来,再根据以下方法和步骤解决:根据题目中的已知条件,将实际问题抽象为解直角三角形的数学问题,画出平面几何图形,弄清已知条件中各量之间的关系;若三角形是直角三角形,根据边角关系进行计算,若三角形不是直角三角形,可通过添加辅助线构造直角三角形来解决.解直角三角形的实际应用问题关键是要根据实际情况建立数学模型,正确画出图形找准三角形.考查内容:解直角三角形的应用.命题意图:本题考查学生解直角三角形的应用能力,难度中等偏上.27.解析:(1)∵y=-x2+6x-5=-(x-3)2+4,∴顶点P(3,4),令x=0得到y=-5,∴C(0,-5).(2)令y=0,x2-6x+5=0,解得x=1或5,∴A(1,0),B(5,0).设直线PC的解析式为y=kx+b,则有5, 34,bk b=-⎧⎨+=⎩解得3,5. kb=⎧⎨=-⎩∴直线PC的解析式为y=3x-5.设直线PC与x轴相交于点D,可求得D(53,0).设直线PQ交x轴于E,当BE=2AD时,△PBQ的面积等于△PAC的面积的2倍,∵AD=23,∴BE=43,∴E(113,0)或E′(193,0).直线PE的解析式为y=-6x+22,∴Q(92,-5),直线PE′的解析式为y=-65x+385,∴Q′(212,-5).综上所述,满足条件的点Q(92,-5),Q′(212,-5).归纳总结:存在性问题是指在一定条件下探索发现某种数学关系是否存在的一类问题,解决此类问题的方法是:(1)对问题的结论作出肯定存在性的假设;(2)按题设条件和数学定理、性质等进行推理、计算;(3)若推出合理的结论,则说明假设成立,若推出不合理的结论或与已知、已证明的结论相矛盾,则假设不成立.考查内容:二次函数的性质;待定系数法;转化的思想;分类讨论.命题意图:本题是一道关于二次函数的综合题,主要考查学生应用二次函数解答问题的能力,难度较大.28.解析:(1)由题意可知BF=FM,则CF+FM=4,设CF=x,FM=4-x.在Rt△CFM中,CM=2,由勾股定理可得FM2=CF2+CM2,即(4-x)2=x2+22,解得x=32,即CF=32.(2)①△PFM的形状是等腰直角三角形,不会发生变化.理由如下:设PC与FM相交于O点,由折叠的性质可得,∠PMF=∠B=45°,∵CD是中垂线,∴∠ACD=∠DCF=45°,∵∠MPC=∠OPM,∴△POM∽△PMC,∴POPM=OMMC.由∠EMC=∠AEM+∠A可得∠AEM=∠CMF,∴∠DPE=∠MFC,∠MPC=∠MFC,∵∠PCM=∠OCF=45°,∴△MPC∽△OFC,∴MPOF=MCOC,由POPM=OMMC和MPOF=MCOC可得OMPO=OCOF.∵∠POF=∠MOC,∴△POF∽△MOC,∴∠PFO=∠MCO=45°,∴△PFM是等腰直角三角形.②由①知△PFM是等腰直角三角形,设FM=y,由勾股定理可得,PF=PM=22y,∴△PFM的周长为(1+2)y,∵2<y<4,∴△PFM的周长满足:2+22<(1+2)y<4+42.考查内容:折叠的性质;等腰直角三角形的性质和判定;翻折变换;相似三角形的判定和性质;勾股定理.命题意图:本题是有关三角形综合题,主要考查学生综合应用三角形的相关知识解答问题的能力,难度较大.。

2018年“大梦杯”福建省初中数学竞赛试题+参考答案与评分标准

2018年“大梦杯”福建省初中数学竞赛试题+参考答案与评分标准

2018年“大梦杯”福建省初中数学竞赛试题 考试时间 2018年3月18日 9∶00-11∶00 满分150分 一、选择题(共5小题,每小题7分,共35分)。

每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的。

请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)1.若关于x 的方程244310x mx m +--=有两个相等的实数根,则32442m m m ++-的值为( )A .3-B .2-C .1-D .12.如图,ABCD 、DEFG 都是正方形,边长分别为m 、n (m n <)。

坐标原点O 为AD 的中点,A 、D 、E 在y 轴上。

若二次函数2y ax =的图像过C 、F 两点,则n m=( )A1 B1 C.1- D.13.如图,G 为ABC △的重心,点D 在CB 延长线上,且12BD BC =,过D 、G 的直线交AC 于点E ,则AEAC=( ) A .25B .35C .37D .474.如图,H 、O 分别为ABC △的垂心、外心,45BAC ∠=︒,若ABC △外接圆的半径为2,则AH =( )A.B.C .4 D15.满足方程22419151x xy y -+=的整数对()x y ,有( ) A .0对 B .2对 C .4对 D .6对(第4题图) (第2题图)(第3题图)二、填空题(共5小题,每小题7分,共35分)6.已知a ,b ,c 为正整数,且a b c >>。

若b c +,a c +,a b +是三个连续正整数的平方,则222a b c ++的最小值为 。

7.如图,ABCD 为矩形,E 为对角线AC 的中点,A 、B 在x 轴上。

若函数4y x=(0x >)的图像过D 、E 两点,则矩形ABCD 的面积为 。

8.如图,ABC △是边长为8的正三角形,D 为AB 边上一点,1O ⊙为ACD △的内切圆,2O ⊙为CDB △的边DB 上的旁切圆。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

则使得(x@y)@z+(y@z)@x+(z@x)@y=0 的 整
数 组 )(x,y,z)的 个 数 为 ( ).
(A)1 (B)2 (C)3 (D)4
答 (D).
(x@y)@z= (x+y-xy)@z= (x+y-xy)+z
- (x+y-xy)z=x+y+z-xy-yz-zx+xyz,
由 对 称 性 ,同 样 可 得
+3ab]=0,
又a-b=2,所 以 2-2[4+4ab]+2[4+3ab]=
0,解得ab=1.所 以a2+b2= (a-b)2 +2ab=6,a3 -
b3=(a-b)[(a-b)2+3ab]=14,a5 -b5 = (a2 +b2)
(a3-b3)-a2b2(a-b)=82.
5.对任意的 整 数 x,y,定 义 x@y=x+y-xy,
(y@z)@x=x+y+z-xy-yz-zx+xyz,(z
@x)@y=x+y+z-xy-yz-zx+xyz.
所以,由已知可得 x+y+z-xy-yz-zx+xyz
=0,即 (x-1)(y-1)(z-1)= -1.
所以,x,y,z 为整数时,只能有以下几种情况:
烄x-1=1, 烄x-1=1, 烅y-1=1, 或烅y-1=-1, 烆z-1=-1, 烆z-1=1,
2018 5 > 33 =6133.
又 M = (20118+20119+ … +20130)+ (20131+
1 2032+

+20150)>20130×13+20150×20=813324350,
所以
1 M
<813324350=6111138455,故
1 M
的填空题 (本题满分28分,每小题7分)
4.若实数a,b 满 足a-b=2,(1-a)2 - (1+b)2


=4,则a5-b5=( ).
(A)46 (B)64 (C)83 (D)128
答 (C).



(1-a)2 b

(1+b)2 a
=4


-b-2a2

2b2-4ab+a2-b3=0,
即 (a-b)-2[(a-b)2 +4ab]+ (a-b)[(a-b)2
1.如 图 2,在 平 行 四
边 形 ABCD 中,BC =
2AB,CE⊥AB 于 E,F 为
AD 的 中 点,若 ∠AEF =
48°,则 ∠B =

图2
答 84°.
设 BC 的中点为G,连 结 FG 交CE 于 H ,由 题 设
条件知 FGCD 为菱形.
由 AB∥FG ∥DC 及 F 为 AD 的 中 点,知 H 为
=6 或 a2 =0(舍 去 ).
所以,△ABC 的边长BC= 槡2a2 =2 槡3.
2.如图1,在矩形 AB- CD 中,∠BAD 的 平 分 线 交 BD 于 点 E,AB =1,
∠CAE = 15°,则 BE =
( ).
(A)槡33
图1
(B)槡22
(C)槡2-1
答 (D).
(D)槡3-1
数学竞赛之窗
(0,0,0),故 共 有 4 个 符 合 要 求 的 整 数 组 .
6.设

111 =+++
2018 2019 2020

+ 1 ,则 2050
1 M
的 整 数 部 分 是 ( ). (A)60 (B)61 (C)62
(D)63
答 (B).
因为

<20118×33,所以
1 M
烄x-1=-1, 烄x-1=-1, 或烅y-1=1, 或烅y-1=-1,
烆z-1=1, 烆z-1=-1,
所 以 ,(x,y,z)= (2,2,0)或 (2,0,2)或 (0,2,2)或
· 28 · 网址:zxss.cbpt.cnki.net 投稿邮箱:zxss2486@163.com
2018年初中数学联赛试题及参考答案 (一)
第 一 试 (A)
一 、选 择 题 (本 题 满 分 42 分 ,每 小 题 7 分 )
1.设




y=x2
a2 +2ax+








A,与 x 轴的交 点 为 BC,当 △ABC 为 等 边 三 角 形 时,
其 边 长 为 ( ).
(A)槡6 (B)2 槡2 (C)2 槡3 (D)3 槡2
2q)2 +pq=m2 ,即 (m -p-2q)(m +p+2q)=pq.
由于 p,q 为素 数,且 m +p+2q>p,m +p+2q
>q,所以 m-p-2q=1,m +p+2q=pq,从 而 pq-
2p-4q-1=1,即(p-4)(q-2)=9,所 以 (p,q)(5,
11)或 (7,5).
所 以 ,满 足 条 件 的 素 数 对 (p,q)的 个 数 为 2.
CE 的中点.
又 CE⊥AB,所 以 CE⊥FG,所 以 FH 垂 直 平 分 CE,故
∠DFC= ∠GFC= ∠EFG= ∠AEF=48°.
所 以 ∠B = ∠FGC=180°-2×48°=84°.
2.若


x,y

足x3+y3+
1 4
(x+y)=125,则
x+y 的最大值为

答 3.

x3
+y3
答 (C).
由题设

A(-a,-a2 2
),设
B(x1,0),C(x2,0),二
次函数的图像的对称轴与x 轴的交点为 D,则 BC=|x1
槡 - x2 | = 槡(x1+x2)2-4x1x2 =
4a2-4×a2 = 2
槡2a2 .
又 AD=槡23BC,则|-a22|=槡23· 槡2a2 ,解 得a2


=槡3-1.所以 BE=槡3-1.
3.设 p,q 均 为 大 于 3 的 素 数,则 使 p2 +5pq+ 4q2 为完全平方数的素数对(p,q)的个数为( ).
(A)1 (B)2 (C)3 (D)4 答 (B). 设 p2 +5pq+4q2 =m2 (m 为 自 然 数 ),则 (p +

1 4
(x+y)=125可

(x
+y)(x2

xy-y2)+
1 4
(x+y)=125,即
(x+y)(x2
-xy+y2

1 4
)=125.


x+y=k,注
延 长 AE 交BC 于点F,过点 E 作 BC 的垂线,垂
足为 H.
由已 知 得 ∠BAF = ∠FAD = ∠AFB = ∠HEF
=45°,BF=AB=1,∠EBH =∠ACB=30°.
设 BE=x,则
x HF=HE=
,BH
=槡3 x.


因为
BF=BH
+HF ,所 以
1=槡32 x+
x 2
,解
相关文档
最新文档