新人教版二次根式测试题
二次根式测试题及答案
二次根式测试题及答案一、选择题1. 下列二次根式中,最简二次根式是_____。
A. √36B. √18C. √27D. √50答案:B2. 下列各数中是无理数的是_____。
A. √9B. √16C. √20D. √39答案:D3. 若|x|≤5,则_____。
A. -5≤x≤5B. 0≤x≤5C. -5≤x≤0D.0≤x≤-5答案:A4. 下列等式中,正确的是_____。
A. √(2+√3) = √3 + √2B.√(2-√3) = √3 - √2C. √(2+√3)(2-√3) = 2D. √(2+√3)(2-√3) = √2 - √3答案:C5. 已知 a、b 是正数,且 a+b=1,则_____。
A. √a+√b>1B. √a+√b<1C. √a+√b=1D. 无法确定答案:A二、填空题1. 若一个二次根式的被开方数含有同类项,则可以合并同类项后,再开平方根,即_____。
答案:√(a+b) = √a + √b2. 下列等式中,正确的是_____。
答案:√(2+√3)(2-√3) = 2-√33. 若|x|≤4,则 -4≤x≤4,若将|x|≤4 改写为二次根式,则为_____。
答案:√4≤√x≤√(-4) 或 -√4≤√x≤√44. 已知 a、b 是正数,且 a+b=1,则_____。
答案:√a+√b>1三、解答题1. 化简二次根式:√(3x^2+6x+9)答案:√(3x^2+6x+9) = √(3(x+1)^2) = √3(x+1)2. 求解二次根式方程:√2x-3=5答案:首先将方程两边平方,得 2x-3=25,解得x=14/2=7。
然后将 x=7 代入原方程检验,得√27-3=5,左右两边相等,所以 x=7 是方程的解。
3. 若 |x-1|≤2,求 |x+1| 的最小值。
答案:首先根据 |x-1|≤2,得 -1≤x≤3。
然后根据 |x+1| 的性质,当 x=-1 时,|x+1| 取最小值 0。
(完整)新人教版八年级数学下册二次根式单元测试题
、选择题(每小题 3分,共30 分)0 或 1 C . b w 3 D . b > 3~ c. , y D. .下5.能使等式.^2 .^2成立的x 的取值范围是(A. x 2B. x 0C. xf 2D.做错的题是(F 列各式中,一定能成立的是二次根式测试题1. F 列各式中① .a :②.b 1 ;③.a 2⑥x 2 2x 1 一定是次根式的有( )个。
2. B. 2个 C. 3个 D. 46b 9 3,则b 的值为(3.已知已知: 20n 是整数,则满足条件的最小正整数 的值是( 4. 已知xy > 0,6. 小明做了以下四道题:① 16a 4 4a 2 •,②.5a . 10a 5.2a ;7. A.① B .② CD .④ 化简 1 1的结果为(5 6 A .』 B . 30 330 30 C . ■330 30 D . 30 119.C .化简■- 8 x 2 2x 1 x 、2( 2 2)得(10.如果数轴上表示a 、b 两个数的点都在原点的左侧,D . ..( 2.5)2 (・2.5)2且a 在b 的左侧,则a b a b )2的值为( )的正确结果为(化简二次根式 ③叨A. 2b B . 2b C . 2a D . 2a二、填空题(每小题 3分,共30分)11•①.「0.3)2 ___________ •,②,.(2 . 5)2 ________ 。
112.-------------------------- 二次根式 ________________ 有意义的条件是 。
J x 313. 若 m<0,则 | m| .. m 2 3 m 3 = _________ 。
14 .已知 x 3 3x 2 =- x x 3,则x 的取值范围是 ____________________ 15•比较大小:3.. 7 _______ 2.15。
18•若 x .5 3,则•. x 2 6x 5 的值为 ________________ \ 1 19.把(a 1). 1中根号外的因式移到根 号内得 _____________v a 1当 n 1时,第 n 个等式可表示为 ________________________________ 三、解答题(共60分)21、在实数范围内分解因式:(每小题4分)(1) 9a 4 25 (2) a 4 4a 2 422 .计算:((每小题4分))(1) 4.5 .45 8 4 216. 2xy? 8y20.已知:(1£ 2(2)(4)(3、2 2、、3)2( 3迈2、、3)272(7) ( .3 2)2010 ( 3 2)2011(8)23.若x, y 是实数,且y • 4x 1 -1 4x(5分) -,求(-x 9x 4xy) C- x325xy)的值。
2023-2024人教版八年级数学下册第16章二次根式专题训练 二次根式的运算与化简求值(含答案)
第16章 二次根式 专题训练 二次根式的运算与化简求值类型1 二次根式的加减运算 1.计算:|2-5|+|4-5|= . 2.计算: (1)24+0.5-⎝ ⎛⎭⎪⎫18+6. (2)248-1813+318-818;(3)32-212-418+348. (4)239x +6x 4-2x 1x. (5)a 2b +ab a -b a b-ab 2. (6)-12 046+⎝⎛⎭⎫12-2-|4-12|+(π-3)0-27.类型2 二次根式的乘除运算 3.计算: (1)112×23= ;(2)(-14)×(-112)= ; (3)-0.45-0.5= ; (4)59÷127= . 4.计算:2318÷(-3)×1327.类型3 二次根式的混合运算 5.计算:12⎝ ⎛⎭⎪⎫75+313-48= . 6.计算:(1)50-(-2)+8× 2. (2)12-1+3(3-6)+8. (3)15×3520÷⎝⎛⎭⎫-13 6.(4)(-3)2+18-6×22; (5)⎝ ⎛⎭⎪⎫72-412+32÷8. (6)⎝⎛⎭⎫318+15 50-40.5÷32.类型4 巧用乘法公式计算 7.计算: (1)(5+3)2.(2)(32+12)(18-23). (3)(3+2)2-(3-2)2. (4)(2-3)2024×(2+3)2023;(5)(2+3-5)2-(2-3+5)2; (6)(3+2)2(3-2)-(3-2)2(3+2).类型5 先化简,再求值8.先化简,再求值:(a +2)(a -2)+a (1-a ),其中a =5+4.9.【2023福建】先化简,再求值:÷,其中x =-1.10.先化简,再求值:(x -1-3x +1)÷x -2x 2+x ,其中x =3-2.类型6 巧用二次根式的定义和性质求值 11.若x -3-3-x =(x +y )2,求x -y 的值.12.当x 取何值时,5x -1+4的值最小?最小值是多少?类型7 巧用乘法公式求值13.已知x =2-3,求代数式(7+43)x 2+(2+3)x +3的值.类型8 巧用整体代入法求值14.已知a =3+22,b =3-22,求a 2b -ab 2的值.15.已知x +y =-7,xy =12,求yx y +x yx的值.16.已知x=1-,y=1+,求x2+y2-xy-2x+2y的值.17.【2023长沙南雅中学期末】已知x=3+,y=3-,求下列各式的值.(1)x2-y2;(2)+.参考答案类型1 二次根式的加减运算 1.计算:|2-5|+|4-5|= . 【答案】2 2.计算: (1)24+0.5-⎝⎛⎭⎪⎫18+6. 解:原式=6+14 2. (2)248-1813+318-818;解:原式=83-63+92-2 2 =23+7 2. (3)32-212-418+348. 解:原式=83+2 2. (4)239x +6x 4-2x 1x . 解:原式=3x . (5)a 2b +ab a -ba b-ab 2. 解:原式=a b -b a . (6)-12 046+⎝⎛⎭⎫12-2-|4-12|+(π-3)0-27.解:原式=-1+4-4+23+1-3 3 =- 3.类型2 二次根式的乘除运算 3.计算: (1)112×23= ;(2)(-14)×(-112)= ; (3)-0.45-0.5= ; (4)59÷127= .【答案】1 28 2 31010 15 4.计算:2318÷(-3)×1327.解:原式=⎝⎛⎭⎫-23×1318×13×27=-29×9 2 =-2 2.类型3 二次根式的混合运算 5.计算:12⎝ ⎛⎭⎪⎫75+313-48= . 【答案】12 6.计算:(1)50-(-2)+8× 2. 解:原式=1+2+4=7. (2)12-1+3(3-6)+8. 解:原式=4.(3)15×3520÷⎝⎛⎭⎫-13 6.解:原式=-9 2.(4)(-3)2+18-6×22; 解:原式=3+32-32=3. (5)⎝ ⎛⎭⎪⎫72-412+32÷8. 解:原式=(62-22+42)÷2 2 =82÷2 2 =4.(6)⎝⎛⎭⎫318+15 50-40.5÷32.解:原式=2.类型4 巧用乘法公式计算 7.计算: (1)(5+3)2. 解:原式=8+215. (2)(32+12)(18-23). 解:原式=6.(3)(3+2)2-(3-2)2. 解:原式=4 6. (4)(2-3)2024×(2+3)2023;解:原式=(2-3)2023×(2+3)2023×(2-3)=[(2-3)×(2+3)]2023×(2-3)=-1×(2-3)=-2+3.(5)(2+3-5)2-(2-3+5)2; 解:原式=(2+3-5+2-3+5)× (2+3-5-2+3-5) =22×(23-25) =46-410.(6)(3+2)2(3-2)-(3-2)2(3+2).解:原式=(3+2)(3-2)[](3+2)-(3-2) =(9-2)×2 2 =14 2.类型5 先化简,再求值8.先化简,再求值:(a +2)(a -2)+a (1-a ),其中a =5+4. 解:原式=a 2-4+a -a 2 =a -4.当a =5+4时,原式=5+4-4= 5. 9.【2023福建】先化简,再求值:÷,其中x =-1.【解】原式=·=-·=-.当x =-1时,原式=-=-.10.先化简,再求值:(x -1-3x +1)÷x -2x 2+x ,其中x =3-2.解:原式=x 2-1-3x +1×x (x +1)x -2=(x +2)(x -2)x +1×x (x +1)x -2=x (x +2).把x =3-2代入,原式=(3-2)(3-2+2)=3-2 3. 类型6 巧用二次根式的定义和性质求值 11.若x -3-3-x =(x +y )2,求x -y 的值.解:∵x -3≥0,3-x ≥0, ∴x =3,∴y =-3, ∴x -y =6.12.当x 取何值时,5x -1+4的值最小?最小值是多少? 解:当x =15时,5x -1+4的最小值为4.类型7 巧用乘法公式求值13.已知x =2-3,求代数式(7+43)x 2+(2+3)x +3的值. 解:原式=(7+43)(7-43)+(2+3)(2-3)+ 3 =2+ 3.类型8 巧用整体代入法求值14.已知a =3+22,b =3-22,求a 2b -ab 2的值. 解:原式=ab (a -b ) =4 2.15.已知x +y =-7,xy =12,求y xy +xyx 的值.解:∵x +y <0,xy >0,∴x <0,y <0, ∴原式=y ·xy -y +x ·xy-x=-2xy =-4 3. 16.已知x =1-,y =1+,求x 2+y 2-xy -2x +2y 的值. 【解】∵x =1-,y =1+,∴x -y =(1-)-(1+)=-2, xy =(1-)(1+)=-1.∴x 2+y 2-xy -2x +2y =(x -y )2-2(x -y )+xy =(-2)2-2×(-2)+(-1)=7+4.17.【2023长沙南雅中学期末】已知x =3+,y =3-,求下列各式的值.(1)x 2-y 2; 【解】∵x =3+,y =3-,∴x +y =3++3-=6, x -y =3+-(3-)=2, ∴x 2-y 2=(x +y )(x -y )=6×2=12.(2)+.【解】∵x=3+,y=3-,∴x+y=3++3-=6,xy=(3+)×(3-)=4,∴+=====7.。
新人教版初中数学八年级数学下册第一单元《二次根式》测试卷(包含答案解析)
一、选择题1.下列式子中正确的是( )A =B .a b =-C .(a b =-D .22== 2.若x=,则2x 2x -=( )A B .1 C .2D 13.x 的取值范围是( )A .x <1B .x >1C .x≥1D .x≤14.已知0<x<3,化简=的结果是( )A .3x-4B .x-4C .3x+6D .-x+6 5.下列计算正确的是( ). A .()()22a b a b b a +-=-B .224x y xy +=C .()235a a -=-D .=6.下列算式中,正确的是( )A .3=B =C =D 4= 7.下列四个数中,是负数的是( )A .2-B .2(2)-C .D 8.下列计算正确的是( )A 7=±B 7=-C 112=D =9x 的取值范围是( )A .1≥xB .1x >C .1x ≤D .1x = 10.下列各式计算正确的是( )A +=B .26=(C 4=D = 11.下列计算正确的是( )A .336a a a +=B .1=C .()325x x =D .642b b b ÷=12. )A B .C D .二、填空题13.计算:()235328-+---=__________.14.如果代数式1x -有意义,那么实数x 的取值范围是____15.实数a ,b 在数轴上的位置如图所示,化简:|a +1|﹣22(1)()b a b -+-=_____.16.若224y x x =-+-+,则y x 的平方根是__________.17.如图,在长方形内有两个相邻的正方形A ,B ,正方形A 的面积为2,正方形B 的面积为6,则图中阴影部分的面积是__________.18.13a a+=a a =______. 19.计算:232)(32)=______.20.2121=-+3232=+4343=+,请从上述等式找出规律,并利用规律计算(20082)32435420082007++⋅⋅⋅++=++++_________. 三、解答题21.(1)计算:503248- (2)计算:16215)362(3)解方程组:25214323x y x y -=-⎧⎨+=⎩(4)解方程组:4314x y x y ⎧-=⎪⎪⎨⎪-=⎪⎩ 22.计算:(1)121850322(2)21)-.23.计算:(12- (2) 248(31)(31)(31)(31)1++++- 24.阅读下列简化过程:1===;==== ……解答下列问题:(1)请用n (n 为正整数)表示化简过程规律________;(2++⋯+; (3)设a =,b =c =,比较a ,b ,c 的大小关系.25()201220202π-⎛⎫+-- ⎪⎝⎭26.计算:.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据二次根式的运算法则分别计算,再作判断.【详解】解:A 、不是同类二次根式,不能合并,故错误,不符合题意;B 、计算错误,不符合题意;C 、符合合并同类二次根式的法则,正确,符合题意.D 、计算错误,不符合题意;【点睛】同类二次根式是指几个二次根式化简成最简二次根式后,被开方数相同的二次根式.二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并. 2.B解析:B【分析】直接将已知分母有理化,进而代入求出答案.【详解】解:∵ x==1=, ∴ ()2x 2x x x 2-=- )112=- 21=-1=.【点评】此题主要考查了分母有理化,正确化简二次根式是解题关键.3.C解析:C【分析】直接利用二次根式有意义的条件分析得出答案. 【详解】∵∴x−1≥0,解得:x≥1.故选:C .【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.4.A解析:A【分析】先根据0<x<3判定2x+1和x-5的正负,然后再根据二次根式的性质和绝对值的性质化简,最后合并同类项即可.解:∵0<x<3∴2x+1>0,x-5<0∴=2x+1+x-5=3x-4.故答案为A.【点睛】本题主要考查了二次根式的性质和绝对值的性质,根据0<x<3判定2x+1和x-5的正负是解答本题的关键.5.D解析:D【分析】根据平方差公式、合并同类项、幂的乘方、二次根式的运算法则即可求出答案.【详解】A.原式=a2−b2,故A错误;B.2x与2y不是同类项,不能合并,故B错误;C.原式=a6,故C错误;D.原式=D正确;故选:D.【点睛】本题考查了平方差公式、合并同类项、幂的乘方、二次根式,解题的关键是熟练运用运算法则,本题属于基础题型.6.C解析:C【分析】根据二次根式的除法与加减法法则逐项判断即可得.【详解】A、=B235=+=,此项错误;C==D2==,此项错误;故选:C.【点睛】本题考查了二次根式的除法与加减法,熟练掌握运算法则是解题关键.7.C解析:C先根据绝对值的性质,有理数的乘方,二次根式的性质对各式化简,再利用正数和负数的定义对各选项分析判断后利用排除法求解.【详解】-=>,不符合题意;A、220-=>,不符合题意;B、()2240C、0<,符合题意;D20=>,不符合题意;故选:C.【点睛】本题考查了正数和负数,主要利用了有理数的乘方和绝对值的性质以及二次根式的性质,熟记正数和负数的定义是解题的关键.8.D解析:D【分析】根据二次根根式的运算法则即可求出答案.【详解】A77=-=,故该选项错误;B77=-=,故该选项错误;C====,故该选项正确;D2故选:D.【点睛】本题主要考查了利用二次根式的性质化简,正确掌握相关运算法则是解题关键.9.A解析:A【分析】根据二次根式有意义的条件可得x-1≥0,再解即可.【详解】解:由题意得:x-1≥0,解得:x≥1,故选:A.【点睛】本题考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数. 10.D解析:D【分析】根据二次根式的运算法则一一判断即可.【详解】AB 、错误,212=(;C ==D ==故选:D .【点睛】本题考查二次根式的运算,解题的关键是熟练掌握二次根式的加减乘除运算法则,属于中考常考题型. 11.D解析:D【分析】依次根据合并同类项法则,二次根式的加减、幂的乘方和同底数幂的除法判断即可.【详解】解:A. 3332a a a +=,故该选项错误;B. =C. ()32236x x x ⨯==,故该选项错误;D. 64642b b b b -÷==,故该选项正确.故选:D .【点睛】本题考查幂的相关计算,合并同类项和二次根式的加减.掌握相关运算法则,能分别计算是解题关键.12.C解析:C【分析】先根据二次根式的性质化简各项,再根据同类二次根式的定义逐项判断即得答案.【详解】解:A 不是同类二次根式,故本选项不符合题意;B 、=C =D、=,所以2故选:C.【点睛】本题考查了二次根式的性质和同类二次根式的定义,属于基础题型,熟练掌握上述知识是解题的关键.二、填空题13.7-【分析】首先利用绝对值的性质和二次根式算术平方根立方根的性质化简然后再计算加减即可【详解】解:【点睛】此题主要考查了实数运算关键是掌握绝对值的性质和二次根式的性质解析:【分析】首先利用绝对值的性质和二次根式、算术平方根、立方根的性质化简,然后再计算加减即可.【详解】3()--=322=32+2=7【点睛】此题主要考查了实数运算,关键是掌握绝对值的性质和二次根式的性质.14.x≥1【分析】直接利用二次根式有意义的条件分析得出答案【详解】解:∵代数式有意义∴∴x≥1故答案为:x≥1【点睛】此题主要考查了二次根式的有意义的条件列出不等式是解题关键解析:x≥1.【分析】直接利用二次根式有意义的条件分析得出答案.【详解】解:∵x-≥,∴10∴x≥1.故答案为:x≥1.【点睛】此题主要考查了二次根式的有意义的条件,列出不等式是解题关键.15.﹣2a【分析】依据数轴即可得到a+1<0b﹣1>0a﹣b<0即可化简|a+1|﹣【详解】解:由题可得﹣2<a <﹣11<b <2∴a+1<0b ﹣1>0a ﹣b <0∴|a+1|﹣=|a+1|﹣|b ﹣1|+|解析:﹣2a .【分析】依据数轴即可得到a +1<0,b ﹣1>0,a ﹣b <0,即可化简|a +1|.【详解】解:由题可得,﹣2<a <﹣1,1<b <2,∴a +1<0,b ﹣1>0,a ﹣b <0,∴|a +1|=|a +1|﹣|b ﹣1|+|a ﹣b |=﹣a ﹣1﹣(b ﹣1)+(﹣a +b )=﹣a ﹣1﹣b +1﹣a +b=﹣2a ,故答案为:﹣2a .【点睛】本题考查了二次根式的性质,绝对值的意义,数轴的定义,解题的关键是熟练掌握所学的知识,正确的进行化简.16.【分析】根据二次根式的有意义的条件得出x 值进而求出y 代入计算即可【详解】解:要使有意义则:∴∴∴∴的平方根为故答案为:【点睛】本题考查了二次根式的有意义的条件解题的关键是掌握被开方数大于或等于零 解析:4±【分析】根据二次根式的有意义的条件得出x 值,进而求出y ,代入计算即可.【详解】解:要使4y =有意义,则:2020x x -≥⎧⎨-≥⎩, ∴2x =,∴4y =, ∴=4=±,∴y x 的平方根为4±,故答案为:4±.【点睛】本题考查了二次根式的有意义的条件,解题的关键是掌握被开方数大于或等于零.17.【分析】设两个正方形AB的边长是xy(x<y)得出方程x2=2y2=6求出x=y=代入阴影部分的面积是(y-x)x求出即可【详解】解:设两个正方形AB的边长是xy(x<y)则x2=2y2=6x=y=解析:2【分析】设两个正方形A,B的边长是x、y(x<y),得出方程x2=2,y2=6,求出,,代入阴影部分的面积是(y-x)x求出即可.【详解】解:设两个正方形A,B的边长是x、y(x<y),则x2=2,y2=6,,,则阴影部分的面积是(y-x)x=-=2-,故答案为:2-.【点睛】本题考查了二次根式的应用、算术平方根性质的应用,主要考查学生的计算能力.18.【分析】把平方后得到取算数平方根即可求解【详解】∵∴∴(舍负)故答案为:【点睛】此题考查了完全平方公式熟练掌握完全平方公式是解决此题的关键【分析】平方后,得到13aa+=,取算数平方根即可求解.【详解】∵13aa+=,∴212325aa=++=+=,∴=.【点睛】此题考查了完全平方公式,熟练掌握完全平方公式是解决此题的关键.19.【分析】先将化成再运用平方差公式计算从而可得解【详解】解:===故答案为:【点睛】此题主要考查了二次根式的混合运算熟练运用乘法公式是解答此题的关键【分析】先将2化成,再运用平方差公式计算,从而可得解.【详解】解:2==22⎡⎤-⎣⎦=【点睛】此题主要考查了二次根式的混合运算,熟练运用乘法公式是解答此题的关键. 20.2006【分析】所求代数式第一个括号内可由已知的信息化简为:然后利用平方差公式计算【详解】解:原式故答案为:2006【点睛】本题考查了数字型规律二次根式的混合运算解答此类题目的关键是认真观察题中式子解析:2006【分析】 所求代数式第一个括号内可由已知的信息化简为:,然后利用平方差公式计算.【详解】解:1===⋯ ∴原式==20082=-2006=.故答案为:2006.【点睛】本题考查了数字型规律,二次根式的混合运算,解答此类题目的关键是认真观察题中式子的特点,找出其中的抵消规律.三、解答题21.(1)72;(2)-2)25x y =⎧⎨=⎩;(4)368x y =⎧⎨=⎩【分析】(1)由二次根式的性质进行化简,再计算加减运算即可;(2)由二次根式的性质和乘法运算进行化简,再计算加减运算即可;(3)利用加减消元法解二元一次方程,即可得到答案;(4)利用加减消元法解二元一次方程,即可得到答案;【详解】解:(1)4=4 =142-=72; (2)=-=-;(3)25214323x y x y -=-⎧⎨+=⎩①②, 由②-①⨯2,得1365y =,∴5y =,把5y =代入①,得22521x -=-,∴2x =,∴方程组的解为25x y =⎧⎨=⎩; (4)4314x y x y ⎧-=⎪⎪⎨⎪-=⎪⎩①②, 由①-②,得334x x -=, ∴36x =,把36x =代入①,得124y -=,∴8y =, ∴方程组的解为368x y =⎧⎨=⎩【点睛】本题考查了二次根式的混合运算,二次根式的性质,二元一次方程组的解法,解题的关键是熟练掌握运算法则,正确的进行解题.22.(1);(2)﹣【分析】(1)先化为最简二次根式,然后根据二次根式的运算法则即可求出答案.(2)根据完全平方公式以及平方差公式即可求出答案.【详解】解:(1)==(2)21)-=5﹣6﹣(5﹣)=﹣1﹣(6﹣=﹣1﹣=﹣【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键. 23.(1)52;(2)16332- 【分析】(1)先由二次根式的性质、立方根、绝对值的意义进行化简,然后进行计算,即可得到答案;(2)由平方差公式进行化简,然后得到答案.【详解】解:(1)原式31322=++52=; (2)原式248(31)(31)(31)(31)(31)12-++++=-16163133122--=-=. 【点睛】本题考查了平方差公式,实数的混合运算,二次根式的性质,以及绝对值的化简,解题的关键是熟练掌握运算法则进行计算.24.(1==2)1;(3)c b a >>【分析】(1)根据已知可得:两个连续正整数算术平方根的和的倒数,等于分子分母都乘以这两个连续正整数算术平方根的差,化简得这两个连续正整数算术平方根的差;(2)利用分母有理化分别化简,再合并同类二次根式得解;(3)将a 、b 、c 分别化简,比较结果即可.【详解】(1== (21=+1=1=.(3)a ==2b ==2c ==, 22>,a b ∴>, 又53>b c ∴>,c b a ∴>>.【得解】此题考查代数式计算规律探究,分母有理化计算,根据例题掌握计算的规律并解决问题是解题的关键.25.7-【分析】 先化简二次根式、绝对值、负整数指数幂运算、零指数幂运算,再计算加减法.【详解】()201220202π-⎛⎫+-- ⎪⎝⎭=2241+-=7-【点睛】此题考查实数的混合运算,熟练掌握二次根式的化简、绝对值的化简、负整数指数幂运算、零指数幂运算是解题的关键.26.【分析】根据二次根式混合运算的运算顺序,先算乘除,再将二次根式化成最简二次根式,最后合并同类二次根式即可得出结果.【详解】解:====【点睛】本题考查了二次根式的混合运算,掌握二次根式混合运算的相关运算法则是解题的关键.。
九年级数学上册 21.1《二次根式》习题精选 新人教版
1 2 a
4. ab 、 a3b 、 是同类二次根式.…( )
3 x b
25.(a2 - mn + )÷a2b2 ;
m m m n m
b ab a b a b
1 2 2 3 3 4 99 100
1 x y x y
30.若 x,y 为实数,且 y= 1 4x + 4x 1 + .求 2 - 2 的值.
1 2 a
【提示】 a3b 、 化成最简二次根式后再判断.【答案】√.
3 x b
1
5. 8x , , 9 x2 都不是最简二次根式.( )
3 2 3 4
3. (x 1)2 = ( x 1)2 .…( )【提示】 (x 1)2 =|x-1|, ( x 1)2 =x-1(x≥
- 2 -
x2 a2 x x2 a2 x2 x x2 a2 x2 a2
1 1 1 1
29.计算(2 5 +1)( + + +…+ ).
七、选作题:(每小题 8 分,共 16 分)
x 2x x2 a2 1
28.当 x=1- 2 时,求 + + 的值.
2 y x y x
《二次根式》提高测试 答案
(一)判断题:(每小题 1 分,共 5 分)
2 2
(A) (B)- (C)-2x (D)2x
x x
a3
19.化简 ( a<0 ) 得…( )(A) a (B)- a (C)- a (D) a
15.x,y 分别为 8- 11 的整数部分和小数部分,则 2xy-y2=____________.
最新人教版初中数学八年级数学下册第一单元《二次根式》测试题(含答案解析)(1)
一、选择题1.下列各式变形中,正确的是( )A .236x x x ⋅=B xC .2211x x x x x ⎛⎫-⋅=- ⎪⎝⎭ D .2211234x x x ⎛⎫-+=- ⎪+⎝⎭ 2.下列计算正确的是( )A 2=-B .257a a a +=C .()5210a a =D .=3.下列运算正确的是 ( )A B C .1)2=3-1 D4. )A .3BCD .35. ) A .1个B .2个C .3个D .4个 6.设a b 0>>,2240a b ab +-=,则a b b a +-的值是( )A .2B .-3C .D .7.已知y 3+,则x y 的值为( ). A .43 B .43- C .34 D .34-8.下列二次根式能与 )A B C D9.=x 可取的整数值有( ).A .1个B .2个C .3个D .4个10.下列四个式子中,与(a -的值相等的是( ) AB .CD .11.下列计算正确的是( )A =B .8-=C =D 4= 12.下列根式是最简二次根式的是( )A B C D 二、填空题13.计算((22⨯+的结果是_____.14.若3x =的值为__________.15.若a 的倒数是的相反数是0,c 是-1的立方根,则c a b a b b c c a++---=____________.162=_______.17.计算:2=______.18.化简-15827102÷31225a=___________. 当1<x <4时,|x -=____________.19.函数12y x =-自变量的取值范围是________;函数y =自变量的取值范围是________.20.若1y =,则x y -=_________.三、解答题21.计算(1(2)()23122⎛⎫-- ⎪⎝⎭.22.先化简,再求值:(1+12x +)÷293x x --,其中x 2.23.先化简,再求值:22121211x x x x x ÷---++,其中x =24.已知1,1x y ==,求下列代数式的值:(1)22x y +;(2)y x x y+. 25.计算:(1)(2)0|1(3)1)π+--.26.计算:(1)101(4)4π-⎛⎫-- ⎪⎝⎭(2)【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】依据同底数幂的乘法法则、二次根式的性质、完全平方公式以及分式的运算法则,即可得出结论.【详解】解:A .x 2•x 3=x 5,故本选项不合题意;x =,故本选项不合题意; C.2311x x x x ⎛⎫-⋅=- ⎪⎝⎭,故本选项不合题意; D.2211234x x x ⎛⎫-+=- ⎪+⎝⎭,故本选项符合题意; 故选:D .【点睛】本题考查了同底数幂的乘法法则、二次根式的性质、完全平方公式以及分式的运算法则,解题的关键是熟练掌握运算法则.2.C解析:C【分析】直接利用二次根式的性质化简以及结合合并同类项法则和幂的乘方运算法则化简求出答案;【详解】A 2= ,故此选项错误;B 、2525a a a a +=+,故此选项错误;C 、()5210a a =,故此选项正确;D 、5=60⨯,故此选项错误;故选:C .【点睛】本题主要考查了二次根式的性质以及结合合并同类项法则和幂的乘方运算法则,正确化简各式是解题的关键;3.B解析:B【分析】根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题.【详解】A A 错误;B ,故选项B 正确;C 、21)313=-=-,故选项C 错误;D 53=≠+,故选项D 错误;故选:B .【点睛】本题考查了二次根式的混合运算,解答本题的关键是明确二次根式混合运算的法则. 4.D解析:D【分析】直接利用倒数的定义分析和二次根式的化简即可得出答案;相乘为1的两个数即为倒数;【详解】=3. 故选:D .【点睛】本题考查了二次根式的化简、倒数的定义,正确化简二次根式是解题的关键; 5.B解析:B【分析】根据最简二次根式的定义(被开方数不含有能开的尽方的因式或因数,被开方数不含有分母),判断即可.【详解】解:∵2==|x =,∴、,共2个,故选:B .【点睛】本题考查了对最简二次根式的理解,能熟练地运用定义进行判断是解此题的关键. 6.D解析:D【分析】由2240a b ab +-=可得2()6a b ab +=,2()2a b ab -=,然后根据0a b >>求得a b +和a b -的值,代入即可求解.【详解】∵2240a b ab +-=,即224a b ab +=,∴2()6a b ab +=,2()2a b ab -=,∵0a b >>, ∴a b +=a b -=,∴a b a bb a a b ++=---== 故选:D .【点睛】本题考查了求分式的值以及二次根式的除法运算,正确运用完全平方公式是解题的关键. 7.A解析:A【分析】由二次根式有意义的条件可得出x 的值,即可得出y 的值,计算出x y的值即可. 【详解】因为3y =,4040x x -≥⎧∴⎨-≥⎩, ∴x =4,∴y =3, ∴43x y =. 故选:A .【点睛】本题主要考查二次根式有意义的条件,熟记二次根式有意义的条件是解题关键.8.C解析:C【分析】根据同类二次根式的定义可得答案.【详解】A =,不能与B =合并,故本选项不符合题意;C =合并,故本选项符合题意;D ,不能与合并,故本选项不符合题意.故选:C .【点睛】本题主要考查了同类二次根式的定义,即二次根式化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式.9.B解析:B【分析】根据二次根式有意义的条件列出不等式,求出x 的范围,得到答案.【详解】解:由题意得,40x -≥,50x -≥,解得,45x ≤≤,则x 可取的整数是4、5,共2个,故选:B .【点睛】本题考查了二次根式有意义的条件,掌握二次根式有意义的条件是被开方数是非负数是解题的关键.10.D解析:D【分析】根据二次根式有意义的条件可得出20210a ->,可得20210a -<,由此可将2021a -变形得出答案.【详解】由题意得:20210a ->,可得20210a -<,∴((2021a a ---== 故选:D .【点睛】本题考查了二次根式的性质与化简,关键是由等式可确定出20210a ->. 11.C【分析】根据二次根式的加减乘除运算法则分别计算出各项的结果,再进行判断得出结论即可.【详解】解:A≠B、8-≠C=D=,原式计算错误,故不符合题意;故选:C.【点睛】此题主要考查了二次根式的加减乘除运算,熟练掌握二次根式的运算法则是解答此题的关键.12.D解析:D【分析】根据最简二次根式的定义即可求出答案.【详解】A,故A不是最简二次根式;B=,故B不是最简二次根式;C C不是最简二次根式,故选:D.【点睛】本题考查最简二次根式,解题的关键是正确理解最简二次根式的定义,本题属于基础题型.二、填空题13.1【分析】根据二次根式混合运算的法则进行计算即可【详解】解:原式=故答案为:1【点睛】本题考查二次根式的混合运算熟练掌握运算法则是解题的关键解析:1【分析】根据二次根式混合运算的法则进行计算即可.【详解】解:原式=222431 -=-=,故答案为:1.本题考查二次根式的混合运算,熟练掌握运算法则是解题的关键.14.1【分析】直接将x值代入计算可得【详解】当时==故答案为:1【点睛】本题主要考查了二次根式的性质与化简解题的关键是熟练掌握完全平方公式和二次根式的性质解析:1【分析】直接将x值代入计算可得.【详解】当3x=时,故答案为:1【点睛】本题主要考查了二次根式的性质与化简,解题的关键是熟练掌握完全平方公式和二次根式的性质.15.【分析】由倒数相反数及立方根的定义求出ab及c的值代入所求式子中计算即可求出值【详解】由题意得:∴故答案为:【点睛】本题考查了分式的求值根据倒数相反数立方根的定义求出abc的值是解题的关键解析:【分析】由倒数,相反数及立方根的定义求出a,b及c的值代入所求式子中计算即可求出值.【详解】由题意得:11a==b=,1c==-,∴c a ba b b c c a++---()01=++--2==故答案为:2-.本题考查了分式的求值,根据倒数,相反数,立方根的定义求出a ,b ,c 的值是解题的关键.16.【分析】先化简二次根式再进行计算即可【详解】解:=故答案为:【点睛】此题主要考查了二次根式加减法关键是灵活运用二次根式的性质时行化简解析:【分析】先化简二次根式,再进行计算即可.【详解】2===故答案为:【点睛】此题主要考查了二次根式加减法,关键是灵活运用二次根式的性质时行化简. 17.【分析】先将化成再运用平方差公式计算从而可得解【详解】解:===故答案为:【点睛】此题主要考查了二次根式的混合运算熟练运用乘法公式是解答此题的关键【分析】先将2化成,再运用平方差公式计算,从而可得解.【详解】解:2==22⎡⎤-⎣⎦=【点睛】此题主要考查了二次根式的混合运算,熟练运用乘法公式是解答此题的关键. 18.;【分析】由二次根式的性质进行化简然后计算除法运算即可;由绝对值的意义和二次根式的性质进行化简即可求出答案【详解】解:-÷====;∵∴∴;∴;故答案为:;【点睛】本题考查了二次根式的乘除运算二次根解析:2- 25x -+.【分析】由二次根式的性质进行化简,然后计算除法运算即可;由绝对值的意义和二次根式的性质进行化简即可求出答案.【详解】 解:-15827102÷31225a=158-=158-=2=2-∵14x <<,∴40x -<,10x ->,∴44x x -=-∴44(1)25x x x x -=---=-+;故答案为:2-25x -+.【点睛】本题考查了二次根式的乘除运算,二次根式的性质,绝对值的意义,解题的关键是熟练掌握运算法则,正确的进行解题.19.【分析】根据分式的分母不等于0得到根据二次根式的被开方数大于等于0得到求解即可【详解】由题意得:解得∵∴故答案为:【点睛】此题考查分式有意义的条件二次根式被开方数的非负性正确理解代数式的形式列式计算 解析:2x ≠ 3x ≥【分析】根据分式的分母不等于0得到20x -≠,根据二次根式的被开方数大于等于0得到30x -≥,求解即可.【详解】由题意得:20x -≠,解得2x ≠,∵30x -≥,∴3x ≥故答案为:2x ≠,3x ≥.【点睛】此题考查分式有意义的条件,二次根式被开方数的非负性,正确理解代数式的形式列式计算是解题的关键.20.1【分析】根据二次根式有意义的条件得到2-x≥0且x-2≥0则x=2易得y=1然后把x 与y 的值代入计算即可【详解】由题意得∴∴故答案为:1【点睛】本题考查了二次根式有意义的条件:二次根式有意义的条件解析:1【分析】根据二次根式有意义的条件得到2-x≥0且x-2≥0,则x=2,易得y=1,然后把x 与y 的值代入计算即可.【详解】由题意得2020x x -≥⎧⎨-≤⎩, ∴2x =,0011y =++=,∴1x y -=.故答案为:1.【点睛】本题考查了二次根式有意义的条件:二次根式有意义的条件为被开方数为非负数.三、解答题21.(1);(2)-36【分析】(1)由二次根式的性质进行化简,再计算加减运算即可;(2)先由乘方、二次根式的性质、立方根进行化简,然后计算乘法,再计算加减即可.【详解】(1)解:原式=(135=+-=(2)原式()()184434=-⨯+-⨯-3213=---36=-. 【点睛】 本题考查了二次根式的性质,实数的混合运算,解题的关键是熟练掌握运算法则,正确的进行化简.22.12x +,3【分析】 首先计算括号里面的加法,再算括号外的除法,化简后,再代入x 的值可得答案.【详解】 解:原式=(22x x +++12x +)•3(3)(3)x x x -+-,=32x x ++•3(3)(3)x x x -+-, =12x +,当x 2【点睛】此题主要考查了分式的化简求值,关键是掌握计算顺序和计算法则,正确进行化简.23.1x -,【分析】 首先将原式分子分母因式分解,先算除法,再算减法,最后把x 的值代入进行计算即可.进而化简求出答案.【详解】解:原式=22121211x x x x x -+⋅--+ =()()()2112111x x x x x -⋅-+-+ =()1211x x x x --++ =()()1211x x x x x x --++ =1x-当x ==-【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.24.(1)8;(2)4.【分析】(1)先计算出x y +和xy 的值,再利用完全平方公式求解即可;(2)通分后利用(1)的结论求解即可.【详解】(1)∵11x y ==,, ∴1)2x y xy +===,∴22x y +2()2x y xy =+-222=-⨯124=-8=;(2)∵22118x y x y ==+=,,,2xy =, ∴y x x y+ 22x y xy+= 82= 4=.【点睛】本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值.注意整体代入的方法的运用.25.(1)62)2-【分析】(1)首先计算乘方、开方,然后从左向右依次计算,求出算式的值是多少即可.(2)应用乘法分配律,求出算式的值是多少即可.【详解】(1)原式33=⨯23=⨯-6=;(2)原式116(31)2=+-⨯--2=2=-.【点睛】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行,另外有理数的运算律在实数范围内仍然适用.26.(1)3;(2)2.【分析】(1)先计算绝对值、零指数幂、负整数指数幂、二次根式的除法,然后再计算加减运算,即可得到答案;(2)先由二次根式的性质进行化简,然后计算乘法运算和加法运算即可.【详解】解:(1)11 (4)4π-⎛⎫-- ⎪⎝⎭=14=3;(2)=2=2.【点睛】本题考查了二次根式的性质,二次根式的混合运算,零指数幂,负整数指数幂,解题的关键是熟练掌握运算法则进行解题.。
新人教版八年级下册二次根式及勾股定理测试题
二次根式与勾股定理测试题一、选择题1. 若为二次根式, 则m 的取值为 ( )A. m ≤3B. m <3C. m ≥3D. m >32. 下列式子中二次根式的个数有 ( ) ⑴31;⑵3-;⑶12+-x ;⑷38;⑸;⑹)(11>-x x ;⑺322++x x . A. 2个 B. 3个 C. 4个 D. 5个3.当有意义时, a 的取值范围( )A .a ≥2 B .a >2 C .a ≠2 D .a ≠-24. 下列计算正确的是 ( ) ①69494=-⋅-=--))((;②69494=⋅=--))((; ③145454522=-⋅+=-;④145452222=-=-;A. 1个B. 2个C. 3个D. 4个 5.对于二次根式, 以下说法不正确的是 ( ) A. 它是一个正数 B. 是一个无理数C. 是最简二次根式 D. 它的最小值是3 6. 把分母有理化后得( )A. B. C. D. 7.下列二次根式中, 最简二次根式是( )A . B . C . D . 8. 化简二次根式得( )A. B. C. D. 309.下列几组数中, 不能作为直角三角形三边长度的是( ) A.1.5, 2, 2.5 B.3, 4, 5 C.5, 12, 13 D.20, 30, 4010、如图, 在Rt△ABC中, ∠B=90°, BC=15, AC=17, 以AB为直径作半圆, 则此半圆的面积为(). A. 16π B. 12π C. 10π D. 8π11.已知直角三角形两边的长为3和4, 则此三角形的周长为().A. 12B. 7+C. 12或7+D. 以上都不对12.如图, 梯子AB靠在墙上, 梯子的底端A到墙根O的距离为2m, 梯子的顶端B到地面的距离为7m, 现将梯子的底端A向外移动到A′, 使梯子的底端A′到墙根O的距离等于3m. 同时梯子的顶端B下降至B′, 则BB′(). A. 小于1m B. 大于1m C. 等于1m D. 小于或等于1m 13.将一根24cm的筷子, 置于底面直径为15cm, 高8cm的圆柱形水杯中, 如图所示, 设筷子露在杯子外面的长度为hcm, 则h的取值范围是().A. h≤17cmB. h≥8cmC. 15cm≤h≤16cmD. 7cm≤h≤16cm14. 、如图, , 且, , , 则线段AE的长为();A. B、 C、 D、(第14题)15.如图, 一块直角三角形的纸片, 两直角边AC=6㎝, BC=8㎝, 现将直角边AC沿直线AD折叠, 使它落在斜边AB上, 且与AE重合, 则CD等于();A.2㎝B.3㎝C.4㎝D.5㎝16、已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF ,则△ABE 的面积为( )...A 、6cm2 B 、8cm2C 、10cm2D 、12cm2二、填空题1. 当x___________时, 在实数范围内有意义. 当x 时,式子有意义2. 比较大小: ______;3. ____________;__________.4. 当a=时, 则______;5. 若成立, 则x 满足___________. 6、如图, 矩形零件上两孔中心A 、B 的距离是_____(精确到个位).7、如图, △ABC 中, AC =6, AB =BC =5, 则BC 边上的高AD =______. 7.已知: , 则 。
新人教版八年级下册二次根式(全章)习题及答案
二次根式16.1 二次根式:1. 有意义的条件是 。
2. 当__________3. 11m +有意义,则m 的取值范围是 。
4. 当__________x 是二次根式。
5. 在实数范围内分解因式:429__________,2__________x x -=-+=。
6. 2x =,则x 的取值范围是 。
7. 2x =-,则x 的取值范围是 。
8. )1x 的结果是 。
9. 当15x ≤5_____________x -=。
10. 把的根号外的因式移到根号内等于 。
11. 11x =+成立的条件是 。
12. 若1a b -+互为相反数,则()2005_____________a b -=。
13. )()()230,2,12,20,3,1,x y y x xx x y +=--++中,二次根式有( )A. 2个B. 3个C. 4个D. 5个 14. 下列各式一定是二次根式的是( )15. 若23a ,则)A. 52a -B. 12a -C. 25a -D. 21a -16. 若A ==( )A. 24a + B. 22a + C. ()222a + D. ()224a +17. 若1a≤)A. (1a-B. (1a-C. (1a-D. (1a-18.=x的取值范围是()A. 2x ≠ B. 0x≥ C. 2x D. 2x≥19.)A. 0B. 42a- C. 24a- D. 24a-或42a-20. 下面的推导中开始出错的步骤是()()()()()23123224==-==∴=-∴=-A. ()1B. ()2C. ()3D. ()421.2440y y-+=,求xy的值。
22. 当a取什么值时,代数式1取值最小,并求出这个最小值。
23. 去掉下列各根式内的分母:())10x ())21x24. 已知2310x x -+=25. 已知,a b (10b -=,求20052006a b -的值。
16.2 二次根式的乘除1. 当0a ≤,0b__________=。
(带答案)人教版初中数学二次根式常考题型例题
(带答案)人教版初中数学二次根式常考题型例题(文末附答案)单选题1、下列二次根式中,是最简二次根式的是( )A .√18B .√13C .√27D .√122、下列等式中成立的是( )A .(−3x 2y )3=−9x 6y 3B .x 2=(x+12)2−(x−12)2 C .√2÷(√2√3)=2+√6D .1(x+1)(x+2)=1x+1−1x+2 3、下列计算正确的是( )A .√8÷√2=2√2B .√9=±3C .√(−3)2=3D .√24=√2 4、已知m=(﹣√33)×(﹣2√21),则有( )A .5.0<m <5.1B .5.1<m <5.2C .5.2<m <5.3D .5.3<m <5.45、式子√a+1a−2有意义,则实数a 的取值范围是( )A .a ≥-1B .a ≠2C .a ≥-1且a ≠2D .a >2 6、(√24-3√15+√223)×√2的值是 ( )A .163√3-3√30B .3√30-23 √3C .2√30-23 √3D .203√3- √307、√2的相反数是【 】A .√2B .√22C .−√2D .−√22 8、下列二次根式是最简二次根式的是( )A .√12B .√0.3C .√8D .√6填空题9、已知√a −b +|b −1|=0,则a +1=__.10、若二次根式√1x−1有意义,则x 的取值范围是__________.11、比较大小:√22 __________12(填写“>”或“<”或“=”). 12、已知x ﹣2=√2,则代数式(x +1)2﹣6(x +1)+9的值为_____.13、计算:(√5-2)2018(√5+2)2019的结果是_____.解答题 14、观察下列等式: √2+1=√2(√2+1)(√2−1)=√2−1 √3+√2=√3√2(√3+√2)(√3−√2)=√3−√2 √4+√3=√4√3(√4+√3)(√4−√3)=√4−√3 解答下列问题:(1)写出一个无理数,使它与3−√2的积为有理数; (2)利用你观察的规律,化简2√3+√11; (3)计算:1+√2√2+√3+⋯…3+√10.15、已知x =2+√3,y =2-√3.试求代数式x y +y x 的值.(带答案)人教版初中数学二次根式_003参考答案1、答案:B解析:根据最简二次根式的定义对各选项分析判断利用排除法求解.A 、√18=3√2不是最简二次根式,错误;B 、√13是最简二次根式,正确;C 、√27=3√3不是最简二次根式,错误;D 、√12=2√3不是最简二次根式,错误,故选B .小提示:本题考查了最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.2、答案:D解析:根据幂的乘方法则、完全平方公式、二次根式的运算法则以及分式的运算法则计算即可.解:A 、(−3x 2y )3=−27x 6y 3,故选项A 错误;B 、(x+12)2−(x−12)2=x 2+2x+14−x 2−2x+14=x 2+2x +1−x 2+2x −14=x ,故选项B 错误;C 、√2÷(√2√3)=√2÷(√3√2⋅√3√2√2⋅√3) =√2√3+√2√6=√2√6√3+√2=√3√3√2)(√3+√2)(√3−√2) =6−2√6,故选项C 错误;D 、1x+1−1x+2=x+2(x+1)(x+2)−x+1(x+1)(x+2)=x +2−x −1(x +1)(x +2) =1(x+1)(x+2),故选项D 正确,故选:D .小提示:本题考查了的乘方法则、完全平方公式、二次根式的运算法则以及分式的运算法则,熟练掌握相关运算法则是解决本题的关键.3、答案:C解析:根据二次根式的乘除运算法则以及利用二次根式的性质化简,逐项计算,即可判断.A、√8÷√2=√4=2,故此选项错误;B、√9=3,故此选项错误;C、√(−3)2=3,正确;D、√2×4=√22×4=2√2,故此选项错误;故选:C.小提示:本题考查了二次根式的乘除运算,熟练掌握二次根式的加减乘除运算法则以及二次根式的性质化简是解题的关键.4、答案:C解析:直接利用二次根式的乘法运算法则化简,进而得出m的取值范围.∵m=(−√33)×(−2√21)=2√7=√28,5.22=27.4,5.32=28.09,∴5.2<m<5.3.故选C.小提示:考查二次根式的乘除法,估算无理数的大小,掌握无理数的估算方法是解题的关键.5、答案:C解析:根据被开方数大于等于0,分母不等于0列式计算即可.解:由题意得,a+1≥0,a≠2解得,a≥-1且a≠2,所以答案是:C.小提示:本题考查的知识点是根据分式有意义的条件确定字母的取值范围,属于基础题目,比较容易掌握.6、答案:A解析:解:原式=√48−3√30+√163=4√3−3√30+4√33=16√33−3√30.故选A.7、答案:C解析:相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.因此√2的相反数是−√2.故选C.8、答案:D解析:检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.A、被开方数含分母,故A不符合题意;B、被开方数0.3=310,含分母,故B不符合题意;C、被开方数含能开得尽方的因数或因式,故C不符合题意;D、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D符合题意.故选:D.小提示:本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.9、答案:2.解析:利用非负数的性质结合绝对值与二次根式的性质即可求出a,b的值,进而即可得出答案.∵√a−b+|b﹣1|=0,又∵√a−b≥0,|b−1|≥0,∴a﹣b=0且b﹣1=0,解得:a=b=1,∴a+1=2.故答案为2.小提示:本题主要考查了非负数的性质以及绝对值与二次根式的性质,根据几个非负数的和为0,那么每个非负数都为0得到关于a、b的方程是解题的关键.10、答案:x>1解析:概念二次根式被开方数大于或等于0,分母不为0求解即可.解:二次根式√1x−1有意义,则1x−1≥0且x−1≠0,解得,x>1,所以答案是:x>1.小提示:本题考查了二次根式和分式有意义的条件,解题关键是熟记二次根式和分式有意义的条件,列出不等式.11、答案:>解析:直接用√22−12,结果大于0,则√22大;结果小于0,则12大.解:√22−12=√2−12>0,∴√22>12,所以答案是:>.小提示:本题主要考查实数的大小比较,常用的比较大小的方法有作差法、作商法、平方法等,正确理解和记忆方法背后的知识点是解题关键.12、答案:2解析:利用完全平方公式得到原式=(x﹣2)2,然后利用整体代入的方法计算.解:(x+1)2﹣6(x+1)+9=[(x+1)﹣3]2=(x﹣2)2,∵x﹣2=√2,∴原式=(√2)2=2,故答案为2.小提示:本题考查应用完全平方公式进行因式分解,进而利用整体代入法求代数式的值,灵活应用公式进行因式分解是关键.13、答案:√5+2解析:逆用积的乘方运算法则以及平方差公式即可求得答案.(√5-2)2018(√5+2)2019=(√5-2)2018×(√5+2)2018×(√5+2)=[(√5-2)×(√5+2)]2018×(√5+2)=(5-4)2018×(√5+2)=√5+2,故答案为√5+2.小提示:本题考查了积的乘方的逆用,平方差公式,熟练掌握相关的运算法则是解题的关键.14、答案:(1)3+√2;(2)2√3−√11;(3)√10−1.解析:(1)由平方差的运算法则,即可得到答案;(2)找出题目中的规律,把分母有理化,即可得到答案;(3)先把分母有理化,然后进行化简,即可得到答案.解:(1)∵(3−√2)(3+√2)=9−2=7,∴这个无理数为:3+√2;(2)2√3+√11=√3−√11)(2√3+√11)(2√3−√11)=2√3−√1112−11=2√3−√11;(3)1+√2√2+√3+⋯…+3+√10=√2−1+√3−√2+⋯+√10−√9=√10−1.小提示:本题考查了二次根式的运算法则,分母有理化,平方差运算,熟练掌握运算法则,正确的发现题目中的规律是解题关键.15、答案:14解析:先计算出x+y、xy的值,再代入原式=x 2+y2xy=(x+y)2−2xyxy计算可得.解:∵x=2+√3,y=2−√3,∴x+y=2+√3+2−√3=4,xy=(2+√3)×(2−√3)=1,则原式=x 2+y2xy=(x+y)2−2xyxy=42−2×11=14.小提示:本题主要考查分母有理化与分式的加减运算,解题的关键是掌握分式加减运算法则、完全平方公式与平方差公式及二次根式的运算法则.11。
新人教版初中数学八年级下册同步练习试题及答案_第16章二次根式
新人教版初中数学八年级下册同步练习试题及答案_第16章二次根式测试1二次根式学习要求掌握二次根式的概念和意义,会根据算术平方根的意义进行二次根式的运算.课堂学习检验一、填空题1.1a表示二次根式的条件是______.2.当某______时,21有意义,当某______时,有意义.某1某33.若无意义某2,则某的取值范围是______.4.直接写出下列各式的结果:(1)49=_______;(2)(7)2_______;(3)(7)2_______;(4)(7)2_______;(5)(0.7)2_______;(6)[(7)2]2_______.二、选择题5.下列计算正确的有().①(2)22②22③(2)22④(2)22A.①、②B.③、④6.下列各式中一定是二次根式的是().A.32B.(0.3)2C.①、③D.②、④C.2D.某7.当某=2时,下列各式中,没有意义的是().A.某2 B.2某C.某22D.2某28.已知(2a1)212a,那么a的取值范围是().11B.a22三、解答题9.当某为何值时,下列式子有意义A.a(1)1某;(3)某21;C.a12D.a12(2)某2;(4)10.计算下列各式:(1)(32)2;综合、运用、诊断一、填空题11.2某表示二次根式的条件是______.12.使(2)(a21)2;3(3)2()2;4(4)(322).3某有意义的某的取值范围是______.2某113.已知某11某y4,则某y的平方根为______.14.当某=-2时,12某某214某4某2=________.二、选择题15.下列各式中,某的取值范围是某>2的是().11A.某2B.C.某22某16.若|某5|2y20,则某-y的值是().A.-7三、解答题17.计算下列各式:2(1)(3.14π);D.12某1B.-5C.3D.7(2)(32)2;2(3)[()1]2;3(4)(30.52)2.bb24ac18.当a=2,b=-1,c=-1时,求代数式的值.2a拓广、探究、思考19.已知数a,b,c在数轴上的位置如图所示:化简:a2|ac|(cb)2|b|的结果是:______________________.20.已知△ABC的三边长a,b,c均为整数,且a和b满足a2b26b90.试求△ABC的c边的长.测试2二次根式的乘除(一)学习要求会进行二次根式的乘法运算,能对二次根式进行化简.课堂学习检测一、填空题1.如果4某y2某y成立,某,y必须满足条件______.11_________;(2)(3)(48)__________;1222.计算:(1)72(3)20.270.03___________.3.化简:(1)4936______;(2)0.810.25______;(3)45______.二、选择题4.下列计算正确的是().A.2355.如果某某3A.某≥0B.236C.84D.(3)23某(某3),那么().B.某≥3C.0≤某≤3D.某为任意实数6.当某=-3时,某2的值是().A.±3三、解答题7.计算:(1)62;(4)(7)(7)249;8.已知三角形一边长为2cm,这条边上的高为12cm,求该三角形的面积.(8)13252;(9)527;3125B.3C.-3D.9(2)53(33);(3)3228;(5)ab11;3a(6)2a2bc;5bc5a72某2y7.综合、运用、诊断一、填空题10.已知矩形的长为25cm,宽为10cm,则面积为______cm2.11.比较大小:(1)32_____23;(2)52______43;(3)-22_______-6.二、选择题12.若a2bab成立,则a,b满足的条件是().A.a<0且b>013.把42B.a≤0且b≥0C.a<0且b≥0D.a,b异号3根号外的因式移进根号内,结果等于().4B.11C.44D.211A.11三、解答题14.计算:(1)53某y36某_______;211_______;32(2)27a29a2b2_______;(3)122(4)3(312)_______.15.若(某-y+2)2与某y2互为相反数,求(某+y)某的值.拓广、探究、思考16.化简:(1)(21)10(21)11________;(2)(31)(31)_________.测试3二次根式的乘除(二)学习要求会进行二次根式的除法运算,能把二次根式化成最简二次根式.课堂学习检测一、填空题1.把下列各式化成最简二次根式:(1)12______;(2)18某______;(3)48某5y3______;(4)y______;某(5)2111______.______;(6)4______;(7)某43某2______;(8)22332.在横线上填出一个最简单的因式,使得它与所给二次根式相乘的结果为有理式,如:32与2.(1)23与______;(2)32与______;(3)3a与______;(4)3a2与______;(5)3a3与______.二、选择题3.1某1某成立的条件是().某某A.某<1且某≠0B.某>0且某≠14.下列计算不正确的是().A.317164C.0<某≤1D.0<某<1 B.2y16某y3某3某42某3某9某111C.()2()24520D.5.把1化成最简二次根式为().32B.A.3232三、计算题6.(1)16;2513232C.128D.1247(2)2;9(3)24;3(4)5752125;(5)5;215(6)6633;11(7)11;32(8)110.125.22综合、运用、诊断一、填空题7.化简二次根式:(1)26________(2)11_________(3)4_________388.计算下列各式,使得结果的分母中不含有二次根式:(1) 15_______(2)22某__________(4)_________(3)__________某235y1______;27_________.(结果精确到0.001)39.已知31.732,则二、选择题10.已知a31,b2,则a与b的关系为().31C.a=-bD.ab=-1A.a=bB.ab=111.下列各式中,最简二次根式是().A.1某yB.abC.某24D.5a2b三、解答题ba312.计算:(1)ab;ba(2)12某y2y;3(3)abab2213.当某42,y42时,求某2某yy和某y2+某2y的值.拓广、探究、思考14.观察规律:12121,13232,12323,并求值.1722_______;(2)11110_______;(3)1nn1_______.15.试探究a2、(a)2与a之间的关系.测试4二次根式的加减(一)学习要求掌握可以合并的二次根式的特征,会进行二次根式的加、减运算.课堂学习检测一、填空题1.下列二次根式32,27,125,445,28,18,12,15化简后,与2的被开方数相同的有______,与3的被开方数相同的有______,与5的被开方数相同的有______.1________;32.计算:(1)123二、选择题(2)3某4某__________.3.化简后,与2的被开方数相同的二次根式是().A.10B.12C.12D.164.下列说法正确的是().A.被开方数相同的二次根式可以合并C.只有根指数为2的根式才能合并5.下列计算,正确的是().A.2323B.5225D.y2某3某yB.8与80可以合并D.2与50不能合并C.52a2a62a三、计算题6.93712548.8.10.32某58某718某.7.24126.11128329.(12411)(340.5)8311.综合、运用、诊断一、填空题12.已知二次根式ab4b与3ab是同类二次根式,(a+b)a的值是______.13.2a8ab3与6b无法合并,这种说法是______的.(填“正确”或“错误”)32b二、选择题14.在下列二次根式中,与a是同类二次根式的是().A.2a三、计算题15.1817.a1a14bb2abB.3a2C.a3D.a4228(51)0.216.13(23)(227).2418.2ababab1aa3b2bab3.四、解答题y311某19.化简求值:某4yy,其中某4,y.29某20.当某拓广、探究、思考21.探究下面的问题:(1)判断下列各式是否成立你认为成立的,在括号内画“√”,否则画“某”.①2123时,求代数式某2-4某+2的值.③444()41515④555()52424(2)你判断完以上各题后,发现了什么规律请用含有n的式子将规律表示出来,并写出n的取值范围.(3)请你用所学的数学知识说明你在(2)题中所写式子的正确性.。
2023年人教版八年级数学下册第十六章《二次根式》综合测试卷附答案解析
2023年八年级数学下册第十六章《二次根式》综合测试卷1.下列各式是二次根式的是()A.-7B.m C.a 2+1D.332.若式子x +1+x -2在实数范围内有意义,则x 的取值范围是()A.x >-1B.x ≥-1C.x ≥-1且x ≠0D.x ≤-13.下列二次根式中,是最简二次根式的是()A.2B.12C.12D.94.4.下列运算正确的是()A.2+3=5B.30=0C.(-2a )3=-8a 3D.a 6÷a 3=a 25.化简二次根式(-5)2×3的结果为()A.-53B.53C.±53 D.30×3的值在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间7.估计5+2×10的值应在()A.5和6之间B.6和7之间C.7和8之间D.8和9之间8.若x <0,则x -x 2x 的结果是()A.0B.-2C.0或2D.29.已知a ,b ,c 为△ABC 的三边长,且a 2-2ab +b 2+|b -c |=0,则△ABC 的形状是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形10.如图,长方形内有两个相邻的正方形,其面积分别为2和8,则图中阴影部分的面积为()A.2B.2C.22D.6二、填空题(每题3分,共24分)11.比较大小:35________27(填“>”“<”或“=”).12.计算:24-323=________.13.比较:5-12________12(填“>”“=”或“<”).14.实数a 在数轴上对应的点的位置如图所示,则(a -4)2+(a -11)2化简后为________.15.【2022·贺州】若实数m ,n 满足|m -n -5|+2m +n -4=0,则3m +n =________.16.△ABC 的面积S =12cm 2,底边a =23cm,则底边上的高为__________.17.已知a ≠0,b ≠0且a <b ,化简-a 3b 的结果是__________.18.已知三角形的三边长分别为a ,b ,c ,求其面积问题,中外数学家曾经进行过深入研究,古希腊的几何学家海伦给出求其面积的海伦公式S =p (p -a )(p -b )(p -c ),其中p =a +b +c 2;我国南宋时期数学家秦九韶曾提出利用三角形的三边求其面积的秦九韶公式S 的三边长分别为2,3,4,则其面积是________.三、解答题(19题16分,其余每题10分,共66分)19.计算:(1)(6+8)×3÷32;-12+(1-2)0-|3-2|;(3)(6-412+38)÷22;(4)(1+3)(2-6)-(22-1)2.20.先化简,再求值:23x 9x +y 2x y 3-21x -5x =12,y =4.21.已知等式|a -2023|+a -2024=a 成立,求a -20232的值.22.已知一个长方形花坛与一个圆形花坛的面积相等,长方形花坛的长为140πm,宽为35πm,求这个圆形花坛的半径.23.【跨学科题】据研究,高空抛物下落的时间t(单位:s)和高度h(单位:m)近似满足公式t=h5 (不考虑风速的影响).(1)求从40m高空抛物到落地的时间.(2)小明说从80m高空抛物到落地时间是(1)中所求时间的2倍,他的说法正确吗?如果不正确,请说明理由.(3)已知高空坠落物体动能(单位:焦耳)=10×物体质量×高度,某质量为0.05kg的鸡蛋经过6s后落在地上,这个鸡蛋产生的动能是多少?你能得到什么启示?(注:杀伤无防护人体只需要65焦耳的动能)24.我们学习了二次根式,那么所有的非负数都可以看成是一个数的平方,如3=(3)2,5=(5)2,下面我们观察:(2-1)2=(2)2-2×1×2+12=2-22+1=3-22;反之,3-22=2-22+1=(2-1)2,∴3-22=(2-1)2,∴3-22=2-1.(1)化简3+2 2.(2)化简4+2 3.(3)化简4-12.(4)若a±2b=m±n,则m,n与a,b的关系是什么?并说明理由.答案一、1.C2.C 3.A 4.C 5.B 6.D 7.B 8.D 9.B 10.B 二、11.>12.613.>14.715.716.43cm17.-a -ab点拨:∵a ≠0,b ≠0,∴-a 3b >0,a 3b <0.∴a ,b 异号.又∵a <b ,∴a <0,b >0.∴-a 3b =-a -ab .18.3154三、19.解:(1)原式=(32+26)÷32=1+233;(2)原式=-2-23+1-(2-3)=-2-23+1-2+3=-3-3;6-412+3×24=32-1+3=32+2;(4)原式=2×(1+3)×(1-3)-(8-42+1)=2×(1-3)-8+42-1=-22-8+42-1=22-9.20.解:原式=2x x +xy -x x +5xy=x x +6xy .当x =12,y =4时,原式=1212+612×4=24+62=2524.21.解:由题意得a -2024≥0,∴a ≥2024.原等式变形为a -2023+a -2024=a .整理,得a -2024=2023.两边平方,得a -2024=20232,∴a -20232=2024.22.解:长方形花坛的面积为140π×35π=70π(m 2),∴圆形花坛的面积为70πm 2.设圆形花坛的面积为S m 2,半径为r m,则S =πr 2,即70π=πr 2,∴r=70ππ=70.故这个圆形花坛的半径为70m. 23.解:(1)由题意知h=40m,∴t=h5=405=8=22(s).(2)不正确.理由如下:当h=80m时,t=805=16=4(s).∵4≠2×22,∴不正确.(3)当t=6s时,6=h5,∴h=180m.∴鸡蛋产生的动能为10×0.05×180=90(焦耳).启示:严禁高空抛物.24.解:(1)3+22=(2+1)2=2+1.(2)4+23=(3+1)2=3+1.(3)4-12=4-23=(3-1)2=3-1.+n=a,=b.理由:把a±2b=m±n两边平方,得a±2b=m+n±2mn,+n=a,=b.。
新人教版八年级下册二次根式 单元测试题
二次根式 单元测试题一、选择题1、下列判断⑴12 3 和13 48 不是同类二次根式;⑵145和125不是同类二次根式;⑶8x 与8x不是同类二次根式,其中错误的个数是( ) A 、3 B 、2 C 、1 D 、02、如果a 是任意实数,下列各式中一定有意义的是( ) A 、 a B 、1a2 C 、3-a D 、-a 23、下列各组中的两个根式是同类二次根式的是( ) A 、52x 和3x B 、12ab 和13abC 、x 2y 和xy 2D 、 a 和1a 24、下列二次根式中,是最简二次根式的是( ) A 、8x B 、x 2-3 C 、x -yxD 、3a 2b 5、在27 、112、112中与 3 是同类二次根式的个数是( ) A 、0 B 、1 C 、2 D 、36、若a<0,则|a 2 -a|的值是( )A 、0B 、2aC 、2a 或-2aD 、-2a 7、把(a -1)11-a根号外的因式移入根号内,其结果是( ) A 、1-a B 、-1-a C 、a -1 D 、-a -1 8、若a+b4b 与3a +b 是同类二次根式,则a 、b 的值为( )A 、a=2、b=2B 、a=2、b=0C 、a=1、b=1D 、a=0、b=2 或a=1、b=1 9、下列说法错误的是( )A 、(-2)2的算术平方根是2B 、 3 - 2 的倒数是 3 + 2C 、当2<x<3时,x 2-4x+4 (x -3)2=x -2x -3D 、方程x+1 +2=0无解 10、若 a + b 与 a - b 互为倒数,则( ) A 、a=b -1 B 、a=b+1 C 、a+b=1 D 、a+b=-1 11、若0<a<1,则a 2+1a 2 -2 ÷(1+1a )×11+a可化简为( ) A 、1-a 1+a B 、a -11+a C 、1-a 2 D 、a 2-112、在化简x -yx +y时,甲、乙两位同学的解答如下:甲:x -y x +y = (x -y)(x -y )(x +y )(x -y ) =(x -y)(x -y )(x )2-(y )2=x -y乙:x -y x +y =(x )2-(y )2x +y = (x -y )(x +y )x +y=x -yA 、两人解法都对B 、甲错乙对C 、甲对乙错D 、两人都错( ) 二、填空题 1、要使1-2xx+3+(-x)0有意义,则x 的取值范围是 。
新人教版初中数学八年级数学下册第一单元《二次根式》测试题(包含答案解析)(1)
一、选择题1.下列式子中正确的是( )A =B .a b =-C .(a b =-D .22==2.若2a 3<<( )A .52a -B .12a -C .2a 1-D .2a 5- 3.下列计算正确的是( )A .236a a a +=B .22(3)6a a -=C .-=D .()222x y x y -=-4.下列二次根式的运算:===,2=-;其中运算正确的有( ).A .1个B .2个C .3个D .4个 5.下列计算正确的是( )A . 3 BC .3=D 36. ) A .1个B .2个C .3个D .4个 7.设a b 0>>,2240a b ab +-=,则a b b a +-的值是( )A .2B .-3C .D .8.估计-⨯) A .0到1之间B .1到2之间C .2到3之间D .3到4之间9.=x 可取的整数值有( ).A .1个B .2个C .3个D .4个 10.下列计算正确的是( )A .3236362⨯==B 4=±C .()()15242⎛⎫-÷-⨯-=± ⎪⎝⎭D .(223410-⨯++= 11.下列根式是最简二次根式的是( )A B C D 12.函数y =x 的取值范围是( ). A .2x > B .2x ≠ C .2x < D .0x ≠二、填空题13.在y =中,x 的取值范围是:______________.14.已知m =m a =_____________.15.若a 的倒数是的相反数是0,c 是-1的立方根,则c a b a b b c c a++---=____________.16.若a 的小数部分,则()6a a +=_____.17.2=_____=______.18.若1<x <4=___________19.2|11|(12)0b c -++=,则a b c ++的平方根是______.20.使式子2x +有意义的x 的取值范围是______. 三、解答题21.化简(1)+(222.已知a ,b ,c 满足2|(0a c =.试问以a ,b ,c 为边能否构成三角形?若能,求出其周长;若不能,请说明理由.23.计算:(1(2)2;(3)21)2)+;(4(1101|3|(2)2π-⎛⎫--+ ⎪⎝⎭;(2)22)++.25.先化简,再求值:211(1)a a a -++,其中1a =.26.已知1x =,x 的整数部分为a ,小数部分为b ,求a b 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据二次根式的运算法则分别计算,再作判断.【详解】解:A 、不是同类二次根式,不能合并,故错误,不符合题意;B 、计算错误,不符合题意;C 、符合合并同类二次根式的法则,正确,符合题意.D 、计算错误,不符合题意;故选:C .【点睛】同类二次根式是指几个二次根式化简成最简二次根式后,被开方数相同的二次根式.二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并. 2.D解析:D【分析】先根据23<<a 给二次根式开方,得到()a 23a ---,再计算结果就容易了.【详解】解:∵23<<a ,∴=|2||3|a a ---()a 23a =---a 23a =--+故选:D【点睛】本题考查了化简二次根式的步骤:①把被开方数分解因式;②利用积的算术平方根的性质,把被开方数中能开得尽方的因数(或因式)都开出来;③化简后的二次根式中的被开方数中每一个因数(或因式)的指数都小于根指数2.3.C解析:C【分析】根据合并同类项、幂的乘方与积的乘方、二次根式的加减及完全平方公式逐个进行判断即可.【详解】解:A.2a+3a=5a,因此选项A不符合题意;B.(-3a)2=9a2,因此选项B不符合题意;=-=C符合题意;C.(3D.(x-y)2=x2-2xy+y2,因此选项D不符合题意;故选:C.【点睛】本题考查合并同类项、幂的乘方与积的乘方、二次根式的加减及完全平方公式,依据法则或运算性质逐个进行计算才能得出正确答案.4.C解析:C【分析】由二次根式的性质、二次根式的混合运算进行计算,再进行判断,即可得到答案.【详解】=,故①正确;==②正确;=,故③正确;2,故④错误;∴正确的3个;故选:C.【点睛】本题考查了二次根式的性质、二次根式的混合运算,解题的关键是熟练掌握运算法则进行计算.5.C解析:C根据二次根式的加减法对A 、B 进行判断;根据平方差公式对C 进行判断;根据二次根式的除法法则对D 进行判断.【详解】解:A 、原式=A 选项的计算错误;B B 选项的计算错误;C 、原式=5﹣2=3,所以C 选项的计算正确;D D 选项的计算错误.故选:C .【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,是解题的关键.6.B解析:B【分析】根据最简二次根式的定义(被开方数不含有能开的尽方的因式或因数,被开方数不含有分母),判断即可.【详解】解:∵2==|x =,∴、,共2个,故选:B .【点睛】本题考查了对最简二次根式的理解,能熟练地运用定义进行判断是解此题的关键. 7.D解析:D【分析】由2240a b ab +-=可得2()6a b ab +=,2()2a b ab -=,然后根据0a b >>求得a b +和a b -的值,代入即可求解.【详解】∵2240a b ab +-=,即224a b ab +=,∴2()6a b ab +=,2()2a b ab -=,∵0a b >>,∴a b +=a b -=,∴a b a b b a a b ++=---== 故选:D .【点睛】本题考查了求分式的值以及二次根式的除法运算,正确运用完全平方公式是解题的关键. 8.B解析:B【分析】直接利用二次根式的性质结合估算无理数的大小方法得出答案.【详解】解:2, ∵34<<, ∴.122<<,故选:B .【点睛】此题主要考查了估算无理数的大小,正确估算无理数是解题关键. 9.B解析:B【分析】根据二次根式有意义的条件列出不等式,求出x 的范围,得到答案.【详解】解:由题意得,40x -≥,50x -≥,解得,45x ≤≤,则x 可取的整数是4、5,共2个,故选:B .【点睛】本题考查了二次根式有意义的条件,掌握二次根式有意义的条件是被开方数是非负数是解题的关键.10.D解析:D【分析】根据乘方运算,算术平方根的定义,有理数的乘除运算以及二次根式的加减的混合运算进行判断.【详解】A 、32322754⨯=⨯=,故A 错误;B4=,故B 错误;C 、()()()11155252224⎛⎫⎛⎫⎛⎫-÷-⨯-=-⨯-⨯-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故C 错误; D、(22346410-⨯+=-+=,故D 正确.故选:D .【点睛】本题考查了有理数的乘方,算术平方根的定义,有理数的乘除运算以及二次根式的加减的混合运算,熟记运算法则是解题的关键. 11.D解析:D【分析】根据最简二次根式的定义即可求出答案.【详解】A,故A 不是最简二次根式;B=,故B 不是最简二次根式;CC 不是最简二次根式, 故选:D .【点睛】本题考查最简二次根式,解题的关键是正确理解最简二次根式的定义,本题属于基础题型.12.C解析:C【分析】0≠;根据二次根式的性质,得20x -≥,从而得到自变量x 的取值范围.【详解】结合题意,得:200x -≥⎧⎪≠ ∴22x x ≤⎧⎨≠⎩∴2x <故选:C .【点睛】本题考查了分式、二次根式的知识;解题的关键是熟练掌握分式、二次根式的性质,从而完成求解.二、填空题13.x≥1且x≠2【分析】根据二次根式有意义的条件可得x-1≥0再根据分式有意义的条件可得x-2≠0再解出x的值【详解】解:由题意得:x-1≥0且x-2≠0解得:x≥1且x≠2故答案为:x≥1且x≠2【解析:x≥1且x≠2【分析】根据二次根式有意义的条件可得x-1≥0,再根据分式有意义的条件可得x-2≠0,再解出x的值.【详解】解:由题意得:x-1≥0,且x-2≠0,解得:x≥1且x≠2,故答案为:x≥1且x≠2.【点睛】此题主要考查了二次根式有意义的条件,以及分式有意义的条件,关键是掌握分式有意义,分母不为0;二次根式的被开方数是非负数.14.1【分析】根据二次根式有意义的条件列出不等式求出am根据指数为0得到答案【详解】解:根据题意得2020﹣a≥0a﹣2020≥0解得a=2020则m=0∴am=20200=1故答案为:1【点睛】本题考解析:1【分析】根据二次根式有意义的条件列出不等式,求出a、m,根据指数为0,得到答案.【详解】解:根据题意得, 2020﹣a≥0,a﹣2020≥0,解得,a=2020,则m=0,∴a m=20200=1,故答案为: 1.【点睛】本题考查的是二次根式有意义的条件和0指数幂,掌握二次根式的被开方数是非负数是解题的关键.15.【分析】由倒数相反数及立方根的定义求出ab及c的值代入所求式子中计算即可求出值【详解】由题意得:∴故答案为:【点睛】本题考查了分式的求值根据倒数相反数立方根的定义求出abc的值是解题的关键解析:2-【分析】 由倒数,相反数及立方根的定义求出a ,b 及c 的值代入所求式子中计算即可求出值.【详解】由题意得:11a ==0b =,1c ==-, ∴c a b a b b c c a++---===故答案为: 【点睛】 本题考查了分式的求值,根据倒数,相反数,立方根的定义求出a ,b ,c 的值是解题的关键.16.2【分析】根据<<可得的整数部分是3则小数部分a =﹣3代入计算即可【详解】解:∵9<11<16∴3<<4∴的整数部分是3∴小数部分是a =﹣3∴a (a+6)=(﹣3)(+3)=11﹣9=2【点睛】本题解析:2【分析】的整数部分是3,则小数部分a﹣3,代入计算即可.【详解】解:∵9<11<16,∴3<4,∴3,∴小数部分是a﹣3,∴a (a +6﹣3)=11﹣9=2.【点睛】本题考查了无理数的估算,注意在相乘的时候,运用平方差公式简便计算.17.-5【分析】(1)直接利用二次根式的性质化简求出即可;(2)首先化简二次根式进而合并求出即可;【详解】故答案为:【点睛】此题主要考查了二次根式的运算正确掌握二次根式的性质是解题关键解析:-5【分析】(1)直接利用二次根式的性质化简求出即可;(2)首先化简二次根式,进而合并求出即可;【详解】210155=-=-故答案为:-【点睛】此题主要考查了二次根式的运算,正确掌握二次根式的性质是解题关键.18.【分析】原式利用二次根式的性质得到然后利用的范围去绝对值后合并即可【详解】∵原式故答案为:【点睛】本题考查了二次根式的性质与化简:熟练掌握二次根式的性质是解决此类问题的关键解析:52x -【分析】 原式利用二次根式的性质得到41x x ---,然后利用x 的范围去绝对值后合并即可.【详解】∵14x <<, 原式41x x =---()()41x x =----4152x x x =-+-+=-.故答案为:52x -.【点睛】本题考查了二次根式的性质与化简:熟练掌握二次根式的性质是解决此类问题的关键. 19.【分析】根据绝对值二次根式和偶次方的非负性得到abc 的值利用平方根的定义即可求解【详解】解:∵∴即∴∴的平方根是故答案为:【点睛】本题考查绝对值二次根式和偶次方的非负性以及平方根的定义掌握平方根的定 解析:3±【分析】根据绝对值、二次根式和偶次方的非负性得到a 、b 、c 的值,利用平方根的定义即可求解.【详解】解:∵2|11|(12)0b c -++=,∴100a -=,110b -=,120c +=,即10a =,11b =,12c =-,∴()1011129a b c ++=++-=,∴a b c ++的平方根是3±,故答案为:3±.【点睛】本题考查绝对值、二次根式和偶次方的非负性,以及平方根的定义,掌握平方根的定义是解题的关键.20.且【分析】根据分式的分母不能为0二次根式的被开方数大于或等于0列出式子求解即可得【详解】由题意得:解得且故答案为:且【点睛】本题考查了分式和二次根式有意义的条件熟练掌握分式和二次根式的定义是解题关键 解析:3x ≤且2x ≠-【分析】根据分式的分母不能为0、二次根式的被开方数大于或等于0列出式子求解即可得.【详解】由题意得:2030x x +≠⎧⎨-≥⎩, 解得3x ≤且2x ≠-,故答案为:3x ≤且2x ≠-.【点睛】本题考查了分式和二次根式有意义的条件,熟练掌握分式和二次根式的定义是解题关键.三、解答题21.(1)1-+;(2)54【分析】(1)先利用平方差公式计算,然后将每个二次根式化为最简二次根式,最后合并计算即可;(2)先将每个二次根式化简为最简二次根式,然后合并即可.【详解】(1)解:原式22231=-+=-+=-+(2)解:原式=== 【点睛】 本题考查了二次根式的运算,熟练掌握运算法则是解题的关键.22.能构成三角形,其周长为【分析】利用已知条件以及绝对值的性质确定a,b,c的值即可,根据三角形的三边关系判断能构成三角形,然后再求周长即可.【详解】解:能构成三角形,理由:∵2|(0a c=,∴=0,(b-5)2=0,,∴a,b=5,c;∵5,∴能构成三角形,周长为:+5.【点睛】本题主要考查了绝对值;二次根式;非负数的性质,关键是掌握绝对值、算术平方根和偶次幂具有非负性.23.(12)-1;(3)12﹣4)14【分析】(1)先化简二次根式,再利用二次根式的加减法法则计算即可;(2)先化简二次根式,再利用二次根式的运算法则计算即可;(3)利用完全平方公式和平方差公式计算即可;(4)利用二次根式的混合运算法则计算即可.【详解】解:(1﹣=﹣5×10=﹣2;(2)2=2 =2﹣3=﹣1;(3)21)2)+=12﹣﹣4=12﹣(4+4 =10+4=14.【点睛】本题考查二次根式的混合运算,熟练掌握二次根式运算法则是解题的关键.24.(14;(2)10-【分析】(1)先化简二次根式,化去绝对值,零次幂,负指数运算,再合并同类项与同类二次根式即可(2)利用平方差公式与完全平方公式展开,再计算平方,合并同类项即可.【详解】(1101|3|(2)2π-⎛⎫--+ ⎪⎝⎭,=312+,4.(2)22)++,=2222-+,=523-+-,=10-【点睛】本题考查二次根式的混合计算,掌握二次根式化简方法,绝对值,零次幂,负指数,乘法公式等知识,并会用它们解决问题是关键.25.21(1)a +;12【分析】先进行分式的减法,化简后,代入求值即可.【详解】解: 211(1)a a a -++, 221(1)(1)a a a a +=-++, 21(1)a =+,当1a =时,原式12==. 【点睛】本题考查了分式的化简求值,熟练按照分式减法进行化简,代入后准确计算是解题关键. 26【分析】由2<31的整数部分与小数部分,即,a b 的值,再代入a b进行分母有理化,从而可得答案.【详解】解:2<3, 3∴<4,x 的整数部分为a ,小数部分为b ,3a ∴=,132b =-=,)3232 2.74a b ∴====-【点睛】 本题考查的是无理数的估算,整数部分与小数部分的含义,二次根式的除法运算,平方差公式的应用,掌握分母有理化是解题的关键.。
人教版初中数学二次根式经典测试题附答案解析
人教版初中数学二次根式经典测试题附答案解析一、选择题1.在下列各组根式中,是同类二次根式的是()A BC D【答案】B【解析】【分析】根据二次根式的性质化简,根据同类二次根式的概念判断即可.【详解】A=不是同类二次根式;B=是同类二次根式;C b==D不是同类二次根式;故选:B.【点睛】本题考查的是同类二次根式的概念、二次根式的化简,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.2.(的结果在()之间.A.1和2 B.2和3 C.3和4 D.4和5【答案】B【解析】【分析】的范围,再求出答案即可.【详解】(==22∵45<∴223<<(的结果在2和3之间故选:B【点睛】本题考查了无理数大小的估算,用有理数逼近无理数,求无理数的近似值.考查了二次根式的混合运算顺序,先乘方、再乘除、最后加减,有括号的先算括号里面的.3.已知n n 的最小值是( )A .3B .5C .15D .45【答案】B【解析】【分析】由题意可知45n 是一个完全平方数,从而可求得答案.【详解】=∵n∴n 的最小值为5.故选:B .【点睛】此题考查二次根式的定义,掌握二次根式的定义是解题的关键.4.x 的取值范围是( ) A .x≥76 B .x >76 C .x≤76 D . x <76【答案】B【解析】【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【详解】∵67x -是被开方数,∴670x -≥,又∵分母不能为零,∴670x ->,解得,x >76; 故答案为:B.【点睛】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数,解题的关键是熟练掌握其意义的条件.5. )A .±3B .-3C .3D .9【答案】C【解析】【分析】进行计算即可.【详解】,故选:C.【点睛】此题考查了二次根式的性质,熟练掌握这一性质是解题的关键.6.把-( )A B.C.D【答案】A【解析】【分析】由二次根式-a是负数,根据平方根的定义将a移到根号内是2a,再化简根号内的因式即可.【详解】∵1a-≥,且0a≠,∴a<0,∴-,∴-=故选:A.【点睛】此题考查平方根的定义,二次根式的化简,正确理解二次根式的被开方数大于等于0得到a的取值范围是解题的关键.7.若x、y4y=,则xy的值为()A.0 B.12C.2 D.不能确定【答案】C【解析】由题意得,2x−1⩾0且1−2x⩾0,解得x ⩾12且x ⩽12, ∴x =12, y =4,∴xy =12×4=2. 故答案为C.8.若代数式1y x =-有意义,则实数x 的取值范围是( ) A .0x ≥B .0x ≥且1x ≠C .0x >D .0x >且1x ≠【答案】B【解析】【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x 的范围.【详解】 根据题意得:010x x ≥⎧⎨-≠⎩ , 解得:x≥0且x≠1.故选:B .【点睛】此题考查分式有意义的条件,二次根式有意义的条件,解题关键在于掌握分母不为0;二次根式的被开方数是非负数.9.下列计算错误的是( )A =B =C .3=D =【答案】C【解析】【分析】根据二次根式的运算法则逐项判断即可.【详解】解:==,正确;==C. =D. ==故选:C .【点睛】本题考查了二次根式的加减和乘除运算,熟练掌握运算法则是解题的关键.10.如果一个三角形的三边长分别为12、k 、72|2k ﹣5|的结果是( )A .﹣k ﹣1B .k +1C .3k ﹣11D .11﹣3k 【答案】D【解析】【分析】求出k 的范围,化简二次根式得出|k-6|-|2k-5|,根据绝对值性质得出6-k-(2k-5),求出即可.【详解】 ∵一个三角形的三边长分别为12、k 、72, ∴72-12<k <12+72, ∴3<k <4,,=-|2k-5|,=6-k-(2k-5),=-3k+11,=11-3k ,故选D .【点睛】本题考查了绝对值,二次根式的性质,三角形的三边关系定理的应用,解此题的关键是去绝对值符号,题目比较典型,但是一道比较容易出错的题目.11.若x +y =,x ﹣y =3﹣的值为( )A .B .1C .6D .3﹣【答案】B【解析】【分析】根据二次根式的性质解答.【详解】解:∵x+y =,x ﹣y =3﹣,==1.故选:B .【点睛】本题考查了二次根式的混合运算,以及平方差公式的运用,解题的关键是熟练掌握平方差公式进行解题.12.下列各式中,是最简二次根式的是( )A B C D 【答案】B【解析】【分析】判断一个二次根式是不是最简二次根式的方法,是逐个检查定义中的两个条件①被开方数不含分母②被开方数不含能开的尽方的因数或因式,据此可解答.【详解】(1)A 被开方数含分母,错误.(2)B 满足条件,正确.(3) C 被开方数含能开的尽方的因数或因式,错误.(4) D 被开方数含能开的尽方的因数或因式,错误.所以答案选B.【点睛】本题考查最简二次根式的定义,掌握相关知识是解题关键.13.9≤,则x 取值范围为( ) A .26x ≤≤B .37x ≤≤C .36x ≤≤D .17x ≤≤【答案】A【解析】【分析】先化成绝对值,再分区间讨论,即可求解.【详解】9, 即:23579x x x x -+-+-+-≤,当2x <时,则23579x x x x -+-+-+-≤,得2x ≥,矛盾;当23x ≤<时,则23579x x x x -+-+-+-≤,得2x ≥,符合;当35x ≤<时,则23579x x x x -+-+-+-≤,得79≤,符合;当57x ≤≤时,则23579x x x x -+-+-+-≤,得6x ≤,符合;当7x >时,则23579x x x x -+-+-+-≤,得 6.5x ≤,矛盾;综上,x 取值范围为:26x ≤≤,故选:A .【点睛】本题考查二次根式的性质和应用,一元一次不等式的解法,解题的关键是分区间讨论,熟练运用二次根式的运算法则.14.下列各式中,运算正确的是( )A 2=-B 4=C =D .2=【答案】B【解析】【分析】=a≥0,b≥0),被开数相同的二次根式可以合并进行计算即可.【详解】A 2=,故原题计算错误;B =,故原题计算正确;C =D 、2不能合并,故原题计算错误;故选B .【点睛】此题主要考查了二次根式的混合运算,关键是掌握二次根式乘法、性质及加减法运算法则.15.下列二次根式中,属于最简二次根式的是( )A B C D【答案】C【解析】【分析】根据二次根式的定义即可求解.【详解】C. 5,是最简二次根式;D. 4=2,故不是最简二次根式; 故选C.【点睛】此题主要考查最简二次根式的识别,解题的关键是熟知最简二次根式的定义.16.已知1212a b ==+-,,则,a b 的关系是( ) A .a b = B .1ab =- C .1a b = D .=-a b 【答案】D【解析】【分析】根据a 和b 的值去计算各式是否正确即可.【详解】A. 1122212121212a b -+-+-=--==---,错误; B. 12112ab +=≠--,错误; C. 12112ab +=≠-,错误; D. 112221201212a b +-+-+=++==--,正确; 故答案为:D .【点睛】本题考查了实数的运算问题,掌握实数运算法则是解题的关键.17.如图,矩形内三个相邻的正方形面积分别为4,3和2,则图中阴影部分的面积为( )A .2B 6C .236223D .23225【答案】D【解析】【分析】将面积为2和3的正方形向下平移至下方边长和长方形的长边重合,可得两个阴影部分的图形的长和宽,计算可得答案.【详解】将面积为2和3的正方形向下平移至下方边长和长方形的长边重合,如下图所示:则阴影面积=()()222323⨯-+⨯- =222233-+-=23225+-故选:D【点睛】本题考查算术平方根,解答本题的关键是明确题意,求出大小正方形的边长,利用数形结合的思想解答.18.如果2(2)2a a -=-,那么( )A .2x <B .2x ≤C .2x >D .2x ≥【答案】B【解析】 试题分析:根据二次根式的性质2(0)0(0)(0)a a a a a a a ><⎧⎪===⎨⎪-⎩,由此可知2-a≥0,解得a≤2.故选B点睛:此题主要考查了二次根式的性质,解题关键是明确被开方数的符号,然后根据性质2(0)0(0)(0)a a a a a a a ><⎧⎪===⎨⎪-⎩可求解.19.若x 2+在实数范围内有意义,则x 的取值范围在数轴上表示正确的是( ) A .B .C .D .【答案】D【解析】【分析】根据二次根式有意义的条件:被开方数为非负数可得x+2≥0,再解不等式即可.【详解】 ∵二次根式2x +在实数范围内有意义,∴被开方数x+2为非负数,∴x+2≥0,解得:x≥-2.故答案选D.【点睛】本题考查了二次根式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件.20.已知实数a 、b 在数轴上的位置如图所示,化简|a +b |-2()b a -,其结果是( )A .2a -B .2aC .2bD .2b -【答案】A【解析】【分析】 2a ,再结合绝对值的性质去绝对值符号,再合并同类项即可.【详解】解:由数轴知b <0<a ,且|a|<|b|,则a+b <0,b-a <0,∴原式=-(a+b )+(b-a )=-a-b+b-a=-2a ,故选A .【点睛】2a .。
人教版 八年级下册第十六章《二次根式》测试题(含答案)
第十六章《二次根式》测试题一、单选题(每小题只有一个正确答案)1有意义,则x 的取值范围是( ).A .3x ≥B .3x >C .3x ≤-D .3x <2.下列式子正确的是A B C 7± D 7-3=( ) A .x ≥1B .x ≥﹣1C .﹣1≤x ≤1D .x ≥1或x ≤﹣14.3ab 最简二次根式有( ) A .1个B .2个C .3个D .4个5( ) A .4至5之间 B .5至6之间 C .6至7之间 D .7至8之间6.若a b > )A .-B .-C .D .7.已知a ,b ,c ,则下列大小关系正确的是( ) A .a >b >c B .c >b >a C .b >a >c D .a >c >b8.已知实数a 在数轴上的位置如图,则化简|1-a |( )A .1B .﹣1C .1﹣2aD .2a ﹣19的结果是( )A .1B -1C .1)±D .(1±10.已知x ,y 1,则x 2+xy+y 2的值为( )A .4B .6C .8D .1011)2019﹣1)2018的结果是( )A+1 B﹣1 CD.112.下列计算正确的是( )A.B6 ==C.-==D5 ==二、填空题13=_____________.14.把代数式(a-1中的a-1移到根号内,那么这个代数式等于______.15n=________.16.如图,从一个大正方形裁去面积为15cm²和24cm²的两个小正方形,则留下的部分的面积为____________cm².17===,……请你将发现的规律用含自然数n(n≥1)的等式表示出来__________________.三、解答题18.计算:(1(2;(3)-);(4)(().19.已知a,b,ca b b c +++.20.先简化,再求值:x 25x 32x 6x 3--⎛⎫÷-- ⎪--⎝⎭,其中x 2=.21.一个三角形的三边长分别为54(1)求它的周长(要求结果化简);(2)请你给出一个适当的x 值,使它的周长为整数,并求出此时三角形周长的值.22m ,n ,使m 2+n 2=a ,且,则,变成m 2+n 2+2mn=(m±n)2因为=12+)2=()2,2±1.仿照上例化简下列各式:(1(2.参考答案1.A 2.A 3.A 4.C 5.B 6.D 7.A 8.C 9.B 10.D 11.A 12.D13.0 14..3 16.(1)n n=+≥18.解:(1-;(2.(3)-).(4)()(=()2-(2=18-12=6.19.解:如图所示:∴a<0,a+b<0,c-a>0,b+c<0,a b b c+++=-+++---a abc a b c=a-;20.解:原式=()()()()()()()x2x2x2x2x312x3x32x3x2x22x2-+----÷=⋅=-----+-+. 当x2=时,原式===.21.解:(1)周长54===;(2)当x=20时,周长25=(或当x=45时,周长5=等).(答案不唯一,符合题意即可)22.解:(1)原式=1,(2)原式=。
新人教版初中数学八年级数学下册第一单元《二次根式》检测题(含答案解析)(2)
一、选择题1.下列各式变形中,正确的是( )A .236x x x ⋅=B xC .2211x x x x x ⎛⎫-⋅=- ⎪⎝⎭ D .2211234x x x ⎛⎫-+=- ⎪+⎝⎭2. )A B =± C .23<< D 2÷=3.是同类二次根式的是( )A B C D 4.下列各式中,正确的是( )A .3=B 3=±C 3=-D 3= 5.下列二次根式中是最简二次根式的是( )A BC D6.( )A .1个B .2个C .3个D .4个 7.下列算式中,正确的是( )A .3=B =C =D 4= 8.下列运算正确的有( )个.①6-==7==2=④=⑤=5== A .1 B .2 C .3 D .49.下列二次根式中,最简二次根式是( )ABCD10.=x 可取的整数值有( ).A .1个B .2个C .3个D .4个11.下列各式成立的是()A .23= B 2=- C 7= D x12.函数y =x 的取值范围是( ).A .2x >B .2x ≠C .2x <D .0x ≠二、填空题13.x 的取值范围是______________.14a b ,那么2(2)b a +-的值是________.15.与-a 可以等于___________.(写出一个即可)16.计算2+________.17.数轴上,点A1,点B 表示3,则AB 间的距离___________18.已知1x =,求229x x ++=______.19.,那么这个长方形的周长是_________.20.20y =,则x y +=________.三、解答题21.解答下列各题:(1)计算:2(1-.(2)解方程组:125x y x y +=⎧⎨-=⎩①②.(3)解不等式组331213(1)8x x x x -⎧+>+⎪⎨⎪---⎩①②,并把解集在数轴上表示出来.22.计算(1)(223.计算下列各题:(1)313(8.5)424⎛⎫⎛⎫⎛⎫---++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(2)()()53910 2.510⨯⨯⨯(3)110.251625-- (4)2214336(2)6213⎛⎫⎛⎫-+÷---⨯- ⎪ ⎪⎝⎭⎝⎭24.阅读理解:某节数学课上,钱老师在复习数轴上的点与数之间的关系时,给出了新的定义:若,,A B C 是数轴上的三个点,如果点C 到A 的距离是点C 到B 的距离的2倍,那么我们就称C 是[,]A B 的黄金点.例如,如图①,点A 表示的数为1-,点B 表示的数为2,表示数1的点C 到点A 的距离是2,到点B 的距离是1,那么点C 是[,]A B 的黄金点;又如,表示0的点D 到点A 的距离是1,到点B 的距离是2,那么点D 是[,]B A 的黄金点.(1)如图②,E F 、为数轴上两点,点E 所表示的数为4-,点F 所表示的数为2.数____所表示的点是[,]E F 的黄金点.(2)如图③2所表示的点G 是[,]M N 的黄金点,当点M 在点N 的右侧,且点N 所表示的数为1-时,此时点M 所表示的数为_______________.(3)如图④,,A B 为数轴上两点,点A 所表示的数为10-,点B 所表示的数为50.现有一只电子蜗牛P 从点B 出发,以3个单位每秒的速度向左运动,到达点A 停止.当t 为何值时,,P A 和B 中恰有一个点为其余两点的黄金点.(请直接写出答案)25.(1)计算:))2221-.(2)先化简,再求值:221193x x x +⎛⎫÷- ⎪-+⎝⎭,其中3x =+.26.(1)计算((2)先化简,再求值:211()(3)31x x x x +-⋅---,其中x =+1.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】依据同底数幂的乘法法则、二次根式的性质、完全平方公式以及分式的运算法则,即可得出结论.【详解】解:A .x 2•x 3=x 5,故本选项不合题意;x =,故本选项不合题意; C.2311x x x x ⎛⎫-⋅=- ⎪⎝⎭,故本选项不合题意; D.2211234x x x ⎛⎫-+=- ⎪+⎝⎭,故本选项符合题意; 故选:D .【点睛】本题考查了同底数幂的乘法法则、二次根式的性质、完全平方公式以及分式的运算法则,解题的关键是熟练掌握运算法则.2.B解析:B【分析】表示求8的算术平方根,而算术平方根是求一个非负数的正的平方根,据此可以得到结果.【详解】A A正确.B、8表示求8的算术平方根,而算术平方根是求一个非负数的正的平方根,=B错误.<∴<.故C正确.C、4823D2÷===.故D正确.故选B.【点睛】本题考查了算术平方根的定义、二次根式的除法及无理数的有关概念,正确的理解算术平方根是解决此题的关键.3.D解析:D【分析】将各个二次根式化成最简二次根式后,选被开方数为2的根式即可.【详解】A不符合题意;B不符合题意;,因此选项C不符合题意;是同类二次根式,因此选项D符合题意;故选:D.【点睛】本题考查同类二次根式的意义,将二次根式化成最简二次根式后,被开方数相同的二次根式是同类二次根式.4.D解析:D【分析】根据二次根式的性质化简判断.【详解】A、3=±,故该项不符合题意;B3=,故该项不符合题意;=,故该项不符合题意;C3=,故该项符合题意;D3故选:D.【点睛】此题考查二次根式的化简,正确掌握二次根式的性质是解题的关键.5.A解析:A【分析】利用最简二次根式定义判断即可.【详解】=,故本选项不合题意;2==,故本选项不合题意.故选:A.【点睛】此题考查了最简二次根式,熟练掌握最简二次根式定义是解本题的关键.6.B解析:B【分析】根据最简二次根式的定义进行求解即可.【详解】===22个,故选:B.【点睛】本题考查了最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.7.C解析:C【分析】根据二次根式的除法与加减法法则逐项判断即可得.【详解】A、=B235=+=,此项错误;C==D2==,此项错误;故选:C .【点睛】 本题考查了二次根式的除法与加减法,熟练掌握运算法则是解题关键.8.A解析:A【分析】根据二次根式的运算法则分别进行计算,计算出正确结果即可作出判断.【详解】①-===①错误.1122===②错误.=()2222=-2=,故③错误. ④==④错误.⑤12=⨯122=⨯24=,故⑤错误.==5=,故⑥正确. ∴①②③④⑤⑥中只有⑥1个正确.故选A..【点睛】 本题主要考查二次根式的运算,解题的关键是能熟练运用二次根式的性质和运算法则进行计算.9.A解析:A【分析】根据最简二次根式的定义逐项判断即可得.【详解】A是最简二次根式,此项符合题意;B=Ca ==D == 故选:A .【点睛】 本题考查了最简二次根式,熟记定义是解题关键.10.B解析:B【分析】根据二次根式有意义的条件列出不等式,求出x 的范围,得到答案.【详解】解:由题意得,40x -≥,50x -≥,解得,45x ≤≤,则x 可取的整数是4、5,共2个,故选:B .【点睛】本题考查了二次根式有意义的条件,掌握二次根式有意义的条件是被开方数是非负数是解题的关键.11.C解析:C【分析】利用二次根式的性质进行化简判断选项的正确性.【详解】解:A 2=32=9,错误;B 、原式=|﹣2|=2,错误;C 、原式=|﹣7|=7,正确;D 、原式=|x |,错误,故选:C .【点睛】本题考查二次根式的化简,解题的关键是掌握二次根式的化简方法.12.C解析:C【分析】0≠;根据二次根式的性质,得20x -≥,从而得到自变量x 的取值范围.【详解】结合题意,得:200x -≥⎧⎪≠ ∴22x x ≤⎧⎨≠⎩∴2x <故选:C .【点睛】本题考查了分式、二次根式的知识;解题的关键是熟练掌握分式、二次根式的性质,从而完成求解.二、填空题13.且【分析】根据分式有意义可得根据二次根式有意义的条件可得再解即可【详解】由题意得:且解得:且故答案为:且【点睛】本题主要考查了分式有意义和二次根式有意义的条件关键是掌握分式有意义的条件是分母不等于零 解析:0x ≥且1x ≠【分析】根据分式有意义可得10x -≠,根据二次根式有意义的条件可得0x ≥,再解即可.【详解】由题意得:10x -≠,且0x ≥,解得:0x ≥且1x ≠,故答案为:0x ≥且1x ≠.【点睛】本题主要考查了分式有意义和二次根式有意义的条件,关键是掌握分式有意义的条件是分母不等于零,二次根式中的被开方数是非负数.14.【分析】直接利用的取值范围得出ab 的值进而求出答案【详解】解:故答案为:【点睛】本题主要考查了估算无理数的大小正确得出ab 的值是解题关键解析:11-【分析】a 、b 的值,进而求出答案.【详解】 解:3134<<,3a ∴=,3b ∴=-,()))22223231311b a ∴+-=+-=-=-故答案为:11-【点睛】本题主要考查了估算无理数的大小,正确得出a ,b 的值是解题关键.15.3(答案不唯一)【分析】根据同类二次根式的概念列式计算即可【详解】解:∵二次根式与是同类二次根式∴可设则∴解得故答案为:3(答案不唯一)【点睛】本题考查的是同类二次根式的概念把几个二次根式化为最简二 解析:3(答案不唯一)【分析】根据同类二次根式的概念列式计算即可.【详解】解:∵与-∴==∴2612a +=,解得3a =,故答案为:3(答案不唯一).【点睛】本题考查的是同类二次根式的概念,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.16.【分析】利用二次根式有意义的条件得到x≤2再利用二次根式的性质化简得到原式=2﹣x+|x ﹣3|然后去绝对值后合并即可【详解】解:∵∴∴故答案为:【点睛】此题考查了二次根式的化简掌握二次根式的性质和是解析:52x -.【分析】利用二次根式有意义的条件得到x≤2,再利用二次根式的性质化简得到原式=2﹣x+|x ﹣3|,然后去绝对值后合并即可.【详解】解:∵20x -≥,∴2x ≤,∴22352x x x =-+-=-.故答案为:52x -.【点睛】此题考查了二次根式的化简,掌握二次根式的性质2(0)a a =≥和(0)0? (0)(0)a a a a a a >⎧⎪===⎨⎪-<⎩是解答此题的关键. 17.2-2【分析】根据数轴上点的意义可知数轴上表示的点与表示的点的距离是|-|=2-2【详解】解:∵-=<0∴两点之间的距离为:|-|==2-2故答案为:2-2【点睛】本题考查了数轴上两点之间的距离及绝解析:-2【分析】1的点与表示3的点的距离是|3-1)-2.【详解】解:∵3-1)=,∴两点之间的距离为:|3-1)|=-2,故答案为:2.【点睛】本题考查了数轴上两点之间的距离及绝对值,解题的关键是掌握两点间的距离公式. 18.13【分析】先变形为然后代入求值即可【详解】解:当时原式==13故答案是:13【点睛】本题考查了利用完全平方公式进行求值及二次根式的性质熟悉公式是解题关键解析:13【分析】先变形为222918x x x ++=++(),然后代入求值即可.【详解】解:2222921818x x x x x ++=+++=++(),当1x =时,原式2118++=13.故答案是:13.【点睛】本题考查了利用完全平方公式进行求值及二次根式的性质,熟悉公式是解题关键. 19.【分析】根据长方形面积计算公式结合二次根式的性质计算即可得到长方形的宽从而计算得到长方形的周长【详解】∵一个长方形的面积为它的长是∴长方形的宽为:∴这个长方形的周长是:故答案为:【点睛】本题考查了二解析:【分析】根据长方形面积计算公式,结合二次根式的性质计算,即可得到长方形的宽,从而计算得到长方形的周长.【详解】∵∴==∴这个长方形的周长是:故答案为:【点睛】本题考查了二次根式的知识;解题的关键是熟练掌握二次根式的运算性质,从而完成求解.20.2【分析】先根据非负数的性质得出关于xy的方程求出xy的值代入x+y进行计算即可【详解】解得故答案为:2【点睛】本题考查的是非负数的性质解题的关键是掌握非负数的性质即几个非负数的和为0时这几个非负数解析:2【分析】先根据非负数的性质得出关于x、y的方程,求出x、y的值,代入x+y进行计算即可.【详解】220x y-+=,20x∴-=,0y=,解得2x=,202x y+=+=.故答案为:2.【点睛】本题考查的是非负数的性质.解题的关键是掌握非负数的性质,即几个非负数的和为0时,这几个非负数都为0.三、解答题21.(1)4+;(2)21xy=⎧⎨=-⎩;(3)21x-<,画图见解析.【分析】(1)先用完全平方公式运算括号里的,再进行根式乘法运算,最后计算加减;(2)运用加减消元法运算求解即可;(3)先分别计算两个不等式,画出数轴可判断出解集.【详解】(1)2(1+13=++4=+(2)125x y x y +=⎧⎨-=⎩①②, ①+②得36,2x x ==,把2x =代入①, 21,1y y +==-,∴方程组的解为21x y =⎧⎨=-⎩. (3)()33121318x x x x -⎧+>+⎪⎨⎪---⎩①②,由①得6232x x +>+-2236x x ->+-1x ->-1x <;由②得1338x x -+-1383x x +--24x -2x -,∴不等式组解集为21x -<,∴数轴表示如下:【点睛】本题考查实数的混合运算,二元一次方程组的求解,一元一次不等式组的求解,属于基础题,需要有一定的运算求解能力,熟练掌握运算法则是解决本题的关键.22.(1)522)4.【分析】(1)逆用乘法分配律计算;(2)根据乘法分配律计算.【详解】解:(1)原式=(3+22 =52(2)原式3333=3+1=4 .【点睛】本题考查二次根式的混合运算,熟练运用乘法分配律计算是解题关键.23.(1)9;(2)92.2510⨯;(3)720;(4) 2.- 【分析】(1)先把运算统一为省略加号的和的形式,再把互为相反数的两个数先加,从而可得答案;(2)把原式化为:()()539 2.51010⨯⨯⨯,再计算乘法运算,结果写成科学记数法的形式;(3)先化简二次根式,再计算减法运算即可;(4)先计算乘方运算,再计算乘除运算,最后计算加减运算即可得到答案.【详解】解:(1)313(8.5)424⎛⎫⎛⎫⎛⎫---++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 3138.5424⎛⎫=-+++ ⎪⎝⎭ 18.52=+ 9.=(2)()()53910 2.510⨯⨯⨯ ()()539 2.51010=⨯⨯⨯822.510=⨯92.2510=⨯(30.5=- 30.520=-1037,2020-== (4)2214336(2)6213⎛⎫⎛⎫-+÷---⨯- ⎪ ⎪⎝⎭⎝⎭ 1349364213=-+÷-⨯ 992=-+-2.=-【点睛】本题考查的是含乘方有理数的混合运算,同底数幂的乘法,二次根式的化简,掌握以上运算是解题的关键.24.(1)8或0;(2)32+2;(3)203t s =或403s 或10s . 【分析】(1)如图,设G 是是[,]E F 的黄金点,且G 对应的数是,x 则2,GE GF = 再利用两点之间的距离公式表示,,GE GF 再列绝对值方程,解方程可得答案;(2)如图,设M 对应的数为,y 由数2所表示的点G 是[,]M N 的黄金点,点M 在点N 的右侧,可得:()2221,y -=+再解方程可得答案; (3)由题意得P 对应的数为:503t -,603,PA t =- 3,60PB t AB ==,再分六种情况讨论:当P 是[,]A B 的黄金点,则2,PA PB = 当P 是[,]B A 的黄金点,则2,PB PA = 当B 是[,]P A 的黄金点,则2,PB BA = 当B 是[,]A P 的黄金点,则2,BA BP = 当A 是[,]B P 的黄金点,则2,BA AP = 当A 是[,]P B 的黄金点,则2,AP AB = 分别列方程求解并检验即可得到答案.【详解】解:(1)如图,设G 是是[,]E F 的黄金点,且G 对应的数是,x则2,GE GF =点E 所表示的数为4-,点F 所表示的数为2.4,2,GE x GF x ∴=+=-42224,x x x ∴+=-=-424x x ∴+=-或4240,x x ++-=当424x x +=-时,8,x ∴=当4240x x ++-=时,0,x =所以8或0所表示的点是[,]E F 的黄金点.故答案为:8或0.(2)如图,设M 对应的数为,y数2所表示的点G 是[,]M N 的黄金点,点M 在点N 的右侧,2,212,GM GN GN GM y ∴==+=-,()2221,y ∴-=+ 222+2322y ∴=+=+所以M 对应的数为322+,故答案为:32+2.(3)如图, P 的最长运动时间为:()5010=203s --,由题意得P 对应的数为:503t -,()50310603,PA t t =---=- ()505033,PB t t =--=当P 是[,]A B 的黄金点,则2,PA PB =60323,t t ∴-=⨯20,3t ∴= 当P 是[,]B A 的黄金点,则2,PB PA =()32603t t ∴=-40,3t ∴= 当B 是[,]P A 的黄金点,则2,PB BA =()501060AB =--=,3260,t ∴=⨯可得:40,t =不合题意舍去,当B 是[,]A P 的黄金点,则2,BA BP =6023,t =⨯10,t ∴=当A 是[,]B P 的黄金点,则2,BA AP =()602603t ∴=-,10,t ∴=当A 是[,]P B 的黄金点,则2,AP AB =603260,t ∴-=⨯20,t ∴=- 不合题意,舍去,综上:当203t s =或403s 或10s 时,,P A 和B 中恰有一个点为其余两点的黄金点. 【点睛】 本题考查的是数轴上两点之间的距离,数轴上的动点问题,分类讨论的数学思想,绝对值方程的应用,一元一次方程的应用,合并同类二次根式,掌握以上知识是解题的关键.25.(1)7-+;(2)13x - 【分析】(1)利用平方差公式和完全平方式展开,再进行根式的加减运算即可求出答案. (2)先将进行因式分解和括号内的通分运算,再将除法变为乘法即可化简,将3x =【详解】(1)原式()22)51=---.3451=--+.7=-+(2)原式()()2313333x x x x x x ++⎛⎫=÷- ⎪+-++⎝⎭. ()()22333x x x x x ++=÷+-+. ()()23332x x x x x ++=⋅+-+.13x =-.当3x =+2===. 【点睛】 本题考查二次根式的混合运算和分式的化简求值,掌握各运算的运算顺序和方法是解答本题的关键.26.(1)2;(2)21x -. 【分析】(1)先由二次根式的性质进行化简,然后计算二次根式的混合运算,即可得到答案;(2)先把分式进行化简,然后把1x =代入计算,即可得到答案. 【详解】解:(1)(=123⨯+÷==2;(2)211()(3)31x x x x +-⋅--- =11[](3)3(1)(1)x x x x x +-•---+ =11()(3)31x x x -•--- =311x x --- =21x -;当1x =时,原式= 【点睛】本题考查了二次根式的性质,二次根式的混合运算,分式的混合运算,分式的化简求值,解题的关键是熟练掌握运算法则进行解题.。
八年级数学下册 第十六章 二次根式综合测试题1(无答案)(新版)新人教版
二次根式班级 姓名1. 下列各式一定是二次根式的是( )A.B. D.2. 下列各式不是最简二次根式的是( )A.B. C.4D. 3. 对于所有实数,a b ,下列等式总能成立的是( )A. 2a b =+ B. a b =+C.22a b =+ D.a b =+4. 能使等式=成立的x 的取值范围是( ) A. 2x ≠ B. 0x ≥ C. 2xD. 2x ≥5. --大小关系是( )A. 32--B. 32--C. -=-不能确定6. 对于二次根式以下说法中不正确的是( )A. 它是一个非负数B. 它是一个无理数C. 它是最简二次根式D. 它的最小值为3 7.2772522-化简的结果是( ) A. 638B.398 C . 634 D. 3388.计算:ab ab b a 1⋅÷等于 ( ) A .ab ab 21 B .ab ab 1 C .ab b1D .ab b9、把(a -1)11-a根号外的因式移入根号内,其结果是( ) A 、1-a B 、-1-a C 、a -1 D 、-a -110. 已知a b ==则值为( ) A.5 B.6 C.3 D.4二填空题1. 使式子有意义的条件是 。
2. 当__________时,有意义。
3. 若11m +有意义,则m 的取值范围是 。
4. 当__________x 时,是二次根式。
5. 在实数范围内分解因式:429__________,2__________x x -=-+=。
6. 已知2x =-,则x 的取值范围是 。
7. 当15x ≤时,5_____________x -=。
8. 计算=_______;_________.9.化简:00)x y ≥,≥=______;00)a b ≥,≥=________.9.(1)=_________;(2)=___________;(3)=_______;(4)=__________.(5)2216acb =_____________.(6)25·16 ; (7)= .(8)=;(9)=. (10)= ;(11)= .10. 分母有理化:=_________;=________. 11. 化简:=__________.三、化简 1.化简:(1)2516(2)971(3)118271927+(4)22)32()911(-(5)1832..÷ (6)6722.化简())10,0a b ≥≥()2()3a3.计算()1()2()(()-≥≥30,0a b())a b40,0()5()6⎛÷ ⎝(7)⎛ ⎝(8)⎛ ⎝(9)四、解答题1.(8分)已知1+-b a 与42++b a 是互为相反数,求2008)(b a -的值.2. 若2440y y -+=,求xy 的值。
65《二次根式》测试题 新课标人教版 八年级下册23
《二次根式》测试题 新课标人教版 八年级下册一、选择题 1. y b x a +的有理化因式是( ) A .y x + B .y x - C .y b x a - D .y bx a + 2. 下列根式中,与2是同类二次根式的是()A 、5B 、3C 、8D 、63. 等式x ÷1-x =x 1-x 成立的条件是( ) A 、0≤x ≤1 B 、x<1 C 、x ≥0 D 、0≤x <14. 如果12122-=+-⋅-b ab a ba ,则b a 和的关系是( )。
A 、b a ≤ B 、b a < C 、b a ≥ D 、b a >5. 当a <0时,化简|2a -2a |的结果是( )A 、aB 、-aC 、3aD 、-3a6. 若m -3为二次根式,则m 的取值为( )A .m≤3 B.m <3 C .m≥3 D.m >37. 若a<0,则|a 2 -a|的值是( )A 、0B 、2aC 、2a 或-2aD 、-2a8. 下列各式是最简二次根式的是( )A 、9B 、7C 、 20D 、3.09. 下面与2是同类二次根式的是( )A .3B .12C .8D .21-10. 24是同类二次根式的是( )。
A 183048 D 5411. 在电路中,已知一个电阻的阻值R 和它消耗的电功率P.由电功率计算公式RU P 2= 可得它两端的电压U 为 A.P R U = B.RP U = C.PR U = D.PR U ±= 12. 在化简x -y x +y时,甲、乙两位同学的解答如下: 甲:x -y x +y = (x -y)(x -y )(x +y )(x -y ) =(x -y)(x -y )(x )2-(y )2 =x -y乙:x -y x +y =(x )2-(y )2x +y = (x -y )(x +y )x +y=x -yA 、两人解法都对B 、甲错乙对C 、甲对乙错D 、两人都错( ) 二、填空题1. 判断题: 1.2)2(=2.( )2.21x --是二次根式.( )3.221213-=221213-=13-12=1.( )4.a ,2ab ,ac 1是同类二次根式.( ) 5.b a +的有理化因式为b a -.( )2. 计算:2322|-|+=____________.3. 如下图,直径为1个单位的圆,沿数轴向右滚动一周,圆上的一点从原点O 到达点O ',则点O '对应的实数是_____________.4. 若a b b a -=-2)(,则b a 、的大小关系是____________________5. 当x_______时,1x -是二次根式;能使2(1)a -+有意义的a 的值是_______.6. 已知4322+-+-=x x y ,则,=xy _______.7. 化简:=32____________;2318(0,0)x y x y >> =_________; 8. 两个无理数的和是5,则这两个无理数可能是____________三、解答题1. 化简(1))169()144(-⨯- (2)21)2()12(18---+++(4)n m 2182. 观察下列各式:514513;413412;312311=+=+=+……,请你将猜想:(1) 146+=_________, 157+=_____________.(2)计算(请写出推导过程) 11315+ (3)请你将猜想到的规律用含有自然数n (n ≥1)的代数式表达出来:_____________________________________________________.3. 已知x=2+ 3 ,y=2- 3 ,求x +y x -y - x -y x +y的值。
人教版数学《二次根式》单元测试A卷(含答案 )
人教版数学《二次根式》单元测试A 卷一、单选题1.下列二次根式中,为最简二次根式的是( )A B C D2有意义的是( )A .-1B .0C .2D .1 3.下列最简二次根式的是 ( )A B CD 4.下列根式中属最简二次根式的是( )A .B .C .5.下列计算正确的是( ).A .(﹣4)+(﹣6)=10B 2±C .6-9=﹣3D 6.2)130(tan - 的值是( )A .331- B .13- C .133- D .31-7的结果是( )A .2B .﹣2C .±2D .±4 8.下列各数中无理数有( )3.141)−227)√−273,π)4.217)0.1010010001⋯A .1个B .2个C .3个D .4个9.若一长方形的面积为36 )A .3B .C .D .10.下列等式正确的是( )A 2=B .-122=-C .22-=-D 2=-二、填空题11x 的取值范围是________)12x 的取值范围是_________)13.函数y =__________.14=___.15x 的最大值是______.16.对于任意不相等的两个正数a ,b ,定义一种运算※,如下:a ※b =a b +,如3※2=235+=,那么12※4=_________ .17________.18有意义,则x 满足的条件是______. 19.(√2)2的计算结果是__________.20.若在实数范围内有意义,则x 的取值范围是 .三、解答题21..22.(101224-⎛⎫ ⎪⎝⎭23.计算:124.计算:(2+.252712.26.计算:√(√6−3)2+(√6−3)0.27.阅读理解题: 学习了二次根式后,你会发现一些含有根号的式子可以写成另一个式子的平方,如23(1+=,我们来进行以下的探索:设2(a m +=+(其中a ,b ,m ,n 都是正整数),则有2222a m n +=++,∴222a m n =+,2b mn =,这样就得出了把类似a + 请仿照上述方法探索并解决下列问题:(1)当a ,b ,m ,n 都是正整数时,若2(a m -=-,用含m ,n 的式子分别表示a ,b ,得a= ,b= ;(2)利用上述方法,找一组正整数a ,b ,m ,n ,填空:﹣( —2(3)2(a m --且a ,m ,n 都为正整数,求a 的值.28.已知y =√2x −5+√5−2x −3, 求2xy 的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次根式测试题
选择题.(每小题3分,共36分)
1.若2-x 有意义,则x 满足条件( )
A.x >2.
B.x ≥2
C.x <2
D.x ≤2.
2.若2a =-a,则实数a 在数轴上的对应点一定在( )
A.原点左侧。
B.原点右侧。
C.原点或原点左侧。
D.原点或原点右侧。
3.2)9(-的平方根是( )
A. -9.
B.9.
C.±9.
D.±3.
4.下列各式中,对任意实数a 都成立的是( ) A.a=(a )2 B.a=2a C.|a |=2a D.|a |=(a )2
5.实数x 在数轴上的位置如右图,则化解x x -+-1)2(2的结果是( ) A.-1 B.3-2X C.1 .D.2X-3
6.若ab >0,则b
b a a 2
2+的值为( ) A.2 B.-2 C.0 D.2或-2
7.a •a
1=-1,则化简22)4(a a +-的结果是( ) A.2a-4 B.-4 C.4 D.4-2a
8.下列根式中,最简二次根式是( )
A.a
1 B.x 4 C.12-x D.122+-x x 9.下列运算正确的式子是( )
A.1052=+
B.x x x x 245==-
C.a a a 33363=+
D.b b b b b b b -=-+--=+-1)
1)(1()1)(1(11
10.在数轴上点A 表示实数87-,点B 表示76-,那么离原点较远的是( )
A.点A.
B.点B
C.AB 的中点
D.不能确定。
11.下列二次根式中能和x 3合并的是( ) A.3+x B.x 6 C.3
x D.2)3(x 12.设5-5的整数部分是a,小数部分是b,则a-b 的值为( ) A.1+5 B.-1+5 C.-1-5 D.1-5
二.填空题(每小题3分,共24分)
13.两个无理数的和是5,则这两个无理数可能是
14.等式33-=-a a a a 成立的条件是
15.若x=-3,则2)1(1x +-等于
16.比较大小:8 17.87-的倒数是 ,8的平方根是
18.矩形的对角线为35cm ,一边长为48cm,则它的面积为
19.已知最简二次根式2-+b a 和b a -2能够合并,则a-b=
20.△ABC 的三边长为a 、b 、c,且a,b 满足2-a +b 2-6b+9=0,则c 的取值范围是 。
三.解答题.(40分)
21.计算题(12分) (1)
)4831()15(2023-⋅-⋅ (2)126123224++-
(3)(1-2)2-123
++(0)132
- (4)已知-1<x <4,化简5)32(2--+x x
22.把下列各式化成最简二次根式。
(12分)
(1)(3)2213)(81x x x x -+--+ (2)a a a a 3232242⨯-+
(3)(
2)21832a ab ab ab ÷- 23.已知a=3
21+,b=2+3,求:22b a -的值
24..已知16+的整数部分为a,小数部分为b,求a-b.(4分)
(2)
25.若y x x =+-+-23322试求y
x 的值。
(4分)
26.如图,在平面直角坐标系中,A(3,3),(7,3),C(3,6)是△ABC 的三个顶点。
(1)求AB,BC,AC 的长,并判断△ABC 的形状。
(2)若将△ABC 沿边AB 旋转,求所得旋转体的体积。
(4分)
27.已知x+y=-4,xy=2.求;x
y y x +的值。
(4分)。