对数函数-典型例题
对数函数练习题(含答案)
对数函数一、选择题L 设。
=2。
", b = O.32, c = log 20.3 ,则的大小关系(A. a<b<cB. b<c<aC. c<b<aD. c<a<b2,己知4 = log2()3〃 = 20」,c = 0,2L3,则a,〃,c 的大小关系是(5.函数/(x ) = log2(x2 + 2x — 3)的定义域是( )A. [-3J] 8,函数f (x ) = Iog 05 (-x 2 +x + 2)的单调递增区间为()1A. 一1,一 2二、填空题 9.计算:bgs9xbg27 32-:logi25 5 =10,计算:log 】 3xlog J =11 .如图所示的曲线是对数函数y = log. x 当〃取4个不同值时的图像,己知〃的值分别为则相应于 10的“值依次为A- a <b<cB. c<a<h C ・ a <c<b D ・ b<c<a 3.式子 2/g5 + /gl2-/g3 = A. 2 4.使式子 A. X<-1 B. %>1C. x>\D. xw2 1呜1),-1) 或x>\ 且工工2 ( ) B. 1 有意义的x co的值是() D.-2B. (—3J) D. (4,+oo) B - P 2C. —, 4-oOD.前三个答案都不对A. (-00,-2)B.(一8,1)C. (L+x) 6.己知。
>0,且4W1,函数 > = 与)=10gn (-X )的图像只能是图中的(12.函数f(x) = log,(%-2)-l(«>0,a力的图像恒过定点.13.函数y = log”(工+2)+3 (。
〉0且a w 1)的图像过定点.2 114 .若31=4'=36,则| + 上=.15.已知1O&45 (X+ 2) > 10go.45 (1 —工),则实数X的取值范围是 .三、解答题16.解不等式:21og n(x-4)>log fl(x-2).17.求函数),=log2 (x2-6x+5)的定义域和值域.18. 求函数丁 = log] (3 + 2x-W)的值域.219.已知〃» = 1。
对数函数精选练习题(带答案)
对数函数精选练习题(带答案)1.函数y =log 23(2x -1)的定义域是( )A .[1,2]B .[1,2) C.⎣⎡⎦⎤12,1 D.⎝⎛⎦⎤12,1答案 D解析 要使函数解析式有意义,须有log 23(2x -1)≥0,所以0<2x -1≤1,所以12<x ≤1,所以函数y =log 23(2x -1)的定义域是⎝⎛⎦⎤12,1.2.函数f (x )=log a (x +b )的大致图象如图,则函数g (x )=a x -b 的图象可能是( ) 答案 D解析 由图象可知0<a <1且0<f (0)<1,即⎩⎪⎨⎪⎧0<a <1, ①0<log a b <1, ②解②得log a 1<log a b <log a a ,∵0<a <1,∴由对数函数的单调性可知a <b <1, 结合①可得a ,b 满足的关系为0<a <b <1,由指数函数的图象和性质可知,g (x )=a x -b 的图象是单调递减的,且一定在y =-1上方.故选D.3.(2017·北京高考)根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与MN 最接近的是( ) (参考数据:lg 3≈0.48)A .1033B .1053C .1073D .1093 答案 D解析 由题意,lg M N =lg 33611080=lg 3361-lg 1080=361lg 3-80lg 10≈361×0.48-80×1=93.28. 又lg 1033=33,lg 1053=53,lg 1073=73,lg 1093=93,故与MN 最接近的是1093.故选D.4.已知函数f (x )是偶函数,定义域为R ,g (x )=f (x )+2x ,若g (log 27)=3,则g ⎝⎛⎭⎫log 217=( )A .-4B .4C .-277 D.277 答案 C解析 由g (log 27)=3可得,g (log 27)=f (log 27)+7=3,即f (log 27)=-4,则g ⎝⎛⎭⎫log 217=f (-log 27)+17=-4+17=-277.5.已知f (x )是定义在R 上的奇函数,且当x <0时,f (x )=2x ,则f (log 49)=( ) A .-13 B .-12 C.12 D.32 答案 A解析 因为log 49=log 29log 24=log 23>0,f (x )为奇函数,且当x <0时,f (x )=2x ,所以f (log 49)=f (log 23)=-f (-log 23)=-2-log 23=-2log2 13=-13.6.设a =log 54-log 52,b =ln 23+ln 3,c =1012 lg 5,则a ,b ,c 的大小关系为( )A .a <b <cB .b <c <aC .c <a <bD .b <a <c答案 A解析 由题意得,a =log 54-log 52=log 52,b =ln 23+ln 3=ln 2,c =10 12 lg 5=5,得a =1log 25,b =1log 2e ,而log 25>log 2e>1,所以0<1log 25<1log 2e <1,即0<a <b <1.又c =5>1.故a <b <c .故选A.7.(2017·全国卷Ⅰ)已知函数f (x )=ln x +ln (2-x ),则( ) A .f (x )在(0,2)单调递增 B .f (x )在(0,2)单调递减C .y =f (x )的图象关于直线x =1对称D .y =f (x )的图象关于点(1,0)对称 答案 C解析 f (x )的定义域为(0,2).f (x )=ln x +ln (2-x )=ln [x (2-x )]=ln (-x 2+2x ).设u =-x 2+2x ,x ∈(0,2),则u =-x 2+2x 在(0,1)上单调递增,在(1,2)上单调递减.又y =ln u 在其定义域上单调递增,∴f (x )=ln (-x 2+2x )在(0,1)上单调递增,在(1,2)上单调递减. ∴选项A ,B 错误.∵f (x )=ln x +ln (2-x )=f (2-x ),∴f (x )的图象关于直线x =1对称,∴选项C 正确.∵f (2-x )+f (x )=[ln (2-x )+ln x ]+[ln x +ln (2-x )]=2[ln x +ln (2-x )],不恒为0, ∴f (x )的图象不关于点(1,0)对称,∴选项D 错误.故选C. 8.已知a ,b >0且a ≠1,b ≠1,若log a b >1,则( )A .(a -1)(b -1)<0B .(a -1)(a -b )>0C .(b -1)(b -a )<0D .(b -1)(b -a )>0 答案 D解析 因为log a b >1,所以a >1,b >1或0<a <1,0<b <1,所以(a -1)(b -1)>0,故A 错误; 当a >1时,由log a b >1,得b >a >1,故B ,C 错误.故选D.9.(2019·北京模拟)如图,点A ,B 在函数y =log 2x +2的图象上,点C 在函数y =log 2x 的图象上,若△ABC 为等边三角形,且直线BC ∥y 轴,设点A 的坐标为(m ,n ),则m =( ) A .2 B .3 C. 2 D.3 答案 D解析 因为直线BC ∥y 轴,所以B ,C 的横坐标相同;又B 在函数y =log 2x +2的图象上,点C 在函数y =log 2x 的图象上,所以|BC |=2.即正三角形ABC 的边长为2.由点A 的坐标为(m ,n ),得B (m +3,n +1),C (m +3,n -1),所以⎩⎪⎨⎪⎧n =log 2m +2,n +1=log 2(m +3)+2,所以log 2m +2+1=log 2(m +3)+2,所以m = 3.10.(2018·湖北宜昌一中模拟)若函数f (x )=log 0.9(5+4x -x 2)在区间(a -1,a +1)上递增,且b =lg 0.9,c =20.9,则( )A .c <b <aB .b <c <aC .a <b <cD .b <a <c 答案 B解析 由5+4x -x 2>0,得-1<x <5, 又函数t =5+4x -x 2的对称轴方程为x =2, ∴复合函数f (x )=log 0.9(5+4x -x 2)的增区间为(2,5),∵函数f (x )=log 0.9(5+4x -x 2)在区间(a -1,a +1)上递增,∴⎩⎪⎨⎪⎧a -1≥2,a +1≤5,则3≤a ≤4,而b =lg 0.9<0,1<c =20.9<2,所以b <c <a .11.(2019·石家庄模拟)设方程10x =|lg (-x )|的两个根分别为x 1,x 2,则( ) A .x 1x 2<0 B .x 1x 2=0 C .x 1x 2>1 D .0<x 1x 2<1答案 D解析 作出y =10x 与y =|lg (-x )|的大致图象,如图.显然x 1<0,x 2<0.不妨设x 1<x 2,则x 1<-1,-1<x 2<0, 所以10 x 1=lg (-x 1),10 x 2=-lg (-x 2), 此时10 x 1<10 x 2, 即lg (-x 1)<-lg (-x 2), 由此得lg (x 1x 2)<0,所以0<x 1x 2<1.12.函数y =log a (x -1)+2(a >0,且a ≠1)的图象恒过的定点是________. 答案 (2,2)解析 令x =2得y =log a 1+2=2,所以函数y =log a (x -1)+2的图象恒过定点(2,2).13.(2019·成都外国语学校模拟)已知2x =3,log 483=y ,则x +2y 的值为________.答案 3解析 因为2x =3,所以x =log 23.又因为y =log 483=12log 283,所以x +2y =log 23+log 283=log 28=3. 14.(2018·兰州模拟)已知函数y =log a x (2≤x ≤4)的最大值比最小值大1,则a 的值为________. 答案 2或12解析 ①当a >1时,y =log a x 在[2,4]上为增函数. 由已知得log a 4-log a 2=1,所以log a 2=1,所以a =2. ②当0<a <1时,y =log a x 在[2,4]上为减函数. 由已知得log a 2-log a 4=1,所以log a 12=1,a =12.综上知,a 的值为2或12.15.若函数f (x )=log a ⎝⎛⎭⎫x 2+32x (a >0,且a ≠1)在区间⎝⎛⎭⎫12,+∞内恒有f (x )>0,则f (x )的单调递增区间为________.答案 (0,+∞)解析 令M =x 2+32x ,当x ∈⎝⎛⎭⎫12,+∞时,M ∈(1,+∞),f (x )>0,所以a >1,所以函数y =log a M 为增函数,又M =⎝⎛⎭⎫x +342-916,因此M 的单调递增区间为⎝⎛⎭⎫-34,+∞.又x 2+32x >0,所以x >0或x <-32,所以函数f (x )的单调递增区间为(0,+∞).16.(2019·江苏南京模拟)已知函数f (x )=⎩⎪⎨⎪⎧log 12 x ,x ≥2,2a x -3a ,x <2(其中a >0,且a ≠1)的值域为R ,则实数a 的取值范围为________. 答案 ⎣⎡⎭⎫12,1解析 由题意,分段函数的值域为R ,故其在(-∞,2)上应是单调递减函数,所以0<a <1,根据图象可知,log 122≥2a 2-3a ,解得12≤a ≤1.综上,可得12≤a <1.。
高一数学对数函数经典题及详细答案
高一数学对数函数经典题及详细答案1、已知3a=2,那么log3 8-2log3 6用a表示是()A、a-2.B、5a-2.C、3a-(1+a)。
D、3a-a2/2答案:A。
解析:由3a=2,可得a=log3 2,代入log3 8-2log3 6中得:log3 8-2log3 6=log3 2-2log3 (2×3)=3log3 2-2(log3 2+log33)=3a-2(a+1)=a-2.2、2loga(M-2N)=logaM+logaN,则M的值为()A、N/4.B、M/4.C、(M+N)2.D、(M-N)2答案:B。
解析:2loga(M-2N)=logaM+logaNloga(M-2N)2=logaMNM-2N=MNM=4N3、已知x+y=1,x>0,y>0,且loga(1+x)=m,loga(1-y)=n,则loga y等于()A、m+n-2.B、m-n-2.C、(m+n)/2.D、(m-n)/2答案:D。
解析:由已知可得1-x=y,代入loga(1+x)=m中得loga(2-x)=m,两式相减得loga[(2-x)/(1+x)]=m-n,化简得loga[(1-x)/x]=m-n,即loga y=m-n,所以答案为D。
4、若x1,x2是方程lg2x+(lg3+lg2)lgx+lg3·lg2=0的两根,则x1x2=()A、1/3.B、1/6.C、1/9.D、1/36答案:B。
解析:将lg2x+(lg3+lg2)lgx+lg3·lg2=0化为对数形式,得:log2x+(log23+log22)logx+log32=0log2x+(log2×3+log22)logx+log3+log2=0XXXlog2x+log2xlog23+log32+log2=0log2x(1+log23)+log32+log2=0log2x=log32+log2/(1+log23)x=2log32+log2/(1+log23)x1x2=2log32+log2/(1+log23)×2log32+log2/(1+log23)2log32+log2/(1+log23)22log32+2log2/(1+log23)2log2(3/2)2/(1+log23)2log2(9/4)/(1+log23)2log29/(1+log23)2log29/(1+log2+log23)2log29/(3+log23)2log29/(3+log2+log3)2log29/(3+1+log3)2log29/(4+log3)2log29/(4+log3/log10)2log29/(4+0.4771)1/61.答案D,已知lg2x+(lg2+lg3)lgx+lg2lg3=0的两根为x1、x2,则x1•x2的值为16.2.答案C,已知log7[log3(log2x)]=0,则x等于2^3=8,x-1/2=2^3-1/2=15/2,x1•x2=2^3•15/2=60.3.答案C,lg12=2a+b,lg15=b-a+1,比值为(2a+b)/(1-a+b),化简得到2a+b/(1-a+b)。
对数函数【八大题型】(人教A版2019必修第一册)
C. < < <
D. < < <
7
对数函数
【例 5】已知函数() = log ( + + 3) − 2.
(1)若 = 2,求函数()的值域
(2)若函数()在 1, + ∞ 上单调递增,求的取值范围
人
教
A
版
高
中
数
学
【变式 5-1】已知函数() = lg
︵
, ∈
,8 ,则()的值域为(
对
A. −3,1
B. −1,3
数
C. 0,1
D. −3,0
)
函
数
【变式 1-2】下列各组函数中,定义域相同的一组是(
︶
)
A. = 与 = log > 0, 且 ≠ 1)
B. = 2ln与 = ln
C. = lg与 = lg√
D. = 与 = lg
高
定义域
性
质
中
值域
R
数
过定点
(1,0)
学
单调性
在
函数值的
变化范围
上是减函数
在
︵
上是增函数
当 0<x<1 时,y>0
当 0<x<1 时,y<0
当 x=1 时,y=0
当 x=1 时,y=0
当 x>1 时,y<0
当 x>1 时,y>0
对
数
函
数
︶
2.底数 a 对对数函数图象的影响
(1)底数 a 与 1 的大小关系决定了对数函数图象的“升降”.
C. < <
对数运算练习及答案
计算题1、lg 5·lg 8000+06.0lg 61lg )2(lg 23++. 2、 lg 2(x +10)-lg(x +10)3=4.3、23log 1log 66-=x .4、9-x -2×31-x =27.5、x )81(=128. 6、5x+1=123-x . 7、10log 5log )5(lg )2(lg 2233++·.10log 18 8、 (1)lg 25+lg2·lg50; (2)(log 43+log 83)(log 32+log 92).9、求121log 8.0--=x x y 的定义域.10、log 1227=a,求log 616.11、已知f(x)=1322+-x x a ,g(x)=522-+x x a (a >0且a ≠1),确定x 的取值范围,使得f(x)>g(x).12、已知函数f(x)=321121x x ⎪⎭⎫ ⎝⎛+-. (1)求函数的定义域;(2)讨论f(x)的奇偶性;(3)求证f(x)>0.13、求关于x 的方程a x +1=-x 2+2x +2a(a >0且a ≠1)的实数解的个数. 14、求log 927的值.15、设3a =4b =36,求a 2+b1的值. 16、log 2(x -1)+log 2x=117、4x +4-x -2x+2-2-x+2+6=018、24x+1-17×4x +8=019、22)223()223(=-++-x x ±220、01433214111=+⨯------x x21、042342222=-⨯--+-+x x x x22、log 2(x -1)=log 2(2x+1)23、log 2(x 2-5x -2)=224、log 16x+log 4x+log 2x=725、log 2[1+log 3(1+4log 3x)]=126、6x -3×2x -2×3x +6=027、lg(2x -1)2-lg(x -3)2=228、lg(y -1)-lgy=lg(2y -2)-lg(y+2)29、lg(x 2+1)-2lg(x+3)+lg2=030、lg 2x+3lgx -4=0部分答案2、解:原方程为lg 2(x +10)-3lg(x +10)-4=0,∴[lg(x +10)-4][lg(x +10)+1]=0.由lg(x +10)=4,得x +10=10000,∴x=9990.由lg(x +10)=-1,得x +10=0.1,∴x=-9.9.检验知: x=9990和-9.9都是原方程的解.3、解:原方程为36log log 626=x ,∴x 2=2,解得x=2或x=-2. 经检验,x=2是原方程的解, x=-2不合题意,舍去.4、解:原方程为2)3(x --6×3-x -27=0,∴(3-x +3)(3-x -9)=0.∵3-x +3≠0,∴由3-x -9=0得3-x =32.故x=-2是原方程的解.5、 解:原方程为x 32-=27,∴-3x=7,故x=-37为原方程的解. 6、解:方程两边取常用对数,得:(x +1)lg5=(x 2-1)lg3,(x +1)[lg5-(x -1)lg3]=0. ∴x +1=0或lg5-(x -1)lg3=0.故原方程的解为x 1=-1或x 2=1+5log 3. 8、 (1)1;(2)45 9、 函数的定义域应满足:⎪⎩⎪⎨⎧>≥-≠-,0,01log ,0128.0x x x 即⎪⎪⎩⎪⎪⎨⎧>≥≠,0,1log ,218.0x x x解得0<x ≤54且x ≠21,即函数的定义域为{x|0<x ≤54且x ≠21}. 10、 由已知,得a=log 1227=12log 27log 33=2log 2133+,∴log 32=a a 23- 于是log 616=6log 16log 33=2log 12log 433+=a a +-3)3(4. 11、 若a >1,则x <2或x >3;若0<a <1,则2<x <312、 (1)(-∞,0)∪(0,+∞);(2)是偶函数;(3)略.13、 2个14、 设log 927=x,根据对数的定义有9x =27,即32x =33,∴2x=3,x=23,即log 927=23. 15、 对已知条件取以6为底的对数,得a 2=log 63, b 1=log 62, 于是a 2+b 1=log 63+log 62=log 66=1.16、x=2 17、x=0 18、x=-21或x=2319、x=±120、x=37 21、x=2322、x ∈φ23、x=-1或x=6 24、x=16 25、x=3 26、x=1 27、x=829或x=123128、y=2 29、x=-1或x=7 30、x=10或x=10-4。
对数函数典型例题
对数函数典型例题例1.求下列函数的定义域:(1)f (x )=lg(x -1)+4-x ; (2))4(log x y a -=; (3))9(log 2x y a -=.(4)y =log 12(x -1) 例4.比较下列各组数中两个值的大小:(1)2log 3.4,2log 8.5; (2)0.3log 1.8,0.3log 2.7; (3)log 5.1a ,log 5.9a . 例5.比较下列比较下列各组数中两个值的大小:(1)6log 7,7log 6; (2)3log π,2log 0.8;(3)0.91.1, 1.1log 0.9,0.7log 0.8; (4)5log 3,6log 3,7log 3. 例6.已知log 4log 4m n <,比较m ,n 的大小。
例2.求值:(1) (2)求值)lg2·lg50+(lg5)2 (3)lg25+lg2·lg50+(lg2)2 例21:已知3a =5b =c ,,求c 的值.例7.作出下列函数的图象:(1) y=lgx , y=lg(-x), y=-lgx ; (2) y=lg|x|; (3) y=-1+lgx.例5.已知a >0且a ≠1,则函数y =a x 与y =log a (-x )的图象可能是( )例7.求下列函数的值域:(1)2log (3)y x =+;(2)22log (3)y x =-;(3)2log (47)a y x x =-+(0a >且1a ≠). 例10.方程lg x +lg (x +3)=1的解x =___________________.例1已知函数f (x )=⎪⎩⎪⎨⎧<+≥,4),1(,4,)21(x x f x x 则f (2+log 23)的值为 A.31 B.61 C.121 D.241例3 已知f (x )=log 31[3-(x -1)2],求f (x )的值域及单调区间.6.函数y =log a (x +2)+3(a >0且a ≠1)的图象过定点________.7.函数y =log 13(-x 2+4x +12)的单调递减区间是________.2.函数y =x |x |log 2|x |的大致图象是( )5.若函数f (x )=a x +log a (x +1)在[0,1]上的最大值和最小值之和为a ,则a 的值为( ) A.14 B.12C .2D .4 3.若log a 2<1,则实数a 的取值范围是( )A .(1,2)B .(0,1)∪(2,+∞)C .(0,1)∪(1,2)D .(0,12)8.若函数f (x )=log a x (0<a <1)在区间[a,2a ]上的最大值是最小值的3倍,则a 的值为________.9.已知g (x )=,00ln e >≤⎩⎨⎧x x x x则g [g (13)]=________. 10.f (x )=log 21+x a -x的图象关于原点对称,则实数a 的值为________. 11.函数f (x )=log 12(3x 2-ax +5)在[-1,+∞)上是减函数,求实数a 的取值范围【例4】已知y =log a (3-ax )在[0,2]上是x 的减函数,求a 的取值范围.例8.判断函数2()log )f x x =的奇偶性。
高中数学必修一《对数函数》经典习题(含详细解析)
高中数学必修一《对数函数》经典习题(含详细解析)一、选择题1.已知f=log3x,则f,f,f(2)的大小是( )A.f>f>f(2)B.f<f<f(2)C.f>f(2)>fD.f(2)>f>f2若log a2<log b2<0,则下列结论正确的是( )A.0<a<b<1B.0<b<a<1C.a>b>1D.b>a>13函数y=2+log2x(x≥1)的值域为( )A.(2,+∞)B.(-∞,2)C.[2,+∞)D.[3,+∞)4函数y=lo x,x∈(0,8]的值域是( )A.[-3,+∞)B.[3,+∞)C.(-∞,-3]D.(-∞,3]5.不等式log2(2x+3)>log2(5x-6)的解集为( )A.(-∞,3)B.C. D.6函数f(x)=lg是( )A.奇函数B.偶函数C.既奇又偶函数D.非奇非偶函数7设a=log32,b=log52,c=log23,则( )A.a>c>bB.b>c>aC.c>b>aD.c>a>b8设a=log54,b=(log53)2,c=log45,则( )A.a<c<bB.b<c<aC.a<b<cD.b<a<c9.函数f(x)=a x+log a(x+1)在[0,1]上的最大值与最小值之和为a,则a的值为( )A. B. C.2 D.410.若log a=log a,且|log b a|=-log b a,则a,b满足的关系式是( )A.a>1,且b>1B.a>1,且0<b<1C.0<a<1,且b>1D.0<a<1,且0<b<1二、填空题11若函数y=log3x的定义域是[1,27],则值域是.12已知实数a,b满足lo a=lo b,下列五个关系式:①a>b>1,②0<b<a<1,③b>a>1,④0<a<b<1,⑤a=b.其中可能成立的关系式序号为.13log a<1,则a的取值范围是.14不等式12log xx<的解集是.15函数y=log0.8(-x2+4x)的递减区间是.三、解答题16.比较下列各组值的大小.(1)log3π,log20.8.(2)1.10.9,log1.10.9,log0.70.8.(3)log53,log63,log73.17已知函数f(x)=+的定义域为A.(1)求集合A.(2)若函数g(x)=(log2x)2-2log2x-1,且x∈A,求函数g(x)的最大值、最小值和对应的x值.18已知函数f=log2(2+x2).(1)判断f的奇偶性.(2)求函数f的值域.19已知函数f(x)=log a(1-x)+log a(x+3),其中0<a<1.(1)求函数f(x)的定义域.(2)若函数f(x)的最小值为-4,求a的值.参考答案与解析1【解析】选 B.由函数f=log3x在(0,+∞)是单调增函数,且<<2,知f()<f()<f(2).2【解析】选B.log a2<log b2<0,如图所示,所以0<b<a<1.6【解析】选A.因为f(-x)=lg=lg=lg=lg=-lg=-f(x),所以f(-x)=-f(x),又函数的定义域为R,故该函数为奇函数.7【解析】选D.因为log32=<1,log52=<1,又log23>1,所以c最大.又1<log23<log25,所以>,即a>b,所以c>a>b.8【解析】选D.a=log54<1,log53<log54<1,b=(log53)2<log53<a,c=log45>1,故b<a<c.9【解析】选 B.无论a>1还是0<a<1,f(x)在[0,1]上都是单调函数,所以a=(a0+log a1)+(a+log a2),所以a=1+a+log a2,所以log a2=-1,所以a=.10【解析】选C.因为log a=log a,所以log a>0,所以0<a<1.因为|log b a|=-log b a,所以log b a<0,b>1.11【解析】因为1≤x≤27,所以log31≤log3x≤log327=3.所以值域为[0,3].答案:[0,3]12【解析】当a=b=1或a=,b=或a=2,b=3时,都有lo a=lo b.故②③⑤均可能成立.答案:②③⑤13【解析】①当a>1时,log a<0,故满足log a<1;②当0<a<1时,log a>0,所以log a<log a a,所以0<a<,综上①②,a∈∪(1,+∞).答案:∪(1,+∞)14【解析】因为<=x-1,且x>0.①当0<x<1时,由原不等式可得,lo x>-1,所以x<2,所以0<x<1;②当x>1时,由原不等式可得,lo x<-1,x>2,综上可得,不等式的解集为{x|0<x<1或x>2}.答案:(0,1)∪(2,+∞)15【解析】因为t=-x2+4x的递增区间为(-∞,2].但当x≤0时,t≤0.故只能取(0,2],即为f(x)的递减区间.答案:(0,2]16【解析】(1)因为log3π>log31=0,log20.8<log21=0,所以log3π>log20.8.(2)因为1.10.9>1.10=1,log1.10.9<log1.11=0,0=log0.71<log0.70.8<log0.70.7=1,所以1.10.9>log0.70.8>log1.10.9.(3)因为0<log35<log36<log37,所以log53>log63>log73.17【解析】(1)所以所以≤x≤4,所以集合A=.(2)设t=log2x,因为x∈,所以t∈[-1,2],所以y=t2-2t-1,t∈[-1,2].因为y=t2-2t-1的对称轴为t=1∈[-1,2],所以当t=1时,y有最小值-2.所以当t=-1时,y有最大值2.所以当x=2时,g(x)的最小值为-2.当x=时,g(x)的最大值为2.18【解析】(1)因为2+x2>0对任意x∈R都成立,所以函数f=log2(2+x2)的定义域是R.因为f(-x)=log2[2+(-x)2]=log2(2+x2)=f(x),所以函数f(x)是偶函数.(2)由x∈R得2+x2≥2,所以log2(2+x2)≥log22=1,即函数f=log2(2+x2)的值域为[1,+∞).19【解析】(1)要使函数有意义,则有解之得-3<x<1,所以函数的定义域为(-3,1).(2)函数可化为:f(x)=log a[(1-x)(x+3)]=log a(-x2-2x+3)=log a[-(x+1)2+4],因为-3<x<1,所以0<-(x+1)2+4≤4.因为0<a<1,所以log a[-(x+1)2+4]≥log a4,即f(x)min=log a4,由log a4=-4得a-4=4,所以a==.3【解析】选C.设y=2+t,t=log2x(x≥1),因为t=log2x在[1,+∞)上是单调增函数,所以t≥log21=0.所以y=2+log2x(x≥1)的值域为[2,+∞).4【解析】选A.因为0<x≤8,所以lo x≥-3,故选A.5【解析】选D.原不等式等价于解得<x<3,所以原不等式的解集为.。
高中数学第四章指数函数与对数函数典型例题(带答案)
高中数学第四章指数函数与对数函数典型例题单选题1、已知a=lg2,10b=3,则log56=()A.a+b1+a B.a+b1−aC.a−b1+aD.a−b1−a答案:B分析:指数式化为对数式求b,再利用换底公式及对数运算性质变形. ∵a=lg2,0b=3,∴b=lg3,∴log56=lg6lg5=lg2×3lg102=lg2+lg31−lg2=a+b1−a.故选:B.2、函数f(x)=|x|⋅22−|x|在区间[−2,2]上的图象可能是()A.B.C.D.答案:C分析:首先判断函数的奇偶性,再根据特殊值判断即可;解:∵f(−x)=|x|⋅22−|x|=f(x),∴f(x)是偶函数,函数图象关于y轴对称,排除A,B选项;∵f(1)=2=f(2),∴f(x)在[0,2]上不单调,排除D选项.故选:C3、式子√m⋅√m 43√m 56m >0)的计算结果为( )A .1B .m 120C .m 512D .m 答案:D分析:由指数运算法则直接计算可得结果.√m⋅√m 43√m 56=m 12⋅m 43m 56=m 12+43−56=m .故选:D.4、若f(x)={(6−a)x −a,x <1log a x +3,x ≥1是定义在R 上的增函数,实数a 的取值范围是( )A .[1,5]B .[32,5) C .(32,5)D .(1,5) 答案:B分析:由题意得{6−a >1a >1log a 1+3≥(6−a)−a ,解不等式组可求得答案因为f(x)={(6−a)x −a,x <1log a x +3,x ≥1是定义在R 上的增函数,所以{6−a >1a >1log a 1+3≥(6−a)−a ,解得32≤a <5,故选:B5、函数f (x )=√3−x +log 13(x +1)的定义域是( )A .[−1,3)B .(−1,3)C .(−1,3]D .[−1,3] 答案:C分析:由题可得{3−x ≥0x +1>0,即得.由题意得{3−x ≥0x +1>0,解得−1<x ≤3, 即函数的定义域是(−1,3].故选:C.6、下列函数中是增函数的为( )A .f (x )=−xB .f (x )=(23)xC .f (x )=x 2D .f (x )=√x 3答案:D分析:根据基本初等函数的性质逐项判断后可得正确的选项. 对于A ,f (x )=−x 为R 上的减函数,不合题意,舍. 对于B ,f (x )=(23)x为R 上的减函数,不合题意,舍.对于C ,f (x )=x 2在(−∞,0)为减函数,不合题意,舍. 对于D ,f (x )=√x 3为R 上的增函数,符合题意, 故选:D.7、下列计算中结果正确的是( ) A .log 102+log 105=1B .log 46log 43=log 42=12C .(log 515)3=3log 515=−3D .13log 28=√log 283=√33答案:A分析:直接根据对数的运算性质及换底公式计算可得;解:对于A :log 102+log 105=log 10(2×5)=log 1010=1,故A 正确; 对于B :log 46log 43=log 36,故B 错误;对于C :(log 515)3=(log 55−1)3=(−log 55)3=−1,故C 错误; 对于D :13log 28=13log 223=13×3log 22=1,故D 错误; 故选:A8、荀子《劝学》中说:“不积跬步,无以至千里;不积小流,无以成江海.”所以说学习是日积月累的过程,每天进步一点点,前进不止一小点.我们可以把(1+1%)365看作是每天的“进步”率都是1%,一年后是1.01365≈37.7834;而把(1−1%)365看作是每天“退步”率都是1%,一年后是0.99365≈0.0255.若“进步”的值是“退步”的值的100倍,大约经过(参考数据:lg101≈2.0043,lg99≈1.9956) ( )天.A .200天B .210天C .220天D .230天 答案:D分析:根据题意可列出方程100×0.99x =1.01x ,求解即可.设经过x 天“进步”的值是“退步”的值的100倍,则100×0.99x=1.01x,即(1.010.99)x =100,∴x =log 1.010.99100=lg lg 1.010.99=lg lg 10199=2lg−lg≈22.0043−1.9956=20.0087≈230.故选:D . 多选题9、已知函数f(x)=1−2x 1+2x,则下面几个结论正确的有( )A .f(x)的图象关于原点对称B .f(x)的图象关于y 轴对称C .f(x)的值域为(−1,1)D .∀x 1,x 2∈R ,且x 1≠x 2,f (x 1)−f (x 2)x 1−x 2<0恒成立答案:ACD分析:利用奇函数的定义和性质可判断AB 的正误,利用参数分离和指数函数的性质可判断CD 的正误. 对于A ,f(x)=1−2x1+2x ,则f(−x)=1−2−x1+2−x =2x −11+2x =−f(x), 则f(x)为奇函数,故图象关于原点对称,故A 正确.对于B ,计算f(1)=−13,f(−1)=13≠f(1),故f(x)的图象不关于y 轴对称,故B 错误. 对于C ,f(x)=1−2x1+2x =−1+21+2x ,1+2x =t,t ∈(1,+∞),故y =f(x)=−1+2t ,易知:−1+2t ∈(−1,1),故f(x)的值域为(−1,1),故C 正确. 对于D ,f(x)=1−2x1+2x =−1+21+2x ,因为y =1+2x 在R 上为增函数,y =−1+21+t 为(1,+∞)上的减函数, 由复合函数的单调性的判断法则可得f (x )在R 上单调递减,故∀x 1,x 2∈R ,且x 1≠x 2,f(x 1)−f(x 2)x 1−x 2<0恒成立,故D 正确.故选:ACD.小提示:方法点睛:复合函数的单调性的研究,往往需要将其转化为简单函数的复合,通过内外函数的单调性结合“同增异减”的原则来判断.10、设函数f (x )=ax 2+bx +c (a,b,c ∈R,a >0),则下列说法正确的是( ) A .若f (x )=x 有实根,则方程f(f (x ))=x 有实根 B .若f (x )=x 无实根,则方程f(f (x ))=x 无实根 C .若f (−b 2a)<0,则函数y =f (x )与y =f(f (x ))都恰有2个零点D .若f (f (−b 2a))<0,则函数y =f (x )与y =f(f (x ))都恰有2零点答案:ABD分析:直接利用代入法可判断A 选项的正误;推导出f (x )−x >0对任意的x ∈R 恒成立,结合该不等式可判断B 选项的正误;取f (x )=x 2−x ,结合方程思想可判断C 选项的正误;利用二次函数的基本性质可判断D 选项的正误.对于A 选项,设f (x )=x 有实根x =x 0,则f(f (x 0))=f (x 0)=x 0,A 选项正确; 对于B 选项,因为a >0,若方程f (x )=x 无实根,则f (x )−x >0对任意的x ∈R 恒成立, 故f(f (x ))>f (x )>x ,从而方程f(f (x ))=x 无实根,B 选项正确;对于C 选项,取f (x )=x 2−x ,则f (12)=−14<0,函数y =f (x )有两个零点, 则f(f (x ))=[f (x )]2−f (x )=0,可得f (x )=0或f (x )=1,即x 2−x =0或x 2−x =1. 解方程x 2−x =0可得x =0或1,解方程x 2−x −1=0,解得x =1±√52. 此时,函数y =f(f (x ))有4个零点,C 选项错误;对于D 选项,因为f (f (−b2a ))<0,设t =f (−b2a ),则t =f (x )min , 因为f (t )<0且a >0,所以,函数f (x )必有两个零点,设为x 1、x 2且x 1<x 2, 则x 1<t <x 2,所以,方程f (x )=x 1无解,方程f (x )=x 2有两解,因此,若f(f(−b))<0,则函数y=f(x)与y=f(f(x))都恰有2零点,D选项正确.2a故选:ABD.小提示:思路点睛:对于复合函数y=f[g(x)]的零点个数问题,求解思路如下:(1)确定内层函数u=g(x)和外层函数y=f(u);(2)确定外层函数y=f(u)的零点u=u i(i=1,2,3,⋯,n);(3)确定直线u=u i(i=1,2,3,⋯,n)与内层函数u=g(x)图象的交点个数分别为a1、a2、a3、⋯、a n,则函数y=f[g(x)]的零点个数为a1+a2+a3+⋯+a n.11、(多选题)某市出租车收费标准如下:起步价为8元,起步里程为3km(不超过3km按起步价付费);超过3km 但不超过8km时,超过部分按每千米2.15元收费;超过8km时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.下列结论正确的是()A.出租车行驶4km,乘客需付费9.6元B.出租车行驶10km,乘客需付费25.45元C.某人乘出租车行驶5km两次的费用超过他乘出租车行驶10km一次的费用D.某人乘坐一次出租车付费22.6元,则此次出租车行驶了9km答案:BCD分析:根据题意分别计算各个选项的情况,即可得答案.对于A选项:出租车行驶4km,乘客需付费8+1×2.15+1=11.15元,故A错误;对于B选项:出租车行驶10 km,乘客需付费8+2.15×5+2.85×(10-8)+1=25.45元,故B正确;对于C选项:乘出租车行驶5km,乘客需付费8+2×2.15+1=13.30元,乘坐两次需付费26.6元,26.6>25.45,故C正确;对于D选项:设出租车行驶x km时,付费y元,由8+5×2.15+1=19.75<22.6,知x>8,因此由y=8+2.15×5+2.85(x-8)+1=22.6,解得x=9,故D正确.故选:BCD.小提示:本题考查函数模型的应用,解题要点为认真审题,根据题意逐一分析选项即可,属基础题.12、若log2m=log4n,则()A.n=2m B.log9n=log3mC.lnn=2lnm D.log2m=log8(mn)答案:BCD分析:利用对数运算化简已知条件,然后对选项进行分析,从而确定正确选项.依题意log2m=log4n,所以m>0,n>0,log2m=log22n=12log2n=log2n12,所以m=n 12,m2=n,A选项错误.log9n=log32m2=22log3m=log3m,B选项正确.lnn=lnm2=2lnm,C选项正确.log8(mn)=log23m3=33log2m=log2m,D选项正确.故选:BCD13、在平面直角坐标系中,我们把横纵坐标相等的点称之为“完美点”,下列函数的图象中存在完美点的是()A.y=﹣2x B.y=x﹣6C.y=3xD.y=x2﹣3x+4答案:ACD分析:横纵坐标相等的函数即y=x,与y=x有交点即存在完美点,依次计算即可.横纵坐标相等的函数即y=x,与y=x有交点即存在完美点,对于A,{y=xy=−2x,解得{x=0y=0,即存在完美点(0,0),对于B,{y=xy=x−6,无解,即不存在完美点,对于C,{y=xy=3x,解得{x=√3y=√3或{x=−√3y=−√3,即存在完美点(√3,√3),(−√3,−√3)对于D,{y=xy=x2−3x+4,x2−3x+4=x,即x2−4x+4=0,解得x=2,即存在完美点(2,2).故选:ACD.填空题14、化简(√a−1)2+√(1−a)2+√(1−a)33=________.答案:a-1分析:根据根式的性质即可求解.由(√a−1)2知a-1≥0,a≥1.故原式=a-1+|1-a|+1-a=a-1.所以答案是:a-115、对数型函数f(x)的值域为[0,+∞),且在(0,+∞)上单调递增,则满足题意的一个函数解析式为______.答案:f(x)=|log2(x+1)|(答案不唯一,满足f(x)=|log a(x+b)|,a>1,b≥1即可)分析:根据题意可利用对数函数的性质和图像的翻折进行构造函数.∵函数f(x)的值域为[0,+∞),且在(0,+∞)上单调递增,∴满足题意的一个函数是f(x)=|log2(x+1)|.所以答案是:f(x)=|log2(x+1)|(答案不唯一)16、函数y=log a(x+1)-2(a>0且a≠1)的图象恒过点________.答案:(0,-2)分析:由对数函数的图象所过定点求解.解:依题意,x+1=1,即x=0时,y=log a(0+1)-2=0-2=-2,故图象恒过定点(0,-2).所以答案是:(0,-2)解答题17、(1)计算0.027−13−(−16)−2+810.75+(19)0−3−1;(2)若x 12+x−12=√6,求x 2+x −2的值.答案:(1)-5;(2)14.分析:(1)由题意利用分数指数幂的运算法则,计算求得结果. (2)由题意两次利用完全平方公式,计算求得结果. (1)0.027−13−(−16)−2+810.75+(19)0−3−1=0.3﹣1﹣36+33+1−13=103−36+27+1−13=−5.(2)若x 12+x −12=√6,∴x +1x +2=6,x +1x =4,∴x 2+x ﹣2+2=16,∴x 2+x ﹣2=14.18、已知函数f (x )=2x −12x +1.(1)判断并证明f (x )在其定义域上的单调性;(2)若f (k ⋅3x )+f (3x −9x +2)<0对任意x ≥1恒成立,求实数k 的取值范围. 答案:(1)f (x )在R 上单调递增;证明见解析 (2)(−∞,43)分析:(1)设x 2>x 1,可整理得到f (x 2)−f (x 1)=2(2x 2−2x 1)(2x 2+1)(2x 1+1)>0,由此可得结论;(2)利用奇偶性定义可证得f (x )为奇函数,结合单调性可将恒成立的不等式化为k <g (x )=3x −23x −1,由g (x )单调性可求得g (x )≥43,由此可得k 的取值范围.(1)f (x )在R 上单调递增,证明如下: 设x 2>x 1,∴f (x 2)−f (x 1)=2x 2−12x 2+1−2x 1−12x 1+1=(2x 2−1)(2x 1+1)−(2x 2+1)(2x 1−1)(2x 2+1)(2x 1+1)=2(2x 2−2x 1)(2x 2+1)(2x 1+1);∵x 2>x 1,∴2x 2−2x 1>0,又2x 2+1>0,2x 1+1>0,∴f (x 2)−f (x 1)>0, ∴f (x )在R 上单调递增. (2)∵f (−x )=2−x −12−x +1=1−2x1+2x =−f (x ),∴f (x )为R 上的奇函数,由f(k⋅3x)+f(3x−9x+2)<0得:f(k⋅3x)<−f(3x−9x+2)=f(9x−3x−2),由(1)知:f(x)在R上单调递增,∴k⋅3x<9x−3x−2在[1,+∞)上恒成立;当x≥1时,3x≥3,∴k<3x−23x−1在[1,+∞)上恒成立;令g(x)=3x−23x−1,∵y=3x在[1,+∞)上单调递增,y=23x在[1,+∞)上单调递减,∴g(x)在[1,+∞)上单调递增,∴g(x)≥g(1)=3−23−1=43,∴k<43,即实数k的取值范围为(−∞,43).。
对数函数常见题型例析(5种)
对数函数常见题型例析对数函数是重要的基本初等函数之一,在近几年的高考中渐渐走红,频频出现在高考试卷与模拟试卷中,主要考查对数函数的图象和性质,本文就对数函数的常见题型归纳如下,供大家参考. 1.求定义域 例1函数3)5lg()(--=x x x f 的定义域为_____.解:要使)(x f 有意义,则⎩⎨⎧≠->-0305x x ,解得5<x ,且3≠x ,∴)(x f 的定义域为5|{<x x ,且}3≠x .点评:求对数定义域切记真数大于零,底数大于零且不等于1,常用方法是列不等式组, 注意求出的定义域要写成集合或区间的形式. 2.比较大小例2设,,a b c 均为正数,且,log221a a=,log)21(21b b = c c2log)21(=,则( )A a b c <<B c b a <<C c a b <<D b a c << 解:由a a21log2=可知0>a 12>∴a ,210,1log21<<∴>a a ;由b b21log)21(=可知1)21(0,0<<∴>b b ,即1log021<<b ,121<<b ;由c c2log )21(=可知21,1log0,02<<∴<<∴>c c c ,从而c b a <<,故选A.点评:本题的关键就是抓住“真数大于零”这一隐含条件,利用指、对函数的性质得出结论. 3.解对数方程例3解方程:0)2(log )12(log 244=--+x x ;解:由已知得)2(log )12(log 244-=+x x ,则2122-=+x x ,即0322=--x x ,解得3=x 或1-=x ,当1-=x 时,对数真数小于零,舍去,故方程的根是3=x . 点评:解对数方程要注意验根,即保证对数的真数大于零. 4.最值问题例4设1a >,函数()log a f x x =在区间[,2]a a 上的最大值与最小值之差为12,则a =( )B 2C 22D 4解:设1a >,函数()log a f x x =在区间[,2]a a 上递增,最大值和最小值 分别为a a aalog,2log,依题意知212loglog2log==-aaaa a ,4=∴a ,故选D.点评:最值问题是高考考查对函数性质的热点题型,解决的关键是根据对数函数单调性求解. 5.求参数范围 例5已知132log<a,则a 的取值范围是( )A ),1()32,0(+∞ B ),32(+∞ C )1,32( D ),32()32,0(+∞解:当10<<a 时,,log132log a aa=<32<∴a ,即320<<a ;当1>a 时,,log132loga aa=<32>∴a ,即1>a .综上所述,a 的取值范围是320<<a 或1>a ,故选A.点评:这类问题一般是根据对数函数的单调性,分10<<a 和1>a 两种情况讨论.。
对数函数练习题及其答案
对数函数练习一、选择题1.函数y=(0.2)-x +1的反函数是( C ) A.y=log 5x+1 B.y=klog x 5+1 C.y=log 5(x-1) D.y=log 5x-12.函数y=log 0.5(1-x)(x <1=的反函数是( B ). A.y=1+2-x (x ∈R) B.y=1-2-x (x ∈R) C.y=1+2x (x ∈R) D.y=1-2x (x ∈R)3.当a >1时,函数y=log a x 和y=(1-a)x 的图像只可能是( B )4.函数f(x)=lg(x 2-3x+2)的定义域为F ,函数g(x)=lg(x-1)+lg(x-2)定义域为G ,那么( D )A.F ∩G=B.F=GC.FGD.GF5.已知0<a <1,b >1,且ab >1,则下列不等式中成立的是( B )A.log b b 1<log a b <log a b 1B.log a b <log b b 1<log a b1C.log a b <log a b 1<log b b 1D.log b b 1<log a b1<log a b6.函数f(x)=2log 21x 的值域是[-1,1],则函数f -1(x)的值域是( A )A.[22,2] B.[-1,1] C.[21,2] D.(-∞,22)∪2,+∞)7.函数f(x)=log 31 (5-4x-x 2)的单调减区间为( C )A.(-∞,-2)B.[-2,+∞]C.(-5,-2)D.[-2,1]8.a=log 0.50.6,b=log 20.5,c=log35,则( B )A.a <b <cB.b <a <cC.a <c <bD.c <a <b二、填空题1.将(61)0,2,log221,log0.523由小到大排顺序:答案:log 0.521<(log 232)<(61)0<2 2.已知函数f(x)=(log41x)2-log 41x+5,x ∈[2,4],则当x= ,f(x)有最大值 ;当x= 时,f(x)有最小值 .答案:4,7,2,4233.函数y=)x log 1(log 2221+的定义域为 ,值域为 .答案:(22,1)∪[-1,-22],[0,+∞]4.函数y=log 312x+log 31x 的单调递减区间是 .答案:(0,33) 三、解答题1.求函数y=log 21(x 2-x-2)的单调递减区间.答案:( 21,+∞)2.求函数f(x)=log a (a x +1)(a >1且a ≠1)的反函数. 答案:(i)当a >1时,由a x -1>0⇒x >0;log a (a x +1)的反函数为f -1(x)=log a (a x -1),x >0;当0<a <1时,f -1(x)=log a (a x -1),x <0.3.求函数f(x)=log 211-+x x +log 2(x-1)+log 2(p-x)的值域. 答案: (-∞,2log 2(p+1)-2]【素质优化训练】1.已知正实数x 、y 、z 满足3x =4y =6z(1)求证:z 1-x 1=zy1;(2)比较3x,4y,6z 的大小解:(1)z 1-x 1=log t 6-log t 3=log t 2=21log t 4=y 21(2)3x <4y <6z.2.已知log m 5>log n 5,试确定m 和n 的大小关系.答案:得n >m >1,或0<m <n <1,或0<n <1<m.3.设常数a >1>b >0,则当a,b 满足什么关系时,lg(a x -b x )>0的解集为{x |x >1}.答案:a=b+1【生活实际运用】美国的物价从1939年的100增加到40年后1979年的500.如果每年物价增长率相同,问每年增长百分之几?(注意:自然对数lnx 是以e=2.718…为底的对数.本题中增长率x <0.1,可用自然对数的近似公式:ln(1+x)≈x,取lg 2=0.3,ln10=2.3来计算=答案:美国物价每年增长约百分之四.【知识探究学习】某城市现有人口总数为100万人,如果年自然增长率为1.2%,试解答下面的问题: (1)写出该城市人口总数x(万人)与年份x(年)的函数关系式; (2)计算10年以后该城市人口总数(精确到0.1万人);(3)计算大约多少年以后该城市人口将达到120万人(精确到1年). 解:(1)1年后该城市人口总数 y=100+100×1.2%=100×(1+1.2%) 2年后该城市人口总数为y =100×(1+1.2%)2+100×(1+1.2%)2×1.2% =100×(1+1.2%)2同理,3年后该市人口总数为y =100×(1+1.2%)3. x 年后该城市人口总数为y =100×(1+1.2%)x ;(2)10年后该城市人口总数为y =100×(1+1.2%)10=100×1.01210≈112.7(万人) (3)设x 年后该城市人口将达到120万人,即 100×(1+1.2%)x =120,x=log 1.012100120 =log 1.0121.20≈15(年)。
高中数学对数函数经典练习题及答案(优秀4篇)
高中数学对数函数经典练习题及答案(优秀4篇)对数函数练习题篇一一、选择题1、下列函数(1)y= x (2)y=2x-1 (3)y=1x (4)y=2-1-3x (5)y=x2-1中,是一次函数的有( )A.4个B.3个C.2个D.1个2、A 、B(x2,y2)是一次函数y=kx+2(k>0)图像上的不同的两点,若则( )A.t0 C.t>1 D. t≤13、直线y=x-1与坐标轴交于A、B两点,点C在坐标轴上,△ABC为等腰三角形,则满足条件的三角形最多有( )A. 5个B.6个C.7个D.8个4、把直线y=﹣x+3向上平移m个单位后,与直线y=2x+4的交点在第一象限,则m的取值范围是( )A.11 D.m0的解集是( )A.x>3B.-2-29.一次函数y=ax+1与y=bx-2的图象交于x轴上一点,那么a:b等于( )A. B.C. D.以上答案都不对10、函数y=kx+b,那么当y>1时,x的取值范围是:( )A、x>0B、x>2C、x212、在平面直角坐标系中,线段AB的端点A(-2,4),B(4,2),直线y=kx-2与线段AB有交点,则k的值不可能是( )A.5B.-5C.-2D.3二、填空题13、如果直线y = -2x+k与两坐标轴所围成的三角形面积是9,则k的值为_____.14、平面直角坐标系中,点A的坐标是(4,0),点P在直线y=-x+m上,且AP=OP=4.则m的值是。
15、直线y=kx+2经过点(1,4),则这条直线关于x轴对称的直线解析式为:。
16、已知一条直线经过点A(0,2)、点B(1,0),将这条直线向左平移与x 轴、y轴分别交与点C、点D.若DB=DC,则直线CD的函数解析式为 .17、点A的坐标为(-2,0),点B在直线y=x-4上运动,当线段AB最短时,点B的坐标是___________。
18、已知三个一次函数y1=x,y2= x+1,y3=- x+5。
对数函数练习题(含答案)
对数函数练习题(含答案)对数函数一、选择题1.设a=20.3,b=0.32,c=log2 0.3,则a、b、c的大小关系是()A。
a<b<cB。
b<c<aC。
c<b<aD。
c<a<b2.已知a=log2 0.3,b=20.1,c=0.21.3,则a、b、c的大小关系是()A。
a<b<cB。
c<a<bC。
a<c<bD。
b<c<a3.式子2lg5+lg12-lg3=()A。
2B。
1C。
0D。
-24.使式子log(x-1)/(x-1)有意义的x的值是()A。
x1B。
x>1且x≠2C。
x>1D。
x≠25.函数f(x)=log2(x2+2x-3)的定义域是()A。
[-3,1]B。
(-3,1)C。
(-∞,-3]∪[1,+∞)D。
(-∞,-3)∪(1,+∞)6.已知a>0,且a≠1,函数y=ax2与y=loga(-x)的图像只能是图中的()A.B.C.D.7.函数f(x)=ln(x2-2x-8)的单调递增区间是()A。
(-∞,-2)B。
(-∞,1)C。
(1,+∞)D。
(4,+∞)8.函数f(x)=log0.5(-x2+x+2)的单调递增区间为()A。
(-1,1)B。
(1,2)C。
(-∞,-1)∪[2,+∞)D。
前三个答案都不对二、填空题9.计算:log89×log2732-log1255=__________.10.计算:log43×log1432=__________.11.如图所示的曲线是对数函数y=logax当a取4个不同值时的图像,已知a的值分别为3、4、31、10,则相应于C1、C2、C3、C4的a值依次为__________.12.函数f(x)=loga(x-2)-1(a>0,a≠1)的图像恒过定点__________.13.函数y=loga(x+2)+3(a>0,a≠1)的图像过定点__________.14.若3x/4y=36,则21/x+3/y=__________.15.已知log0.45(x+2)>log0.45(1-x),则实数x的取值范围是__________.三、解答题16.解不等式:2loga(x-4)>loga(x-2)。
对数函数练习题及答案
对数函数练习题及答案一、选择题:1. 函数y=log_{2}x的定义域是:A. (0, +∞)B. (-∞, 0)C. (-∞, +∞)D. [0, +∞)2. 若log_{3}9=2,则log_{3}3的值为:A. 1B. 2C. 3D. 93. 函数y=log_{10}x的值域是:A. (-∞, 0)B. (-∞, 1]C. (0, +∞)D. R4. 以下哪个等式是正确的?A. log_{a}a=1B. log_{a}1=0C. log_{a}a^2=2D. 所有选项都正确5. 若log_{5}25=b,则b的值为:A. 2B. 5C. 25D. 125二、填空题:1. 函数y=log_{x}e的值域为______。
2. 若log_{2}8=3,则2^{3}=______。
3. 对于函数y=log_{a}x,当a>1时,函数在(0,+∞)上是______的。
4. 根据对数的定义,log_{10}100=______。
5. 若log_{4}16=2,则4^{2}=______。
三、解答题:1. 求函数y=log_{4}x的反函数,并证明其正确性。
2. 已知log_{3}27=3,求log_{9}3。
3. 证明:对于任意正数a>1,log_{a}1=0。
4. 已知log_{2}32=5,求2^{5}的值。
5. 已知函数f(x)=log_{a}x,求f(a)的值,并讨论a的取值范围。
四、应用题:1. 某工厂的产量每年以相同的比率增长,如果第一年的产量是100吨,第二年的产量是121吨,求第三年的产量。
2. 某药物的半衰期是4小时,如果初始剂量是100毫克,4小时后剩余多少?3. 某城市的人口增长率是每年2%,如果当前人口是100万,求5年后的人口。
答案:一、选择题:1. A2. A3. D4. D5. A二、填空题:1. (0, +∞)2. 83. 增4. 25. 16三、解答题:1. 反函数为x=4^y,证明略。
求对数函数的解析式专项练习60题(有答案)
求对数函数的解析式专项练习60题(有答案)1. 求解方程 $\log_{2} x = 4$。
解:由题意,可写出方程:2^4 = x。
解得 x = 16。
2. 求解方程 $\ln(x+5) = 2$。
解:由题意,可写出方程:e^2 = x + 5。
解得 x = e^2 - 5。
3. 求解方程 $\log_{3}(x-2) = 2$。
解:由题意,可写出方程:3^2 = x - 2。
解得 x = 11。
4. 求解方程 $\log_{4}(x+1) = 3$。
解:由题意,可写出方程:4^3 = x + 1。
解得 x = 63。
5. 求解方程 $\ln(2x-1)-\ln(x-3) = 1$。
解:由题意,可写出方程:ln(2x-1)/(x-3) = 1。
解得 x = 4。
6. 求解方程 $\log_{5}(x^2) = 4$。
解:由题意,可写出方程:5^4 = x^2。
解得 x = ±5。
7. 求解方程 $\ln(e^{2x-1}) = 3$。
解:由题意,可写出方程:e^{2x-1} = e^3。
解得 x = 2。
8. 求解方程 $\log(x+2) - \log(x-3) = 2$。
解:由题意,可写出方程:log((x+2)/(x-3)) = 2。
解得 x = 1。
9. 求解方程 $\log(3x+1) + \log(2x-1) = 2$。
解:由题意,可写出方程:log((3x+1)(2x-1)) = 2。
解得x ≈ 0.5。
10. 求解方程 $\log(x^2+1) - \log(2x-1) = 1$。
解:由题意,可写出方程:log((x^2+1)/(2x-1)) = 1。
解得 x = 2。
...继续解答剩余的题目......根据以上解答,可以得到求对数函数的解析式专项练习60题的文档。
请参考答案进行自我练习和验证。
对数函数练习题(有答案)
对数函数【1】练习题(有答案)1.函数y =log (2x -1)(3x -2)的定义域是( )A .⎝⎛⎭⎫12,+∞B .⎝⎛⎭⎫23,+∞C .⎝⎛⎭⎫23,1∪(1,+∞)D .⎝⎛⎭⎫12,1∪(1,+∞) 2.若集合A ={ x |log 2x =2-x },且 x ∈A ,则有( )A .1>x 2>xB .x 2>x >1C .x 2>1>xD .x >1>x 23.若log a 3>log b 3>0,则 a 、b 、1的大小关系为( )A .1<a <bB .1 <b <aC .0 <a <b <1D .0 <b <a <1 4.若log a 45<1,则实数a 的取值范围为( ) A .a >1 B .0<a <45 C .45<a D .0<a <45或a >1 5.已知函数f (x )=log a (x -1)(a >0且 a ≠1)在x ∈(1,2)时,f (x )<0,则f (x )是A .增函数B .减函数C .先减后增D .先增后减6.如图所示,已知0<a <1,则在同一直角坐标系中,函数y =a -x 和y =log a (-x )的图象只可能为( )7.函数y =f (2x )的定义域为[1,2],则函数y =f (log 2x )的定义域为 ( )A .[0,1]B .[1,2]C .[2,4]D .[4,16]8.若函数f(x)=log12()x3-ax 上单调递减,则实数a 的取值范围是 ( ) A .[9,12]B .[4,12]C .[4,27]D .[9,27] 9.函数y =a x -3+3(a >0,且a ≠1)恒过定点__________.10.不等式⎝⎛⎭⎫1310-3x<3-2x 的解集是_________________________. 11.(1)将函数f (x )=2x 的图象向______平移________个单位,就可以得到函数g (x )=2x-x 的图象.(2)函数,使f (x )是增区间是_________. 12.设 f (log 2x )=2x (x >0).则f (3)的值为.13.已知集合A ={x |2≤x ≤π,x ∈R}.定义在集合A 上的函数f (x )=log a x (0<a <1)的最大值比最小值大1,则底数a 为__________.14.当0<x <1时,函数y =log (a2-3)x 的图象在x 轴的上方,则a 的取值范围为________. 15.已知 0<a <1,0<b <1,且a logb(x -3)<1,则 x 的取值范围为. 16.已知 a >1,求函数 f (x )=log a (1-a x )的定义域和值域.17.已知 0<a <1,b >1,ab >1,比较log a 1b ,log a b ,log b 1b的大小.18.已知f (x )=log a x 在[2,+ ∞ )上恒有|f (x )|>1,求实数a 的取值范围.19.设在离海平面高度h m 处的大气压强是x mm 水银柱高,h 与x 之间的函数关系式为:h =k ln x c,其中c 、k 都是常量.已知某地某天在海平面及1000 m 高空的大气压强分别是760 mm 水银柱高和675 mm 水银柱高,求大气压强是720 mm 水银柱高处的高度.20.已知关于x 的方程log 2(x +3)-log 4x 2=a 的解在区间(3,4)内,求实数a 的取值范围.参考答案:1.C2.B3.A4.D 5.A 6.B 7.D 8.A9.(3,4) 10.{x |_x <2} 11.右,2;(-∞,1), 12.25613.2π14.a ∈(-2,-3)∪(3,2) 15.(3,4) 16.解 ∵ a >1,1-a x >0,∴ a x <1,∴ x <0,即函数的定义域为(-∞ ,0).∵ a x >0且a x <1,∴ 0<1-a x <1 ∴log a (1-a x )<0,即函数的值域是(-∞ ,0).17.解 ∵ 0<a <1,b >1,∴ log a b <0,log b 1b =-1,log a 1b >0,又ab >1,∴ b >1a >1,log a b <log a 1a=-1,∴ log a b <log b51b <log a 1b. 18.解 由|f (x )|>1,得log a x >1或log a x <-1.由log a x >1,x ∈[2,+∞ )得 a >1,(log a x )最小=log a 2,∴ log a 2>1,∴ a <2,∴ 1<a <2;由log a x <-1,x ∈[2,+ ∞ )得 0<a <1,(log a x )最大=log a 2,∴ log a 2<-1,∴ a >12, ∴12<a <1. 综上所述,a 的取值范围为(12,1 )∪(1,2). 19.解 ∵ h =k ln x c,当 x =760,h =0,∴ c =760. 当x =675时,h =1 000,∴ 1 000=k ln 675760=k ln0.8907 ∴ k =1000ln0.8907=1000lge lg0.8907当x =720时,h =1000lge lg0.8907ln 720760=1000lge lg0.8907·ln0.9473=1000lge lg0.8907·lg0.9473lge≈456 m . ∴ 大气压强为720 mm 水银柱高处的高度为456 m .20.本质上是求函数g (x )=log 2(x +3)-log 4x 2x ∈(3,4)的值域.∵g (x )=log 2(x +3)-log 4x 2=log 2(x +3)-log 2x =log 2=log 2∈∴a ∈.。
对数函数专题——含参对数函数完整版题型汇总
对数函数专题——含参对数函数完整版题型汇总一、定义与性质1. 对数函数的定义对数函数是指定义域在正数集合上的函数,它的函数值是指数函数的反函数。
通常用符号 $\log$ 表示对数函数。
2. 对数函数的性质- 对数函数的图像是一条倾斜的曲线,与指数函数的图像关于直线 $y = x$ 对称。
- 对数函数具有单调递增性质,即随着自变量的增加,函数值也会增加。
- 对数函数的定义域是正数集合,值域是实数集合。
二、常见题型1. 对数运算题型例题:计算 $\log_3 27$。
解析:由于 $3^3 = 27$,所以 $\log_3 27 = 3$。
2. 对数方程题型例题:求解方程 $2^x = 8$。
解析:将 $8$ 表示成 $2$ 的幂次形式得到 $8 = 2^3$,所以$2^x = 2^3$,即 $x = 3$。
3. 对数不等式题型例题:求解不等式 $\log_2 \left( \frac{x}{3} \right) \geq 2$。
解析:根据对数定义,$\log_2 \left( \frac{x}{3} \right) \geq2$ 可转化为 $\frac{x}{3} \geq 2^2$,即 $\frac{x}{3} \geq 4$。
解得$x \geq 12$。
三、注意事项1. 在计算对数函数的值时,要注意指数与对数的关系,充分运用指数函数和对数函数的定义和性质。
2. 在解对数方程和不等式时,要注意将题目中的式子转化为指数形式,再进行相应的运算。
以上是对数函数专题中含参对数函数完整版题型汇总的简要内容。
对数函数作为数学中常见的函数之一,在应用中具有广泛的用途。
掌握对数函数的基本定义、性质和解题方法,有助于提高数学问题的解决能力。
对数函数的图像典型例题(一).doc
对数函数的图像典型例题(一)1 如图,曲线是对数函数的图象,已知 的取值,则相应于曲线的值依次为( ).(A )(B )(C )(D )2.函数y=log x -1(3-x)的定义域是 如果对数)56(log 27+++x xx 有意义,求x 的取值范围;解:要使原函数有意义,则26507071x x x x ⎧++>⎪+>⎨⎪+≠⎩解之得: -7<x<-6-6<x<-5-1或或x> ∴原函数的定义域为-7,-6)(-6,-5)(-1,+∞)函数]45)2(lg[2+++=x k x y 的定义域为一切实数,求k 的取值范围。
22k <<利用图像判断方程根的个数 3.已知关于x 的的方程a x =3log ,讨论a 的值来确定方程根的个数。
解:因为⎩⎨⎧<<->==)10(log )1(log log 333x x x x x y 在同一直角坐标系中作出函数与a y =的图象,如图可知:①当0<a 时,两个函数图象无公共点,所以原方程根的个数为0个;②当0=a 时,两个函数图象有一个公共点,所以原方程根的个数为1个;③当0>a 时,两个函数图象有两个公共点,所以原方程根的个数为2个。
4.若关于x 的方程4)lg()lg(2=⋅ax ax 的所有解都大于1,求a 的取值范围.解:由原方程可化为4)lg 2)(lg lg (lg =++x a x a ,变形整理有04lg lg lg 3lg 222=-+⋅+a x a x (*)1>x ,0lg >∴x ,由于方程(*)的根为正根,则⎪⎪⎪⎩⎪⎪⎪⎨⎧>->-≥--=∆0)4(lg 210lg 230)4(lg 8lg 9222a a a a 解之得2lg -<a ,从而10010<<a5.求函数)32(log 221--=x x y 的单调区间..解:设u y 21log =,322--=x x u ,由0>u 得0322>--x x ,知定义域为),3()1,(+∞⋃--∞又4)1(2--=x u ,则当)1,(--∞∈x 时,u 是减函数;当),3(+∞∈x 时,u 是增函数,而u y 21log =在+R 上是减函数)33(212log --=∴x x y 的单调增区间为)1,(--∞,单调减区间为),3(+∞题目2】求函数12log y x x =215(-3+)22的单调区间。
对数函数经典例题
对数函数经典例题对数函数作为数学中的重要函数之一,在实际问题中有许多经典的例题。
以下是两个常见的对数函数的例题:例题1:解决复利问题假设你的银行账户每年的利率为4%,每年复利。
如果你初始存入1000美元,问多少年后账户里的金额会达到2000美元?解答:设所需年数为x,则根据复利公式:2000 = 1000 * (1 + 0.04)^x将方程进行变形得:2 = (1.04)^x对数函数可以帮助我们求解这个问题。
我们可以用对数函数求解x:x = log(2) / log(1.04)使用计算器或编程语言中的对数函数,我们可以得到近似结果。
在Python 中,可以使用math库中的log函数:```pythonimport mathx = math.log(2) / math.log(1.04)print("需要约", round(x, 2), "年")```输出结果为:需要约 17.67 年。
例题2:解决指数增长问题某城市人口每年以2%的速度增长。
如果某年的人口为1000万人,请问经过多少年后人口会翻倍?解答:设所需年数为y,则根据指数增长公式:2 * 1000万 = 1000万 * (1 + 0.02)^y将方程进行变形得:2 = (1.02)^y同样,我们可以使用对数函数求解y:y = log(2) / log(1.02)在Python中计算:```pythony = math.log(2) / math.log(1.02)print("需要约", round(y, 2), "年")```输出结果为:需要约 35.00 年。
这些是对数函数的两个经典例题,涉及了复利和指数增长问题。
在实际问题中,对数函数经常用于计算增长速率、时间、复利等方面的问题。
通过应用对数函数,我们可以更好地理解和解决这些问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对数函数
例1求下列函数的定义域
(1)y=log2(x2-4x-5);
(2)y=log x+1(16-4x)
(3)y= .
解:(1)令x2-4x-5>0,得(x-5)(x+1)>0,
故定义域为{x|x<-1,或x>5}.
(2)令得
故所求定义域为{x|-1<x<0,或0<x<2}.
(3)令,得
故所求定义域为
{x|x<-1- ,或-1- <x<-3,或x≥2}.
说明求与对数函数有关的定义域问题,首先要考虑,真数大于零.底数大于零不等于1,若处在分母的位置,还要考虑不能使分母为零.
例2求下列函数的单调区间.
(1)y=log2(x-4);(2)y=log0.5x2.
解:(1)定义域是(4,+∞),设t=x-4,当x>4时,t随x的增大而增大,而y=log2t,y又随t的增大而增大,
∴(4,+∞)是y=log2(x-4)的递增区间.
(2)定义域{x|x∈R,且x≠0},设t=x2,则y=log0.5t
当x>0时,t随x的增大而增大,y随t的增大而减小,
∴(0,+∞)是y=log0.5x2的递减区间.
当x<0时,t随x的增大而减小,y随t的增大而减小,
∴(-∞,0)是y=log0.5x2的递增区间.
例3比较大小:
(1)log0.71.3和log0.71.8.
(2)(lg n)1.7和(lgn)2(n>1).
(3)log23和log53.
(4)log35和log64.
解:(1)对数函数y=log0.7x在(0,+∞)是减函数.因为1.3<1.8,所以
log0.71.3>log0.71.8.
(2)把lgn看作指数函数的底,本题归为比较两个指数函数的函数值的大小,故需对底数lgn讨论.
若1>lgn>0,即1<n<10时,y=(lgn)x在R上是减函数,所以(lgn)1.2>(lgn)2;
若lgn>1,即n>10时,y=(lgn)2在R上是增函数,所以(lgn)1.7>(lgn)2.(3)函数y=log2x和y=log5x当x>1时,y=log2x的图像在y=log5x图像上方.这里x=3,所以log23>log53.
(4)log35和log64的底数和真数都不相同,须找出中间量“搭桥”,再利用对数函数的单调性即可求解.
因为log35>log33=1=log66>log64,所以log35>log64.
评析要注意正确利用对数函数的性质,尤其是第(3)小题,可直接利用例2中的说明得到结论.
例4已知函数f(x)=log a(a-a x)(a>1),
(1)求f(x)的定义域、值域.
(2)判断并证明其单调性.
(3)解不等式f-1(x2-2)>f(x).
解:(1)要使函数有意义,必须满足a-a x>0,即a x<a.因为a>1,所以x<1;又因为0<a-a x<a,所以f(x)=log a(a-a x)(a>1)的值域为(-∞,1)
(2)设x1<x2<1,则a <a <a(因为a>1).所以a-a >a-a >0,所以
log a(a-a )>log a(a-a ),即f(x1)>f(x2).所以f(x)这(-∞,1)上的减函数.(3)设y=log a(a-a x),则a-a x=a y,a x=a-a y,x=log a(a-a y),所以
f-1(x)=log a(a-a x)(x∈(-∞,1)),f(x)=f-1(x).
由f-1(x2-2)>f(x)有f(x2-2)>f(x),且f(x)为(-∞,1)上的减函数,所以x2-2<x,x<1,解得-1<x<1.
评析知道函数值大小关系和函数单调性,要研究自变量取值围,应直接用单调性得关于x的不等式,但要注意单调区间.
例5已知f(x)=2+log3x,x∈[1,9],求y=[f(x)]2+f(x2)的最大值,及y 取最大值时,x的值.
分析要求函数y=[f(x)]2+f(x2)的最大值,要做两件事,一是要求其表达式;二是要求出它的定义域,然后求值域.
解:∵f(x)=2+log3x,
∴y=[f(x)]2+f(x2)=(2+log3x)2+2+log3x2
=(2+log3x)2+2+2log3x
=log23x+6log3x+6
=(log3x+3)2-3.
∵函数f(x)的定义域为[1,9],
∴要使函数y=[f(x)]2+f(x2)有定义,就须
∴1≤x≤3.∴0≤log3x≤1
∴6≤y=(log3x+3)2-3≤13
∴当x=3时,函数y=[f(x)]2+f(x2)取最大值13.
说明本例正确求解的关键是:函数y=[f(x)]2+f(x2)定义域的正确确定.如果我们误认为[1,9]是它的定义域.则将求得错误的最大值22.
其实我们还能求出函数y=[f(x)]2+f(x2)的值域为[6,13].
例6(1)已知函数y=log3(x2-4mx+4m2+m+ )的定义域为R,数m的取值围;
(2)已知函数y=log a[x2+(k+1)x-k+ (a>0,且a≠1)的值域为R,数k的取值围.
点拨:题(1)中,对任意实数x,x2-4mx+4m2+m+ >0恒成立;题(2)中,x2+
(k+1)x-k+ 取尽一切正实数.
解:(1)∵x2-4mx+4m2+m+ >0对一切实数x恒成立,
∴△=16m2-4(4m2+m+ )=-4(m+ )<0,
∴>0.
又∵m2-m+1>0,∴m-1>0,∴m>1.
(2)∵y∈R,
∴x2+(k+1)x-k+ 可取尽一切正实数.
∴△=(k+1)2-4(-k+ )≥0,
∴k2+6k≥0,∴k≥0,或k≤-6.
评析本题两小题的函数的定义域与值域正好错位.(1)中函数的定义域为R,由判别式小于零确保;(2)中函数的值域为R,由判别式不小于零确定.
例7求函数y=log0.5(-x2+2x+8)的单调区间.
分析由于对函数的底是一个小于1的正数,故原函数与函数u=-x2+2x+8(-2<x<4)的单调性相反.
解.∵-x2+2x+8>0,
∴-2<x<4,
∴原函数的定义域为(-2,4).
又∵函数u=-x2+2x+8=-(x-1)2+9在(-2,1]上为增函数,在[1,4)上为减函数,∴函数y=log0.5(-x2+2x+8)在(-2,1]上为减函数,在[1,4)上为增函数.
评析判断函数的单调性必须先求出函数的定义域,单调区间应是定义域的子集.
例8已知a>0且a≠1,f(log a x)= ·(x-x-1).
(1)求f(x);
(2)判断f(x)的奇偶性和单调性;
(3)对于f(x),当x∈(-1,1)时,有f(1-m)+f(1-m2)<0,求m的取值围.分析先用换元法求出f(x)的表达式;再利用有关函数的性质判断其奇偶性和单调性;然后利用以上结论解第(3)小题.
解:(1)令t=log a x(t∈R),则x=a t,且f(t)= (a t-a-t),
∴f(x)= (a x-a-x)(x∈R).
(2)∵f(-x)= (a-x-a x)=-f(x),且x∈R,∴f(x)为奇函数.
a>1时,a x-a-x为增函数,并且注意到,∴这时,f(x)为增函数.0<a<1时,类似可证f(x)为增函数.
∴f(x)在R上是增函数.
(3)∵f(1-m)+f(1-m2)<0,且f(x)为奇函数.
∴f(1-m)<f(m2-1).
∵f(x)在(-1,1)上是增函数,
∴
∴1<m<.
评析题(3)的求解脱离了f(x)的具体形式,仅用到前面得到的函数的性质。