第五节初等数论中的几个重要定理

合集下载

初数数学中的数论公式解析

初数数学中的数论公式解析

初数数学中的数论公式解析数论作为数学的一个重要分支,研究整数的性质和相互关系。

在初等数论中,有许多重要的数论公式,它们能够帮助我们解决一些关于整数的问题。

本文将对一些常见的数论公式进行解析,帮助读者更好地理解和掌握数论知识。

一、欧拉函数公式欧拉函数是一个十分重要的数论函数,通常表示为φ(n),表示小于等于n且与n互质的正整数的个数。

欧拉函数有一个重要的性质,即对于任意的正整数n,都有以下公式成立:φ(n) = n × (1 - 1/p₁) × (1 - 1/p₂) × ... × (1 - 1/pₙ)其中p₁, p₂, ..., pₙ是n的所有不同的素因子。

这个公式的解析非常简单明了:首先我们将n进行素因数分解,得到n的所有不同的素因子。

然后,对于每个素因子p,将1减去1/p的值,再将这些结果相乘,最后再乘以n,即可得到欧拉函数的值φ(n)。

二、费马小定理费马小定理是一个重要的数论定理,它表明如果p是一个素数,a 是一个整数且不被p整除,那么a的p-1次方除以p的余数等于1:a^(p-1) ≡ 1 (mod p)这个公式的解析也比较简单:根据费马小定理,我们可以利用这个公式来进行模幂运算。

首先,将指数p-1进行二进制拆分,然后利用模运算的性质求取每一位的幂运算结果,最后再将这些结果相乘,再进行一次模运算,即可得到最终结果。

三、威尔逊定理威尔逊定理是另一个与素数相关的重要数论定理,它表明如果p是一个素数,那么(p-1)!除以p的余数等于p-1:(p-1)! ≡ -1 (mod p)这个公式的解析稍微复杂一些。

首先,我们可以利用质数的定义以及基本的数论知识来证明威尔逊定理。

然后,我们可以通过数学归纳法来证明(p-1)! ≡ -1 (mod p)成立。

最后,利用模运算的性质,我们可以证明(p-1)!除以p的余数等于p-1。

四、高斯二项式定理高斯二项式定理是一个经典的数论定理,它可以用于计算组合数的模运算结果。

数论中的基本概念与定理

数论中的基本概念与定理

数论中的基本概念与定理数论作为数学的一个分支,研究整数的性质和规律。

它是纯粹抽象的数学分支,却具有深刻的应用价值。

本文将介绍数论中的一些基本概念与定理,包括素数、同余、欧几里得算法、费马小定理等。

一、素数素数是指不能被其他整数整除的数,除了1和自身以外没有其他因数的数。

素数是数论中最基本的概念,也是许多数论定理的基础。

素数的性质十分丰富,例如:任意大于1的整数必定可以被表示为有限个素数的乘积。

二、同余同余是数论中的重要概念,它描述了两个数在除以一个整数后的余数相等的情况。

若两个整数a和b满足a-b能被正整数m整除,则称a 与b关于模m同余。

同余关系具有如下性质:(1)若a与b关于模m 同余,即a≡b (mod m),则a的整数倍与b的整数倍关于模m也同余;(2)若a与b关于模m同余,且b与c关于模m同余,则a与c关于模m同余。

三、欧几里得算法欧几里得算法是求解两个整数最大公约数的一种高效算法。

它基于如下定理:对于任意两个非零整数a和b,它们的最大公约数等于b和a%b的最大公约数,其中%表示取余运算。

利用这个定理,可以递归地求解最大公约数,直至余数为0,此时上一步的除数即为最大公约数。

四、费马小定理费马小定理是数论中的一条重要定理,它为许多数论问题的解决提供了便利。

设p为一个素数,a为与p互质的整数,则a^(p-1) ≡ 1 (mod p),其中^表示乘方运算。

费马小定理的应用十分广泛,例如在RSA加密算法中就有重要作用。

五、欧拉函数欧拉函数是数论中的一个重要概念,它表示小于或等于某个正整数n的数中与n互质的数的个数。

记为φ(n),例如φ(8) = 4,因为1、3、5、7都与8互质。

欧拉函数有如下性质:(1)若p为素数,则φ(p) = p-1;(2)若a与b互质,则φ(ab) = φ(a)φ(b)。

六、扩展欧几里得算法扩展欧几里得算法是求解形如ax+by=gcd(a,b)的一元二次方程的一种方法。

初等数论中的欧拉定理

初等数论中的欧拉定理

定理内容在数论中,欧拉定理(也称费马-欧拉定理)是一个关于同余的性质。

欧拉定理表明,若n,a为正整数,且n,a互素,(a,n) = 1,则a^φ(n) ≡ 1 (mod n)证明首先证明下面这个命题:对于集合Zn={x1,x2,...,xφ(n)},其中xi(i=1,2,…φ(n))是不大于n 且与n互素的数,即n的一个化简剩余系,或称简系,或称缩系),考虑集合S = {a*x1(mod n),a*x2(mod n),...,a*xφ(n)(mod n)} 则S = Zn1) 由于a,n互质,xi也与n互质,则a*xi也一定于n互质,因此任意xi,a*xi(mod n) 必然是Zn的一个元素2) 对于Zn中两个元素xi和xj,如果xi ≠ xj则a*xi(mod n) ≠ a*xj(mod n),这个由a、n互质和消去律可以得出。

所以,很明显,S=Zn既然这样,那么(a*x1 × a*x2×...×a*xφ(n))(mod n)= (a*x1(mod n) × a*x2(mod n) × ... × a*xφ(n)(mod n))(mod n)= (x1 × x2 × ... × xφ(n))(mod n)考虑上面等式左边和右边左边等于(a*(x1 × x2 × ... × xφ(n))) (mod n)右边等于x1 × x2 × ... × xφ(n))(mod n)而x1 × x2 × ... × xφ(n)(mod n)和n互质根据消去律,可以从等式两边约去,就得到:a^φ(n) ≡ 1 (mod n)推论:对于互质的数a、n,满足a^(φ(n)+1) ≡ a (mod n)费马定理:a是不能被质数p整除的正整数,则有a^(p-1) ≡ 1 (mod p)证明这个定理非常简单,由于φ(p) = p-1,代入欧拉定理即可证明。

数论的四大定理详解(转载)

数论的四大定理详解(转载)

数论的四⼤定理详解(转载)转载于:前⾔可以发现RSA中的很多攻击⽅法都是从数论四⼤定理推导出的,所以找时间好好学习了⼀下数论四⼤定理的证明及其应⽤场景——Rabin算法。

欧拉定理若$n,a$为正整数,且$n,a$互素,即$gcd(a,n) = 1$,则$a^{φ(n)}\equiv1\pmod{n}$证明⾸先,我们需要知道欧拉定理是什么:数论上的欧拉定理,指的是$a^{φ(n)}\equiv1\pmod{n}$这个式⼦实在$a$和$n$互质的前提下成⽴的。

证明⾸先,我们知道在1到$n$的数中,与n互质的⼀共有$φ(n$)个,所以我们把这$φ(n)$个数拿出来,放到设出的集合X中,即为$x_1,x_2……x_{φ(n)}$那么接下来,我们可以再设出⼀个集合为M,设M中的数为:$m_1=a∗x_1,m_2=a∗x_2……m_φ(n)=a∗x_{φ(n)}$下⾯我们证明两个推理:⼀、M中任意两个数都不模n同余。

反证法。

证明:假设M中存在两个数设为$m_a,m_b$模$n$同余。

即$m_a\equiv m_b$移项得到:$m_a−m_b=n∗k$再将m⽤x来表⽰得到:$a∗x_a−a∗x_b=n∗k$提取公因式得到:$a∗(x_a−x_b)=n∗k$我们现在已知$a$与$n$互质,那么式⼦就可以转化为:$x_a−x_b\equiv 0 \pmod{n}$因为$a$中没有与$n$的公因⼦(1除外)所以$a !\equiv 0 \pmod{n}$ 所有只能是$ x_a−x_b\equiv 0\pmod{n}$。

⼜因为$x_a,x_b$都是⼩于$n$的并且不会相同,那么上述的式⼦⾃然全都不成⽴。

假设不成⽴。

证得:$M$中任意两个数都不模$4$同余。

⼆、M中的数除以n的余数全部与n互质。

证明:我们已知$m_i=a∗x_i$⼜因为$a$与$n$互质,$x_i$与$n$互质,所以可得$m_i$与$n$互质。

带⼊到欧⼏⾥得算法中推⼀步就好了。

初等数论知识点总结(word文档物超所值)

初等数论知识点总结(word文档物超所值)

《初等数论》总结姓名 xxx学号 xxxxxxxx院系 xxxxxxxxxxxxxxx专业 xxxxxxxxxxxxxxx个人感想初等数论是一门古老的学科,它对于数的性质以及方程整数的解做了深入的研究,是对中等数学数的理论的继续和提高。

有时候上课听老师讲解一些例题,觉得比较简单,结果便是懂非懂地草草了之,但是过段时间做老师留下的一些相似的课后练习时,又毫无头绪,无从下手。

这就是上课的时候没做到全神贯注地去听,所以课下的时间尤为重要,一定做好复习巩固的工作。

老师讲课的方法也十分好,每次上课都会花二十分钟到半个小时来对上节课的知识帮助我们进行回顾,我想很多同学都喜欢并适合这种教学方式。

知识点总结第一章 整数的可除性1. 定义:设b a ,是给定的数,0≠b ,若存在整数c ,使得bc a =则称b 整除a ,记作a b |,并称b 是a 的一个约数,称a 是b 的一个倍数,如果不存在上述c ,则称b 不能整除a 2性质:(1)若c b |且a c |,则a b |(传递性质);(2)若a b |且c b |,则)(|c a b ±即为某一整数倍数的整数之集关于加、减运算封闭。

若反复运用这一性质,易知a b |及c b |,则对于任意的整数v u ,有)(|cv au b ±。

更一般,若n a a a ,,,21L 都是b 的倍数,则)(|21n a a a b +++L 。

或着i b a |,则∑=ni i i b c a 1|其中n i Z c i ,,2,1,L =∈;(3)若a b |,则或者0=a ,或者||||b a ≥,因此若a b |且b a |,则b a ±=;(4)b a ,互质,若c b c a |,|,则c ab |;(5)p 是质数,若n a a a p L 21|,则p 能整除n a a a ,,,21L 中的某一个;特别地,若p 是质数,若n a p |,则a p |;(6)(带余数除法)设b a ,为整数,0>b ,则存在整数q 和r ,使得r bq a +=,其中b r <≤0,并且q 和r 由上述条件唯一确定;整数q 被称为a 被b 除得的(不完全)商,数r 称为a 被b 除得的余数。

初等数论四大定理

初等数论四大定理

初等数论四大定理威尔逊定理、欧拉定理、剩余定理(孙子定理)、费马小定理威尔逊定理:当且仅当p为素数时,有:(p-1)!≡-1(mod p)欧拉定理:若n,a为正整数,且n,a互质,(a,n)=1,则:a^φ(n)≡1(mod n)剩余定理(孙子定理):若有一些两两互质的整数m1,m2,…,m n,则对任意的整数a1,a2,…,a n,以下联立同余方程组对模m1,m2,…,m n有公解:x≡a1(mod m1),x≡a2(mod m2),……,x≡a n(mod m n)费马小定理:若p是质数,且(a,p)=1,则:a^(p-1)≡1(mod p)之前一直认为费马小定理的证明很复杂,但是懂了欧拉定理之后就迎刃而解了.首先,我们需要知道欧拉定理是什么:数论上的欧拉定理,指的是a x≡1(modn)这个式子实在a和n互质的前提下成立的.为什么成立呢?下面来证一下.首先,我们知道在1到n的数中,与n互质的一共有φ(n)φ(n)个,所以我们把这φ(n)φ(n)个数拿出来,放到设出的集合X中,即为x1,x2……xφ(n)x1,x2……xφ(n).那么接下来,我们可以再设出一个集合为M,设M中的数为:m1=a∗x1m2=a∗x2……mφ(n)=a∗xφ(n)m1=a∗x1m2=a∗x2……mφ(n)=a∗xφ(n)下面我们证明两个推理:一、M中任意两个数都不模n同余.反证法.证明:假设M中存在两个数设为m a,m b ma,mb模n同余.即m a≡m b ma≡mb移项得到:m a−m b=n∗k ma−mb=n∗k再将m用x来表示得到:a∗x a−a∗x b=n∗k a∗xa−a∗xb=n∗k提取公因式得到a∗(x a−x b)=n∗k a∗(xa−xb)=n∗k我们现在已知a与n互质,那么式子就可以转化为:x a−x b≡0(modn)xa−xb≡0(modn),因为a中没有与n的公因子(1除外)所以a对模n同余0并没有什么贡献.又因为x a,x b xa,xb都是小于n的并且不会相同,所以x a−x b xa−xb一定是小于n的,那么上述的式子自然全都不成立.假设不成立.证得:M中任意两个数都不模n同余.二、M中的数除以n的余数全部与n互质.证明:我们已知m i=a∗x i mi=a∗xi.又因为a与n互质,x i xi与n互质,所以可得m i mi与n互质.带入到欧几里得算法中推一步就好了.即gcd(a∗x i,n)=gcd(m i,n)=gcd(n,m i modn)=1证毕.根据我们证得的两个性质,就可以开始推式子了.首先,根据第二个性质可以知道,M中的数分别对应X中的每个数模n同余.所以可以得到:m1∗m2∗……∗mφ(n)≡x1∗x2∗……∗xφ(n)(modn)m1∗m2∗……∗mφ(n)≡x1∗x2∗……∗xφ(n)(modn)现在我们把m i mi替换成x的形式,就可以得到:a∗x1∗a∗x2∗……∗a∗xφ(n)≡x1∗x2∗……∗xφ(n)(modn)a∗x1∗a∗x2∗……∗a∗xφ(n)≡x1∗x2∗……∗xφ(n)(modn)很显然,我们应该移项了,但是在移项之前,我们认为这么多的a很烦,那么就先乘起来:aφ(n)∗(x1∗x2……∗xφ(n))≡x1∗x2……∗xφ(n)(modn)aφ(n)∗(x1∗x2……∗xφ(n))≡x1∗x2……∗xφ(n)(modn)很开心,我们终于凑出了aφ(n)aφ(n),那么就开始移项吧:(aφ(n)−1)∗(x1∗x2……∗xφ(n))≡0(modn)(aφ(n)−1)∗(x1∗x2……∗xφ(n))≡0(modn)然后,就出来啦:aφ(n)≡1(modn)aφ(n)≡1(modn)证毕.用现代数学的语言来说明的话,中国剩余定理给出了以下的一元线性同余方程组:有解的判定条件,并用构造法给出了在有解情况下解的具体形式.中国剩余定理说明:假设整数m1,m2, ... ,m n两两互质,则对任意的整数:a1,a2, ... ,a n,方程组有解,并且通解可以用如下方式构造得到:设是整数m1,m2, ... ,m n的乘积,并设是除了m i以外的n- 1个整数的乘积.设为模的数论倒数( 为模意义下的逆元)方程组的通解形式为在模的意义下,方程组只有一个解:证明:从假设可知,对任何,由于,所以这说明存在整数使得这样的叫做模的数论倒数.考察乘积可知:所以满足:这说明就是方程组的一个解.另外,假设和都是方程组的解,那么:而两两互质,这说明整除 . 所以方程组的任何两个解之间必然相差的整数倍.而另一方面,是一个解,同时所有形式为:的整数也是方程组的解.所以方程组所有的解的集合就是:。

初等数论知识点总结

初等数论知识点总结

《初等数论》总结姓名 xxx学号 xxxxxxxx院系 xxxxxxxxxxxxxxx专业 xxxxxxxxxxxxxxx个人感想初等数论是一门古老的学科,它对于数的性质以及方程整数的解做了深入的研究,是对中等数学数的理论的继续和提高。

有时候上课听老师讲解一些例题,觉得比较简单,结果便是懂非懂地草草了之,但是过段时间做老师留下的一些相似的课后练习时,又毫无头绪,无从下手。

这就是上课的时候没做到全神贯注地去听,所以课下的时间尤为重要,一定做好复习巩固的工作。

老师讲课的方法也十分好,每次上课都会花二十分钟到半个小时来对上节课的知识帮助我们进行回顾,我想很多同学都喜欢并适合这种教学方式。

知识点总结第一章 整数的可除性1. 定义:设b a ,是给定的数,0≠b ,若存在整数c ,使得bc a =则称b 整除a ,记作a b |,并称b 是a 的一个约数,称a 是b 的一个倍数,如果不存在上述c ,则称b 不能整除a 2性质:(1)若c b |且a c |,则a b |(传递性质);(2)若a b |且c b |,则)(|c a b ±即为某一整数倍数的整数之集关于加、减运算封闭。

若反复运用这一性质,易知a b |及c b |,则对于任意的整数v u ,有)(|cv au b ±。

更一般,若n a a a ,,,21Λ都是b 的倍数,则)(|21n a a a b +++Λ。

或着i b a |,则∑=ni ii b c a 1|其中n i Z c i ,,2,1,Λ=∈;(3)若a b |,则或者0=a ,或者||||b a ≥,因此若a b |且b a |,则b a ±=; (4)b a ,互质,若c b c a |,|,则c ab |;(5)p 是质数,若n a a a p Λ21|,则p 能整除n a a a ,,,21Λ中的某一个;特别地,若p 是质数,若n a p |,则a p |;(6)(带余数除法)设b a ,为整数,0>b ,则存在整数q 和r ,使得r bq a +=,其中b r <≤0,并且q 和r 由上述条件唯一确定;整数q 被称为a 被b 除得的(不完全)商,数r 称为a 被b 除得的余数。

初等数论中的几个重要定理

初等数论中的几个重要定理

初等数论中的几个重要定理基础知识定义(欧拉(Euler)函数)一组数称为是模的既约剩余系,如果对任意的,且对于任意的,若=1,则有且仅有一个是对模的剩余,即。

并定义中和互质的数的个数,称为欧拉(Euler)函数。

这是数论中的非常重要的一个函数,显然,而对于,就是1,2,…,中与互素的数的个数,比如说是素数,则有。

引理:;可用容斥定理来证(证明略)。

定理1:(欧拉(Euler)定理)设=1,则。

分析与解答:要证,我们得设法找出个相乘,由个数我们想到中与互质的的个数:,由于=1,从而也是与互质的个数,且两两余数不一样,故(),而()=1,故。

证明:取模的一个既约剩余系,考虑,由于与互质,故仍与互质,且有,于是对每个都能找到唯一的一个,使得,这种对应关系是一一的,从而,。

,,故。

证毕。

这是数论证明题中常用的一种方法,使用一组剩余系,然后乘一个数组组成另外一组剩余系来解决问题。

定理2:(费尔马(Fermat)小定理)对于质数及任意整数有。

设为质数,若是的倍数,则。

若不是的倍数,则由引理及欧拉定理得,,由此即得。

定理推论:设为质数,是与互质的任一整数,则。

定理3:(威尔逊(Wilson)定理)设为质数,则。

分析与解答:受欧拉定理的影响,我们也找个数,然后来对应乘法。

证明:对于,在中,必然有一个数除以余1,这是因为则好是的一个剩余系去0。

从而对,使得;若,,则,,故对于,有。

即对于不同的对应于不同的,即中数可两两配对,其积除以余1,然后有,使,即与它自己配对,这时,,或,或。

除外,别的数可两两配对,积除以余1。

故。

定义:设为整系数多项式(),我们把含有的一组同余式()称为同余方组程。

特别地,,当均为的一次整系数多项式时,该同余方程组称为一次同余方程组.若整数同时满足:,则剩余类(其中)称为同余方程组的一个解,写作定理4:(中国剩余定理)设是两两互素的正整数,那么对于任意整数,一次同余方程组,必有解,且解可以写为:这里,,以及满足,(即为对模的逆)。

初等数论定理三证明

初等数论定理三证明

初等数论定理三证明
一、定理:费马小定理
若p是素数,且a是小于p的任意整数,那么a^(p-1) ≡1 (mod p)
二、证明:
1、首先,假设p是素数,则p有两个质因数p和1,其积为p,则有p=p*1;
2、接着,令n=p-1,则有p=n+1,将此代入上式可得:n*1 + 1 = p;
3、再Setp,假设a是小于p的任意整数,可将a从2到n一个接一个的代入,进行如下操作:
n*a + a = p;
(n-1)*a + a *2 = p;
……
a + a*n = p;
可以看出,a循环经过n+1次,最后能变回初始状态,并且左侧乘法式系数也可以返回,由而得出结论:a^n ≡1 (mod p);
4、最后,将结论替换原式,即可得出本定理的证明:a^(p-1) ≡1 (mod p);
三、结论:
本文证明了费马小定理,即:若p是素数,且a是小于p的任意整数,那么a^(p-
1) ≡1 (mod p)。

本定理的证明完全遵循数论中的环路法则,证明过程简洁、清楚,且完整无缺。

初等数论知识点总结

初等数论知识点总结

《初等数论》总结姓名 xxx学号 xxxxxxxx院系 xxxxxxxxxxxxxxx专业 xxxxxxxxxxxxxxx个人感想初等数论是一门古老的学科,它对于数的性质以及方程整数的解做了深入的研究,是对中等数学数的理论的继续和提高。

有时候上课听老师讲解一些例题,觉得比较简单,结果便是懂非懂地草草了之,但是过段时间做老师留下的一些相似的课后练习时,又毫无头绪,无从下手。

这就是上课的时候没做到全神贯注地去听,所以课下的时间尤为重要,一定做好复习巩固的工作。

老师讲课的方法也十分好,每次上课都会花二十分钟到半个小时来对上节课的知识帮助我们进行回顾,我想很多同学都喜欢并适合这种教学方式。

知识点总结第一章 整数的可除性1. 定义:设b a ,是给定的数,0≠b ,若存在整数c ,使得bc a =则称b 整除a ,记作a b |,并称b 是a 的一个约数,称a 是b 的一个倍数,如果不存在上述c ,则称b 不能整除a 2性质:(1)若c b |且a c |,则a b |(传递性质);(2)若a b |且c b |,则)(|c a b ±即为某一整数倍数的整数之集关于加、减运算封闭。

若反复运用这一性质,易知a b |及c b |,则对于任意的整数v u ,有)(|cv au b ±。

更一般,若n a a a ,,,21Λ都是b 的倍数,则)(|21n a a a b +++Λ。

或着i b a |,则∑=ni ii b c a 1|其中n i Z c i ,,2,1,Λ=∈;(3)若a b |,则或者0=a ,或者||||b a ≥,因此若a b |且b a |,则b a ±=; (4)b a ,互质,若c b c a |,|,则c ab |;(5)p 是质数,若n a a a p Λ21|,则p 能整除n a a a ,,,21Λ中的某一个;特别地,若p 是质数,若n a p |,则a p |;(6)(带余数除法)设b a ,为整数,0>b ,则存在整数q 和r ,使得r bq a +=,其中b r <≤0,并且q 和r 由上述条件唯一确定;整数q 被称为a 被b 除得的(不完全)商,数r 称为a 被b 除得的余数。

大一初等数论知识点总结

大一初等数论知识点总结

大一初等数论知识点总结数论,作为数学的一个分支,是研究整数的性质和结构的学科。

在高等数学中,数论是一个重要的基础学科,也是培养数学思维和证明能力的重要内容之一。

下面将总结一些大一初等数论中的重要知识点。

一、素数与因数分解1. 素数定义:一个大于1的自然数,除了1和它本身以外没有其他因数的数被称为素数。

2. 质因数分解定理:任何一个大于1的自然数都可以表示为一系列素数的乘积,且这个分解方式是唯一的。

3. 最大公因数与最小公倍数:最大公因数是两个数同时能整除的最大的自然数,最小公倍数是能同时被两个数整除的最小的自然数。

二、模运算1. 同余:对于给定的正整数m,如果两个整数a和b满足a-b 能被m整除,则称a和b在模m下同余,记作a≡b (mod m)。

2. 同余性质:同余具有如下性质:- a ≡ b (mod m) 且c ≡ d (mod m),则a±c ≡ b±d (mod m)。

- a ≡ b (mod m) 且c ≡ d (mod m),则ac ≡ bd (mod m)。

3. 模运算法则:模运算具有如下法则:- (a+b) mod m = (a mod m + b mod m) mod m- (a-b) mod m = (a mod m - b mod m) mod m- (ab) mod m = (a mod m)(b mod m) mod m三、整除性与剩余类1. 整除性定义:如果a能被b整除,则称a是b的倍数,b是a 的因数。

2. 剩余类定义:对于给定的正整数m,将整数a分成m个不同的等价类,每个等价类都与m同余的整数被称为模m的一个剩余类。

3. 剩余类的运算:模m的剩余类满足如下运算规则:- 模m的剩余类可以进行加法和乘法运算。

- 模m的剩余类乘法满足交换律和结合律。

四、欧几里得算法与最大公因数1. 欧几里得算法:欧几里得算法用于求两个正整数的最大公因数,具体步骤如下:- 设a和b是两个正整数,其中a>b。

初等数论知识点汇总

初等数论知识点汇总

第一节 整数的p 进位制及其应用正整数有无穷多个,为了用有限个数字符号表示出无限多个正整数,人们发明了进位制,这是一种位值记数法。

进位制的创立体现了有限与无限的对立统一关系,近几年来,国内与国际竞赛中关于“整数的进位制”有较多的体现,比如处理数字问题、处理整除问题及处理数列问题等等。

在本节,我们着重介绍进位制及其广泛的应用。

基础知识给定一个m 位的正整数A ,其各位上的数字分别记为021,,,a a a m m --,则此数可以简记为:021a a a A m m --=(其中01≠-m a )。

由于我们所研究的整数通常是十进制的,因此A 可以表示成10的1-m 次多项式,即012211101010a a a a A m m m m +⨯++⨯+⨯=---- ,其中1,,2,1},9,,2,1,0{-=∈m i a i 且01≠-m a ,像这种10的多项式表示的数常常简记为10021)(a a a A m m --=。

在我们的日常生活中,通常将下标10省略不写,并且连括号也不用,记作021a a a A m m --=,以后我们所讲述的数字,若没有指明记数式的基,我们都认为它是十进制的数字。

但是随着计算机的普及,整数的表示除了用十进制外,还常常用二进制、八进制甚至十六进制来表示。

特别是现代社会人们越来越显示出对二进制的兴趣,究其原因,主要是二进制只使用0与1这两种数学符号,可以分别表示两种对立状态、或对立的性质、或对立的判断,所以二进制除了是一种记数方法以外,它还是一种十分有效的数学工具,可以用来解决许多数学问题。

为了具备一般性,我们给出正整数A 的p 进制表示:012211a p a p a p a A m m m m +⨯++⨯+⨯=---- ,其中1,,2,1},1,,2,1,0{-=-∈m i p a i 且01≠-m a 。

而m 仍然为十进制数字,简记为p m m a a a A )(021 --=。

初等数论知识点总结

初等数论知识点总结

《初等数论》总结姓名 xxx学号 xxxxxxxx院系 xxxxxxxxxxxxxxx专业 xxxxxxxxxxxxxxx个人感想初等数论是一门古老的学科,它对于数的性质以及方程整数的解做了深入的研究,是对中等数学数的理论的继续和提高。

有时候上课听老师讲解一些例题,觉得比较简单,结果便是懂非懂地草草了之,但是过段时间做老师留下的一些相似的课后练习时,又毫无头绪,无从下手。

这就是上课的时候没做到全神贯注地去听,所以课下的时间尤为重要,一定做好复习巩固的工作。

老师讲课的方法也十分好,每次上课都会花二十分钟到半个小时来对上节课的知识帮助我们进行回顾,我想很多同学都喜欢并适合这种教学方式。

知识点总结第一章 整数的可除性1. 定义:设是给定的数,,若存在整数,使得则称整除,记作,并称是的一个约数,称是的一个倍数,如果不存在上述,则称不能整除 2性质:(1)若且,则(传递性质);(2)若且,则即为某一整数倍数的整数之集关于加、减运算封闭。

若反复运用这一性质,易知及,则对于任意的整数有。

更一般,若都是的倍数,则。

或着,则其中;(3)若,则或者,或者,因此若且,则; (4)互质,若,则;b a ,0≠bc bc a =b a a b |b a a b c b a c b |a c |a b |a b |c b |)(|c a b ±a b |c b |v u ,)(|cv au b ±n a a a ,,,21 b )(|21n a a a b +++ i b a |∑=ni ii b c a 1|n i Z c i ,,2,1, =∈a b |0=a ||||b a ≥a b |b a |b a ±=b a ,c b c a |,|c ab |(5)是质数,若,则能整除中的某一个;特别地,若是质数,若,则;(6)(带余数除法)设为整数,,则存在整数和,使得,其中,并且和由上述条件唯一确定;整数被称为被除得的(不完全)商,数称为被除得的余数。

初等数论知识点

初等数论知识点

初等数论知识点数论是一门数学分支,主要研究整数(和实数)的性质和相互关系,以及它们的数学结构。

在数论中,初等数论是一门基础学科。

它主要探讨正整数的基本性质、算术运算规则、因数分解、最大公约数和最小公倍数等知识点的理论和应用。

本文将对初等数论的常见知识点进行详细介绍。

一、质数与合数任何一个大于1的自然数,如果它的因数除了1和它本身外,再没有其他因数,那么称这个数是质数。

否则,这个数就是合数。

例如,2、3、5、7、11、13等等,都是质数。

而4、6、8、9、10等等,都是合数。

在初等数论中,质数是一个非常重要的概念。

以下是一些质数的基本性质和定理:(1)2是最小的质数,它是唯一的偶质数。

(2)除2以外的任何偶数都是合数。

(3)如果一个整数p>1不能被2到√p之间的任何整数整除,那么它一定是质数。

(4)如果一个数是质数,则它不能表示成两个较小的正整数相乘。

(5)如果p是质数,且a、b是任意两个整数,那么a^p-b^p可以因式分解成(a-b)和另外一个整数的积。

(6)费马小定理:如果p是质数,a是任意整数且p不整除a,那么a^(p-1)除以p的余数为1。

以上定理在证明和应用上都非常重要,其中费马小定理还有广泛的应用,例如用于RSA加密算法中。

二、因数分解因数分解是指将一个正整数分解成若干个质数乘积的形式。

例如,24可以分解成2^3 * 3,而30可以分解成2 * 3 * 5。

因数分解在初等数论和高等数学中都是非常常见的操作,因为它在求解最大公约数、最小公倍数等问题时非常关键。

以下是一些因数分解的常见方法和技巧:(1)试除法:从小到大枚举质数,依次判断是否为该数的因数,如果是,则将该因数除掉,继续枚举,直到该数变成1为止。

(2)质因数分解法:先将一个数的因子分解成若干个质数的乘积,然后将质数按照大小递增的顺序尝试分解该数,最终得到因子分解式。

(3)辗转相除法:用较小的数去除较大的数,得到商和余数,然后用余数去除已经得到的商,继续得到商和余数,重复上述操作,直到余数为0为止。

初等数论简介

初等数论简介

初等数论
勒让德[法]1752~1833,在分 析学、数论、初等几何与天体 力学,取得了许多成果,是椭 圆积分理论奠基人之一。对数 论的主要贡献是二次互反律, 还是解析数论的先驱者之一.
雅可比[德]1804~1851,在偏 微分方程中,引进了“雅可比 行列式。对行列式理论作了奠 基性的工作,在代数学、变分法 复变函数论、分析力学 、动 力学及数学物理方面也有贡献。
初等数论
陈景润1933-1996,主要研究 解析数论,他研究哥德巴赫猜 想和其他数论问题的成就,至 今仍然在世界上遥遥领先。其 成果也被称之为陈氏定理。
王元1930-50年代至60年 代初,首先在中国将筛法 用于哥德巴赫猜想研究, 并证明了命题3+4,1957年 又证明2+3,这是中国学者 首次在此研究领域跃居世 界领先地位.
初等数论
欧几里得[前330年~前275年] 丢番图Diophante 246~330 欧氏几何学的开创者 , “代数学之父” 古希腊数学家,以其所著的 古希腊数学家,著《算术》 《几何原本》闻名于世。
初等数论
刘徽,生于公元250年左右, 三国时期数学家,是世界上最 早提出十进小数概念的人,著 《九章算术注》10卷;《海岛 算经》;《九章重差图》.割圆 术求圆面积和圆周率.
初等数论 三 、 几个著名数论难题 初等数论是研究整数性质的一门学科,历史上遗
留下来没有解决的大多数数论难题其问题本身容易搞
懂,容易引起人的兴趣,但是解决它们却非常困难。 其中,非常著名的问题有:哥德巴赫猜想 ;费 尔马大定理 ;孪生素数问题 ;完全数问题等。
初等数论 1、哥德巴赫猜想: 1742年,由德国中学教师哥德巴赫在教学中首先发 现的。1742年6月7日,哥德巴赫写信给当时的大数学

初等数论知识点总结

初等数论知识点总结

《初等数论》总结姓名 xxx学号 xxxxxxxx院系 xxxxxxxxxxxxxxx专业 xxxxxxxxxxxxxxx个人感想初等数论是一门古老的学科,它对于数的性质以及方程整数的解做了深入的研究,是对中等数学数的理论的继续和提高。

有时候上课听老师讲解一些例题,觉得比较简单,结果便是懂非懂地草草了之,但是过段时间做老师留下的一些相似的课后练习时,又毫无头绪,无从下手。

这就是上课的时候没做到全神贯注地去听,所以课下的时间尤为重要,一定做好复习巩固的工作。

老师讲课的方法也十分好,每次上课都会花二十分钟到半个小时来对上节课的知识帮助我们进行回顾,我想很多同学都喜欢并适合这种教学方式。

知识点总结第一章 整数的可除性1. 定义:设是给定的数,,若存在整数,使得则称整除,记作,并称是的一个约数,称是的一个倍数,如果不存在上述,则称不能整除 2性质:(1)若且,则(传递性质);(2)若且,则即为某一整数倍数的整数之集关于加、减运算封闭。

若反复运用这一性质,易知及,则对于任意的整数有。

更一般,若都是的倍数,则。

或着,则其中;(3)若,则或者,或者,因此若且,则; (4)互质,若,则;(5)是质数,若,则能整除中的某一个;特别地,若b a ,0≠bc bc a =b a a b |b a a b c b a c b |a c |a b |a b |c b |)(|c a b ±a b |c b |v u ,)(|cv au b ±n a a a ,,,21 b )(|21n a a a b +++ i b a |∑=ni ii b c a 1|n i Z c i ,,2,1, =∈a b |0=a ||||b a ≥a b |b a |b a ±=b a ,c b c a |,|c ab |p n a a a p 21|p n a a a ,,,21是质数,若,则;(6)(带余数除法)设为整数,,则存在整数和,使得,其中,并且和由上述条件唯一确定;整数被称为被除得的(不完全)商,数称为被除得的余数。

数论的几个重要定理(精选、)

数论的几个重要定理(精选、)

11 数论的几个重要定理欧拉定理、费马小定理、威尔逊定理及中国剩余定理是数论的四大定理,它们是解决数论问题的重要工具。

下面介绍这几个定理在竞赛数学中的应用方法。

1. 基本原理定理1(欧拉定理) 设m 为大于1的整数,(,)1a m =,()m ϕ为欧拉函数,则()1(mod )m a m ϕ≡.证 设{}12(),,,m r r r ϕ…为模m 的一个简化剩余系,因为(,)1a m =,所以 {}12(),,,m ar ar ar ϕ…也是模m 的一个简化剩余系,从而有 12()12()()()()(mod )m m ar ar ar r r r m ϕϕ≡……,即 ()12()12()()(mod )m m m a rr r rr r m ϕϕϕ≡ (1)因为12()(,)1m r r r m ϕ=… ,所以由(1)得 ()1(mod )m a m ϕ≡.定理2(费马小定理) 设p 是素数,(,)1a p =,则11(mod )p a p -≡.证 因为p 是素数,所以()1p p ϕ=-,由欧拉定理知()1(mod )p a p ϕ≡,∴ 11(mod )p a p -≡.推论 设p 为素数,a 为整数,则(mod )p a a p ≡ (2)证 当p a 时,(2)式显然成立.当p 不能整除a 时,因为p 为素数,所以(,)1a p =.由定理2得 11(mod )p ap -≡, ∴ (mod )p a a p ≡.定理3(威尔逊定理) 若p 为素数,则(1)!1(mod )p p -≡-.证 {}2,3,,2a p ∀∈-…,因为(,)1a p =,所以{},2,,(1)a a p a -…也是模p 的简化剩余系,故存在唯一的{}1,2,,1b p ∈-…,使得1(mod )ba p ≡ (1)∵ {}2,3,,2a p ∈-…,∴ 1b ≠,1b p ≠-.若b a =,则21(mod )a p ≡∴ (1)(1)0(mod )a a p -+≡.∴ 11(mod )a p ≡-或,这与{}2,3,,2a p ∈-…矛盾.综上即知{}2,3,,2b p ∈-…且b a ≠.将{}2,3,,2p -…中的数按(1)式两两配对,得234(2)1(mod )p p ⨯⨯⨯⨯-≡…,∴ (1)!1(mod )p p -≡-.定理4(中国剩余定理) 设12,,,k m m m …是k 个两两互质的正整数,12k m m m m =…,i im M m =,1,2,,i k =…,则同余式组 1122(mod )(mod )(mod )kk x a m x a m x a m ≡⎧⎪≡⎪⎨⎪⎪≡⎩…… (1)有唯一解 111222(mod )k k k x M M a M M a M M a m '''=+++ (2)其中1(mod )i i i M M m '≡,1,2,,i k =….证 容易验证(2)是(1)的解.又若x ',x ''均是(1)的解,则对于1,2,,i k =…,有(mod )i i x a m '≡(mod )i i x a m ''≡,从而有 0(mod )i x x m '''-≡,又因为12,,,k m m m …两两互质,从而有0(mod )x x m '''-≡,即 (mod )x x m '''≡,所以x '与x ''是同余式组(1)的相同解.设1m >,(,)1a m =,则由欧拉定理知()1(mod )m a m ϕ≡,我们把满足条件1(mod )r a m ≡的最小正整数r 称为a 对模m 的阶,或称为a 对模m 的指数.关于a 对模m 的阶,我们有如下结论.定理5 设1m >,(,)1a m =,a 对模m 的阶为0n ,n 为正整数.若1(mod )na m ≡,则0n n .证 由带余除法知,存在非负整数q 及r ,使得 0n qn r =+,00r n ≤<.所以 001()(mod )qn r n n q r r a a a a a m +===≡,由于0r n <,由0n 的最小性知0r =,所以0n n .2. 方法解读用上述定理解题,除应掌握数论解题的基本方法外,还应对这几个定理的用途有一定的 认识.一般说来,欧拉定理与费马小定理提供了降幂与归1的工具.威尔逊定理提供了处理连续整数的积的方法.中国剩余定理提供了某些存在性问题的构造方法.定理5提供了由方幂的指数导出整除关系的途径.例1 求使21n -为7的倍数的所有正整数n ..解 ∵ 122(mod 7)≡,224(mod 7)≡,321(mod 7)≡,所以2对模7的阶为3.又因为21(mod 7)n ≡,所以由定理5知 3n ,即3()n k k N +=∈.例2 设整数a ,b ,c 满足0a b c ++=,记201120112011d ab c =++,求证d 不是素 数.证 ∵ 2(mod 2)a a ≡,∴ 2011(mod 2)aa ≡ 同理知 2011(mod 2)b b ≡,2011(mod 2)c c ≡, ∴ 2011201120110(mod 2)a b c a b c ++≡++≡, ∴ 2d .又由费马小定理知,3(mod 3)a a ≡,word. ∴ 201120103670670669232232()a a a a a a a a a a a ⨯≡≡≡≡≡223222478262793(mod 3)a a a a a a a a a a a a ≡≡≡≡≡≡≡≡,同理可证 2011(mod 3)bb ≡,2011(mod 3)c c ≡, ∴ 2011201120110(mod3)a b c a b c ++≡++≡,∴ 3d . 又∵ (2,3)1=,∴ 6d ,所以d 不是素数.例3 证明:数列1,19,119,1119,11119,…中有无穷多个合数.证 因为19是素数,(10,19)1=,由费马小定理知 18101(mod19)≡,所以对于任 意的正整数n ,有 18101(mod19)n ≡,∴ 181010(mod19)n -≡,∴ 18191110(mod19)n ⨯≡个…,∵ (199)1=,, ∴ 18119111n 个…,∴ 1811911119n 个…,即 1811911119n 个….由于正整数n 有无穷多个,所以数列中有无穷多项被19整除,故数列中有无穷多项为合数.例4(第47界IMO 预选题) 已知(0,1)x ∈,令(0,1)y ∈,且y 的小数点后第n 位数字是x 的小数点后第2n 位数字.证明:若x 为有理数,则y 也为有理数.证 设120.n x x x x =……, 120.n y y y y =……,则对于1,2,n =…,有2n n y x =.因为x 为有理数,所以数列{}n x 从某项开始为周期数列,为了说话方便,不妨设{}n x 为周期数列,d 为它的一个周期,02nd v =,其中0n 为非负整数,v 为大于1的奇数(这是可以办到的,因为若T 为数列的周期,则3T 也为周期).现令()v ωϕ=,由欧拉定理知,()221(mod )v v ωϕ=≡,从而有00022(mod(2))n n n v ω+≡⋅, 即 0022(mod )n n d ω+≡,所以对于任意的正整数0n n >,有 00002222(mod )n n n n n n d ω+--⋅≡, 即 22(mod )n n d ω+≡.∵ d 是{}n x 的周期,从而有 22n n x x ω+=, 即n n y y ω+=.综上知,对于任意的0n n >,都有n n y y ω+=,所以{}n y 从第01n +项开始为周期数列,因此y 为有理数.例5设1000(5x =+,求[]x 的末三位数.解 令1000(5y =-.∵ 10000(51<-<,∴ 01y <<.又因为 10001000(5(5x y +=++-100099839963224100010002(55(23)5(23)C C =+⋅⋅⋅+⋅⋅⋅ 23449350099810005(23)(23))C ++⋅⋅⋅+⋅…(1) 所以 []1x x y =+-.由(1)式知10003500252(23)(mod1000)x y +≡⨯+⋅⋅(2) ∵ 3100058=⨯,1000350(mod 5)≡ (3)10005005005(25)11(mod8)=≡= (4)由(3)得 1000355t =,代入(4)得351(mod8)t ≡,即 51(mod8)t ≡,∴ 5(mod8)t ≡.85t k ≡+,所以 100033555(85)625(mod1000)t k ==+≡,∴ 1000252625250(mod1000)⨯≡⨯≡.又∵ 15ϕ(125)=125(1-)=100,由欧拉定理知 3100(23)1(mod125)⋅≡,∴ 3500(23)1(mod125)⋅≡ (5)又 3500(23)0(mod8)⋅≡ (6)由(5)得 3500(23)1251t ⋅≡+,代入(6)得12510(mod8)t +≡,即 510(mod8)t +≡,∴ 3(mod8)t ≡.∴ 83t k =+,代入得 3500(23)125(83)1376(mod1000)k ⋅=++≡, ∴ 35002(23)2376752(mod1000)⋅⋅≡⨯=.综上知,10003500252(23)2507522(mod1000)x y +≡⋅+⋅⋅≡+≡,所以 11(mod1000)x y +-≡,故[]x 的末三位数为001.例6求具有如下性质的素数p 的最大值:存在1,2,,p …的两个排列(这两个排列可 以相同)1212,,,,,,p p a a a b b b …与…,使得1122,,,p p a b a b a b …被p 除所得的余数互不相同.解 不妨设 121,2,,p a a a p ===….若p b p ≠,则存在 {}1,2,,1i p ∈-…,使得 i b p =,从而有 0(mod )i i a b p ≡,0(mod )p p a b p ≡,从而有 (mod )i i p p a b a b p ≡,这与题设矛盾,因此有 p b p =.因为 0(mod )p p a b p ≡,又1122,,,p p a b a b a b …被p 除所得的余数互不相同,所以 112211,,,p p a b a b a b --…被p 除的余数构成的集合为{}1,2,,1p -…,由有威尔逊定理,得112211()()()123(1)(1)!1(mod )p p a b a b a b p p p --≡⋅⋅-=-≡-…….又 112211()()()p p a b a b a b --…121121()()p p a a a b b b --=……(1)!(1)!(1)(1)1(mod )p p p =--≡--=,∴ 11(mod )p -≡,∴ 20(mod )p ≡,∴ 2p .由于p 为素数,所以2p =.容易验证2p =满足要求.故所求的最大值为2.例7设整数n ,q 满足5n ≥,2q n ≤≤且q 不为某个质数的平方,试证:(1)!(1)n q q ⎡⎤--⎢⎥⎣⎦(1) 这里[]x 表示x 的这个数部分.证 若q 为合数,因为q 不为质数的平方,所以存在大于1的整数a ,b ,a b ≠,使得q ab =.因为q n ≤,所以1a n ≤-,1b n ≤-,从而有(1)!q n -,因此(1)!(1)!n n q q ⎡⎤--=⎢⎥⎣⎦. ∵ (1)(1)!q n --,(1)!q n -,(1,)1q q -=,∴ (1)(1)!q q n --,∴ (1)!(1)!(1)n n q q q ⎡⎤---=⎢⎥⎣⎦,故结论成立. 若q 为质数,当q n <,易知(1)!q n -,从而有(1)!(1)!n n q q ⎡⎤--=⎢⎥⎣⎦. 又因为 (1)(1)!q n --,(1,)1q q -=,所以 (1)(1)!q q n --,∴ (1)!(1)!(1)n n q q q ⎡⎤---=⎢⎥⎣⎦,结论成立. 当q n =时,因为q 为质数,由威尔逊定理知 (1)!(1)!1(mod )n q q -=-≡-,所以(1)!10(mod )n q -+≡,∴ (1)!1q n -+,所以 (1)!(1)!1(1)!(1)1n n n q q q q ⎡⎤--+---=-=⎢⎥⎣⎦. 又因为 (1)(1)!(1)q n q ----,(1,)1q q -=,所以 ()(1)(1)!(1)q q n q ----, ∴ (1)!(1)(1)!1n q n q q q ⎡⎤-----=⎢⎥⎣⎦(),故结论成立. 例8 若一个正整数的标准分解式中,每个素约数的幂次都大于1,则称这个数为幂数. 证明:对于任意的正整数n (2)n ≥,存在n 个连续的正整数,其中每一个数都不是幂数.证 选取n 个互不相同的素数12,,,n p p p ….由中国剩余定理知,同余式组2112222(mod )1(mod )(1)(mod )n n x p p x p p x n p p ⎧≡⎪≡-+⎪⎨⎪⎪≡--+⎩…………(1)有解.设222012(mod )n x x p p p ≡… 0(0)x >是(1)的唯一解,则对于0,1,2,,1i n =-…,有2i p 不整除0x i +且0i p x i +,故 0x i +不是幂数.因此,n 个连续正整数0000,1,2,,(1)x x x x n +++-…满足要求.例9 设1n >,21n n +,证明3n .证 设p 是n 的最小素因子,2对模p 的阶为r .∵ 21n n +, ∴ 21n p +,∴ 210(mod )n p +≡,∴ 21(mod )n p ≡-,221(mod )n p ≡ (1) 又因为p 为奇素数,所以 (2,)1p =.由费马小定理知121(mod )p p -= (2)由(1),(2)及定理5知,2r n ,1r p -,故1(2,1)2(,)2p r n p n --=.设1(,)2p d n -=,则 d n ,12p d -.因为n 为奇数,所以d 为奇数.又112p d p p -≤<-<,从而由p 的最小性知1d =,所以 (2,1)2n p -=,从而有 2r .又显然有1r >,所以2r =,即2对模p 的阶为2,从而知3p =,即3n .习 题111.已知 17x =,当1n >时,17n x n x -=,求n x 的末两位数.2.证明数列37,337,3337,33337,……中有无穷多个合数.3.证明有无穷多个正整数n ,使得2100(2)n n +.最新文件---------------- 仅供参考--------------------已改成word文本--------------------- 方便更改。

初中数学数论与证明知识点整理

初中数学数论与证明知识点整理

初中数学数论与证明知识点整理数论是数学中的一个分支,它研究自然数及其性质之间的相互关系。

在初中数学学习过程中,数论与证明是一个重要的知识点。

本文将对初中数学中的数论与证明知识点进行整理,以帮助同学们更好地理解和掌握相关内容。

一、数的整除和倍数在数论中,整除是一个非常重要的概念。

对于两个自然数a和b,如果a除以b的商是一个整数,那么我们就说a能够整除b,记作a|b。

同时,我们也可以说b是a的倍数,a是b的约数。

例如,4能够整除12,记作4|12。

根据整除的定义,我们可以得到以下定理:1. 如果a能够整除b,那么a也能够整除a的倍数b+k×a(k为整数)。

2. 如果a能够整除b,b能够整除c,那么a也能够整除c。

二、素数和合数素数是指大于1且除了1和自身之外没有其他约数的自然数。

例如,2、3、5、7等都是素数。

与素数相对应的概念是合数,合数是指除了1和自身之外,还有其他约数的自然数。

以下是一些素数的性质和定理:1. 质数有无穷尽多个。

2. 每个大于1的整数都可以分解为若干个素数相乘的形式,即素因数分解定理。

3. 如果a是b的约数且a不是素数,那么b的素因数分解中必然包含a的素因数。

三、最大公约数和最小公倍数最大公约数是指两个或多个数中能够整除它们的最大的自然数。

最小公倍数是指两个或多个数中能够被它们整除的最小的自然数。

以下是求最大公约数和最小公倍数的方法:1. 列举法:将两个数的约数列举出来,找出它们的公约数。

2. 素因数分解法:将两个数分别进行素因数分解,然后找出它们的公因数,再将公因数相乘。

四、数的整数性质在数论中,还有一些重要的整数性质需要我们学习和掌握。

1. 奇数和偶数:自然数中,能够被2整除的数称为偶数,不能被2整除的数称为奇数。

2. 负数和非负数:整数中,小于0的数称为负数,大于等于0的数称为非负数。

3. 基数和整除数:如果一个整数能够被另一个整数整除,那么前者称为后者的整除数,后者称为前者的基数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五节 初等数论中的几个重要定理基础知识定义(欧拉(Euler)函数)一组数s x x x ,,,21 称为是模m 的既约剩余系,如果对任意的s j ≤≤1,1),(=m x j 且对于任意的Z a ∈,若),(m a =1,则有且仅有一个j x 是a 对模m 的剩余,即)(mod m x a j ≡。

并定义},,2,1{)(m s m ==ϕ中和m 互质的数的个数,)(m ϕ称为欧拉(Euler )函数。

这是数论中的非常重要的一个函数,显然1)1(=ϕ,而对于1>m ,)(m ϕ就是1,2,…,1-m 中与m 互素的数的个数,比如说p 是素数,则有1)(-=p p ϕ。

引理:∏⋅=为质数)-(P |P 11)(mP m m ϕ;可用容斥定理来证(证明略)。

定理1:(欧拉(Euler )定理)设),(m a =1,则)(mod 1)(m a m ≡ϕ。

证明:取模m 的一个既约剩余系))((,,,,21m s b b b s ϕ= ,考虑s ab ab ab ,,,21 ,由于a 与m 互质,故)1(s j ab j ≤≤仍与m 互质,且有i ab )1(s j i ab j ≤<≤∀,于是对每个s j ≤≤1都能找到唯一的一个s j ≤≤)(1σ,使得)(mod )(m b ab j j σ≡,这种对应关系σ是一一的,从而)(mod )(mod )(11)(1m b m b ab s j j s j j s j j∏∏∏===≡≡σ,∴))(mod ()(11m b b a sj j s j j s ∏∏==≡。

1),(1=∏=sj j b m ,)(mod 1m a s ≡∴,故)(mod 1)(m a m ≡ϕ。

证毕。

分析与解答:要证)(mod 1)(m a m ≡ϕ,我们得设法找出)(m ϕ个n 相乘,由)(m ϕ个数我们想到m ,,2,1 中与m 互质的)(m ϕ的个数:)(21,,,m a a a ϕ ,由于),(m a =1,从而)(21,,,m aa aa aa ϕ 也是与m 互质的)(m ϕ个数,且两两余数不一样,故)(21m a a a ϕ⋅⋅⋅ ≡)(21,,,m aa aa aa ϕ ≡)(m a ϕ)(21m a a a ϕ⋅⋅⋅ (m mod ),而()(21m a a a ϕ⋅⋅⋅ m )=1,故)(mod 1)(m am ≡ϕ。

这是数论证明题中常用的一种方法,使用一组剩余系,然后乘一个数组组成另外一组剩余系来解决问题。

定理2:(费尔马(Fermat )小定理)对于质数p 及任意整数a 有)(mod p a a p ≡。

设p 为质数,若a 是p 的倍数,则)(m od 0p a a p ≡≡。

若a 不是p 的倍数,则1),(=p a 由引理及欧拉定理得)(mod 1,1)()(p a p p p ≡-=ϕϕ,)(mod ),(mod 11p a a p a p p ≡≡∴-,由此即得。

定理*2推论:设p 为质数,a 是与p 互质的任一整数,则)(mod 11p a p ≡∴-。

定理3:(威尔逊(Wilson )定理)设p 为质数,则)(mod 1)!1(p p -≡-。

分析与解答:受欧拉定理的影响,我们也找1-p 个数,然后来对应乘法。

证明:对于1),(=p x ,在x p x x )1(,,2,- 中,必然有一个数除以p 余1,这是因为x p x x )1(,,2,- 则好是p 的一个剩余系去0。

从而对}1,,2,1{},1,2,1{-∈∃-∈∀p y p x ,使得)(mod 1p xy ≡;若)(m od 21p xy xy ≡,1),(=p x ,则)(m od 0)(21p y y x ≡-,)(|21y y p -,故对于}1,,2,1{,21-∈p y y ,有1xy )(m od 2p xy 。

即对于不同的x 对应于不同的y ,即1,,2,1-p 中数可两两配对,其积除以p 余1,然后有x ,使)(m od 12p x ≡,即与它自己配对,这时)(m od 012p x ≡-,)(mod 0)1)(1(p x x ≡-+,1-≡x 或)(mod 1p x ≡,1-=p x 或1=x 。

除1,1-=p x 外,别的数可两两配对,积除以p 余1。

故)(mod 11)1()!1(p p p -≡⋅-≡-。

定义:设)(x f j 为整系数多项式(k j ≤≤1),我们把含有x 的一组同余式)(mod 0)(j j m x f ≡(k j ≤≤1)称为同余方组程。

特别地,,当)(x f i 均为x 的一次整系数多项式时,该同余方程组称为一次同余方程组.若整数c 同时满足:)(mod 0)(j j m c f ≡ k j ≤≤1,则剩余类)}(m od ,|{m c x Z x x M c ≡∈=(其中],,,[21k m m m m =)称为同余方程组的一个解,写作)(mod m c x ≡定理4:(中国剩余定理)设k m m m ,,,21 是两两互素的正整数,那么对于任意整数k a a a ,,,21 ,一次同余方程组)(mod j j m a x ≡,k j ≤≤1必有解,且解可以写为:)(mod 222111m a N M a N M a N M x k k k +++≡这里k m m m m 21=,)1(k i m m M ii ≤≤=,以及j N 满足)(mod 1j j j m N M ≡,k j ≤≤1(即j N 为j M 对模j m 的逆)。

中国定理的作用在于它能断言所说的同余式组当模两两互素时一定有解,而对于解的形式并不重要。

定理5:(拉格郎日定理)设p 是质数,n 是非负整数,多项式01)(a x a x a x f n n +++= 是一个模p 为n 次的整系数多项式(即p n a ),则同余方程)(mod 0)(p x f ≡至多有n 个解(在模p 有意义的情况下)。

定理6:若l 为a 对模m 的阶,s 为某一正整数,满足)(m od 1m a s≡,则s 必为l 的倍数。

以上介绍的只是一些系统的知识、方法,经常在解决数论问题中起着突破难点的作用。

另外还有一些小的技巧则是在解决、思考问题中起着排除情况、辅助分析等作用,有时也会起到意想不到的作用,如:为偶数时为奇数时n n n ⎩⎨⎧≡)4(mod 0)8(mod 12,时不整除时整除n n n 33)3(mod 0)9(mod 02⎩⎨⎧≡。

这里我们只介绍几个较为直接的应用这些定理的例子。

典例分析例1.设1),91(=ab ,求证:)(|911212b a -。

证明:因为13791⨯=,故由1),91(=ab 知1),91(=a ,从而1),13(,1),7(==a a ,但是12)13(,6)7(==ϕϕ,故由欧拉定理得:)7(m od 11)(22612≡≡≡a a ,)13(mod 112≡a ,从而)91(mod 112≡a ;同理,)91(mod 112≡b 。

于是,)91(m od 0111212≡-≡-b a ,即)(|911212b a -。

注明:现考虑整数a 的幂n a 所成的数列: ,,,,2n a a a 若有正整数k 使)(m od 1m a k ≡,则有)(m od m a a r n ≡,其中k r r kq n <≤+=0,;因而关于)mod(m ,数列 ,,,,2na a a 的项依次同余于,,,,2k a a a ,,,,2k a a a ,a 这个数列相继的k 项成一段,各段是完全相同的,因而是周期数列。

如下例:例2.试求不大于100,且使)473(|11++nn 成立的自然数n 的和。

解:通过逐次计算,可求出n 3关于11mod 的最小非负剩余(即为被11除所得的余数)为:),11(mod 53),11(mod 93),11(mod 3332≡≡≡)11(mod 1343),11(mod 435354=⨯≡≡⨯≡ 因而通项为n 3的数列的项的最小非负剩余构成周期为5的周期数列:3,9,5,4,1,3,9,5,4,1,………类似地,经过计算可得n 7的数列的项的最小非负剩余构成周期为10的周期数列:7,5,2,3,10,4,6,9,8,1,………于是由上两式可知通项为473++n n 的数列的项的最小非负剩余,构成周期为10(即上两式周期的最小公倍数)的周期数列:3,7,0,0,4,0,8,7,5,6,………这就表明,当101≤≤n 时,当且仅当6,4,3=n 时,)11(mod 0473≡++nn ,即)473(|11++n n ; 又由于数列的周期性,故当)1(10110+≤≤+k n k 时,满足要求的n 只有三个,即610,410,310+++=k k k n从而当1001≤≤n 时,满足要求的n 的和为:148013045301310301330)610()410()310(909090=+⨯=⨯+=+=+++++∑∑∑===k k k k k k k k . 下面我们着重对Fetmat 小定理及其应用来举例:例3.求证:对于任意整数x ,x x x 157315135++是一个整数。

证明:令=)(x f x x x 157315135++,则只需证=)(15x f x x x 75335++是15的倍数即可。

由3,5是素数及Fetmat 小定理得)5(mod 5x x ≡,)3(mod 3x x ≡,则 )5(m od 07375335≡+≡++x x x x x ;)3(m od 0275335≡+≡++x x x x x而(3,5)=1,故)15(mod 075335≡++x x x ,即)(15x f 是15的倍数。

所以)(x f 是整数。

例4.求证:n n -13|2730(n 为任意整数)。

证明:令=)(n f n n -13,则=)(n f )1)(1)(1)(1)(1(622++-+++-n n n n n n n n ;所以)(n f 含有因式n n n n n n n n ----2357,,,由Fetmat 小定理,知13|,13n n -7|n n n n n n n n ----2357|2,|3,|5, 又13,7,5,3,2两两互素,所以2730=235713⨯⨯⨯⨯能整除n n -13。

例5.设c b a ,,是直角三角形的三边长。

如果c b a ,,是整数,求证:abc 可以被30整除。

证明:不妨设c 是直角三角形的斜边长,则222b a c +=。

若2 a ,2 b ,2 c ,则)2(m od 011222≡+≡+=b a c ,又因为)2(mod 12≡c 矛盾! 所以2|abc .若 3 a ,3 b ,3 c ,因为)3(m od 1)13(2≡±k ,则)3(mod 21122≡+≡+b a ,又)3(mod 12≡c ,矛盾!从而3|abc .若 5 a ,5 b ,5 c ,因为)5(m od 1)15(2≡±k ,)5(m od 1)25(2-≡±k ,所以222±≡+b a 或0(mod5)与)5(mod 12±≡c 矛盾! 从而5|abc .又(2,3,5)=1,所以30|abc .下面讲述中国剩余定理的应用例6.证明:对于任意给定的正整数n ,均有连续n 个正整数,其中每一个都有大于1的平方因子。

相关文档
最新文档