二次根式提高测试题
二次根式提高练习习题(含答案)
《二次根式》提高题(一)填空题:(每小题2分,共20分)1、当x __________时,式子31-x 有意义. 2、化简-81527102÷31225a = . 3、a -12-a 的有理化因式是____________.4、当1<x <4时,|x -4|+122+-x x =________________.5、方程2(x -1)=x +1的解是____________.6、已知233x x +=-x 3+x ,则x 的取值范围是 。
7、在实数范围内分解因式2233a a -+=______________.8、已知a 、b 、c 为正数,d 为负数,化简2222d c ab d c ab +-=______. 9、比较大小:-721_________-341.10、化简:(7-52)2000·(-7-52)2001=______________.11、若1+x +3-y =0,则(x -1)2+(y +3)2=____________.12、x ,y 分别为8-11的整数部分和小数部分,则2xy -y 2=____________.(二)选择题:(每小题3分,共15分)13、已知233x x +=-x 3+x ,则………………( )(A )x ≤0 (B )x ≤-3 (C )x ≥-3 (D )-3≤x ≤014、m 为实数,则245m m ++的值一定是( )(A )整数 (B )正整数 (C )正数 (D )负数15、设a =19-1,a 在两个相邻整数之间,则这两个整数是( )A .1和2B .2和3C .3和4D .4和5 16、已知a <b ,化简二次根式b a 3-的正确结果是( )A .ab a --B .ab a -C .ab aD .ab a -17、若x <y <0,则222y xy x +-+222y xy x ++=………………………( )(A )2x (B )2y (C )-2x (D )-2y18、若0<x <1,则4)1(2+-x x -4)1(2-+x x 等于………………………( ) (A )x 2 (B )-x2 (C )-2x (D )2x 19、化简aa 3-(a <0)得………………………………………………………………( ) (A )a - (B )-a (C )-a - (D )a20、当a <0,b <0时,-a +2ab -b 可变形为………………………………………( )(A )2)(b a + (B )-2)(b a - (C )2)(b a -+- (D )2)(b a ---(三)计算题:21、(235+-)(235--); 22、1145--7114--732+;23、 (a 2m n -m ab mn +m n n m )÷a 2b 2m n ;24、(a +ba ab b +-)÷(b ab a ++a ab b --ab b a +)(a ≠b ).25、已知x =2323-+,y =2323+-,求32234232y x y x y x xy x ++-的值.26、当x =1-2时,求2222a x x a x x +-++222222a x x x a x x +-+-+221a x +的值.27、若x ,y 为实数,且y =x 41-+14-x +21.求x y y x ++2-x y y x +-2的值.28、若实数,x y 满足111y x x <-+-+,求11y y --的值.29、 若a=15+, b=15-,求a 2b+ab 2的值.30、若x ,y 是实数,且314114+-+-=x x y ,求)25()4932(3xy x xy x x +-+的值。
八年级数学下册《二次根式》单元测试能力提升卷 含答案 (原卷+详解)
人教版数学八年级下册单元测试能力提升卷《二次根式》一.选择题1有意义,且关于x 的分式方程3211m x x +=--有正数解,则符合条件的整数m 的和是( ) A .7-B .6-C .5-D .4-2.若23a <<( ) A .52a -B .12a -C .25a -D .21a -3.把四张形状大小完全相同宽为1cm 的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为,宽为4)cm 的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分的周长和是( )A .B .16cmC .4)cm +D .4)cm -4.已知10a -<<( )A .2aB .22a a+ C .2a D .2a-5.已知:a ,b =,则a 与b 的关系是( )A .0a b -=B .0a b +=C .1ab =D .22a b =6.计算201820193)3)-的值为( )A .1B 3C 3D .3-7.若实数x 满足|3|7x -=,化简2|4|x +( ) A .42x + B .42x -- C .2- D .28.如果22()1xf xx=+并且f表示当x12f==,f表示当x=值,即13f==,那么f f f f f f f+++++⋯++的值是()A.12n-B.32n-C.52n-D.12n+9()======A.两人解法都对B.甲错乙对C.甲对乙错D.两人都错10.下列各式中,正确的是个数有()2=a b=+=A.1个B.2个C.3个D.0个11.若实数m满足|4||3|1m m-=-+,那么下列四个式子中与(m-相等的是() AB.CD.二.填空题12a为.13.若x,y4y=,则xy的值为.14.=⋯观察下列各式:请你找出其中规律,并将第(1)n n个等式写出来.15.已知m是实数,且m+1m-都是整数,那么m的值是.16.已知ABC∆的三边长分别为AB=BC=AC=其中7a>,则ABC ∆的面积为 .17.已知a ,b 是实数,且)1a b =,问a ,b 之间有怎样的关系: .18.阅读以下材料:将分母中的根号化去,叫做分母有理化.分母有理化的方法,一般是把分子分母都乘2122222(2)===, (1分母有理化可得 ;(2)关于x 的方程132x -的解是 .19.已知252a a +=-,225b b +=-,且a b ≠,则化简 .20.(1)(2)02(3)ππ--(3)-(4)21.已知a 为实数,且a +与1a-a 的值是 .三.解答题 22.计算:(1-(2)21)(3)解分式方程:1111x x x+=--;(4)已知:22112()1121x A x x x x -=-÷+-++;①当1x =时,先化简,再求值; ②代数式A 的值能不能等于3,并说明理由.23.已知:12y 的值.24.若x ,y 是实数,且13y =,求2(3-的值.25.已知:a 、b 、c 是ABC ∆26.化简求值:x =,y =的值.27.阅读下面的文字再回答问题甲、乙两人对题目:“化简并求值:2a 14a =”有不同的解答.甲的解答是:22213474a a a a a a a +==+-=-=;乙的解答是22211174a a a a a a a ==+-=+= (1)填空: 的解答是错误的;(2)解答错误的原因是未能正确运用二次根式的性质?请用含字母a 的式子表示这个性质(3)请你正确运用上述性质解决问题:当35x <<28.先阅读,再解答问题.恒等变形,是代数式求值的一个很重要的方法,利用恒等变形,可以把无理数运算转化为有理数运算,可以把次数较高的代数式转化为次数较低的代数式.如当1x =时,求32122x x x --+的值,为解答这题,若直接把1x 代入所求的式中,进行计算,显然很麻烦.我们可以通过恒等变形,对本题进行解答.方法一 将条件变形.因1x =,得1x -=(1)x -的表达式.原式321(22)22x x x =--+21[(1)(1)3]22x x x x x =----+ 21[(1)3]22x x x =--+ 1(33)22x x =-+ 2=方法二 先将条件化成整式,再把等式两边同时平方,把无理数运算转化为有理数运算.由1x -=得2220x x --=,即,222x x -=,222x x =+. 原式21(22)22x x x x =+--+ 222x x x x =+--+2=请参以上的解决问题的思路和方法,解决以下问题: (1)若2310a a -+=,求32232531a a a --++的值;(2)已知2x =,求432295543x x x x x x ---+-+的值.29.(1(2)已知1x ,1y =,求代数式22x y xy +的值.30.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式了的平方,如23(1+.善于思考的小明进行了以下探索:若设222(22a m m n ++=++a 、b 、m 、n 均为整数), 则有222a m n =+,2b mn =.这样小明就找到了一种把类似a + 请你仿照小明的方法探索并解决下列问题:(1)若2(a m +=+,当a 、b 、m 、n 均为整数时,用含m 、n 的式子分别表示a 、b ,得:a = ,b = ;(2)若2(a m +=+,且a 、m 、n 均为正整数,求a 的值;(3.人教版数学八年级下册单元测试能力提升卷《二次根式》答案详解版一.选择题1有意义,且关于x 的分式方程3211m x x +=--有正数解,则符合条件的整数m 的和是( ) A .7-B .6-C .5-D .4-【解析】去分母得,2(1)3m x -+-=, 解得,52m x +=, 关于x 的分式方程3211m x x +=--有正数解, ∴502m +>, 5m ∴>-,又1x =是增根,当1x =时,512m +=,即3m =- 3m ∴≠-,有意义,20m ∴-,2m ∴,因此52m -<且3m ≠-, m 为整数,m ∴可以为4-,2-,1-,0,1,2,其和为4-, 故选:D .2.若23a <<( ) A .52a -B .12a -C .25a -D .21a -【解析】23a <<,∴2(3)a a =---23a a =--+ 25a =-.故选:C .3.把四张形状大小完全相同宽为1cm 的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为,宽为4)cm 的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分的周长和是( )A .B .16cmC .4)cmD .4)cm【解析】设小长方形卡片的长为x ,宽为y ,根据题意得:2x y += 则图②中两块阴影部分周长和是2(42)2(4)4442162(2)1616()y x y x x y cm -+-=⨯--=-+=-.故选:B .4.已知10a -<<( )A .2aB .22a a+C .2a D .2a-【解析】10a -<<,∴==11()a a a a=--+2a =-.故选:D . 5.已知:a ,b =,则a 与b 的关系是( )A .0a b -=B .0a b +=C .1ab =D .22a b =【解析】分母有理化,可得2a =+,2b =(2(2a b ∴-=+--=A 选项错误;(2(24a b +=++=,故B 选项错误;(2(2431ab =+⨯=-=,故C 选项正确;22(2437a =+=+=+22(2437b ==-=-22a b ∴≠,故D 选项错误;故选:C .6.计算201820193)3)-的值为( )A .1B 3C 3D .3【解析】原式201820183)3)3)=⨯20183)]3)=⨯2018(109)3)=-⨯13)=⨯3=,故选:B .7.若实数x 满足|3|7x -=,化简2|4|x +( ) A .42x + B .42x --C .2-D .2【解析】|3|7x -,|3||4|7x x ∴-++=,43x∴-,2|4|x∴+2(4)|26|x x=+--2(4)(62)x x =+--42x=+,故选:A.8.如果22()1xf xx=+并且f表示当x12f==,f表示当x=值,即13f==,那么f f f f f f f+++++⋯++的值是()A.12n-B.32n-C.52n-D.12n+【解析】代入计算可得,1f f+=,1f f+=,⋯,1f f+=,所以,原式11(1)22n n=+-=-.故选:A.9()======A.两人解法都对B.甲错乙对C.甲对乙错D.两人都错【解析】甲同学在计算时,将分子和分母都乘以是有可能等于0,此时变形后分式没有意义,所以甲同学的解法错误;乙同学的解法正确;故选:B .10.下列各式中,正确的是个数有( )2=a b =+= A .1个 B .2个C .3个D .0个【解析】2不能合并,故①错误,若1a =,2b =a b ≠+,故②错误,,故③正确,3a +=故选:B .11.若实数m 满足|4||3|1m m -=-+,那么下列四个式子中与(m -( )A B .C D .【解析】由|4||3|1m m -=-+得,3m ,40m ∴-<,30m -,(m ∴-故选:D . 二.填空题12a 为 2 .a 为2, 故答案为:2.13.若x ,y 4y =,则xy 的值为 2 .【解析】x ,y 4y =,210x ∴-=,4y =,则12x =,故1422xy =⨯=.故答案为:2.14.(2019秋•===,⋯观察下列各式:请你找出其中规律,并将第(1)n n (n =+===,⋯得(n =+(n =+15.已知m 是实数,且m +1m-都是整数,那么m 的值是 3-3- 【解析】22m +是整数,m a ∴=-,(其中a 为整数),∴1m ==,又1m -是整数,281a ∴-=,3a ∴=±,3m ∴=-或3m =--故答案为:3-3--.16.已知ABC ∆的三边长分别为AB =BC AC =其中7a >,则ABC ∆的面积为 168 .【解析】2AB ==BC =AC =如图,点(,24)A a ,(,24)B a --,(7,0)C11124247242168222ABC S OC OC ∆∴=⨯+⨯=⨯⨯⨯=故答案为:168.17.已知a ,b 是实数,且)1a b =,问a ,b 之间有怎样的关系: 0a b += .【解析】2(1)1a ab +=,等式的两边都乘以)a b a =①,等式的两边都乘以)b -a b +②,①+b a b a =,整理,得220a b += 所以0a b += 故答案为:0a b +=18.阅读以下材料:将分母中的根号化去,叫做分母有理化.分母有理化的方法,一般是把分子分母都乘2122222(2)===,(11 ;(2)关于x的方程132x -=+ 的解是 . 【解析】(11==1;(2)132x -=,132x -=,132x -=+⋯+,113122x -=+,611x -=-+6x =x =,故答案为:2.19.已知252a a +=-,225b b +=-,且a b ≠,则化简+=【解析】252a a +=-,225b b +=-,即2520a a ++=,2520b b ++=,且a b ≠,a ∴、b 可看做方程2520x x ++=的两不相等的实数根,则5a b +=-,2ab =,0a ∴<,0b <,则原式=-==(254)2-=-=故答案为:20.(1)(2)02(3)ππ--(3)-(4)【解析】(1)原式==(2)原式2(3)1ππ=---+231ππ=--++2=;(3)原式=3=;(4)原式322=-+3=.21.已知a 为实数,且a +1a-a 的值是 5-5-【解析】a +a ∴是含-1a -∴化简后为1a 为含5a ∴=-5--故答案为:5-5--. 三.解答题(共9小题) 22.计算:(1-(2)21)(3)解分式方程:1111x x x +=--; (4)已知:22112()1121x A x x x x -=-÷+-++;①当1x =+时,先化简,再求值; ②代数式A 的值能不能等于3,并说明理由.【解析】(1)原式11=-=-;(2)原式426=-=- (3)两边都乘以1x -,得:11x x -=-, 解得:1x =,检验:当1x =时,10x -=,1x ∴=是原分式方程的增根,则原分式方程无解;(4)①原式211(1)[](1)(1)(1)(1)2x x x x x x x -+=-+-+-- 22(1)(1)(1)2x x x x x -+=+--11x x +=-,当1x 时,原式===;②若代数式A 的值为3,则131x x +=-,解得2x =,当2x =时,原式没有意义,∴代数式A 的值不可能为3.23.已知:12y =的值. 【解析】180x -,18x810x -,18x,18x ∴=,12y =,∴原式4===.24.若x ,y 是实数,且13y =,求2(3-的值.【解析】x ,y 是实数,且13y ,410x ∴-且140x -,解得:14x =,13y ∴=,2(3∴-的值.2===18=25.已知:a 、b 、c 是ABC ∆【解析】a 、b 、c 是ABC ∆的三边长,a b c ∴+>,b c a +>,b a c +>,∴原式||||||a b c b c a c b a =++-+-+--()()a b c b c a b a c =++-+-++-a b c b c a b a c =++--+++- 3a b c =+-.26.化简求值:x =,y的值.【解析】22x ===-,2y ===,∴====27.阅读下面的文字再回答问题甲、乙两人对题目:“化简并求值:2a+14a =”有不同的解答.甲的解答是:22213474a a a a a a a +==+-=-=;乙的解答是22211174a a a a a a a =+-=+= (1)填空: 乙 的解答是错误的;(2)解答错误的原因是未能正确运用二次根式的性质?请用含字母a 的式子表示这个性质(3)请你正确运用上述性质解决问题:当35x <<【解析】(1)乙的做法错误.当14a =时,10a a ->1a a =-,故乙的做法错误.故答案为:乙(2)当0a <a -;(3)35x <<,70x ∴-<,250x ->.7252x x x =-+-=+28.先阅读,再解答问题.恒等变形,是代数式求值的一个很重要的方法,利用恒等变形,可以把无理数运算转化为有理数运算,可以把次数较高的代数式转化为次数较低的代数式.如当1x =时,求32122x x x --+的值,为解答这题,若直接把1x 代入所求的式中,进行计算,显然很麻烦.我们可以通过恒等变形,对本题进行解答.方法一 将条件变形.因1x =,得1x -=(1)x -的表达式.原式321(22)22x x x =--+21[(1)(1)3]22x x x x x =----+ 21[(1)3]22x x x =--+ 1(33)22x x =-+ 2=方法二 先将条件化成整式,再把等式两边同时平方,把无理数运算转化为有理数运算.由1x -=得2220x x --=,即,222x x -=,222x x =+. 原式21(22)22x x x x =+--+ 222x x x x =+--+2=请参以上的解决问题的思路和方法,解决以下问题:(1)若2310a a -+=,求32232531a a a --++的值;(2)已知2x =,求432295543x x x x x x ---+-+的值. 【解析】(1)2310a a -+=,231a a ∴-=-,213a a +=,13a a +=,32232531a a a ∴--++2232(3)(3)333a a a a a a a =-+-+-+ 12(1)(1)33a a a =⨯-+-+-+12133a a a =--+-+ 14a a =-+ 34=-1=-;(2)2x =+,2x ∴-= ∴432295543x x x x x x ---+-+322(2)(2)7(2)19(2)33(2)1x x x x x x x x -+------=--======962-=32=.29.(1(2)已知1x ,1y =,求代数式22x y xy +的值.【解析】(1)原式92=-+7=;(2)22x y xy +()xy x y =+11)=+1=⨯=.30.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式了的平方,如23(1+.善于思考的小明进行了以下探索:若设222(22a m m n ++=++a 、b 、m 、n 均为整数),则有222a m n =+,2b mn =.这样小明就找到了一种把类似a +请你仿照小明的方法探索并解决下列问题:(1)若2(a m +=+,当a 、b 、m 、n 均为整数时,用含m 、n 的式子分别表示a 、b ,得:a = 227m n + ,b = ;(2)若2(a m +=+,且a 、m 、n 均为正整数,求a 的值;(3.【解析】(1)设222(72a m m n +=+=++a 、b 、m 、n 均为整数),则有227a m n =+,2b mn =;故答案为227m n +,2mn ;(2)62mn =,3mn ∴=, a 、m 、n 均为正整数,1m ∴=,3n =或3m =,1n =,当1m =,3n =时,22313928a m n =+=+⨯=;当3m =,1n =时,22393112a m n =+=+⨯=;即a 的值为为12或28;(3t =,则244t =8=+8=+81)=+6=+21)=,1t ∴=.。
二次根式练习10套(附答案)
二次根式练习01一、填空题1、下列和数1415926.3)1( .3.0)2(722)3( 2)4( 38)5(-2)6(π...3030030003.0)7(其中无理数有________,有理数有________(填序号) 2、94的平方根________,216.0的立方根________。
3、16的平方根________,64的立方根________。
4、算术平方根等于它本身的数有________,立方根等于本身的数有________。
5、若2562=x ,则=x ________,若2163-=x ,则=x ________。
6、已知ABC Rt ∆两边为3,4,则第三边长________。
7、若三角形三边之比为3:4:5,周长为24,则三角形面积________。
8、已知三角形三边长n n n n n n ,122,22,1222++++为正整数,则此三角形是________三角形。
9、如果0)6(42=++-y x ,则=+y x ________。
10、如果12-a 和a -5是一个数m 的平方根,则.__________,==m a11、三角形三边分别为8,15,17,那么最长边上的高为________。
12、直角三角形三角形两直角边长为3和4,三角形内一点到各边距离相等,那么这个距离为________。
二、选择题13、下列几组数中不能作为直角三角形三边长度的是( )A. 25,24,6===c b aB. 5.2,2,5.1===c b aC.45,2,32===c b a D. 17,8,15===c b a14、小强量得家里彩电荧屏的长为cm 58,宽为cm 46,则这台电视机尺寸是( )A. 9英寸(cm 23)B. 21英寸(cm 54)C. 29英寸(cm 74)D .34英寸(cm 87)15、等腰三角形腰长cm 10,底边cm 16,则面积( )A.296cmB. 248cmC. 224cmD. 232cm16、三角形三边c b a ,,满足ab c b a 2)(22+=+,则这个三角形是( )A. 锐角三角形B. 钝角三角形C. 直角三角形D. 等腰三角形17、2)6(-的平方根是( )A .6-B .36C. ±6D. 6±18、下列命题正确的个数有:a a a a ==233)2(,)1((3)无限小数都是无理数(4)有限小数都是有理数(5)实数分为正实数和岁实数两类( ) A .1个B. 2个C .3个D.4个19、x 是2)9(-的平方根,y 是64的立方根,则=+y x ( )A. 3B. 7C.3,7D. 1,720、直角三角形边长度为5,12,则斜边上的高( ) A. 6B. 8C.1318 D.1360 21、直角三角形边长为b a ,,斜边上高为h ,则下列各式总能成立的是( )A. 2h ab =B. 2222h b a =+C.h b a 111=+ D.222111hb a =+ 22、如图一直角三角形纸片,两直角边cm BC cm AC 8,6==,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( ) A.cm 2B.cm 3C.cm 4D.cm 5三、计算题23、求下列各式中x 的值:04916)1(2=-x25)1)(2(2=-x8)2)(3(3-=x27)3()4(3=--x24、用计算器计算:(结果保留3个有效数字)15)1(315)2(π-6)3( 2332)4(-四、作图题25、在数轴上画出8-的点。
二次根式测试题及答案
二次根式测试题及答案一、选择题(每题4分,共20分)1. 下列哪个数是一个二次根式?A) 3 B) 9 C) -4 D) 132. 下列哪一项是二次根式的定义?A) a² = b B) √a = b C) a = b² D) √a² = b3. √64的值等于:A) 6 B) 8 C) 4 D) 164. √(25 + 9)的值等于:A) 34 B) 7 C) 8 D) 65. 下列哪个数是一个无理数?A) 5 B) 36 C) -9 D) √3二、填空题(每题4分,共20分)1. 一个二次根式的指数为_________。
2. √(16 + 9)的值等于_________。
3. 5的二次根式是_________。
4. √(25 - 16)的值等于_________。
5. √49的值等于_________。
三、解答题(每题10分,共40分)1. 计算以下二次根式的值:√(5² + √16)解:首先计算5²,得到25。
然后计算√16,得到4。
最后将25与4相加,得到29。
所以,√(5² + √16)的值等于29。
2. 解方程:√(x - 2) + 3 = 7解:首先将方程两边减去3,得到√(x - 2) = 4。
然后两边进行平方运算,得到x - 2 = 16。
最后将方程两边加上2,得到x = 18。
所以,方程的解为x = 18。
3. 计算以下二次根式的值:√(2 - √3) + √(2 + √3)解:首先计算√3,得到一个无理数。
然后根据加法和减法的运算法则,将两个二次根式相加。
最后计算得到的结果。
由于表达式较复杂,无法直接计算出精确值。
所以,结果可以近似表示为一个无理数。
4. 计算以下二次根式的值:√(2√5 + √20)解:首先计算√5,得到一个无理数。
然后计算√20,得到另一个无理数。
接下来将两个无理数相加,并且进行化简。
最后计算得到的结果。
二次根式提高练习题(含答案)
一.估计题:之阳早格格创做1.(235+-)(235--);2.1145--7114--732+;3.(a 2m n -mab mn +m n n m )÷a 2b 2m n;4.(a+b a ab b +-)÷(b ab a++aab b --ab ba +)(a ≠b ).二.供值:x =2323-+,y =2323+-,供32234232yx y x y x xy x ++-的值.x =1-2时,供2222ax x a x x+-++222222ax x x ax x +-+-+221ax +的值.三.解问题: 1.估计(25+1)(211++321++431++…+100991+).x ,y 为真数,且y =x 41-+14-x +21.供xy y x ++2-xy y x +-2的值.估计题: 1、【提示】将35-瞅成一个真足,先用仄圆好公式,再用真足仄圆公式.【解】本式=(35-)2-2)2(=5-215+3-2=6-215.2、【提示】先分别分母有理化,再合并共类二次根式.【解】本式=1116)114(5-+-711)711(4-+-79)73(2--=4+11-11-7-3+7=1.3、【提示】先将除法转移为乘法,再用乘法调配律展启,末尾合并共类二次根式. 【解】本式=(a 2m n -mab mn +mn nm)·221b a n m=21b nm m n ⋅-mab 1nm m n ⋅+22b ma n nmn m ⋅=21b -ab1+221b a =2221ba ab a +-. 4、【提示】本题应先将二个括号内的分式分别通分,而后领会果式并约分.【解】本式=ba abb ab a +-++÷))(())(()()(b a b a ab b a b a b a b b b a a a -+-+-+-- =ba ba ++÷))((2222b a b a ab ba b ab b ab a a -++----=ba b a ++·)())((b a ab b a b a ab +-+-=-ba +.【面评】本题如果先分母有理化,那么估计较啰嗦. 供值:1.、【提示】先将已知条件化简,再将分式化简末尾将已知条件代进供值.【解】∵x =2323-+=2)23(+=5+26,y =2323+-=2)23(-=5-26.∴x +y =10,x -y =46,xy =52-(26)2=1.32234232yx y x y x xy x ++-=22)())((y x y x y x y x x +-+=)(y x xy y x +-=10164⨯=652.【面评】本题将x 、y 化简后,根据解题的需要,先分别供出“x +y ”、“x -y ”、“xy ”.从而使供值的历程更简便. 2、【提示】注意:x 2+a 2=222)(a x +,∴x 2+a 2-x22ax +=22ax +(22ax +-x ),x 2-x22ax +=-x(22ax +-x ).【解】本式=)(2222x a x a x x-++-)(22222x a x x ax x -++-+221ax +=)(()2(22222222222x a x a x x ax x a x x a x x -+++++-+-=)()(22222222222222x a x a x x xa x x a x a x x x -++-+++++-=)()(222222222x a x a x x ax x a x -+++-+=)()(22222222x a x a x x x a x a x -++-++=x1.当x =1-2时,本式=211-=-1-2.【面评】本题如果将前二个“分式”分拆成二个“分式”之好,那么化简会更啰嗦.即本式=)(2222x a x a x x-++-)(22222x a x x ax x -++-+221ax +=)11(2222ax xa x +--+-)11(22x x a x --++221ax +=x1.解问题:1、【提示】先将每个部分分母有理化后,再估计.【解】本式=(25+1)(1212--+2323--+3434--+…+9910099100--)=(25+1)[(12-)+(23-)+(34-)+…+(99100-)]=(25+1)(1100-)=9(25+1).【面评】本题第二个括号内有99个分歧分母,没有成能通分.那里采与的是先分母有理化,将分母化为整数,从而使每一项转移成二数之好,而后逐项相消.那种要领也喊干裂项相消法.2、【提示】要使y 蓄意思,必须谦脚什么条件?].014041[⎩⎨⎧≥-≥-x x 您能供出x ,y 的值吗?].2141[⎪⎪⎩⎪⎪⎨⎧==y x 【解】要使y 蓄意思,必须⎩⎨⎧≥-≥-014041[x x ,即⎪⎪⎩⎪⎪⎨⎧≥≤.4141x x ∴x =41.当x =41时,y =21.又∵xyy x ++2-xyy x +-2=2)(xy y x+-2)(xy y x -=|xy yx +|-|x yyx -|∵x =41,y =21,∴yx <xy .∴ 本式=xy y x +-yxx y +=2yx当x =41,y =21时,本式=22141=2.【面评】解本题的闭键是利用二次根式的意思供出x 的值,从而供出y 的值.。
二次根式测试题附答案
二次根式测试题附答案 The pony was revised in January 2021二次根式测试题(1)时间:45分钟 分数:100分一、选择题(每小题2分,共20分)1. 下列式子一定是二次根式的是( )A .2--xB .xC .22+xD .22-x2.若b b -=-3)3(2,则( )A .b>3B .b<3C .b ≥3D .b ≤33.若13-m 有意义,则m 能取的最小整数值是( )A .m=0B .m=1C .m=2D .m=34.若x<0,则xx x 2-的结果是( ) A .0 B .—2 C .0或—2 D .25.下列二次根式中属于最简二次根式的是( )A .14B .48C .ba D .44+a6.如果)6(6-=-•x x x x ,那么( )A .x ≥0B .x ≥6C .0≤x ≤6D .x 为一切实数7.小明的作业本上有以下四题: ①24416a a =;②a a a 25105=⨯;③a a a a a =•=112;④a a a =-23.做错的题是( )A .①B .②C .③D .④8.化简6151+的结果为( )A .3011B .33030C .30330D .11309.若最简二次根式a a 241-+与的被开方数相同,则a 的值为()A .43-=a B .34=a C .a=1 D .a= —110.化简)22(28+-得( )A .—2B .22-C .2D . 224-二、填空题(每小题2分,共20分)11.①=-2)3.0( ;②=-2)52( .12.二次根式31-x 有意义的条件是 .13.若m<0,则332||m m m ++= .14.1112-=-•+x x x 成立的条件是 .15.比较大小:.16.=•y xy 82 ,=•2712 . 17.计算3393a a a a -+= . 18.23231+-与的关系是 .19.若35-=x ,则562++x x 的值为 .20.化简⎪⎪⎭⎫ ⎝⎛--+1083114515的结果是 . 三、解答题(第21~22小题各12分,第23小题24分,共48分)21.求使下列各式有意义的字母的取值范围:(1)43-x (2)a 831- (3)42+m (4)x1- 22.化简:(1))169()144(-⨯- (2)22531-(3)5102421⨯- (4)n m 218 23.计算:(1)21437⎪⎪⎭⎫ ⎝⎛- (2)225241⎪⎪⎭⎫ ⎝⎛-- (3))459(43332-⨯ (4)⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-126312817 (5)2484554+-+ (6)2332326-- 四、综合题(每小题6分,共12分)24.若代数式||112x x -+有意义,则x 的取值范围是什么?25.若x ,y 是实数,且2111+-+-<x x y ,求1|1|--y y 的值. 二次根式测试题(2)时间:45分钟 分数:100分一、选择题(每小题2分,共20分)1.下列说法正确的是( )A .若a a -=2,则a<0B .0,2>=a a a 则若C .4284b a b a =D . 5的平方根是52.二次根式13)3(2++m m 的值是( )A .23B .32C .22D .03.化简)0(||2<<--y x x y x 的结果是( )A .x y 2-B .yC .y x -2D .y -4.若ba 是二次根式,则a ,b 应满足的条件是( ) A .a ,b 均为非负数 B .a ,b 同号C .a ≥0,b>0D .0≥b a5.已知a<b ,化简二次根式b a 3-的正确结果是( )A .ab a --B .ab a -C .ab aD .ab a -6.把m m 1-根号外的因式移到根号内,得( )A .mB .m -C .m --D .m -7.下列各式中,一定能成立的是( ).A .22)5.2()5.2(=-B .22)(a a =C .122+-x x =x-1D .3392+⋅-=-x x x8.若x+y=0,则下列各式不成立的是( )A .022=-y xB .033=+y xC .022=-y xD .0=+y x9.当3-=x 时,二次根7522++x x m 式的值为5,则m 等于( )A .2B .22 C .55 D .5 10.已知1018222=++x x x x ,则x 等于( ) A .4 B .±2 C .2 D .±4二、填空题(每小题2分,共20分)11.若5-x 不是二次根式,则x 的取值范围是 .12.已知a<2,=-2)2(a .13.当x= 时,二次根式1+x 取最小值,其最小值为 .14.计算:=⨯÷182712 ;=÷-)32274483( .15.若一个正方体的长为cm 62,宽为cm 3,高为cm 2,则它的体积 为 3cm .16.若433+-+-=x x y ,则=+y x .17.若3的整数部分是a ,小数部分是b ,则=-b a 3 .18.若3)3(-•=-m m m m ,则m 的取值范围是 .19.若=-⎪⎪⎭⎫ ⎝⎛-=-=y x y x 则,432311,132. 20.已知a ,b ,c 为三角形的三边,则222)()()(a c b a c b c b a -++--+-+= .三、解答题(21~25每小题4分,第26小题6分,第27小题8分,共44分)21.21418122-+- 22.3)154276485(÷+- 23.x xx x 3)1246(÷- 24.21)2()12(18---+++ 25.0)13(27132--+- 26.已知:132-=x ,求12+-x x 的值. 27.已知:的值。
(完整版)二次根式测试题附答案
二次根式测试题(1)时间:45分钟 分数:100分一、选择题(每小题2分,共20分)1. 下列式子一定是二次根式的是( )A .B .C .D .2--x x 22+x 22-x 2.若,则( )b b -=-3)3(2A .b>3 B .b<3 C .b≥3 D .b≤33.若有意义,则m 能取的最小整数值是( )13-m A .m=0 B .m=1 C .m=2 D .m=34.若x<0,则的结果是( )xx x 2-A .0 B .—2 C .0或—2 D .25.下列二次根式中属于最简二次根式的是( )A .B .C .D .1448b a 44+a 6.如果,那么( ))6(6-=-∙x x x x A .x≥0 B .x≥6 C .0≤x≤6 D .x 为一切实数7.小明的作业本上有以下四题:①;②;③;④24416a a =a a a 25105=⨯a aa a a =∙=112.做错的题是( )a a a =-23A .① B .② C .③ D .④8.化简的结果为( )6151+A . B . C . D .3011330303033011309.若最简二次根式的被开方数相同,则a 的值为( )a a 241-+与A .B .C .a=1D .a= —143-=a 34=a 10.化简得( ))22(28+-A .—2 B . C .2 D . 22-224-二、填空题(每小题2分,共20分)11.① ;② .=-2)3.0(=-2)52(12.二次根式有意义的条件是 .31-x 13.若m<0,则= .332||m m m ++14.成立的条件是 .1112-=-∙+x x x 15.比较大小: .321316. , .=∙y xy 82=∙271217.计算= .3393a a a a -+18.的关系是 .23231+-与19.若,则的值为 .35-=x 562++x x 20.化简的结果是 .⎪⎪⎭⎫ ⎝⎛--+1083114515三、解答题(第21~22小题各12分,第23小题24分,共48分)21.求使下列各式有意义的字母的取值范围:(1) (2)(3) (4)43-x a 831-42+m x 1-22.化简:(1) (2))169()144(-⨯-22531-(3) (4)5102421⨯-n m 21823.计算:(1) (2) 21437⎪⎪⎭⎫ ⎝⎛-225241⎪⎪⎭⎫ ⎝⎛--(3) (4) )459(43332-⨯⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-126312817(5) (6) 2484554+-+2332326--四、综合题(每小题6分,共12分)24.若代数式有意义,则x 的取值范围是什么?||112x x -+25.若x ,y 是实数,且,求的值.2111+-+-<x x y 1|1|--y y 二次根式测试题(2)时间:45分钟分数:100分一、选择题(每小题2分,共20分)1.下列说法正确的是( )A .若,则a<0B .a a -=20,2>=a a a 则若C . D . 5的平方根是4284b a b a =52.二次根式的值是( )13)3(2++m m A . B . C . D .02332223.化简的结果是( ))0(||2<<--y x x y x A .x y 2- B .y C .y x -2 D .y -4.若是二次根式,则a ,b 应满足的条件是( )ba A .a ,b 均为非负数 B .a ,b 同号C .a≥0,b>0D .0≥ba5.已知a<b ,化简二次根式的正确结果是( )b a 3-A . B . ab a --ab a -C . D .ab a aba -6.把根号外的因式移到根号内,得( )mm 1-A . B . C . D .m m -m --m-7.下列各式中,一定能成立的是( ).A .B .22)5.2()5.2(=-22)(a a =C .=x-1 D .122+-x x 3392+⋅-=-x x x 8.若x+y=0,则下列各式不成立的是( )A .B .022=-y x 033=+y x C . D .022=-y x 0=+y x 9.当时,二次根式的值为,则m 等于( )3-=x 7522++x x m 5A . B . C . D .22255510.已知,则x 等于( )1018222=++x x x x A .4 B .±2 C .2 D .±4二、填空题(每小题2分,共20分)11.若不是二次根式,则x 的取值范围是 .5-x 12.已知a<2, .=-2)2(a 13.当x= 时,二次根式取最小值,其最小值为 .1+x 14.计算: ; .=⨯÷182712=÷-)32274483(15.若一个正方体的长为,宽为,高为,则它的体积cm 62cm 3cm 2为 .3cm 16.若,则 .433+-+-=x x y =+y x 17.若的整数部分是a ,小数部分是b ,则 .3=-b a 318.若,则m 的取值范围是 .3)3(-∙=-m m m m 19.若 .=-⎪⎪⎭⎫ ⎝⎛-=-=y x y x 则,432311,13220.已知a ,b ,c 为三角形的三边,则222)()()(a c b a c b c b a -++--+-+= .三、解答题(21~25每小题4分,第26小题6分,第27小题8分,共44分)21. 22.21418122-+-3)154276485(÷+-23. 24. x xx x 3)1246(÷-21)2()12(18---+++25. 26.已知:,求的0)13(27132--+-132-=x 12+-x x 值.27.已知:。
二次根式练习10套(附答案)
二次根式演习01一.填空题 1.下列和数1415926.3)1(.3.0)2(722)3(2)4(38)5(-2)6(π (3030030003).0)7( 个中无理数有________,有理数有________(填序号)2.94的平方根________,216.0的立方根________. 3.16的平方根________,64的立方根________. 4.算术平方根等于它本身的数有________,立方根等于本身的数有________.5.若2562=x ,则=x ________,若2163-=x ,则=x ________.6.已知ABC Rt ∆双方为3,4,则第三边长________.7.若三角形三边之比为3:4:5,周长为24,则三角形面积________.8.已知三角形三边长n n n n n n ,122,22,1222++++为正整数,则此三角形是________三角形.9.假如0)6(42=++-y x ,则=+y x ________. 10.假如12-a 和a -5是一个数m 的平方根,则.__________,==m a11.三角形三边分离为8,15,17,那么最长边上的高为________.12.直角三角形三角形两直角边长为3和4,三角形内一点到各边距离相等,那么这个距离为________. 二.选择题13.下列几组数中不克不及作为直角三角形三边长度的是( )A.25,24,6===c b aB.5.2,2,5.1===c b aC.45,2,32===c b aD.17,8,15===c b a14.小强量得家里彩电荧屏的长为cm 58,宽为cm 46,则这台电视机尺寸是( )A. 9英寸(cm 23)B. 21英寸(cm 54)C.29英寸(cm 74) D .34英寸(cm 87)15.等腰三角形腰长cm 10,底边cm 16,则面积( )A.296cmB.248cmC.224cmD.232cm16.三角形三边c b a ,,知足ab c b a 2)(22+=+,则这个三角形是( )A. 锐角三角形B. 钝角三角形C. 直角三角形D. 等腰三角形17.2)6(-的平方根是( )A .6-B .36C.±6D.6±18.下列命题准确的个数有:a a a a ==233)2(,)1((3)无穷小数都是无理数(4)有限小数都是有理数(5)实数分为正实数和岁实数两类( )A .1个 B. 2个 C .3个D.4个19.x 是2)9(-的平方根,y 是64的立方根,则=+y x ( )A. 3B.7C.3,7D. 1,720.直角三角形边长度为5,12,则斜边上的高( )A. 6B.8C.1318D.1360 21.直角三角形边长为b a ,,斜边上高为h ,则下列各式总能成立的是( )A.2h ab =B.2222h b a =+C.h b a 111=+ D.222111hb a =+22.如图一向角三角形纸片,两直角边cm BC cm AC 8,6==,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( ) A.cm 2 B.cm 3 C.cm 4D.cm 5三.盘算题23.求下列各式中x 的值:24.用盘算器盘算:(成果保存3个有用数字)四.作图题25.在数轴上画出8-的点.26.下图的正方形网格,每个正方形极点叫格点,请在图中画一个面积为10的正方形. 五.解答题27.已知如图所示,四边形ABCD中,,12,13,4,3cm CD cm BC cm AD cm AB ====090=∠A 求四边形ABCD 的面积.28.如图所示,在边长为c 直角边为b a ,勾股定理吗?写出来由.29.如图所示,15cm 60)堆在一路,30.如图所示,在ABC Rt ∆中,∠若AD=8,BD=2,求CD.31.在△ABC 中ABC 周长.二次根式演习01AEBDC第22题图第25题图第26题图第28题图 A第30题图AD答案:一.填空题:1.4.6.7,1.2.3.5;2.32±,0.6;3.±2,2;4.0和1,0和±1;5.±16,-4;6.5或7;7.24;8.直角;9.-2;10.-4,81;11.17120;12.1 二.选择题:13-22:ACBCCBDDDB 三.盘算题:23.(1)x=47±;(2)x=6或x=-4;(3)x=-1;(4)x=6;24.用盘算器盘算答案略 四.作图题:(略)五.解答题:27.提醒:贯穿连接BD,面积为56;28.提醒:应用面积证实;29.327.8;30.CD=4;31.周长为42.二次根式演习02一.选择题(每小题2分,共30分) 1.25的平方根是( )A.5B.–5C.5±D.5± 2.2)3(-的算术平方根是( )A.9B.–3C.3±D.3 3.下列论述准确的是( )2.0± B.32)(--的立方根不消失C.6±是36的算术平方根D.–27的立方根是–34.下列等式中,错误的是( ) A.864±=± B.1511225121±= C.62163-=- D.1.0001.03-=- 5.下列各数中,无理数的个数有( )A.1B.2C.3D.46.假如x -2有意义,则x 的取值规模是( )A.2≥xB.2<xC.2≤xD.2>x 7.化简1|21|+-的成果是( )A.22-B.22+C.2D.28.下列各式比较大小准确的是( )A.32-<-B.6655->-C.14.3-<-πD.310->-9.用盘算器求得333+的成果(保存4个有用数字)是( )A.3.1742B.3.174 C 10.假如mmm m -=-33成立,则实数m 的取值规模是( )A.3≥mB.0≤mC.30≤<mD.30≤≤m11.盘算5155⨯÷,所得成果准确的是( )A.5B.25C.1D.5512.若0<x ,则xx x 2-的成果为( )A.2B.0C.0或–2D.–213.a.b 为实数,在数轴上的地位如图所示,则2a b a +-的值是( )A.-bB.bC.b -2aD.2a -ba 0 b14.下列算式中准确的是( )A.333n m n m -=-B.ab b a 835=+C.1037=+x xD.52523521=+ 15.在二次根式:①12;④27中,与3是同类二次根式的是( )A.①和③B.②和③C.①和④D.③和④二.填空题(每小题2分,共20分)16.–125的立方根是_____.17.假如9=x ,那么x =________;假如92=x ,那么=x ________.18.要使53-x 有意义,则x 可以取的最小整数是. 19.平方根等于本身的数是________;立方根等于本身的数是_______20.x 是实数,且02122=-x ,则.____=x21.若b a 、是实数,012|1|=++-b a ,则._____22=-b a 22.盘算:①____;)32(2=-②._____1964522=-23.2.645==,24.盘算:._____1882=++ 25.已知正数a 和b ,有下列命题: (1)若2=+b a ,则ab ≤1 (2)若3=+b a ,则ab ≤23(3)若6=+b a ,则ab ≤3依据以上三个命题所供给的纪律猜测:若9=+b a ,则ab ≤________. 三.解答题(共50分) 26.直接写出答案(10分)④⑦348-⑧()225+⑨27.盘算.化简:(请求有须要的解答进程)(18分) ①8612⨯②)7533(3-③32 -321+2④123127+-⑤(2+2363327⨯-+28.探讨题(10分)=______.依据盘算成果,答复:(1)a吗?你发明个中的纪律了吗?请你用本身的说话描写出来.(2).应用你总结的纪律,盘算①若2x〈,则=②29.(6分)已知一个正方形边长为3cm,另一个正方形的面积是它的面积的4倍,求第二个正方形的边长.(准确到)30.(6分)已知yx、知足0|22|132=+-+--yxyx,求yx542-的平方根.附加题:31.(5分)已知21,31==yx,求下列各式的值①3223441yxyxyx++②32241yxyyx+-32.(5分)已知ABC∆的三边为cba、、.化简根式002参考答案一.CDDBCCDCBCCACDC二.-5; ±9; ±3; 2; 0; ±1.0; ±0.5; 2;12;314;122.8;;92;三.12;±23;-0.4;5;;9+33;0.5;6;34;13;0;不必定.a=;2-x; 3.14π-;6cm;±4c.二次根式演习03一.填空题(每题2分,共28分)1.4的平方根是_____________.2.的平方根是_____________.7.在实数规模内分化因式:a4-4=____________.二.选择题(每题4分,共20分)15.下列说法准确的是( ).(A) x≥1 (B)x>1且x≠-2(C) x≠-2 (D) x≥1且x≠-2(A)2x-4 (B)-2 (C)4-2x (D)2三.盘算题(各小题6分,共30分)四.化简求值(各小题5分,共10分)五.解答题(各小题8分,共24分)29. 有一块面积为(2a + b)2π的图形木板,挖去一个圆后剩下的木板的面积是(2a - b)2π,问所挖去的圆的半径若干?32cm2,假如将这个正方形做成一个圆柱,请问这个圆柱底圆的半径是若干(保存3个有用数字)?根式003答案1.±22. ±23. –ab4. –25. 0或46. m≥112. -x-y13. x≤414.15. B 16. A 17. D 18. A 19.A 20. D23. 2430.二次根式演习04一.填空题(每题3分,共54分)2.-27的立方根=.二.选择题(每题4分,共20分)15.下列式子成立的是( ). 17.下列盘算准确的是( ).三.盘算题(各小题6分,共30分)四.化简求值(各小题8分,共16分)五.解答题(各小题8分,共24分)根式004答案2. -33. -a-66. 07. 18. ≤012. 200315. D 16. C 17. C 18. C 19.B 20. A二次根式演习05二次根式:1..2. 当__________时.3.11m+意义,则m的取值规模是.4. 当__________x时是二次根式.5. 在实数规模内分化因式:429__________,2__________x x-=-+=.6. 2x=,则x的取值规模是.7. 2x=-,则x的取值规模是.8. )1x的成果是.9. 当15x≤时5_____________x-=.10. 把.11.11x=+成立的前提是.12.若1a b-+互为相反数,则()2005_____________ab-=.13. 在式子)()()230,2,12,20,3,1,x y y x x x x y+=--++中,二次根式有()A. 2个B. 3个C. 4个D. 5个14. 下列各式必定是二次根式的是()15. 若23a,)A. 52a- B. 12a- C. 25a- D. 21a-16.若A==()A. 24a+ B. 22a+ C. ()222a+ D.()224a+17. 若1a≤,)A. (1a-B. (1a-C. (1a-D. (1a-18.=成立的x的取值规模是()A. 2x ≠ B. 0x≥ C. 2x D. 2x≥19.的值是()A. 0B. 42a- C. 24a- D. 24a-或42a-20. 下面的推导中开端出错的步调是()A. ()1B. ()2C. ()3D. ()421. 2440y y-+=,求xy的值.22. 当a取什么值时,1取值最小,并求出这个最小值.23. 去失落下列各根式内的分母:24. 已知2310x x-+=,.25. 已知,ab为实数,(10b-=,求20052006a b-的值.二次根式演习05答案:二次根式:1. 4x ≥;2. 122x -≤≤; 3. 01m m ≤≠-且; 4. 随意率性实数;5. ()((223;x x x x +; 6. 0x ≥;7. 2x ≤; 8.1x -;9. 4; 10. 1x ≥; 12. -1; 13——20:CCCABCDB21. 4; 22. 12a =-,最小值为1; 23.()()3121x x +;二次根式演习061. 当0a ≤,0b时__________=.2.,则_____,______m n ==.3.__________==.4.盘算:_____________=.5.面积为,则长方形的长约为(准确到0.01).6. 下列各式不是最简二次根式的是( )7. 已知0xy ,化简二次根式( )8. 对于所有实数,a b ,下列等式总能成立的是( )A. 2a b =+a b =+22a b =+a b =+9.-和-)A. 32-- B. 32--C. -=-D. 不克不及肯定10.以下说法中不准确的是( )A. 它是一个非负数B. 它是一个无理数C. 它是最简二次根式D. 它的最小值为3 11. 盘算: 12. 化简:13. 把根号外的因式移到根号内:二次根式演习0621.2 二次根式的乘除:1. - 6——10: DDCAB11. ()()()()()()2221.6,2.15,3.20,4.5.1,6.x a b ab a -- 12. ()()()123.0ab ;13. ()()1.2. 根式013答案: 1——5: ABDDD6. 25x ≤≤; 7. 8; 8. ; 9. ()(22x x x +; 10. 0;11.36-15. 底面边长为; 高为; 16. 26x -; 17. ()41.3x y =⎧⎨=⎩. ()2.5 二次根式演习071. 下列根式中,)2. 下面说法准确的是( )A. 被开方数雷同的二次根式必定是同类二次根式D. 同类二次根式是根指数为2的根式3.)4. 下列根式中,是最简二次根式的是()D.5. 若12x,()A. 21x- B. 21x-+ C. 3 D. -36.10=,则x的值等于()A. 4B. 2±C. 2D. 4±7.x,小数部分为y,y-的值是()A. 38. 下列式子中准确的是()=a b=-C. (a b=-22==9.,.是同类二次根式,则____,____a b==.11.,则它的周长是cm.12.式,则______a=.13.已知x y==则33_________x y xy+=.14.已知x =则21________x x -+=.15. )()20002001232______________+=.16. 盘算:⑴.⑵(231⎛++ ⎝⑶. (()2771+--⑷. ((((22221111+17. 盘算及化简:⑴. 22-⑵⑶⑷. a b a b ⎛⎫+--18.已知:x y ==求32432232x xy x y x y x y -++的值.19. 已知:11a a +=+求221a a +的值.20. 已知:,xy 为实数,且13yx -+,化简:3y -.21. 已知11039322++=+-+-y x x x y x ,求的值. 二次根式演习07答案21.3 二次根式的加减:1——8:BAACCCCC9. ; 10. 1.1; 11. (; 12. 1; 13. 10;14. 42; 16. ()()()()122,3.454.4-+; 17. ()()()()()21.4,23.,4.1x yy x-+-;18. 5; 19. 9+二次根式演习08一.选择题1.假如-3x+5是二次根式,则x的取值规模是()A.x≠-5B.x>-5C.x<-5D.x≤-52.等式x2-1 =x+1 ·x-1 成立的前提是()A.x>1B.x<-1C.x≥1D.x≤-13.已知a=15 -2,b=15 +2,则a2+b2+7 的值为()A.3B.4C.5D.64.下列二次根式中,x的取值规模是x≥2的是()A.2-xB.x+2C.x-2D.1 x-25.鄙人列根式中,不是最简二次根式的是()A.a2 +1 B.2x+1 C.2b4D.0.1y6.下面的等式总能成立的是()A.a2 =aB.a a2 =a2C. a · b =abD.ab = a · b7.m为实数,则m2+4m+5 的值必定是()A.整数B.正整数C.正数D.负数8.已知xy>0,化简二次根式x-yx2的准确成果为()A.yB.-yC.-yD.--y9.若代数式(2-a)2 +(a-4)2的值是常数2,则a的取值规模是()A.a≥4B.a≤2C.2≤a≤4D.a=2或a=410.下列根式不克不及与48 归并的是()A.0.12B.18C.113D.-7511.假如最简根式3a-8 与17-2a 是同类二次根式,那么使4a-2x 有意义的x的规模是()A.x≤10B.x≥10C.x<10D.x>1012.若实数x.y知足x2+y2-4x-2y+5=0,则x +y3y-2x的值是()A.1B.32+ 2 C.3+2 2 D.3-2 2二.填空题1.要使x-13-x有意义,则x的取值规模是.2.若a+4 +a+2b-2 =0,则ab=.3.若1-a2与a2-1 都是二次根式,那么1-a2 +a2-1 =.4.若y=1-2x +2x-1 +(x-1)2 ,则(x+y)2003=.5.若 2 x>1+ 3 x,化简(x+2)2-3(x+3)3 =.6.若(a+1)2 =(a-1)2 ,则a=.7.比较大小:⑴3 5 2 6 ⑵11 -10 14 -138.若最简根式m2-3 与5m+3 是同类二次根式,则m=.9.已知223=223,338=338,4415=4415,…请你用含n的式子将个中蕴涵的纪律暗示出来:.10.若 5 的整数部分是a,小数部分是b,则a-1b=.11.已知x =1a- a ,则4x+x2 =.12.已知a=3- 5 -3+ 5 ,则化简a得.三.盘算与化简1.( 3 + 2 )-1+(-2)2 +3-82.13 +1+15 - 3+15 +33.(1+ 2 - 3 )(1- 2 + 3 )+2 64.9a + a31a +12aa 3 四.先化简再求值1.已知a=3,b= 4,求[4( a + b )( a - b ) +a +b ab ( b - a ) ]÷ a - bab的值.2.化简:a+2+a 2-4 a+2-a 2-4 - a+2-a 2-4 a+2+a 2-4 取本身爱好的a 的值盘算.3.当a= 3 + 2 3 - 2 ,b= 3 - 2 3 + 2 时,求a 2-3ab+b 2的值.4.当a= 21- 3 时,求a 2-1a -1 - a 2+2a+1 a 2+a - 1a 的值.五.解答下列各题1.解方程: 3 (x -1)= 2 (x+1)2.3.已知直角三角形两直角边长分离为a= 12 3 -11 ,b= 12 3 +11 ,求斜边的长.4.先浏览下列的解答进程,然后作答:形如m ±2n 的化简,只要我们找到两个数a.b 使a+b=m,ab=n,如许( a )2+( b )2=m, a · b =n,那么便有m ±2n =( a ± b )2= a ± b (a>b)例如:化简7+4 3 解:起首把7+4 3 化为7+212 ,这里m=7,n=12;因为4+3=7,4×3=12,即( 4 )2+( 3 )2=7, 4 · 3 =12 ,∴7+4 3 =7+212 =( 4 + 3 )2=2+ 3 由上述例题的办法化简:⑴13-242 ⑵7-40 ⑶2- 3二次根式演习08参考答案一.选择题1.C2.C3.)C4.C5.D6.C7.C8.D9.C10.B11.A12.C二.填空题1.1≤x<32.-123.04.15.-2x-56.07.>>8.69.n+nn2-1=nnn2-1(n≥2且n为整数)10.- 511.1a-a12.- 2三.盘算与化简1. 3 - 22. 3 +13.-4+4 64.236 a四.先化简再求值1. 3 -22.a3.954.- 3五.解答下列各题1.x=5+2 62.x=2 3 -2 y=6-2 33.464.⑴7 - 6 ⑵ 5 - 2 ⑶ 2 - 62二次根式演习09一.选择题1.若一个正数的算术平方根是a,则比这个数大3的正数的平方根是( )A.a 2+3 B.-a 2+3 C.±a 2+3 D.±a+3 2.若式子(x -1)2+|x -2|化简的成果为2x -3,则x的取值规模是( )A.x ≤1B.x ≥2C.1≤x ≤2D.x>03.下列说法错误的是( )A.a 2-6x+9 是最简二次根式 B. 4 是二次根式 C.a 2+b 2长短负数 D.a 2+16 的最小值是44.式子m m +6mm 4 -5m 21m的值是( ) A.正数 B.负数 C.非负数 D.可为正数也可为负数 5.等式x ÷1-x =x1-x成立的前提是( )A.0≤x ≤1B.x<1C.x ≥0D.0≤x <16.下列各组代数式中,互为有理化因式的是( )A.3x +1与1-3xB.x +y 与-x -yC.2-x 与x -2D.x 与 3 x7.下列断定中准确的是( )A.m -n 的有理化因式是m+nB.3-2 2 的倒数是2 2 -3C. 2 - 5 的绝对值是 5 - 2D. 3 不是方程x+1x -1-3x=2的解 8.下列盘算准确的是( )A. 2 + 3 = 5B.2+ 2 =2 2C.63 +28 =57D.8 +18 2= 4 +99.已知a<0,那么(2a -|a|)2的值是( ) A.a B.-a C.3a D.-3a10.在5a ,8b ,m 4,a 2+b 2 ,a 3中,是最简二次根式的有( )A.1个B.2个C.3个D.4个11.不等式(2- 5 )x<1的解集为( )A.x<-2- 5B.x>-2- 5C.x<2- 5D.x>-2+ 512.已知ba -ab =3 2 2 ,那么b a +a b的值为( )A.52B.72C.92D.132 二.填空题1. 2 2分数(填“是”或“不是”)2.最简二次根式a 2+a 与a+9 是同类二次根式,则a=. 3.将a-1a根号外的因式移入根号内的成果是.4.代数式(x +1)2 +(x -3)2的最小值是. 5.代数式2-a +9 的最值是.6.合适不等式15 ≤x ≤27 的整数x 的值是.7.化简:aa -ba 2-ab a 3-2a 2b+ab2 (a>b)=. 8.化简:(12 +1 +13 + 2 +14 + 3 +…+12006 +2005)(2006 +1)=.9.分化因式x 2(x - 3 )-3(x - 3 )=. 10.当a 时,a+2a -4是二次根式. 11.若(-2a )2=2a,则a=. 12.已知x+1x =4,则x -1x = .三.盘算与化简1. 6 ÷(12 +13 )2.22(212 +418-348 ) 3.22 -( 3 -2)0+20 4.22- 3 -12 +( 3 +1)25.aa -ab - ba -b 6.(ab -ab a +ab)·ab -ba -b7.a -9 a +3 8.1x +3 四.化简求值1.已知x= 3 +1,,求x21+2x+x2 的值.2.已知a= 2 5 +2 ,y=10 +2 2 ,求x 2+2xy+y 2+18 (x-y)的值.五.解答题1.解不等式: 2 x-1< 3 x2.解方程组:3.设等式a(x-a) +a(y-a) =x-a -a-y 在实数规模内成立,个中a.x.y是两两不合的实数,求3x2+xy-y2x2-xy+y2的值.4.已知x>0,y>0,且有x (x +2y )=y (6x+5y )求x+xy -y2x+xy +3y的值.5.若a+b=2ab (a>0,b>0),求a+b3a+5b的值.6.已知实数a知足|2003-a|+a-2004 =a,则a-20032的值是若干?二次根式演习09参考答案一.选择题1.C2.B3.A4.负数5.D6.A7.C8.C9.D10.B11.B12.D二.填空题1.不是2.-33.--a4.45.大 26.4或57.a(a-b)2a-b8.20059.(x- 3 )2(x+ 3 )10.a>4或a≤-211.012.±3 3三.盘算与化简1.6 3 -6 22.2-8 33. 2 -1+2 54.8+2 35.16.a7. a -38.当x≠9时,原式=x -3x-9当x≠9时,原式=16四.化简求值1. 3 -12.16五.解答题1. x>- 2 - 32.x=3 2 +2 35,y=3 3 -2 253.36.2004二次根式演习10一.选择题1.下列断定⑴12 3 和1348 不是同类二次根式;⑵145和125不是同类二次根式;⑶8x 与8x不是同类二次根式,个中错误的个数是( ) A.3 B.2 C.1 D.02.假如a 是随意率性实数,下列各式中必定有意义的是( ) A. a B.1a2 C.3-a D.-a 23.下列各组中的两个根式是同类二次根式的是( ) A.52x 和3x B.12ab 和13abC.x 2y 和xy 2D. a 和1a2 4.下列二次根式中,是最简二次根式的是( ) A.8x B.x 2-3 C.x -y xD.3a 2b 5.在27 .112.112中与 3 是同类二次根式的个数是( )A.0B.1C.2D.36.若a<0,则|a 2-a|的值是( ) A.0 B.2a C.2a 或-2a D.-2a 7.把(a -1)11-a根号外的因式移入根号内,其成果是( )A.1-aB.-1-aC.a -1D.-a -1 8.若a+b4b 与3a +b 是同类二次根式,则a.b 的值为( )A.a=2.b=2B.a=2.b=0C.a=1.b=1D.a=0.b=2 或a=1.b=19.下列说法错误的是( )A.(-2)2的算术平方根是2 B. 3 - 2 的倒数是3 + 2C.当2<x<3时,x 2-4x+4 (x -3)2 = x -2x -3 D.方程x+1 +2=0无解10.若 a + b 与 a - b 互为倒数,则( )A.a=b -1B.a=b+1C.a+b=1D.a+b=-1 11.若0<a<1,则a 2+1a 2 -2 ÷(1+1a )×11+a可化简为( )A.1-a 1+aB.a -11+aC.1-a 2D.a 2-112.在化简x -y x +y时,甲.乙两位同窗的解答如下:甲:x -y x +y = (x -y)(x -y )(x +y )(x -y )=(x -y)(x -y )(x )2-(y )2 =x -y 乙:x -y x +y =(x )2-(y )2x +y =(x -y )(x +y )x +y=x -yA.两人解法都对B.甲错乙对C.甲对乙错D.两人都错( )二.填空题1.要使1-2x x+3 +(-x)0有意义,则x 的取值规模是.2.若a 2=( a )2,则a 的取值规模是.3.若x 3+3x 2=-x x+3 ,则x 的取值规模是.4.不雅察下列各式:1+13 =213 ,2+14=314,3+15=415,……请你将猜测到的纪律用含天然数n(n ≥1)的代数式暗示出来是. 5.若a>0,化简-4ab =.6.若o<x<1,化简(x -1x)2+4 -(x+1x)2-4 =.7.化简:||-x 2-1|-2|=.8.在实数规模内分化因式:x 4+x 2-6=.9.已知x>0,y>0且x -2xy -15y=0,则2x+xy +3yx+xy -y =.10.若5+7 的小数部分是a,5-7 的小数部分是b,则ab+5b=.11.设 3 =a,30 =b,则0.9 =. 12.已知a<0,化简4-(a+1a)2-4+(a -1a)2=.三.盘算与化简 1.13(212 -75 ) 2.24 - 1.5 +223 - 3 + 2 3 - 23.(-2 2 )2-( 2 +1)2+( 2 -1)-14.7a 8a -2a218a+7a 2a 5.2nm n -3mn m 3n 3 +5m m 3n (m<0.n<0) 6.1a+ b7.x 2-4x+4 +x 2-6x+9 (2≤x ≤3) 8.x+xyxy +y+xy -y x -xy 四.化简求值1.已知x= 2 +12 -1 ,y= 3 -13 +1,求x 2-y 2的值.2.已知x=2+ 3 ,y=2- 3 ,求x +yx -y -x -yx +y的值.3.当a= 12+ 3 时,求1-2a+a 2a -1 - a 2-2a+1a 2-a 的值. 五.已知x +1x =4,求x -1x的值.二次根式演习10参考答案 一.选择题 1.B 2.C 3.B 4.B 5.C 6.D7.B 8.D 9.C 10.B 11.A 12.B 二.填空题1.x ≤x ≠-3,x ≠02.a ≥03.-3≤x ≤04. -55 (n+1) 1n+25.-2b -ab6.2x7.18.(x+ 3 )(x+ 2 )(x - 2 ) 9.2927 10.2 11.3a b12.-4三.盘算与化简 1. -1 2. 6 6 -53.6- 24.412 a 2a5.-10mn6. (1)当a ≠ b 时,原式=12a 或 b2b (2)当a= b 时,原式=a - ba 2-b7.18.(x+y)xy xy四.化简求值1.-11+12 2 +16 62.2 3 33.3五.±2 3。
二次根式练习10套(附答案)
二次根式练习01f填空JS1、卜列和«1(1)3 141592( (2)0.3 (3)≡- (4)√2 (5)-√8(6)y (7)0 3030030003.■其中无理数有 ______ •有理数右 ________ (填序号)42、亍的平力H _______ ・0 216的立方H.3、JlB的平方根________ .阿的立方根 ___________ .4、球术平方根等于它本身的数有_______ ・立方根等于本身的数右________5、若X2 = 256. W-IX= ________ ・若x j = -216. WX= ___________ .6、LI)IlRtMBC两边为3∙ 4・则第三边长_________ >7、若三角形三边之比为3: 4:5∙网长为24.则三角形向枳_______& L!⅛∣≡A形L 2n+ IJn1 ÷2n f2n2 + 2n+ Ln为止整数.則此三角滞是三角形.9. ⅛ι⅛√χ34+(y+6)j -0 ・則x + y- _______________10.如果2a-lfπ 5-a是一个数m的平方根•则& = ____________ m= _______ IU三角形二边分别为& 15. 17.那么仪长边上的岛为_____________ .12. K角三角形三角形FWiftft边长为3和4・三角形内一点到备边铢离相等.那么这个丽离为________二.13. 卜刊几组数中不能作为H角二角形三边长度的足< )Aa = 6t b= 24»C= 25 Ba = 1.5,b = 2»C= 2.52 5C. a ≡ —t b ■ 2f c ■ —D. a ■ 15,b ■& C ■ 173 414. 小强Ift御家甲.彩电荧屏的长为58cm •宽为46cm •则这台电视机尺寸足( >A 9 英Q (23 Cm )B 21 英寸(54Cnl) C.29 英寸(74Cm )D S4 英寸« 87Cm)15. 等腰二角形腰长IOan.底边16cm.则面积( >A 96Cm I B. 48Cm i C. 24cm1 D 32Cm J16. 三何形二边a,b,c满足(a+b)'∙c∣+ 2ab∙则这个三角形足()A 角形B.钝ffj^∑flj形 C. H角三角形D等腰三角形17. (-6)'的平方根足( )A - 6B 36 C. 士6 D. ±麻18. bħj∣⅛jg∣E确的个故冇,(I)Va7 = a t(2)√aτ≡a(3)无限小数都足无珅数<4)有眼小数郝是有理数(5)实数分为IE实数和岁实数两类( 〉A l个 B.2个 C 3个D4个19. x½(-√9)2的平方Mi∙ y足64的立方根•则χ + y= <>A 3 B.7 C3. 7 D l. 720. Fnfl三角形边长度为5. 12.則斜边上的高( )IS 60A 6B 8 C. — D —13 132k Γ{ffi~∕fi形边K为a,b.斜边I•高为h∙则卜列冷犬总能成立的地(A. ab= Ii 2 B a 1÷b 2 = 2h i22. ⅛ιffl ∙fi∕{j Ξ角形尿片.两HftJ 边AC-6αnBC-8αn ・现将直角边AC 沿Fl 线AD 折叠.便它落在料边AB 上•且,j AE ⅛fr.则CD 等F ()(3×2Xr = -824.用i ∣∙nsi ∣∙W:(结果保留3个有效数字)A. 2cm B 3an C 4cm 三、计算层23.求F 列待式中X 的值:(1)16X 2-49=0第 22 JSra(2XX-1)2 = 25(4A(x∙F J7(I)VB四、作图题(?)VB(3)√6-< (4)2√3-3√225.庄数轴上Bii 岀■罷的点•D.5an% 25 Sffl26. IT的JI方形网格■毎个止方形顶点叫格点•请在图和Bi—个面枳为10的正方形•五■解善JR27.已Ial如图所示•四边形ABCD 中AB- 3cnχAD- 4α∏BC - 13ClnCD - 12an ZA- 90°求四边形ABCD 的∣6i⅛U«27 JSffl28. ⅛ι附所示•在1⅛长为C的正方形中.有四个斜边为c∙宜角边为a,b的全肆Hfn三和彤.你虢利用这个图说明勾股定円叫?耳出Pf由“%2Sβffl 229.如图所示・】5只空油饲(毎只油桶底面虫径均为60Cm >堆在•起.妥给它盖一个遮甬棚•逋甬棚起码耍多奇?(结呆保昭一位小数〉30.如图所示∙ ΛlRtΔABC 中∙ ZACB- 90° . CDALAB 边上高•若 AD=S.引.XZSABC 中.AB≡15. AC≡13・ BC 边 l:A AD=12.试求/.ABC 周长.BD=2. 求CD,二次根式练习1一.填空题:1. 4. 6. 7. k 2、3、5; 2・0. 6:3. ±2∙ 2: 4. 0 和1∙ 0 和±hL PO 5・±16∙・4: 6・5Λ√7 :7・ 24: S.宜角:9・・2: 10.)・ 81: 11. ≤-:二选择业:13-22: ACBCCBDDDB三.It WSSi23. (1) (2)x=6 或x≡4 (3) x≡-l: (4) x≡6: 24.用il 弊器4计“答案略BL作图題,(«)五、解答题* 27. Ie示,遗箔BD.面税为56: 28.捉川利用面农证明ι 29. 327. S:二次根式练习2 30. CD-4∣ 31.周长为42.二次根式练习02一.选择题〈毎小题2分.共30分) h 25的平方根是()c. V≡2l6--6 D. -Vδ^δol≡-o 15. 下列各数中.无理数的个数有()-O lOlooh √7. 丄 -?• √2-√3. 0, -√1642AV 1 B 、 2 CU 3D 、 46. 如果J 口有总义.則X 的取值范围是()A. X ≥ 2B. X < 2C. X≤ 2D. X > 27. 化简∣1-√2∣+1的结果是()C∙ ±5 D. ±√52、 (-3)】的算术平方桟是()AK 9 B.・3 C 、±3 3. 下列叙述正确的是()A. 0.4的平方根是±0 2 C. ±6是36的算术平方根 4.下列等式中,钳误的是()D. 3B. -(-2?的立方根不存在 D.・27的立方根是・3A . 2- √2B ∙ 2 + √2c 、2 O. √2 8∙下列各式比较大小正确的是() A. -√2<.√3 趴-営八徑56C. -n < -3 14 D 、- VTO >-3 9∙用计算澎求得√3 + V3的络果(保留4个有效数字)是(A. 3. 1742 B % 3.174 CW 3. 175 2'如果栏F=In成立,则实数m 的取值范围是(IK 计鼻5→√5×-^t 所得络果正飜的是( A 、 5 B 、 2512、若x<0,则匚五[的结果为()X13. ∙∙b 为实数.在数轴上的位置如图所示.则ja-b ∣÷√Γβ的值是(—bB. bC. b —2DD.2a —b14. 下列算式中正确的是()AW m λ∕3 - n√3 = m - n√3 B 、5λ∕a + 3√b = 8x ^b C 、7√x+3>∕x≡ IOD∙ ^J545 ■ 2√5D. 3. 1743A. m≥ 3Bi m≤0C% 0 < m≤ 3D∙ O≤m≤3A. 2B. O C∙ O 或-2 D.■ ・15. 左二次根式:ω√Γ5;②爲;③個;④Q 中.与書是同类二次根式的是()A.①蜩B、②和③ C、①她D.③和④二.填空題〈哥小题2分.共20分〉16. - 125的立方根是 ____17. 如果∣3∣≡9t那么L ________ I如果X2 = 9t那么X= _________ •18. 要使心匚3有慮义,则”可以取的嵌小整数是 __________ •19. 平方根等于本身的数是_______ ;立方根需于本身的数是________20. X是实数•且2"・y-0,则______________21. 若仏b是实数・Ia-II+J2b + l = θ. Wa2-2b= _______________22、计算:Φ(-2√3)* = _②启事= _____________________23, SVrS5 = 1 22& = 2 645.则"1850000=.24. 计算:√2 + √8 + √18≡ 25、已知正数"和九有下列命SL(1) Sa+b≡2f M√ab≤l(2)若a+b≡3, M√ab≤∣■(3〉若a+b = 6. M√ab≤3根聞以上三个命題所提供的规徉豹想:若a+b≡9t则屈W _______________三.解答題(共50分)26. ■接写岀答案OO分)Φ√144②士」(■二$③ V-O O64④斗5)f⑤^6×y∕8CD√48-√3⑧(√I + 2∣1φ(√3÷√5)(√5-√3)27■计Jr化閒:(熨求有必夏的解答过程)(18分〉②書(3√I - √7¾6^)√T7-J ∣+√I?TF= 5pj r = ---------------- ∫⅛r =--------------------- √θr = -------------------- •根据计算结果•回答:(1)・ Q —定等于a 吗?你发现其中的规律了吗?谄你用自己的语言描 述出来.(2).利用你总纽的规律,计算①若X 〈人M √(x - 2): - _____________② √(3.14-π)1= ________ ____⑤(-√3),÷√32-2^I28.探究題(10分)29. (6分)己知一个正方形边长为3c叫另一个正方形的面积是它的面积的4 倍.求第二个正方形的边长•饰确到O ICm). --------------- 4 30. (6分)已知X、y满足√2x-3y-l+∣x- 2y+2∣= 0.求2x-<y的平方根附加掘31. (5分)已WX-Iy- L9求下列各式的值32. (5分)已知AZBC的三边为(U b、c・化简J(a +b + c)' + J(a _ b_ cj + Jp- C — a),- — a — b)i根式002参考答案_■ CODBCa)C BeCACOC二• 一5;±9ι±3{2; O S ±K 0; ±0.5; 2; 12;122∙ 8∣三、12J ±|; -0.4i5; 4√3 ; -y-53√3 s9+4√5 ; 2{ 1.5;3; ^6;;羽;牛曲;3+V∑; 1;3; 0. 5; 6:扌;J ; 0;不一定•因为■ IaI ; 2-x; J -3.14 ;6cm;± 2>∕3;;4c •二次根式练习03填空题:每题2分,共28分)1.4的平方根是_________________ .2. 旅的平方根是__________________ •3. 如数亿师数轴上的住置如图所示.则化简7?歹的结昊足------------- 1-------- 1 --------------- ! ------------a o »4. _______________________________________ -右的豆方碎僧数= _______________________________________________ ・5∙己知S b∣ = ?上=Z I,则Ja 4∙ 2b = __________ ・6. ・J(I -刖≡冲7则尸点取7I•范围是____________________ .7. 在实数范IS内分解因式:#-4 = ____________________ ・≡∙化简:捋M9∙化简吋13.妇^J(6-R(X-4沪=0-耳圧?则命取值范围是14・己夕DQY 0,则J^ = ________________ ・二、迭择題(每题4分,共20分〉15.下列说法正确的是( ).(A) 7伏绝对值的平方根是1⑻0的平方根是0(C) £是最简二戻視式(D) G)冷亍才16 •计M(√2-iχ√2+l)啲鉛黑敏)・(A) √2 + l (B) 3血- I (C) 1 (D) -1】7.若寸X+J,÷1 = 2,则& +昭値杲( )•ω±√3⑻±1 (C)I (D) √318.下列各工〔展于最商相式的呈( )•(A) 7771 (B) TΛ7 (C) √i2(D) √0519•式子<ΞI的耽值取值范围().才+ 2(A) x≥ 1(B) x> 1 且x≠-2(C) x≠-2 (D)才勿且x≠-220. <2, Mr-3∣+J,(Λ-]/的值为( )・(A) 2L4(B)-2 (C)4-2x (D) 2三、计算题(各小题6分.共30分)21. h--2^./45+2√20 ・22∙∕lW居z∕l∙23∙(3-√5)% +(3+毎・24+阿"∙卜 3.f-25.∣√27√÷6x.J∣-z21j∣-√iθ8^.10吒傍「諾卜岳四.化简求值(各小题5分,共10分)27.当X詁J = Q81时,求X£-州・点・*77值.+ √36∑y).其中入=#•*27.五、解答βr各小題8分,共24分)29.有一块面积为(2a * t>)2π的图形木板,挖去一个圆后剩下的木板的面积是(2a・6),疗,问所挖去的圆的半径多少?30.已知正方形纸片的面积是32c√,如果将这个正方形做成一个圆柱,请问这个圆柱底圆的半径是多少(保留3个有效数字)?14.15・ B 16. A 17. D 18. A 19. A20・D1. ±22. ±23. - ab4. -25. 0 或 46. ∕π≥17.(^3 + 2)(Λ+√2X<J -√2)8.軾9∙ ⅛Za 2 +⅛2 Ia12. -Jr X 门・Λ≤4根式003答案21. 亘_2不3 22. 10√2 23・ 24 24. — '[ΛB25. 4:7 —6∖Λ^ — 丄,22G. -各、隔 27. +振-3石;-2. 45 29. 2√2^5 30・ 0.900二次根式练习04一•填空赣(毎題3分,共农分)1. 0.4的平方根 ____________ ,吉的舁术平方根是______________2. -27的立方根3・己知α <-6■则∣3-$46/ + 9卜_________________ •4. 式子也手有意义∙QH得肢值范區是_______________________x+25. 写出两个与誓是同类二矢根武的根式杲_____________________6. 当X < 0,M1 -=入若数P在数粘上如图所示,则化简/百y4√(p-2f捋=10.已知2凸*代,则;T=___________________ .11・当么VO且时,化简厶:加十丄=a - CI13. ________________________________________________________ 己丸;Cj 为实数,y - X 一9+ 9一“ +',则X +y - _______________兀一3W.观察下列各式后,再芫成化简:丿3十2旋=√2 + 2^+l = M十A二血十1.Vτ÷2√10 = V5 + 2√l0+2 = 7(75+ √2)a= √5 + √2, .Jg+2√β= ・祢能曰一个相同炖的化简题吗?頁在横线上, __________________________ 二、选择題(每题4分,共20分)15•下列式子成立的是().(A)Ja2 ÷62 =(2 + ∂(B) “ J-2 = -J- ab(D)J-a "b" = —Λ⅛16. 若/芬与囲赤最筠同娄很式.则•甜=值杲().(A)O φ)l (C)-I (D)I17. 下列计算正确的是( ).(A]√2 +x^≡√5(B)2 + ,β ≡ 2√2(C)^3+√28=5Λ∕7(D)^⅛^ = √4÷√9218. 若b<O r化简+二?的结果是( )•(A) - b后(B)fe√≡^ (C)-£> Pab (P)b^fab19. 把儿Jg阴外的因式移入根号内,结果化简为(>(A)F CB)- V (C)∙Λ£)-石20. 満足廣十"=倚的整敖对(XJ)的个数是] ).(盘)多于?个⑻3个©2个(D)I个三.计算題(各小题6分•共30分) 21.9岳-7√127 4 2√6 3馬.23 .(7 + 4√3)(2 -4)2 十(2 十 √3×2 -M)- √124.舟、乔J 耳+ 6碾.22.2(l + ⅛ + √,48 +四.化简求值(各小题8分,共16分)27•巳哑手君'且曲如^,1+χ,J⅞τr28. α > αD > Q■屈运+爲j= 3血書+MI求竺空t逅的危. a -b五■解答題(各小题8分.共24分〉29. = 2-√5.‰4 -8α5+ 16αa -α÷l.50. i⅛等式JeX■小+ Jeyu TXP-Ja-丿在买数范51内成立・矣中"。
《二次根式》提高练习题(含答案)
《二次根式》提高训练题(一)判断题:1.ab 2)2(-=-2ab . ( ) 2.3-2的倒数是3+2. ( ) 3.2)1(-x =2)1(-x . ( ) 4.ab 、31b a 3、bax 2-是同类二次根式. ( ) 5.x 8,31,29x +都不是最简二次根式. ( ). (二)填空题:6.当x __________时,式子31-x 有意义. 7.化简-81527102÷31225a =___________. 8.a -12-a 的有理化因式是__________. 9.当1<x <4时,|x -4|+122+-x x =__________. 10.方程2(x -1)=x +1的解是____________. 11.比较大小:-721______-341.12.已知a 、b 、c 为正数,d 为负数,化简2222dc abd c ab +-=_________.13.化简:(7-52)2000·(-7-52)2001=______________. 14.若1+x +3-y =0,则(x -1)2+(y +3)2=____________.15.x ,y 分别为8-11的整数部分和小数部分,则2xy -y 2=____________.(三)选择题:16.已知233x x +=-x 3+x ,则………………………………………………( )(A )x ≤0 (B )x ≤-3 (C )x ≥-3 (D )-3≤x ≤017.若x <y <0,则222y xy x +-+222y xy x ++=……………………………( )(A )2x (B )2y (C )-2x (D )-2y18.若0<x <1,则4)1(2+-x x -4)1(2-+xx 等于……………………………( )(A )x 2 (B )-x2(C )-2x (D )2x19.化简aa 3-(a <0)得……………………………………………………………( ) (A )a - (B )-a (C )-a - (D )a20.当a <0,b <0时,-a +2ab -b 可变形为………………………………………( )(A )2)(b a + (B )-2)(b a - (C )2)(b a -+- (D )2)(b a ---(四)在实数范围内因式分解:21.9x 2-5y 2; 22.4x 4-4x 2+1.(五)计算题:(每小题6分,共24分)23.(235+-)(235--); 24.1145--7114--732+;25.20102009)23()23(+∙-; 26.(a 2m n -m abmn +m nn m )÷a 2b 2mn (六)求值:27.已知a -1a求a +1a 的值。
二次根式计算及化简练习题.doc
二次根式的计算与化简练习题(提高篇)1、已知m是 2 的小数部分,求m21 2 的值。
m22、化简( 1)(1 x)2 x2 8x 16 ( 2)132x 3 2xxx 250 2 2 x( 3)4a 4b( a b) 3a3a2b(a0)3、当 x 2 3 时,求(7 4 3) x2(23)x 3 的值。
4、先化简,再求值:2a 3ab3b27a3b3 2ab3ab ,其中 a1, b 3 。
6 4 96、已知aa2 2a 1 a 1 4a2 16 4a2 8a2 1,先化简2 a a2 2a 1 a2 4a 4,再求值。
a a 27、已知: a1 ,b 1 ,求a2 b 22 2a 的值。
2 3 3 2b 9、已知0x 3 ,化简x2x26x910、已知a 2 3 ,化简求值1 2aa2 a 2 2a 1 1a 1 a2 a a11、①已知x23, y 23, 求: x2xy y2的值。
x 2②已知 x 2 1 ,求 x 1的值.x 1③ 4 y 2 6 y2 ( 7 x 5 x 2 ) ④ ( 3a 3 27a 3 ) ax 9 312、计算及化简:22⑴.11aaa a⑷.a 2ab baa ba ab ba b a b 2 ab⑵.bababaabbab13、已知: a1 1 10 ,求 a 2a12a的值。
x 3yx 291的值。
14、已知20,求x x 3 y 1二次根式提高测试一、判断题:(每小题 1 分,共 5 分)1. ( 2)2ab =- 2ab. ()2.3- 2 的倒数是3+ 2.() 3. (x 1)2 = ( x 1) 2. ()1 a 3b 、2 a4.ab 、 3 xb是同类二次根式.()1x 25. 8x,3 , 9 都不是最简二次根式. ()二、填空题:(每小题 2 分,共 20 分)16.当 x__________时,式子x 3有意义.15 2 10257.化简-827 ÷ 12 a 3 = _.8.a - a21的有理化因式是 ____________ .9.当 1< x <4 时, |x - 4| + x 2 2x 1= ________________.10.方程2( x -1)= x + 1 的解是 ____________.ab c 2 d 211.已知 a 、 b 、 c 为正数, d 为负数,化简abc 2d 2 = ______.1112.比较大小:- 2 7_________ -4 3.13.化简: (7- 5 2)2000 (·- 7-52)2001= ______________.14.若 x 1 +y3= 0,则 (x - 1)2+(y + 3)2= ____________.15. x , y 分别为 8- 11的整数部分和小数部分,则 2xy - y2= ____________.三、选择题:(每小题 3 分,共 15 分)16.已知 x33x 2=- x x3,则( )(A )x ≤ 0( B ) x ≤- 3( C ) x ≥- 3( D )- 3≤ x ≤017.若 x < y <0,则x22xy y2 + x 22xy y 2 = ()(A )2x( B )2y (C )- 2x ( D )- 2y( x 1 )2 4(x1 )2 418.若 0< x <1,x -x 等于 ⋯⋯⋯⋯⋯⋯⋯⋯()22(A ) x(B )- x(C )- 2x( D ) 2xa 319.化a(a < 0)得 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()(A )a( B )-a( C )-a( D )a20.当 a <0, b < 0 ,- a + 2ab- b 可 形 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()(A ) ( ab)2(B )-( ab )2 (C )(ab ) 2( D )(ab) 2四、在 数范 内因式分解: (每小 3 分,共 6 分)21. 9x 2- 5y 2 ;22. 4x 4- 4x 2+ 1.五、 算 :(每小 6 分,共 24 分)23.(532)(5 32);5 4224. 411 - 117 - 37 ;n ab n m n25.( a2m-mmn +mn)÷ a2b2 m ;26.(a +b aba b )÷(aab b +bab a -a bab )( a≠b).(六)求值:(每小题 7 分,共 14 分)3 2 3 2 x3 xy 227.已知 x=3 2, y= 3 2 ,求x4y 2x3 y2 x2 y3 的值.x 2x x2 a2 128.当 x= 1- 2 时,求 x2 a2 x x2 a2 + x2 x x2 a2 +x2 a2 的值.七、解答题:(每小题 8 分,共 16 分)1 1 1 129.计算( 2 5+ 1)(12 + 23 + 34 ++ 99 100 ).1 x2 y x 2 y30.若 x, y 为实数,且 y=14x +4x 1 + 2 y x -yx的值..求《二次根式》提高测试(一)判断题: (每小题 1 分,共 5 分)1. ( 2) 2ab =- 2 ab . ()【提示】( 2)2 = | -2| = 2.【答案】×.2. 3 - 2 的倒数是 3 + 2.()【提示】1 2 = 32=-( 3 +2).【答3 3 4案】×. 1)2 x 1)2. (x 1) 2 = ( x . ( )【提示】 (x 1) 2 = | x - 1| , ( = - 1 3x ( x ≥1).两式相等,必须 x ≥ 1.但等式左边 x 可取任何数. 【答案】×. 4. ab 、 1a 3b 、 2a是同类二次根式.()【提示】 1a 3b 、 2 a3 x b3x b化成最简二次根式后再判断. 【答案】√.5. 8x ,1, 9 x 2 都不是最简二次根式. ()9 x 2 是最简二次根式.【答3案】×.(二)填空题: (每小题 2 分,共 20 分)6.当 x__________ 时,式子1 有意义.【提示】x 何时有意义 x ≥ 0.分式何时x3有意义分母不等于零. 【答案】 x ≥ 0 且 x ≠ 9.7.化简- 152 10 ÷25 = _.【答案】- 2a a .【点评】注意除法法则和积的82712a 3算术平方根性质的运用.8. a - a 21 的有理化因式是 ____________ .【提示】( a - a2 1 )( ________)=a 2- ( a 2 1) 2 . a + a 2 1 .【答案】 a + a 2 1 ..当< < 4 时,- +x22 x1 = ________________ .91 x| x 4|【提示】 x 2- 2x + 1=( ) 2, x - 1.当 1 <x < 4 时, x - 4, x -1 是正数还是负数x - 4 是负数, x -1 是正数.【答案】 3. 10.方程 2 (x - 1)= x + 1 的解是 ____________ .【提示】把方程整理成 ax = b 的形式后, a 、 b 分别是多少2 1 , 2 1.【答案】 x = 3+ 2 2 .11.已知 a 、b 、c 为正数, d 为负数,化简ab c 2 d 2 = ______.【提示】 c 2 d 2 =ab c 2d 2| cd| =- cd .【答案】 ab + cd .【点评】∵ ab = ( ab )2 ( ab > 0),∴ ab -c 2d 2=(ab cd )( ab cd ).12.比较大小:-1 _________- 1 .【提示】2 7 = 28 ,43 = 48 .2 7 4 3【答案】<.【点评】先比较 28 , 48 的大小,再比较 1 1的大小,最后 ,48 28 比较- 1 与- 1 的大小.284813.化简: (7-52 )2000·(-7-5 2 )2001=______________.【提示】 (- 7-5 2 )2001=(- 7- 5 2 )2000·( _________) [- 7- 5 2 . ] ( 7- 5 2 ) ·(- 7- 5 2 )= [1. ]【答案】- 7- 5 2 .【点 】注意在化 程中运用 的运算法 和平方差公式. 14.若 x 1 + y 3= 0, (x -1)2+(y + 3)2= ____________.【答案】 40.【点 】x 1 ≥0, y3 ≥ 0.当x1 + y 3=0 , x + 1=0, y - 3= 0.15. x , y 分 8- 11 的整数部分和小数部分,2xy - y 2= ____________. 【提示】 ∵3< 11 < 4,∴ _______< 8- 11 < __________.[4,5].由于 8- 11介于 4 与 5 之 , 其整数部分 x =小数部分y = [x = 4, y = 4- 11 ]【答案】 5. 【点 】 求二次根式的整数部分和小数部分 ,先要 无理数 行估算. 在明确了二次 根式的取 范 后,其整数部分和小数部分就不 确定了. (三) : (每小3 分,共 15 分)16.已知x 33x 2 =- x x3 , ⋯ ⋯⋯⋯⋯⋯()(A )x ≤ 0( B )x ≤- 3(C )x ≥- 3( D )- 3≤ x ≤ 0【答案】 D .【点 】本 考 的算 平方根性 成立的条件,( A )、( C )不正确是因 只考 了其中一个算 平方根的意 .17.若 x < y < 0,x 22xy y 2 + x 2 2xy y2=⋯ ⋯⋯⋯⋯⋯⋯⋯⋯()(A )2x ( B )2y(C )- 2x( D )- 2y【提示】∵x < y < 0,∴ x - y < 0, x + y < 0.∴x 2 2xy y 2 = ( x y)2 =| x -y| = y - x .x 2 2xy y 2 = ( x y) 2 = | x + y| =- x -y .【答案】 C .【点 】本 考 二次根式的性a 2 = | a| .18.若 0< x < 1,(x1 )2 4 - ( x 1 )2 4 等于 ⋯⋯⋯⋯⋯⋯⋯⋯( )x x(A )2(B )-2( C )- 2xxx【提示】 (x -1 2+4= (x + 1 21 2= (x -1 x )x ) , (x + x ) - 4 x( D ) 2x)2.又∵0< x < 1,∴ x + 1>0 ,x - 1< 0.【答案】 D .x x【点 】本 考 完全平方公式和二次根式的性 . ( A )不正确是因 用性 没有注意当 0< x < 1 , x - 1< 0.x19.化a 3( a < 0 ) 得 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()a(A ) a(B )- a( C )-a( D ) a【提示】a 3 = a a 2 = a · a 2 = | a|a =- a a .【答案】 C .20.当 a <0, b < 0 ,- a + 2 ab -b 可 形 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()(A ) b ) 2 ( B )- ( a b) 2 ( C )( a b) 2( D )( ab ) 2( a【提示】∵ a < 0, b < 0,∴ - a > 0,- b > 0.并且- a = (a )2 ,-b = ( b)2 ,ab = ( a)( b) .【答案】 C .【点 】本 考 逆向运用公式( a ) 2 = a ( a ≥ 0)和完全平方公式.注意( A )、( B )不正确是因为 a < 0, b < 0 时, a 、 b 都没有意义. (四)在实数范围内因式分解: (每小题 3 分,共 6 分)21.9x 2-5y 2;【提示】用平方差公式分解, 并注意到 5y 2= ( 5y) 2 .【答案】( 3x + 5 y ) ( 3x - 5 y ).22. 4x 4- 4x 2+1.【提示】先用完全平方公式,再用平方差公式分解. 【答案】 ( 2 x +1)2( 2 x - 1)2. 6 分,共 24 (五)计算题: (每小题 分)23.( 5 3 2 )( 5 3 2 );【提示】将53 看成一个整体,先用平方差公式,再用完全平方公式.【解】原式= ( 5 3 )2- ( 2) 2= 5 - 2 15 + - = - 15 .3 2 6 224. 5 - 4 - 2 ;【提示】先分别分母有理化,再合并同类二次根11 1177 43式.【解】原式=5( 411) - 4( 11 7) - 2(3 7 )= 4+ 11 -11 - 7 - 3+16 11 11 79 7 7 = 1.25.( a2n - ab mn +nm)÷ a 2b 2n ;mmm nm【提示】先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式. 【解】原式=( a2n - ab mn +n m ) · 1 mm mmna 2b 2n= 1n m -1 mn m+ n m mb 2m nmab n ma 2b 2n n= 1 - 1 + 1= a 2ab 1 .b 22ba 2b 2ab a226.( a +bab)÷(a+ b - a b)(a ≠b ).abab b ab aab 【提示】本题应先将两个括号内的分式分别通分,然后分解因式并约分. 【解】原式=aab bab ÷ a a ( ab) b b ( a b ) (a b)( a b)==ab a b ÷a 2 a ab b ab a bab( a b )( a b · ab( a b )( a abab (a b)ab ( a b )( a b ) b 2 a 2 b 2a b )b ) =- ab .【点评】本题如果先分母有理化,那么计算较烦琐. (六)求值: (每小题 7 分,共 14 分)27.已知 x =32, y =3 2,求x 3 xy 2 x 2 y 3 的值.323 2x 4 y 2x 3 y 2 【提示】先将已知条件化简,再将分式化简最后将已知条件代入求值. 【解】∵x =32=(32) 2 = 5+ 2 6 ,32y =3 2= ( 32) 2 = 5- 2 6 .32∴ x + y =10, x - y =4 6 , xy = 52-(26 )2=1.x 3xy 2x 2 y 3 = x( x y)( x y) = x y = 46 = 26 .x 4 y 2x 3 y 2 x 2 y( x y) 2 xy( x y) 1 10 5【点评】 本题将 x 、y 化简后, 根据解题的需要, 先分别求出 “ x + y ”、“ x - y ”、“ xy ”.从而使求值的过程更简捷.28.当 x = 1-2 时,求x 2a 2x a 2 + 2xx 2 a 2 +1 的值.x x 2x 2x x 2 a 2 x 2 a 2【提示】注意: x 2+ a 2 = ( x 2 a 2 ) 2 ,∴ x 2+ a 2- x x 2 a 2 = x 2 a 2( x 2 a 2 - x ),x 2- x x 2 a 2 =- x ( x 2a 2- x ).【解】原式=x-2 xx 2 a 21x 2 a 2 ( x 2 a 2x( x2a 2+x 2 a 2x)x)= x 2x 2a 2 (2x x 2a 2 ) x( x 2a 2x)x x 2a 2 ( x 2a 2x)=x 2 2x x 2a 2 ( x 2 a 2 ) 2 x x 2 a 2 x 2=( x 2 a 2 )2 x x 2 a 2 =x x 2 a 2 ( x 2 a 2 x)x x 2a 2 ( x 2 a 2x)x 2 a 2 ( x 2 a 2x)x x 2a 2 ( x 2 a 2 x)= 1.当 x =1- 2 时,原式=1 1 =- 1-2 .【点评】本题如果将前两个“分式”x2分拆成 两个“分式” 之差,那 么化简会更简 便.即原 式=x-x 2 a 2 ( x 2 a 21x)2x x 2 a 2+22x( x 2 a 2 x)x a= (11 ) -( x 2 1 x1) +1 a2 = 1. x 2a 2 x x 2 a 2a 2 xx 2 x七、解答题: (每小题 8 分,共 16 分)29.计算( 2 5 + 1)( 1+1+1+ +1).23991 234100【提示】先将每个部分分母有理化后,再计算.【解】原式=( 25 + 1)( 2 1 + 3 2 + 43+ + 100 99 ) 2 1 3 2 4 3100 99= ( 2 5 + 1 ) [ ( 2 1 ) + ( 3 2 ) + ( 4 3 ) + + ( 10099 ) ]=( 2 5 + 1)( 100 1)= 9( 2 5 + 1).【点评】本题第二个括号内有 99 个不同分母,不可能通分.这里采用的是先分母有理 化,将分母化为整数,从而使每一项转化成两数之差,然后逐项相消. 这种方法也叫做裂项相消法.30.若 x ,y 为实数,且 y = 14x + 4x 1 + 1.求 x 2 y - x2 y 的2 y x y x值.1 4 x 0x14 ]【提示】要使 y 有意义,必须满足什么条件[] 你能求出 x ,y 的值吗 [4x 1 0.y 1 .21 4xx14 ∴ x = 1 .当 x = 1时, y = 1.【解】要使 y 有意义,必须 [,即4x 1 0x 1 . 4424又∵x 2y - x y =(xy 2 -xy2y x y2y)()xxy x = | xy| - | xy| ∵ x = 1, y = 1,∴x < y .yxyx42yx∴原式= xy - y x= 2 x 当 x = 1, y = 1时,yxxyy4 21原式= 2 4 =2 .【点评】解本题的关键是利用二次根式的意义求出x 的值,进12而求出 y 的值.。
二次根式测试题
第十六章二次根式一、选择题(每题3分,共30分)1.下列式子一定是二次根式的是( ).5.中,被开方数相同的是( ).A.①和②B.②和③C.①和④D.③和④6.计算的结果是( ).B.1C.D.37.长方形的面积为18,一边长为( ).A. D.24A.ξ−x B.ξx C.−ξ−x D.−ξx10.如图,数轴上A、B两点所对应的实数分别是−1,ξ3,若线段AB= BC,则点C所表示的实数是( ).A.1+ξ3 B.2+ξ3C.2ξ3+1 D.2ξ3−1二、填空题(每题3分,共18分)11.实数a、b在数轴上的位置如图所示,化简22()1)(1a b a b++=---_______.12.计算:൫ξ3−2൯2023൫ξ3+2൯2023的结果是____________.2213.比较大小:3__________(填“>”、“=”、“<”)14.若y=ξ3−x+ξx−3+5,则x2−2xy+y2的值是.15.实数2+ξ5的倒数是.16.若a+1a =2,则代数式a−1a的值为____________.三、解答题(共52分)17(4分).将下列二次根式化成最简二次根式:(1)ξ1.5a3; (2)ටb23a(b<0)18(12分).计算:22(1)(5)(3)273;---+-(2)ξ18−4ට12+ξ24÷ξ31(3)1212|32|;3⨯-+-)2(2222a b ab a aba b a ++÷--(2)先化简,再求值:,其中a =ξ5+1,b =−1.21(6分).下面是小明同学对于题目“化简并求值:2a +ξa 2−6a +9,其中a =1 ”的解答过程,请认真阅读并完成相应任务. 解:原式=2a +ඥሺa −3ሻ2……………第一步=2a +a ﹣3 …………………………第二步 =3a ﹣3 ……………………第三步把a =1代入得,原式=3a ﹣3=0.……………第四步任务一:填空:第 步开始出现错误,错误原因是 ______________________; 任务二:请直接写出代数式正确的值 .22(4分).已知 ,巧算代数式的值.23(6分).已知a 、b 、c 满足หa −ξ8ห+ξb −5+൫c −ξ18൯2=0.(1)求 a 、b 、c 的值;(2)以a 、b 、c 为边能否构成三角形?如果能构成,请求出三角形的周长;如果不能,请说明理由.24(6分).阅读材料:如果一个三角形的三边长分别为a ,b ,c ,记p =a+b+c 2,那么这个三角形的面积为S =ඥp ሺp −a ሻሺp −b ሻሺp −c ሻ.这个公式叫“海伦公式”,它是利用三角形的三条边的边长直接求三角形面积的公式,中国秦九韶也得出了类似的公式,称三斜求积术,故这个公式又被称为“海伦-秦九韶公式” .解答下列问题:如图,在△ABC 中,a =7,b =5,c =6.(1)△ABC 的面积;(2)过点A 作AD ⊥BC ,垂足为D ,求线段AD 的长.25a =-242a a --。
八年级数学二次根式提高题常考题与培优题含解析(可编辑修改word版)
二次根式提高题与常考题型压轴题(含解析)一.选择题(共 13 小题)1. 二次根式中 x 的取值范围是( )A .x >3B .x ≤3 且 x ≠0C .x ≤3D .x <3 且 x ≠02. 计算: ,正确的是()A .4B .C .2D .3. 如图,在长方形 ABCD 中无重叠放入面积分别为 16cm 2 和 12cm 2 的两张正方形纸片,则图中空白部分的面积为( )cm 2.A .16﹣8B .﹣12+8C .8﹣4D .4﹣2 4.若 1<x <2,则的值为()A .2x ﹣4B .﹣2C .4﹣2xD .25.下列计算正确的是( ) A .=2B . =C .=x D . =x6. 下列各式变形中,正确的是()A .x 2•x 3=x 6B .=|x |C .(x 2﹣)÷x=x ﹣1D .x 2﹣x +1=(x ﹣)2+7. 下列二次根式中,与是同类二次根式的是()A .B .C .D .8. 化简+ 的结果为()A .0B .2C .﹣2D .2﹣﹣﹣9. 已知,ab >0,化简二次根式 a 的正确结果是( )A .B .C .﹣D .﹣10. 设 a 为的小数部分,b 为的小数部分.则的值为( )A . +﹣1 B .+1C .﹣1 D .++111. 把中根号外面的因式移到根号内的结果是( )A .B .C .D .12.如果 =2a ﹣1,那么()A .aB .a ≤C .aD .a ≥ 13. 已知:a=,b=,则 a 与 b 的关系是()A .ab=1B .a +b=0C .a ﹣b=0D .a 2=b 2二.填空题(共 17 小题)14. 如果代数式有意义,那么 x 的取值范围为 .15. 在数轴上表示实数 a 的点如图所示,化简+|a ﹣2|的结果为.16.计算:= .17. 观察下列等式:第 1 个等式:a 1== ﹣1, 第 2 个等式:a 2== ,第 3 个等式:a 3==2﹣ , 第 4 个等式:a 4==﹣2,按上述规律,回答以下问题:﹣ ﹣﹣﹣ ﹣﹣ ﹣ (1)请写出第 n 个等式:a n = ;(2)a 1+a 2+a 3+…+a n =.18. 计算 2 的结果是.19. 计算(+)( )的结果等于.20.化简:(0<a <1)=.21. 如果最简二次根式与可以合并,那么使有意义的 x 的取值范围是 .22. 已知 a ,b 是正整数,且满足是整数,则这样的有序数对(a ,b )共有 对.23. 对正实数 a ,b 作定义 a*b=﹣a ,若 2*x=6,则 x=.24.已知 x +y=,x ﹣y=,则 x 4﹣y 4=.25. 已知=(x ,y 为有理数),则 x ﹣y=.26. 已知是正整数,则实数 n 的最大值为. 27. 三角形的三边长分别为 3、m 、5,化简= .28. 若实数 m 满足=m +1,且 0<m <,则 m 的值为.29. 计算下列各式的值:;;;.观察所得结果,总结存在的规律,应用得到的规律可得=.30.观察下列各式:=11+3×1+1,=22+3×2+1, =32+3×3+1,猜测:=.三.解答题(共 10 小题) 31.计算 (1)﹣4+÷﹣﹣(2)(1﹣)(1+)+(1+)2.32.若1<a<2,求+的值.33.已知x,y 都是有理数,并且满足,求的值.34.先化简,再求值:,其中x=﹣3 ﹣(π﹣3)0.35.(1)已知|2012﹣x|+=x,求x﹣20132的值;(2)已知a>0,b>0 且(+ )=3 (+5 ).求的值.36.观察下列各式及其验证过程:(1)按照上述两个等式及其验证过程的基本思路,猜想的变形结果并进行验证;(2)针对上述各式反应的规律,写出用n(n 为任意自然数,且n≥2)表示的等式,并说明它成立.37.先化简,再求值:(+)÷,其中a= +1.38.求不等式组的整数解.39.阅读与计算:请阅读以下材料,并完成相应的任务.古希腊的几何学家海伦在他的《度量》一书中给出了利用三角形的三边求三角形面积的“海伦公式”:如果一个三角形的三边长分别为a、b、c,设p=,则三角形的面积S=.我国南宋著名的数学家秦九韶,曾提出利用三角形的三边求面积的“秦九韶公式”(三斜求积术):如果一个三角形的三边长分别为a、b、c,则三角形的面积S=.(1)若一个三角形的三边长分别是5,6,7,则这个三角形的面积等于.(2)若一个三角形的三边长分别是,求这个三角形的面积.﹣40.已知:y= ++ ,求的值.﹣ ﹣二次根式提高题与常考题型压轴题(含解析)参考答案与试题解析一.选择题(共 13 小题) 1.(2017 春•启东市月考)二次根式中 x 的取值范围是()A .x >3B .x ≤3 且 x ≠0C .x ≤3D .x <3 且 x ≠0【分析】根据二次根式有意义的条件和分式有意义的条件得出 3﹣x ≥0 且 x ≠0, 求出即可. 【解答】解:要使有意义,必须 3﹣x ≥0 且 x ≠0,解得:x ≤3 且 x ≠0, 故选 B .【点评】本题考查了二次根式有意义的条件和分式有意义的条件等知识点,能根据题意得出 3﹣x ≥0 且 x ≠0 是解此题的关键.2.(2017 春•萧ft 区校级月考)计算: A .4B .C .2D .,正确的是( )【分析】直接化简二次根式进而合并求出答案.【解答】解: =2 =. 故选:D .【点评】此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键. 3.(2017 春•嵊州市月考)如图,在长方形 ABCD 中无重叠放入面积分别为 16cm 2 和 12cm 2 的两张正方形纸片,则图中空白部分的面积为()cm 2.﹣A.16﹣8 B.﹣12+8 C.8﹣4 D.4﹣2【分析】根据正方形的面积求出两个正方形的边长,从而求出AB、BC,再根据空白部分的面积等于长方形的面积减去两个正方形的面积列式计算即可得解.【解答】解:∵两张正方形纸片的面积分别为16cm2和12cm2,∴它们的边长分别为=4cm,=2 cm,∴AB=4cm,BC=(2 +4)cm,∴空白部分的面积=(2+4)×4﹣12﹣16,=8 +16﹣12﹣16,=(﹣12+8 )cm2.故选B.【点评】本题考查了二次根式的应用,算术平方根的定义,解题的关键在于根据正方形的面积求出两个正方形的边长.4.(2016•呼伦贝尔)若1<x<2,则的值为()A.2x﹣4 B.﹣2 C.4﹣2x D.2【分析】已知1<x<2,可判断x﹣3<0,x﹣1>0,根据绝对值,二次根式的性质解答.【解答】解:∵1<x<2,∴x﹣3<0,x﹣1>0,原式=|x﹣3|+=|x﹣3|+|x﹣1|=3﹣x+x﹣1=2.故选D.【点评】解答此题,要弄清以下问题:1、定义:一般地,形如(a≥0)的代数式叫做二次根式.当a>0 时,表示a 的算术平方根;当a=0 时,=0;当a 小于0 时,非二次根式(若根号下为负数,则无实数根).2、性质:=|a|.5.(2016•南充)下列计算正确的是()A.=2 B.=C.=x D.=x【分析】直接利用二次根式的性质分别化简求出答案.【解答】解:A、=2 ,正确;B、=,故此选项错误;C、=﹣x ,故此选项错误;D、=|x|,故此选项错误;故选:A.【点评】此题主要考查了二次根式的化简,正确掌握二次根式的性质是解题关键.6.(2016•杭州)下列各式变形中,正确的是()A.x2•x3=x6 B.=|x| C.(x2﹣)÷x=x﹣1 D.x2﹣x+1=(x﹣)2+【分析】直接利用二次根式的性质以及同底数幂的乘法运算法则和分式的混合运算法则分别化简求出答案.【解答】解:A、x2•x3=x5,故此选项错误;B、=|x|,正确;C、(x2﹣)÷x=x﹣,故此选项错误;D、x2﹣x+1=(x﹣)2+,故此选项错误;故选:B.【点评】此题主要考查了二次根式的性质以及同底数幂的乘法运算和分式的混合运算等知识,正确掌握相关运算法则是解题关键. 7.(2016•巴中)下列二次根式中,与是同类二次根式的是( )A .B .C .D .【分析】直接利用同类二次根式的定义分别化简二次根式求出答案. 【解答】解:A 、=3,与不是同类二次根式,故此选项错误;B 、=,与 ,是同类二次根式,故此选项正确;C 、=2 ,与不是同类二次根式,故此选项错误;D 、==,与 不是同类二次根式,故此选项错误;故选:B .【点评】此题主要考查了同类二次根式,正确化简二次根式是解题关键.8.(2016•营口)化简+A .0B .2C .﹣2D .2的结果为( )【分析】根据根式的开方,可化简二次根式,根据二次根式的加减,可得答案.【解答】解:+ 故选:D .=3 +﹣2 =2 ,【点评】本题考查了二次根式的加减,先化简,再加减运算.9.(2016•安徽校级自主招生)已知,ab >0,化简二次根式 a 的正确结果是()A .B .C .﹣D .﹣【分析】直接利用二次根式的性质进而化简得出答案. 【解答】解:∵ab >0,∴a =a × =﹣ .﹣ ﹣﹣ ﹣ 故选:D .【点评】此题主要考查了二次根式的性质与化简,正确应用二次根式的性质是解题关键.10.(2016•邯郸校级自主招生)设 a 为的小数部分,b 为﹣的小数部分.则 的值为()A . +﹣1B . +1C . ﹣1D .++1【分析】首先分别化简所给的两个二次根式,分别求出 a 、b 对应的小数部分, 然后代、化简、运算、求值,即可解决问题. 【解答】解:∵===∴a 的小数部分=﹣1;∵===,∴b 的小数部分=﹣2,∴ = == =.故选 B .【点评】该题主要考查了二次根式的化简与求值问题;解题的关键是灵活运用二﹣ ﹣ ﹣ ﹣﹣= ,﹣次根式的运算法则来分析、判断、解答.11.(2016•柘城县校级一模)把中根号外面的因式移到根号内的结果是()A.B.C.D.【分析】先根据被开方数大于等于0 判断出a 是负数,然后平方后移到根号内约分即可得解.【解答】解:根据被开方数非负数得,﹣>0,解得a<0,﹣a ==.故选A.【点评】本题考查了二次根式的性质与化简,先根据被开方数大于等于0 求出 a 的取值范围是解题的关键,也是本题最容易出错的地方.12.(2016•杨浦区三模)如果=2a﹣1,那么()A.a B.a≤C.a D.a≥【分析】由二次根式的化简公式得到1﹣2a 为非正数,即可求出 a 的范围.【解答】解:∵=|1﹣2a|=2a﹣1,∴1﹣2a≤0,解得:a≥.故选D【点评】此题考查了二次根式的性质与化简,熟练掌握二次根式的化简公式是解本题的关键.13.(2016•临朐县一模)已知:a=,b=,则a 与b 的关系是()A.ab=1 B.a+b=0 C.a﹣b=0 D.a2=b2【分析】先分母有理化求出a、b,再分别代入求出ab、a+b、a﹣b、a2、b2,求出每个式子的值,即可得出选项.【解答】解:a= = =2+ ,b= = =2﹣,A、ab=(2+)×(2﹣)=4﹣3=1,故本选项正确;B、a+b=(2+)+(2﹣)=4,故本选项错误;C、a﹣b=(2+ )﹣(2﹣)=2 ,故本选项错误;D、∵a2=(2+ )2=4+4 +3=7+4 ,b2=(2﹣)2=4﹣4 +3=7﹣4 ,∴a2≠b2,故本选项错误;故选A.【点评】本题考查了分母有理化的应用,能求出每个式子的值是解此题的关键.二.填空题(共17 小题)14.(2017•静安区一模)如果代数式有意义,那么x 的取值范围为 x>﹣2 .【分析】根据二次根式有意义的条件、分式有意义的条件列出不等式,解不等式即可.【解答】解:由题意得,x+2>0,解得,x>﹣2,故答案为:x>﹣2.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.15.(2016•乐ft)在数轴上表示实数a 的点如图所示,化简+|a﹣2|的结果为 3 .【分析】直接利用二次根式的性质以及绝对值的性质分别化简求出答案.﹣ 【解答】解:由数轴可得:a ﹣5<0,a ﹣2>0, 则+|a ﹣2|=5﹣a +a ﹣2 =3.故答案为:3.【点评】此题主要考查了二次根式的性质以及绝对值的性质,正确掌握掌握相关性质是解题关键.16.(2016•聊城)计算:= 12 .【分析】直接利用二次根式乘除运算法则化简求出答案. 【解答】解:=3 ×÷ =3=12.故答案为:12.【点评】此题主要考查了二次根式的乘除运算,正确化简二次根式是解题关键. 17.(2016•黄石)观察下列等式:第 1 个等式:a 1= =﹣1, 第 2 个等式:a 2== , 第 3 个等式:a 3==2﹣ , 第 4 个等式:a 4==﹣2,按上述规律,回答以下问题:(1) 请写出第 n 个等式:a n == ﹣ ; ;(2)a 1+a 2+a 3+…+a n = ﹣1 .﹣ ﹣ ﹣ 【分析】(1)根据题意可知,a 1== ﹣1,a 2== =﹣2,…由此得出第 n 个等式:a n ==(2) 将每一个等式化简即可求得答案.【解答】解:(1)∵第 1 个等式:a 1==﹣1,,a 3==2﹣ ,a 4=;第 2 个等式:a 2== , 第 3 个等式:a 3==2﹣ , 第 4 个等式:a 4==﹣2, ∴第 n 个等式:a n ==;(2)a 1+a 2+a 3+…+a n=( ﹣1)+( =﹣1.)+(2﹣ )+(﹣2)+…+()故答案为=;﹣1.【点评】此题考查数字的变化规律以及分母有理化,要求学生首先分析题意,找到规律,并进行推导得出答案.18.(2016•哈尔滨)计算 2的结果是 ﹣2 .【分析】先将各个二次根式化成最简二次根式,再把同类二次根式进行合并求解即可.【解答】解:原式=2×﹣3=﹣3=﹣2,故答案为:﹣2.【点评】本题考查了二次根式的加减法,解答本题的关键在于掌握二次根式的化简与同类二次根式合并.﹣ ﹣ ﹣ ﹣ ﹣19.(2016•天津)计算(+)()的结果等于 2 .﹣【分析】先套用平方差公式,再根据二次根式的性质计算可得.【解答】解:原式=()2﹣()2=5﹣3=2,故答案为:2.【点评】本题考查了二次根式的混合运算的应用,熟练掌握平方差公式与二次根式的性质是关键.20.(2016•博野县校级自主招生)化简:(0<a<1)= ﹣a .【分析】结合二次根式的性质进行化简求解即可.【解答】解:==|a﹣|.∵0<a<1,∴a2﹣1<0,∴a﹣=<0,∴原式=|a﹣|=﹣(a﹣)=﹣a.故答案为:﹣a.【点评】本题考查了二次根式的性质与化简,解答本题的关键在于熟练掌握二次根式的性质及二次根式的化简.21.(2016•绵阳校级自主招生)如果最简二次根式与可以合并,那么使有意义的x 的取值范围是x≤10 .【分析】根据二次根式可合并,可得同类二次根式,根据同类二次根式,可得 a 的值,根据被开方数是非负数,可得答案.【解答】解:由最简二次根式与可以合并,得3a﹣8=17﹣2a.解得a=5.由有意义,得20﹣2x≥0,解得x≤10,故答案为:x≤10.【点评】本题考查了同类二次根式,利用同类二次根式得出关于a 的方程是解题关键.22.(2016•温州校级自主招生)已知a,b 是正整数,且满足是整数,则这样的有序数对(a,b)共有7 对.【分析】A,B 只能是15n2,然后分别讨论及的取值,最终可确定有序数对的个数.【解答】解:15 只能约分成3,5那么A,B 只能是15n2先考虑A 这边:①,那么B 可以这边可以是1 或者,此时有:(15,60),(15,15),(60,15),②,只能B 这边也是,此时有:(60,60),③,那么B 这边也只能是,∴2×(+ )=1,此时有:(240,240)④ 的话,那么 B 这边只能是,那么2( + )=1,﹣此时有:(135,540),(540,135).综上可得共有 7 对. 故答案为:7.【点评】本题考查二次根式的化简求值,难度较大,关键是根据题意分别讨论及的取值.23.(2016•福州自主招生)对正实数a ,b 作定义a*b=﹣a ,若2*x=6,则x= 32 .【分析】根据定义把 2*x=6 化为普通方程,求解即可. 【解答】解: ∵a*b=﹣a , ∴2*x=﹣2,∴方程 2*x=6 可化为﹣2=6,解得 x=32,故答案为:32【点评】本题主要考查二次根式的化简,利用新定义把方程化为普通方程是解题的关键.24.(2016•黄冈校级自主招生)已知 x +y=,x ﹣y=,则 x 4﹣y 4=.【分析】把所给式子两边平方再相加可先求得 x 2+y 2,再求得 x 2﹣y 2,可求得答案. 【解答】解: ∵x +y=,x ﹣y=, ∴(x +y )2=x 2+2xy +y 2=()2=+,(x ﹣y )2=x 2﹣2xy +y 2=()2=,∴x 2+y 2=,又 x 2﹣y 2=( x +y ) ( x ﹣y ) =() () =﹣﹣ =1,∴x 4﹣y 4=(x 2+y 2)(x 2﹣y 2)=,故答案为:.【点评】本题主要考查二次根式的化简,利用乘法公式分别求得 x 2+y 2 和 x 2﹣y 2 的值是解题的关键.25.(2016•黄冈校级自主招生)已知=(x ,y 为有理数),则 x ﹣y= 1 .【分析】把已知条件两边平方,整理可得到 x +y ﹣2,结合 x 、y 均为有理数,可求得 x 、y 的值,可求得答案. 【解答】解:∵=, ∴()2=()2,即 2﹣3=x + y ﹣2,∴x +y ﹣2=2﹣ =+﹣2,∵x ,y 为有理数, ∴x +y= +,xy= ×, 由条件可知 x >y , ∴x= ,y= , ∴x ﹣y=1, 故答案为:1.【点评】本题主要考查二次根式的化简,由条件求得 x 、y 的值是解题的关键.26.(2016 春•固始县期末)已知是正整数,则实数 n 的最大值为 11 .【分析】根据二次根式的意义可知 12﹣n ≥0,解得 n ≤12,且 12﹣n 开方后是正整数,符合条件的 12﹣n 的值有 1、4、9…,其中 1 最小,此时 n 的值最大.﹣﹣【解答】解:由题意可知 12﹣n 是一个完全平方数,且不为 0,最小为 1, 所以 n 的最大值为 12﹣1=11.【点评】主要考查了二次根式有意义的条件,二次根式的被开方数是非负数.27.(2016•ft 西模拟)三角形的三边长分别为 3、m 、5,化简=2m ﹣10 .【分析】先利用三角形的三边关系求出 m 的取值范围,再化简求解即可. 【解答】解:∵三角形的三边长分别为 3、m 、5, ∴2<m <8,∴故答案为:2m ﹣10.=m ﹣2﹣(8﹣m )=2m ﹣10.【点评】本题主要考查了二次根式的性质与化简及三角形三边关系,解题的关键是熟记三角形的三边关系.28.(2016•武侯区模拟)若实数 m 满足=m +1,且 0<m <,则 m 的值为 .【分析】直接利用二次根式的性质化简进而得出关于 m 的等式即可得出答案. 【解答】解:∵=m +1,且 0<m <,∴2﹣m=m +1, 解得:m=. 故答案为:.【点评】此题主要考查了二次根式的性质与化简,正确开平方是解题关键. 29.(2016•龙岩模拟)计算下列各式的值:;; ; .﹣观察所得结果,总结存在的规律,应用得到的规律可得=102016 .【分析】直接利用已知数据计算得出结果的变化规律进而得出答案.【解答】解:=10;=100=102;=1000=103;=10000=104,可得=102016.故答案为:102016.【点评】此题主要考查了二次根式的性质与化简,正确得出结果变化规律是解题关键.30.(2016•丹东模拟)观察下列各式:=11+3×1+1,=22+3× 2+1,=32+3× 3+1,猜测:= 20112+3×2011+1 .【分析】根据题意得出数字变换规律进而得出答案.【解答】解:由题意可得:=20112+3×2011+1.故答案为:20112+3×2011+1.【点评】此题主要考查了二次根式的化简,正确得出数字变化规律是解题关键.三.解答题(共10 小题)31.(2017 春•临沭县校级月考)计算(1)﹣4 + ÷(2)(1﹣)(1+)+(1+)2.【分析】(1)先进行二次根式的除法运算,然后化简后合并即可;(2)利用完全平方公式和平方差公式计算.【解答】解:(1)原式=3﹣2 +=3 ﹣2 +2=3 ;(2)原式=1﹣5+1+2+5=2+2 .【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.32.(2017 春•沂源县校级月考)若1<a<2,求+的值.【分析】根据a 的范围即可确定a﹣2 和a﹣1 的符号,然后根据算术平根的意义进行化简求值.【解答】解:∵1<a<2,∴a﹣2<0,a﹣1>0.则原式=+=+=﹣1+1=0.【点评】本题考查了二次根式的化简求值,正确理解算术平方根的意义,理解=|a|是关键.33.(2017 春•启东市月考)已知x,y 都是有理数,并且满足,求的值.【分析】观察式子,需求出x,y 的值,因此,将已知等式变形:,x,y 都是有理数,可得,求解并使原式有意义即可.【解答】解:∵,∴.∵x,y 都是有理数,∴x2+2y﹣17 与y+4 也是有理数,∴解得∵有意义的条件是x≥y,∴取x=5,y=﹣4,∴.【点评】此类问题求解,或是转换式子,求出各个未知数的值,然后代入求解.或是将所求式子转化为已知值的式子,然后整体代入求解.34.(2016•锦州)先化简,再求值:,其中x=﹣3﹣(π﹣3)0.【分析】先根据分式混合运算的法则把原式进行化简,再把化简后x 的值代入进行计算即可.【解答】解:,=÷,=×,=.x= ﹣3 ﹣(π﹣3)0,=×4=2= ﹣1.﹣1,﹣1,﹣﹣把x=﹣1 代入得到:== .即= .【点评】本题考查的是分式的化简求值,在解答此类题目时要注意通分及约分的灵活应用.35.(2016•湖北校级自主招生)(1)已知|2012﹣x|+=x,求x﹣20132的值;(2)已知a>0,b>0 且(+ )=3 (+5 ).求的值.【分析】(1)由二次根式有意义的条件可知x≥2013,然后化简得=2012,由算术平方根的定义可知:x﹣2013=20122,最后结合平方差公式可求得答案.(2)根据单项式乘多项式的法则把(+)=3 (+5)进行整理,得出a﹣2﹣15b=0,再进行因式分解得出(﹣5)(+3)=0,然后根据a>0,b>0,得出﹣5 =0,求出a=25b,最后代入要求的式子约分即可得出答案.【解答】解:(1)∵x﹣2013≥0,∴x≥2013.∴x﹣2012+ =x.∴=2012.∴x﹣2013=20122.∴x=20122+2013.∴x﹣20132=20122﹣20132+2013=﹣(2012+2013)+2013=﹣2012.(2)∵(+)=3(+5),∴a+=3 +15b,∴a﹣2 ﹣15b=0,∴(﹣5)(+3)=0,∵a>0,b>0,∴﹣5 =0,∴a=25b,∴原式== =2.【点评】本题主要考查的是二次根式的混合运算,用到的知识点是二次根式有意义的条件、绝对值的化简、算术平方根的性质、平方差公式的应用,第(1)题求得x﹣2013=20122,第(2)求出a=25b 是解题的关键.36.(2016•ft西模拟)观察下列各式及其验证过程:(1)按照上述两个等式及其验证过程的基本思路,猜想的变形结果并进行验证;(2)针对上述各式反应的规律,写出用n(n 为任意自然数,且n≥2)表示的等式,并说明它成立.【分析】根据观察,可得规律,根据规律,可得答案.【解答】解:(1)5=验证:5====;(2)n = ,证明:n = = = = .【点评】本题考查了二次根式的性质与化简,运用n=的规律是解题关键.37.(2016•仙游县校级模拟)先化简,再求值:(+)÷,其中a=+1.【分析】利用通分、平方差公式等将原式化简为,代入a 的值即可得出结论.【解答】解:原式=(+)÷,=•,=•,=.当a= +1 时,原式==.【点评】本题考查了分式的化简求值,解题的关键是将原式化简成.本题属于基础题,难度不大,解决该题型题目时,先将原代数式进行化简,再代入数据求值是关键.38.(2016•高邮市一模)求不等式组的整数解.【分析】首先解不等式组,注意系数化“1”时,这两个不等式的系数为负数,不等号的方向要改变.还要注意题目的要求,按要求解题.【解答】解:整理不等式组,得∴∴∴;∴不等式组的整数解为﹣2,﹣1,0.【点评】此题考查了一元一次不等式组的解法.要注意系数化“1”时,系数是正还是负,正不等号的方向不变,负不等号的方向改变.还要注意审题,根据题意解题.39.(2016•太原一模)阅读与计算:请阅读以下材料,并完成相应的任务.古希腊的几何学家海伦在他的《度量》一书中给出了利用三角形的三边求三角形面积的“海伦公式”:如果一个三角形的三边长分别为a、b、c,设p=,则三角形的面积S=.我国南宋著名的数学家秦九韶,曾提出利用三角形的三边求面积的“秦九韶公式”(三斜求积术):如果一个三角形的三边长分别为a、b、c,则三角形的面积S=.(1)若一个三角形的三边长分别是5,6,7,则这个三角形的面积等于 6 .(2)若一个三角形的三边长分别是,求这个三角形的面积.【分析】(1)把a、b、c 的长代入求出S2,再开方计算即可得解;(2)把a、b、c 的长代入求出S2,再开方计算即可得解.【解答】解:(1)p===9,S===6 .答:这个三角形的面积等于6.(2)S===== .答:这个三角形的面积是. 故答案为:6.【点评】本题考查了二次根式的应用,难点在于对各项整理利用算术平方根的定义计算.40.(2016 春•饶平县期末)已知:y=++ ,求的值.【分析】首先根据二次根式中的被开方数必须是非负数,求出 x 的值是多少,进而求出 y 的值是多少;然后把求出的 x 、y 的值代入化简后的算式即可. 【解答】解:∵+有意义,∴,解得 x=8, ∴y= ++=++=0+0+= ∴=﹣ ﹣ ﹣=== =【点评】此题主要考查了二次根式有意义的条件,要熟练掌握,解答此题的关键是要明确:二次根式中的被开方数必须是非负数,否则二次根式无意义.单纯的课本内容,并不能满足学生的需要,通过补充,达到内容的完善教育之通病是教用脑的人不用手,不教用手的人用脑,所以一无所能。
二次根式练习题50道(含答案)
二次根式 50 题(含解析)1.计算:2.先分解因式,再求值:b2-2b+1-a2,其中a=-3,b=+4.3.已知,求代数式(x+1)2-4(x+1)+4的值.4.先化简,再求值:.5.(1)计算:;(2)化简,求值:,其中x=-1.6.先化简、再求值:+,其中x=,y=.7.计算:(1)(-2)2+3×(-2)-()-2;(2)已知x=-1,求x2+3x-1的值.8.先化简,再求值:,其中.9.已知a=2+,b=2-,试求的值.10.先化简,再求值:,其中a=+1,b=.11.先化简,再求值:,其中,.12.先化简,再求值:,其中a=-1.13.先化简,再求值:(x+1)2-2x+1,其中x=.14.化简,将代入求值.15.已知:x=+1,y=-1,求下列各式的值.(1)x2+2xy+y2;(2)x2-y2.16.先化简,再求值:,其中.17.先化简,再求值:,其中.18.求代数式的值:,其中x=2+.19.已知a为实数,求代数式的值.20.已知:a=-1,求的值.21.已知x=1+,求代数式的值.22.先化简,再求值:,其中x=1+,y=1-.23.有这样一道题:计算-x2(x>2)的值,其中x=1005,某同学把“x=1 005”错抄成“x=1 050”,但他的计算结果是正确的,请回答这是怎么回事?试说明理由.24.已知:x=,y=-1,求x2+2y2-xy的值.25.已知实数x、y、a满足:,试问长度分别为x、y、a的三条线段能否组成一个三角形?如果能,请求出该三角形的面积;如果不能,请说明理由.26.我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它的面积.用现代式子表示即为:…①(其中a、b、c为三角形的三边长,s为面积).而另一个文明古国古希腊也有求三角形面积的海伦公式:s=…②(其中p=.)(1)若已知三角形的三边长分别为5,7,8,试分别运用公式①和公式②,计算该三角形的面积s;(2)你能否由公式①推导出公式②?请试试.27.(1)计算28.(2)解不等式组.29.已知a=+2,b=-2,则的值为()30.已知a=2,则代数式的值等于()31.已知x=,则代数式的值为()32.已知x=,则•(1+)的值是()33.若,则的值为()34.已知,则的值为()35.如果最简二次根式与是同类二次根式,则a=.36.若最简根式与是同类二次根式,则ab=.37.计算:①= ;②=.38.化简-= .39.化简-的结果是.40.计算:= .41.计算:+=.42.化简:= .43.化简:-+=.44.计算:= .45.先化简-(-),再求得它的近似值为(精确到0.01,≈1.414,≈1.732).46.化简:的结果为.47.计算:= .48.化简:= .49.化简:+(5-)=.50.计算:= .解析:1.解:原式=2+(2+)-(7+4)=--5.2.当a=-3,b=+4时,原式=×(+6)=3+6.3.解:原式=(x+1-2)2=(x-1)2,当时,原式==3.4.解:原式=-===.当时,=.5.解:(1)原式=4--4+2=;(2)原式===x+1,当x=-1时,原式=.6.解:原式=-===x-y,当x=,y=时,(2)方法一:当x=-1时,x2+3x-1=(-1)2+3(-1)-1=2-2+1+3-3-1=-1;方法二:因为x=-1,所以x+1=,所以(x+1)2=()2即x2+2x+1=2,所以x2+2x=1所以x2+3x-1=x2+2x+x-1=1+x-1=-1.8.解:原式====-x-4,当时,原式===.9.解:∵a=2+,b=2-,∴a+b=4,a-b=2,ab=1.而=,∴===8.10.原式==,∵∴.11.解:===,把,代入上式,得原式=.12.解:====;当a=-1时,原式====-(-1)=1.13.解:原式=x2+2x+1-2x+1=x2+2;当.14.解:原式=•=x-3;当x=3-,原式=3--3=.15.解:(1)当x=+1,y=-1时,原式=(x+y)2=(+1+-1)2=12;(2)当x=+1,y=-1时,原式=(x+y)(x-y)=(+1+-1)(+1-+1)=4.16.解:===x-2;当时,原式=.17.解:原式=a2-3-a2+6a=6a-3,当a=时,原式=6+3-3=6.18.解:原式=+=+=;当x=2+时,原式==.19.解:∵-a2≥0∴a2≤0而a2≥0∴a=0∴原式=.20.解:原式=,当a=-1时,原式=.21.解:原式=-==,当x=1+时,原式=.22.解:原式===;当x=1+,y=1-时,原式=.23.解:原式==+-x2=-x2=-2.∵化简结果与x的值无关,∴该同学虽然抄错了x的值,计算结果却是正确的.24.解:当时,x2+2y2-xy==.25.解:根据二次根式的意义,得,解得x+y=8,∴+=0,根据非负数的意义,得解得x=3,y=5,a=4,∴可以组成三角形,且为直角三角形,面积为6.26.解:(1)S=,=;P=(5+7+8)=10,又S=;(2)=(-)=,=(c+a-b)(c-a+b)(a+b+c)(a+b-c),=(2p-2a)(2p-2b)•2p•(2p-2c),=p(p-a)(p-b)(p-c),∴=.(说明:若在整个推导过程中,始终带根号运算当然也正确)27.解:27.(1)原式=3--+1=3--+1=+1;28.(2)由①得x+1>3-x,即x>1;由②得4x+16<3x+18,即x<2;不等式组的解集为1<x<2.29.解:原式=====5.30.解:当a=2时,=2-=2-=2-3-2=-3.31.解:=.32.当x=时,=-1,∴原式=1-()=2-.33.解:原式==•-•=a-b,34.解:∵a==,b==,∴==5.35.解:∵最简二次根式与是同类二次根式,∴3a-8=17-2a,解得:a=5.36.解:∵最简根式与是同类二次根式,∴,解得:,∴ab=1.37.解:①×===4;②-=2-=.38.解:原式=2-3=-.39.解:原式=2-=.故答案为:.40.解:原式=3-4+=0.41.解:原式=2+=3.42.解:原式=4-=3.43.(2010•聊城)化简:-+=.44.解:原式=2-=.45.解:原式=-(-)=-(-)=-+=3≈3×1.732≈5.196≈5.2046.解:原式=-20=-14.47.解:原式=2-3=-.48.解:=5.49.解:原式=+5-=5.50.解:原式=2-+=2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次根式提高测试题
一、选择题
1
有意义的x 的取值范围是( ) 2.一个自然数的算术平方根为()0a a >,则与这个自然数相邻的两个自然数的算术平方根为( )
(A )1,1a a -+(B C (D )22
1,1a a -+
3.若0x <x 等于( )
(A )0 (B )2x - (C )2x (D )0或2x
4.若0,0a b <> )
(A )- (B )- (C ) (D )a
5m
=,则2
1y y +的结果为( )
(A )22m + (B )2
2m - (C 2 (D 2
6.已知,a b b a =-,则a 与b 的大小关系是( ) (A )a b < (B )a b > (C )a b ≥ (D )a b ≤ 7.已知下列命题:
2=; 36π-=;
③()()()2
2
333a a a +-=+-; a b =+. 其中正确的有( )
(A )0个 (B )1个 (C )2个 (D )3个
8.若m 的值为( ) (A )
203 (B )5126 (C )138 (D )158
9.当12
a ≤21a -等于( )
(A )2 (B )24a - (C )a (D )0
102
得( )
(A )2 (B )44x -+ (C )2- (D )44x - 二、填空题
11.若21x +的平方根是5±_____=.
12.当_____x
13与a _____a b +=.
14.若x 的整数部分,y 的小数部分,则____x =,_____y =.
150x y <<,则满足上式的整数对(),x y 有_____.
16.若11x -<<1_____x +=.
17.若0xy ≠=-成立的条件是_____.
18.若01x <<等于_____.
三、解答题
1 9.计算下列各题:
(1⎛ ⎝; (23a
20.已知()
)
2006
2007
22
2
2a =+-2
4a a +的值 .
21.已知y x ,是实数,且3
2
9922+--+-=x x x y ,求y x 65+的值.
22.若42--y x 与()2
12+-y x 互为相反数,求代数式3
2
34
1y y x x +
+的值.
23.若a b S 、、满足7,S ==,求S 的最大值和最小值.
24.当x =1-
2时,求
2
2
2
2
a
x x a x x
+-++
2
2
2
222a
x x x a x x +-+-+
2
2
1a
x +的值.
25.计算(2
5+1)(
2
11
++
321++
4
31
++…+
100
991
+).
试题答案
一、选择题 1.(D ) 2.(C ) 3.(B ) 4.(A ) 5.(A ) 6.(D ) 7.(A ) 8.(D ) 9.(B ) 10.(A ) 答案提示:
1.依题意,可列出如下条件组30,
1 3.10.
x x x -≥⎧⇒<≤⎨
->⎩
2.因为这个自然数的算术平方根为()0a a >,所以这个自然数为2
a ,它相邻的两个自然数为2
2
1,1a a -+,
3. 当0x <
22.x x x x x =--==-
4. 因为0,0a b <>
=
==-
5
.
(
)
2
2
2
22
11
1
2 2.y y m y y
⎫
+=+=+
=+=+
6b a =-,得b a b a -=-,故0,.b a b a -≥≥ 7.
8
.因为=
=, 所以12623m m -=-,解得15
.8
m = 9.因为1
2
a ≤
,所以210a -≤, 所以原式=1221121224.a a a a a -+-=-+-=- 10.根据题意,有230x -≥,即3.2
x ≥
所以原式=()21232123 2.x x x x ---=--+= 二、填空题(每题5分,共30分) 11. 7
12. 5
3
x ≤
且 4.x ≠- 13.8.a b +=
14.
2, 2.x y ==
15.()()()41,1476,164,1025,369,656. 16. 2
17
===- ,所以0x >且0y <
18.2x 答案提示:
11. 2125x +=,则12.x =
7=
=
12.由题意,得5530,,3
40. 4.
x x x x ⎧-≥⎧≤⎪⎪
⇒⎨⎨-≠⎪⎩⎪≠±⎩
故53x ≤且 4.x ≠- 13.由题意,可得423,5,
2. 3.a b a a b b +==⎧⎧⇒⎨⎨
-==⎩⎩
所以8.a b +=. 14.
由题意,得23<
,所以2, 2.x y == 15
==
=
因为0x y <<,且,x y
==7a b +=,且.a b < 解得1,6;2,5;3, 4.a b a b a b ======
故所求的整数对为()()()41,1476,164,1025,369,656. 16.当11x -<<时,原式=1111 2.x x x x -++=-++= 17. 0x >且0y <
18.当01x <<时,原式=1111112.x x x x x x x x x x x x x ⎛⎫
+--=+--=+-+= ⎪⎝⎭
三、解答题
19.
解:(1)原式
=3
18552⨯==-⨯=-
(2)原式
=3322a a a a ⎛
=-+-= ⎝ 20.
解:(
)
)
)
2006
2006
22
2212222 2.a =+-⨯+-=-+=
所以(
)
)2
4422 1.a a a a +=+==
21.
解:根据题意,得⎪⎩⎪⎨⎧≥-≥-,09,0922x x 所以⎪⎩⎪⎨⎧≤≥.
9,92
2x x 所以92
=x ,故3±=x .
又因为,03≠+x 所以x ≠-3.故x =3. 此时由条件等式,可得3
1
62-=-
=y , 所以133163565=⎪⎭
⎫ ⎝⎛-⨯+⨯=+y x .
22.
解:因为,042≥--y x ()0122
≥+-y x ,
又根据题意42--y x +()2
12+-y x =0.
所以042=--y x ,()0122
=+-y x .
解方程组⎩⎨
⎧=+-=--.012,042y x y x 得⎩⎨⎧==.
2,
3y x
所以2
2232
3214141⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛++=++y x x y xy x x y y x x
=3443221332
2
=⨯=⎪⎭
⎫ ⎝⎛⨯+⨯.
23.
7,
.
S ⎧=⎪⎨=⎪⎩的解.
解以上方程组,得(
)()1521,191143.19S S =+=-
0.≥
所以5210,1430.
S S +≥⎧⎨
-≥⎩解得2114.53S -≤≤
因此S 的最大值是143,最小值是215
-.。