平抛运动典型例题(含答案)

合集下载

(完整版)平抛运动测试题大全及答案

(完整版)平抛运动测试题大全及答案

平抛运动试题(YI)一、选择题:1.如图1所示,在光滑的水平面上有一小球a以初速度v0运动,同时刻在它的正上方有小球b也以v0初速度水平抛出,并落于c点,则( )A .小球a先到达c点B .小球b先到达c点C .两球同时到达c点D .不能确定 2.一个物体从某一确定的高度以v0的初速度水平抛出,已知它落地时的速度为vt,那么它的运动时间是( )A .g v v t 0-B .g v v t 20-C .gv v t 222- D .g v v t 202-3.如图2所示,为物体做平抛运动的x-y图象.此曲线上任意一点P (x ,y )的 速度方向的反向延长线交于x 轴上的A 点,则A 点的横坐标为( ) A.0.6xB.0.5xC.0.3xD.无法确定4.下列关于平抛运动的说法正确的是( )A. 平抛运动是非匀变速运动B. 平抛运动是匀速运动C. 平抛运动是匀变速曲线运动D. 平抛运动的物体落地时的速度一定是竖直向下的5.将甲、乙、丙三个小球同时水平抛出后落在同一水平面上,已知甲和乙抛射点的高度相同,乙和丙抛射速度相同。

下列判断中正确的是( ) A. 甲和乙一定同时落地 B. 乙和丙一定同时落地 C. 甲和乙水平射程一定相同 D. 乙和丙水平射程一定相同6.对平抛运动的物体,若g 已知,再给出下列哪组条件,可确定其初速度大小( ) A .水平位移 B .下落高度C .落地时速度大小和方向D .落地位移大小和方向7. 关于物体的平抛运动,下列说法正确的是( )A. 由于物体受力的大小和方向不变, 因此平抛运动是匀变速运动;B. 由于物体速度的方向不断变化, 因此平抛运动不是匀变速运动;C. 物体的运动时间只由抛出时的初速度决定,与高度无关;D.平抛运动的水平距离由抛出点的高度和初速度共同决定.8. 把甲物体从2h 高处以速度V 水平抛出,落地点的水平距离为L,把乙物体从h 高处以速度2V 水平抛出,落地点的水平距离为S,比较L 与S,可知( )A.L=S/2 ;B. L=2S;C.L S =12; D.L S =2 . 9.以速度v 0水平抛出一小球,如果从抛出到某时刻小球的竖直分位移与水平分位移大小相等,以下判断正确的是( )A .此时小球的竖直分速度大小等于水平分速度大小图1B .此时小球的速度大小为2 v 0C .小球运动的时间为2 v 0/gD .此时小球速度的方向与位移的方向相同10.物体在平抛运动过程中,在相等的时间内,下列哪个量是相等的( ) A.位移 B.加速度C.平均速度D.速度的增量11从高h 处以水平速度v 0抛出一物体,物体落地速度方向与水平地面夹角最大的时候,h 与v 0的取值应为下列四组中的( )A.h =30m ,v 0=10m/s B.h =30m ,v 0=30m/s C.h =50m ,v 0=30m/s D.h =50m ,v 0=10m/s12 对于一个做平抛运动的物体,它在从抛出开始的四段连续相等的时间内,在水平方向和竖直方向的位移之比,下列说法正确的是( )A.1:2:3:4;1:4:9:16 B.1:3:5:7;1:1:1:1 C.1:1:1:1;1:3:5:7 D.1:4:9:16;1:2:3:413]如图2甲所示,以9.8m/s 的初速度水平抛出的物体,飞行一段时间后,垂直地撞在倾角θ为30°的斜面上。

高二物理平抛运动试题答案及解析

高二物理平抛运动试题答案及解析

高二物理平抛运动试题答案及解析1.图为一小球做平抛运动的闪光照片的一部分,图中背景方格的边长均为2.5厘米,如果取重力加速度g=10米/秒2,那么:(1)照片的闪光频率为________Hz。

(2)小球做平抛运动的初速度的大小为_______m/s。

【答案】(1)10 ;(2)0.75【解析】(1)根据,则,则照片的闪光频率为f=1/T=10Hz;(2)小球做平抛运动的初速度的大小为:【考点】研究平抛物体的运动试验。

2.如图所示,质量为0.5 kg的小球在距离车底面高20 m处以一定的初速度向左平抛,落在以7.5 m/s速度沿光滑水平面向右匀速行驶的敞篷小车中,车底涂有一层油泥,车与油泥的总质量为4 kg,设小球在落到车底前瞬时速度是25 m/s,g取10 m/s2,则当小球与小车相对静止时,小车的速度是()A.m/s B.5m/sC.4 m/s D.m/s【答案】B【解析】据题意,小球从20m高出向走抛出做平抛运动,落到车上时数值分速度为:,即,此时水平分速度为:,当小球和车相对静止时,据动量守恒定律有:,则小车的速度为:,故选项B正确。

【考点】本题考查动量守恒定律和平抛运动的应用。

3.在空间中水平面MN的下方存在竖直向下的匀强电场,质量为m的带电小球由MN上方的A 点以一定初速度水平抛出,从B点进入电场,到达C点时速度方向恰好水平,A、B、C三点在同一直线上,且AB=2BC,如右图所示.由此可见()A.电场力为2mgB.小球带正电C.小球从A到B与从B到C的运动时间相等D.小球从A到B与从B到C的速度变化量的大小相等【答案】D【解析】小球在水平方向不受力,所以沿水平方向做匀速直线运动,小球从A到B的运动时间是从B到C的运动时间的2倍,C错;在竖直方向,小球在AB受到的重力是小球在BC所受合力的一半,所以电场力,AB错;小球从A到B与从B到C的速度变化量的大小相等,D正确。

【考点】平抛运动电场力4.质量为m=3kg的物体在离地面高度为h=20m处,正以水平速度v=20m/s运动时,突然炸裂成两块,其中一块质量为m1=1kg.仍沿原运动方向以v1=40m/s的速度飞行,炸裂后的另一块的速度大小为______m/s.两块落到水平地面上的距离为______m(小计空气阻力,g取10m/s2).【答案】10 60【解析】物体爆炸前后,由动量守恒定律可知:,代入数据可得:,方向不变.由可知两块物体的下落时间,所以两块物体落地点间的距离为..【考点】考查动量守恒定律和平抛运动规律的应用.5.分如图所示,宇航员站在某质量分布均匀的星球表面一斜坡上P点,沿水平方向以初速度v抛出一个小球,测得小球经时间t落到斜坡另一点Q,斜坡的倾角为θ,已知该星球的半径为R,引力常量为G。

平抛运动练习题含答案

平抛运动练习题含答案

平抛运动练习题一【例题1】下列说法正确的是A.做曲线运动的物体受到合外力一定不为零B.做曲线运动的物体的加速度一定是变化的C.物体在恒力作用下,不可能做曲线运动D.曲线运动中速度的方向不断改变,因而是变速运动【例题2】有一条河,河流的水速为v 1,现有一条小船沿垂直于河岸的方向从A 渡河至对岸的B 点,它在静止水中航行速度v 大小一定,当船行驶到河中心时,河水流速变为v 2(v 2>v 1),若船头朝向不变,这将使得该船( )A 、渡河时间增大B 、到达对岸时的速度增大C 、渡河通过的路程增大D 、渡河通过的路程比位移大【例题3】关于运动和力,下列说法中正确的是A. 物体受到恒定合外力作用时,一定作匀速直线运动B. 物体受到变化的合外力作用时,它的运动速度大小一定变化C. 物体做曲线运动时,合外力方向一定与瞬时速度方向垂直D. 所有曲线运动的物体,所受的合外力一定与瞬时速度方向不在一条直线上【例题4】如图所示,汽车甲以速度v1拉汽车乙前进,乙的速度为v2,甲、乙都在水平面上运动,求v1∶v2【例题5】如图3所示,蹲在树枝上的一只松鼠看到一个猎人正在用枪水平对准它,就在子弹出枪口时,松鼠开始运动,下述各种运动方式中,松鼠不能逃脱厄运而被击中的是(设树枝足够高):A .自由落下B .竖直上跳C.迎着枪口,沿AB 方向水平跳离树枝D.背着枪口,沿AC 方向水平跳离树枝【例题6】平抛运动可以分解为水平方向的匀速直线运动和竖直方向的自由落体运动,在同一坐标系中作出两个分运动的v-t图象,如图1所示,则以下说法正确的是( )A .图线1表示水平方向分运动的v-t 图线B .图线2表示竖直方向分运动的v-t 图线C .t 1时刻物体的速度方向与初速度方向夹角为45°D .若图线2的倾角为θ,当地重力加速度为g ,则一定有g =θtan 图 3图1【例题7】在足够高处将质量m=1kg的小球沿水平方向抛出,已知在抛出后第2s末时小球速度大小为25m/s,取g=10m/s2,求:⑴小球沿水平方向抛出后第0.58s末小球的加速度大小和方向如何?⑵第2s末时小球下降的竖直高度h;⑶小球沿水平方向抛出时的初速度大小。

平抛运动中的典型问题

平抛运动中的典型问题
水平:x=v0t 竖直:y=gt2/2
tan y gt
x 2v0
分解速度: 水平:vx=v0 竖直:vy=gt
v0
α
θ
v
θ vy
第4页
返回目录
v0 y x
结束放映
数字媒体资源库
【例1】如图所示,在与水平方向成37°角
的斜坡上的A点,以10m/s的速度水平抛出
一个小球,求落在斜坡上的B点与A点的距
可算出(ABC ).
A.轰炸机的飞行高度 B.轰炸机的飞行速度 C.炸弹的飞行时间 D.炸弹投出时的动能
审题设疑
1、审题中的关键着眼点在哪里?
2、通过什么办法找出各量之间的 关系,列方程求解?
第8页
数字媒体资源库ຫໍສະໝຸດ Hxv0H-h=12vyt x=v0t, vv0y=ta1n θ x=tahn θ vy=返g回t 目录
第14页
返回目录
结束放映
数字媒体资源库
典型问题二 平抛运动的临界问题
第15页
返回目录
结束放映
数字媒体资源库
【例6】如图,排球场总长18m,设网的高度为2m,运动员 站在离网3m远的线上正对网前竖直跳起把球水平击出 .(g=10m/s2). (1)设击球点的高度为2.5m,问球被水平击出时的速度在 什么范围内才能使球既不触网也不出界? (2)若击球点的高度小于某个值,那么无论球被水平击出 的速度多大,球不是触网就是出界,试求此高度?
B.小球的抛出点距斜面的竖直高度约是 15 m
C.若将小球以水平速度 v0′=5 m/s 向右抛出, 它一定落在 AB 的中点 P 的上方
D.若将小球以水平速度 v0′=5 m/s 向右抛出, 它一定落在 AB 的中点 P 处

高二物理平抛运动试题答案及解析

高二物理平抛运动试题答案及解析

高二物理平抛运动试题答案及解析1.一水平抛出的小球落到一倾角为θ的斜面上时,其速度方向与斜面垂直,运动轨迹如图中虚线所示.则此时小球水平速度与竖直速度之比、小球水平方向通过的距离与在竖直方向下落的距离之比分别为()A.水平速度与竖直速度之比为tanθB.水平速度与竖直速度之比为C.水平位移与竖直位移之比为2tanθD.水平位移与竖直位移之比为【答案】AC【解析】小球撞在斜面上,速度方向与斜面垂直,则速度方向与竖直方向的夹角为θ,则水平速度与竖直速度之比为,故A正确,B错误.水平位移与竖直位移之比,故C正确,D错误。

【考点】考查了平抛运动2.某人向放在水平地面的正前方小桶中水平抛球,结果球划着一条弧线飞到小桶的前方(如图所示)。

不计空气阻力,为了能把小球抛进小桶中,则下次再水平抛时,他可能作出的调整为()A.增大初速度,抛出点高度变大B.增大初速度,抛出点高度不变C.初速度大小不变,降低抛出点高度D.初速度大小不变,提高抛出点高度【答案】 C,抛出点离桶的高度为h,水平位移为,则平抛【解析】试题分析: 设小球平抛运动的初速度为v运动的时间,水平位移,由上式分析可知,提高抛出点高度h,增大初速度v0.将会增大,不可以把小球抛进小桶中,故A、B错误;速度不变,减小h,水平位移将减小,可以把小球抛进小桶中,故C正确;初速度大小不变,提高抛出点高度,水平位移将增大,不可以把小球抛进小桶中,故D错误。

【考点】平抛运动时,小球3.如图所示,水平面上固定有一个斜面,从斜面顶端向右平抛一只小球,当初速度为v。

现用不同的初速度v从该斜面顶端向右平抛这只小球,恰好落到斜面底端,小球的飞行时间为t以下哪个图象能正确表示小球的飞行时间t随v变化的函数关系【答案】C【解析】据题意,设斜面倾角为,小球做平抛运动,运动过程中水平位移为:,竖直位移为:,由于斜面倾角不变,则有:,整理得:,当增加速度,时间与平抛速度成正比;小球落地后,由于高度不变,则小球的平抛运动时间不变;故选项C正确。

平抛运动经典题型(含答案)

平抛运动经典题型(含答案)
A.运动员先后落在雪坡上的速度方向不相同
B.运动员先后在空中飞行的时间之比为
C.运动员先后落到雪坡上的速度之比为
D.运动员先后下落的高度之比为
【答案】C
【解析】A.设运动员的速度和水平方向的夹角为 ,则 ,而位移和水平方向的夹角 ,因此可得 ;运动员先后落在雪坡上时位移的偏向角相同,根据平抛运动速度的偏向角的正切等于位移的偏向角的正切的2倍可知,速度的偏向角相同,即运动员落到雪坡上的速度方向相同,选项A错误;
A.20B.18C.9.0D.3.0
【答案】B
【解析】有题意可知当在a点动能为E1时,有
根据平抛运动规律有
当在a点时动能为E2时,有
根据平抛运动规律有
联立以上各式可解得
故选B。
【练习1】如图所示,以水平初速度v0抛出的物体,飞行一段时间后,垂直地撞在倾角为θ的斜面上,则AB之间的水平位移与竖直位移之比为()
A. B.
C. D.
【答案】BC
【解析】AB.做平抛运动的物体两次都落在斜面上,因此
整理得 ①
B正确,A错误;
CD.由于 ②

由①②③联立得
C正确,D错误。
故选BC。
平抛结论应用
【方法】
①速度反向延长线过水平位移中点
②tanα=2tanβ
【典例】(2020全国II卷)如图,在摩托车越野赛途中的水平路段前方有一个坑,该坑沿摩托车前进方向的水平宽度为3h,其左边缘a点比右边缘b点高0.5h。若摩托车经过a点时的动能为E1,它会落到坑内c点。c与a的水平距离和高度差均为h;若经过a点时的动能为E2,该摩托车恰能越过坑到达b点。 等于()
平抛运动
【模型】平抛运动是指物体以一定的初速度水平方向抛出,如果物体仅受重力作用,这样的运动叫做平抛运动。

平抛运动习题(附答案)

平抛运动习题(附答案)

1、水平匀速飞行的直升机上向外自由释放一个物体,不计空气阻力,在物体下落过程中,下列说法正确的是()A.从飞机上看,物体静止B.从飞机上看,物体始终在飞机的后方C.从地面上看,物体做平抛运动D.从地面上看,物体做自由落体运动2、把物体以一定速度水平抛出。

不计空气阻力,g取10,那么在落地前的任意一秒内()A.物体的末速度大小一定等于初速度大小的10倍B.物质的末速度大小一定比初速度大10 C.物体的位移比前一秒多10m D.物体下落的高度一定比前一秒多10m3、在同一水平直线上的两位置分别沿同方向抛出小两小球和,其运动轨迹如图所示,不计空气阻力.要使两球在空中相遇,则必须()A.甲先抛出球 B.先抛出球C.同时抛出两球 D.使两球质量相等4、如图所示,甲乙两球位于同一竖直线上的不同位置,甲比乙高h,将甲乙两球分别以v1.v2的速度沿同一水平方向抛出,不计空气阻力,下列条件中有可能使乙球击中甲球的是()A.同时抛出,且v1< v2 B.甲后抛出,且v1> v2C.甲先抛出,且v1> v2 D.甲先抛出,且v1< v25、一个物体从某一确定的高度以v0 的初速度水平抛出,已知它落地时的速度为v1,那么它的运动时间是()A.B. C.D.6、作平抛运动的物体,在水平方向通过的最大距离取决于( )A.物体所受的重力和抛出点的高度B.物体所受的重力和初速度C.物体的初速度和抛出点的高度D.物体所受的重力、高度和初速度7、如图所示,一物体自倾角为的固定斜面顶端沿水平方向抛出后落在斜面上。

物体与斜面接触时速度与水平方向的夹角满足()A.tanφ=sinθB. tanφ=cosθC. tanφ=tanθD. tanφ=2tanθ8、将物体在h=20m高处以初速度v0=10m/s水平抛出,不计空气阻力(g取10m/s2),求:(1)物体的水平射程(2)物体落地时速度大小9、如图所示,一条小河两岸的高度差是h,河宽是高度差的4倍,一辆摩托车(可看作质点)以v0=20m/s 的水平速度向河对岸飞出,恰好越过小河。

平抛运动典型例题(含答案)

平抛运动典型例题(含答案)

[例1] 在倾角为的斜面上的P点, 以水平速度向斜面下方抛出一个物体, 落在斜面上的Q 点, 证明落在Q点物体速度。

解析:设物体由抛出点P运动到斜面上的Q点的位移是, 所用时间为, 则由“分解位移法”可得, 竖直方向上的位移为;水平方向上的位移为。

又根据运动学的规律可得竖直方向上,水平方向上,所以Q点的速度[例2] 如图3所示, 在坡度一定的斜面顶点以大小相同的速度同时水平向左与水平向右抛出两个小球A和B, 两侧斜坡的倾角分别为和, 小球均落在坡面上, 若不计空气阻力, 则A和B两小球的运动时间之比为多少?图3解析: 和都是物体落在斜面上后, 位移与水平方向的夹角, 则运用分解位移的方法可以得到所以有同理则[例3] 如图6所示, 在倾角为的斜面上以速度水平抛出一小球, 该斜面足够长, 则从抛出开始计时, 经过多长时间小球离开斜面的距离的达到最大, 最大距离为多少?图6解析: 将平抛运动分解为沿斜面向下和垂直斜面向上的分运动, 虽然分运动比较复杂一些, 但易将物体离斜面距离达到最大的物理本质凸显出来。

取沿斜面向下为 轴的正方向, 垂直斜面向上为 轴的正方向, 如图6所示, 在 轴上, 小球做初速度为 、加速度为 的匀变速直线运动, 所以有①②当 时, 小球在 轴上运动到最高点, 即小球离开斜面的距离达到最大。

由①式可得小球离开斜面的最大距离当 时, 小球在 轴上运动到最高点, 它所用的时间就是小球从抛出运动到离开斜面最大距离的时间。

由②式可得小球运动的时间为例4: 在平直轨道上以 的加速度匀加速行驶的火车上, 相继下落两个物体下落的高度都是2.45m. 间隔时间为1s. 两物体落地点的间隔是2.6m, 则当第一个物体下落时火车的速度是多大? (g 取 )分析: 如图所示. 第一个物体下落以 的速度作平抛运动, 水平位移 , 火车加速到下落第二个物体时, 已行驶距离 . 第二个物体以 的速度作平抛运动水平位移 . 两物体落地点的间隔是2.6m.解: 由位置关系得物体平抛运动的时间 20.7ht s g'=00021002000.710.252()(0.5)0.7s v t v s v t at v s v at t v '===+=+'=+⋅=+⨯由以上三式可得201sin 22sin 2/L gt L t gv m sαα===例5: 光滑斜面倾角为 , 长为L, 上端一小球沿斜面水平方向以速度 抛出(如图所示), 小球滑到底端时, 水平方向位移多大?解:小球运动是合运动, 小球在水平方向作匀速直线运动, 有0s v t = ①沿斜面向下是做初速度为零的匀加速直线运动, 有212L at =② 根据牛顿第二定律列方程sin mg ma θ= ③由①, ②, ③式解得例6: 某一物体以一定的初速度水平抛出, 在某 内其速度方向与水平方向成 变成 , 则此物体初速度大小是________ , 此物体在 内下落的高度是________ ( 取 )选题目的: 考查平抛物体的运动知识的灵活运用.解析:作出速度矢量图如图所示, 其中 . 分别是 及 时刻的瞬时速度.在这两个时刻, 物体在竖直方向的速度大小分别为 及 , 由矢量图可知:037gt v tg =︒ 0(1)53g t v tg +=︒由以上两式解得017.1/v m s = 97t s =物体在这1s 内下落的高度2211(1)22y g t gt ∆=+- 221919(1)()2727g g =+-17.9m =(1) 例7如图, 跳台滑雪运动员经过一段加速滑行后从O 点水平飞出, 经过3.0s 落到斜坡上的A 点. 已知O 点是斜坡的起点, 斜坡与水平面的夹角θ=37°, 运动员的质量m=50kg. 不计空气阻力. (取sin37°=0.60, cos37°=0.80;g 取10m/s2)求: (1)A 点与O 点的距离L ;(2)运动员离开O 点时的速度大小;从O 点水平飞出后, 人做平抛运动, 根据水平方向上的匀速直线运动, 竖直方向上的自由落体运动可以求得A 点与O 点的距离L ; (2)运动员离开O 点时的速度就是平抛初速度的大小, 根据水平方向上匀速直线运动可以求得;设A 点与O 点的距离为L, 运动员在竖直方向做自由落体运动, 则有: Lsin37°=0.5gt2L=gt22sin37°=75m(2)设运动员离开O点的速度为v0, 运动员在水平方向做匀速直线运动,即: Lcos37°=v0t解得: v0=20m/s答: (1)A点与O点的距离是75m;(2)运动员离开O点时的速度大小是20m/s.1: 在倾角为的斜面上的P点, 以水平速度向斜面下方抛出一个物体, 落在斜面上的Q点, 证明落在Q点物体速度。

(完整版)平抛运动测试题及答案

(完整版)平抛运动测试题及答案

平抛运动试题一、选择题:1.如图1所示,在光滑的水平面上有一小球a以初速度v0运动,同时刻在它的正上方有小球b也以v0初速度水平抛出,并落于c点,则( )A .小球a先到达c点B .小球b先到达c点C .两球同时到达c点D .不能确定2.一个物体从某一确定的高度以v0的初速度水平抛出,已知它落地时的速度为vt, 那么它的运动时间是( )A .g v v t 0-B .g v v t 20-C .gv v t 222- D .g v v t 202-3.如图2所示,为物体做平抛运动的x-y图象.此曲线上任意一点P (x ,y )的 速度方向的反向延长线交于x 轴上的A 点,则A 点的横坐标为( ) A.0.6xB.0.5xC.0.3xD.无法确定4.下列关于平抛运动的说法正确的是( )A. 平抛运动是非匀变速运动B. 平抛运动是匀速运动 图2C. 平抛运动是匀变速曲线运动D. 平抛运动的物体落地时的速度一定是竖直向下的5.将甲、乙、丙三个小球同时水平抛出后落在同一水平面上,已知甲和乙抛射点的高度相同,乙和丙抛射速度相同。

下列判断中正确的是( )A. 甲和乙一定同时落地B. 乙和丙一定同时落地C. 甲和乙水平射程一定相同D. 乙和丙水平射程一定相同6.对平抛运动的物体,若g 已知,再给出下列哪组条件,可确定其初速度大小( ) A .水平位移 B .下落高度C .落地时速度大小和方向D .落地位移大小和方向7. 关于物体的平抛运动,下列说法正确的是( )A. 由于物体受力的大小和方向不变, 因此平抛运动是匀变速运动;B. 由于物体速度的方向不断变化, 因此平抛运动不是匀变速运动;C. 物体的运动时间只由抛出时的初速度决定,与高度无关;D.平抛运动的水平距离由抛出点的高度和初速度共同决定.8. 把甲物体从2h 高处以速度V 水平抛出,落地点的水平距离为L,把乙物体从h 高处以速度2V 水平抛出,落地点的水平距离为S,比较L 与S,可知( )A.L=S/2 ;B. L=2S;C.L S =12; D.L S =2 . 9.以速度v 0水平抛出一小球,如果从抛出到某时刻小球的竖直分位移与水平分位移大小相等,以下判断正确的是( )A .此时小球的竖直分速度大小等于水平分速度大小B .此时小球的速度大小为2 v 0C .小球运动的时间为2 v 0/gD .此时小球速度的方向与位移的方向相同10.物体在平抛运动过程中,在相等的时间内,下列哪个量是相等的( ) A.位移 B.加速度C.平均速度D.速度的增量图1二、填空题:11.如图3所示的演示实验中,A 、B 两球同时落地,说明 。

平抛运动的典型例题

平抛运动的典型例题

(1)1.7m
(2)0.125
二、顺着斜面旳平抛运动
例题2、如图所示,从倾角为θ旳足够长斜面上旳A点,先后将同一小球以不同 旳初速度水平向右抛出.第一次初速度为V1;球落到斜面上瞬时速度方向与斜
面不夹 计角空为气阻α1力;,第若二V次1初>度V2为,V则2;α1球___落=__到_α斜2(面填上>瞬、时=速、度<方)向与斜面夹角为α2,
5 m/s≤v≤13 m/s
七、体育中旳平抛问题
例题7:一带有乒乓球发射机旳乒乓球台如图所示。水平台面旳长 和宽分别为和,中间球网高度为化h。发射机安装于台面左侧边沿 旳中点,能以不同速率向右侧不同方向水平发射乒乓球,发射点距 台面高度为3h。不计空气旳作用,重力加速度大小为。若乒乓球旳 发射速率为在某范围内,经过选择合适旳方向,就能使乒乓球落 到球网右侧台面上,则旳最大取值范围是 ( D )
三、对着竖直墙壁旳平抛运动
例题3、如图所示,某同学为了找出平抛运动物体旳初速度之间旳
关系,用一种小球在O点对准前方旳一块竖直放置旳挡板,O与A
在同一高度,小球旳水平初速度分别是v1、v2、v3,打在挡板上
旳位置分别是B、C、D,且AB∶BC∶CD=1∶3∶5.则v1、v2、v3
之பைடு நூலகம்旳正确关系是
( D)
C.假如相遇发生在乙下降旳过程中,则
D.若相遇点离地面高度为H/2,则
例题11:如图所示,相距l旳两小球A、B位于同一高度h(l、h均 为定值).将A向B水平抛出旳同步,B自由下落.A、B与地面碰 撞前后,水平分速度不变,竖直分速度大小不变、方向相反.不 计空气阻力及小球与地面碰撞旳时间,则( AD )
五、在不同参照系中描述平抛运动 例题5、正在高空水平匀速飞行旳飞机,每隔1s释放一种小球, 先后共释放5个,不计空气阻力,则(AD ) A.这5个小球在空中处于同一条直线上 B.这5个小球在空中处于同一条抛物线上 C.在空中,第1、2两球间旳距离保持不变 D.相邻两球旳落地间距相等 六、平抛运动中旳临界问题 例题6、如图所示,水平屋顶高H=5 m,墙高h=3.2 m,墙到房子 旳距离L=3 m,墙外公路宽D=10 m,小球从屋顶水平飞出落在墙 外旳公路上,求小球离开屋顶时旳速度v应该满足什么条件? (g=10 m/s2)

子弹平抛运动例题

子弹平抛运动例题

子弹平抛运动例题一、一颗子弹以一定的初速度水平射出,做平抛运动,关于其运动情况,下列说法正确的是:A. 子弹的速度变化率恒定不变B. 子弹的加速度随时间逐渐增大C. 子弹在水平方向上的位移随时间均匀增加D. 子弹在竖直方向上的速度随时间非线性增加(答案:A、C)二、某型号手枪射出的子弹,在忽略空气阻力的情况下,做平抛运动,下列说法正确的是:A. 子弹的飞行时间由初速度和抛出点的高度共同决定B. 子弹的水平射程仅由初速度决定C. 子弹落地时的速度方向与抛出点的高度无关D. 子弹在任意相等时间内的速度变化量相同(答案:D)三、一颗子弹从枪口水平射出,做平抛运动,关于其运动轨迹和速度变化,下列说法正确的是:A. 运动轨迹是抛物线,速度变化也是抛物线B. 运动轨迹是抛物线,但速度变化是均匀的C. 运动轨迹是直线,速度变化也是直线D. 运动轨迹是直线,但速度变化是抛物线(答案:B)四、在平抛运动中,子弹的哪些物理量是保持不变的?A. 水平方向的分速度B. 竖直方向的分速度C. 合速度的大小D. 合速度的方向(答案:A)五、关于子弹做平抛运动,下列说法正确的是:A. 子弹在水平方向上做匀速直线运动B. 子弹在竖直方向上做自由落体运动C. 子弹的加速度方向始终与速度方向垂直D. 子弹的加速度方向始终与速度方向成一定夹角(答案:A、B)六、一颗子弹从高空水平射出,做平抛运动,关于其落地时的状态,下列说法正确的是:A. 落地时速度方向与水平方向成45度角B. 落地时速度方向与抛出点的高度和初速度有关C. 落地时速度的大小仅由初速度决定D. 落地时速度的方向与初速度无关(答案:B)七、在平抛运动中,关于子弹的位移和速度,下列说法正确的是:A. 任意相等时间内的位移变化量相同B. 任意相等时间内的速度变化量相同C. 任意时刻的速度方向与水平方向的夹角相同D. 任意时刻的位移方向与水平方向的夹角相同(答案:B)八、一颗子弹从枪口水平射出,做平抛运动,关于其运动过程中的能量转化,下列说法正确的是:A. 动能不断增加,势能不断减少B. 动能不断减少,势能不断增加C. 动能和势能之和保持不变D. 动能和势能之和随时间逐渐减小(答案:A、C)。

高一物理平抛运动试题

高一物理平抛运动试题

高一物理平抛运动试题1.如图所示,相对的两个斜面,倾角分别为37°和53°,在顶点把两个小球以同样大小的初速度分别向左、向右水平抛出。

小球都落到斜面上。

若不计空气阻力,则A、B两球运动时间之比为A. 1∶1 B. 4∶3 C. 16∶9 D. 9∶16【答案】D【解析】对于A球,,对于B球,,所以,故D正确。

【考点】考查了平抛运动水平抛出,经过时间t时,其竖直方向的位移大小与水平方向的位移大小2.一个物体以初速度v相等,那么t为()A.B.C.D.【答案】C【解析】设平抛的水平位移是x,则竖直方向上的位移就是x,水平方向上:,竖直方向上:-,联立可以求得:,C正确。

【考点】考查了平抛运动抛出的物体,飞行一段时间后,垂直地撞在为的斜面3.如图所示,以的水平初速度v上,可知物体完成这段飞行的时间是()A.B.C.D.【答案】C【解析】小球撞在斜面上的速度与斜面垂直,将该速度分解,如图.则,则,所以,C正确。

【考点】考查了平抛运动4.水平匀速飞行的飞机每隔1s投下一颗炸弹,共投下5颗,若空气阻力及风的影响不计,在炸弹落到地面之前,下列说法中正确的是()A.这5颗炸弹在空中排列成一条竖直线,地面上的人看到每个炸弹都做平抛运动B.这5颗炸弹在空中排列成一条竖直线,地面上的人看到每个炸弹都做自由落体运动C.这5颗炸弹在空中排列成一条抛物线,地面上的人看到每个炸弹都做平抛运动D.这5颗炸弹在空中排列成一条抛物线,地面上的人看到每个炸弹都做自由落体运动【答案】A【解析】匀速飞行的飞机上投下的炸弹做平抛运动,平抛运动在水平方向上做匀速直线运动,所以炸弹在落地前都处于飞机的正下方,在空中排成一条竖直线.飞机上的人看到炸弹做自由落体运动,地面上的人看到炸弹做平抛运动,故A正确。

【考点】考查了平抛运动5.如图,x轴在水平地面内,y轴竖直方向。

图中画出了从y轴上沿x轴正向抛出的三个完全相同的小球a、b和c的运动轨迹,其中b和c是从同一点抛出的。

(完整版)平抛习题(含答案)

(完整版)平抛习题(含答案)

平抛运动1.在平坦的垒球运动场上,击球手挥动球棒将垒球水平击出,垒球飞行一段时间后落地.若不计空气阻力,则()A.垒球落地时瞬间速度的大小仅由初速度决定B.垒球落地时瞬间速度的方向仅由击球点离地面的高度决定C.垒球在空中运动的水平位移仅由初速度决定D.垒球在空中运动的时间仅由击球点离地面的高度决定2.若以抛出点为起点,取初速度方向为水平位移的正方向,在下列各图中,能正确描述做平抛运动的物体的水平位移x的图象的是()3.水平匀速飞行的飞机每隔1 s投下一颗炸弹,共投下5颗,若空气阻力及风的影响不计,则在炸弹落地前()A.这5颗炸弹在空中排列成抛物线B.这5颗炸弹及飞机在空中排列成一条竖直线C.这5颗炸弹在空中各自运动的轨迹均是抛物线D.这5颗炸弹在空中均做直线运动4.如图2所示,在光滑的水平面上有小球A以初速度v0匀速直线运动,同时在它正上方有小球B以v0为初速度水平抛出并落于C点,则()图2A.小球A先到达C点B.小球B先到达C点C.两球同时到达C点D.不能确定5.从水平匀速飞行的直升机上向外自由释放一个物体,不计空气阻力,在物体下落过程中,下列说法正确的是()A.从飞机上看,物体静止B.从飞机上看,物体始终在飞机的后方C.从地面上看,物体做平抛运动D.从地面上看,物体做自由落体运动6.在同一平台上的O点抛出的3个物体,做平抛运动的轨迹如图3所示,则3个物体做平抛运动的初速度v A、v B、v C的关系和3个物体运动的时间t A、t B、t C的关系分别是()图3A.v A>v B>v C,t A>t B>t CB.v A=v B=v C,t A=t B=t CC.v A<v B<v C,t A>t B>t CD.v A>v B>v C,t A<t B<t C7.图4一水平抛出的小球落到一倾角为θ的斜面上时,其速度方向与斜面垂直,运动轨迹如图4中虚线所示.小球在竖直方向下落的距离与在水平方向通过的距离之比为() A.tan θB.2tan θC. D.8.如图5所示,在同一竖直面内,小球a、b从高度不同的两点,分别以初速度v a和v b 沿水平方向抛出,经过时间t a和t b后落到与两抛出点水平距离相等的P点.若不计空气阻力,下列关系式正确的是()图5A.t a>t b,v a<v b B.t a>t b,v a>v b题号12345678答案斜面长为L,那么抛球的水平初速度v0是________.图610.平抛一物体,当抛出1 s后,它的速度与水平方向成45°角,落地时速度方向与水平方向成60°角,g取10 m/s2.求:(1)物体的初速度大小;(2)物体落地时的速度大小;(3)开始抛出时物体距地面的高度;(4)物体的水平射程.11.将一个物体以10 m/s的初速度从10 m高处水平抛出,不计空气阻力,它落地时的速度大小和方向怎样?所用的时间为多少?(g取10 m/s2)12.在亚西湾某次护航任务中,为了驱赶索马里海盗,我护航官兵从空中直升机上向海盗船水平发射了一颗警告弹,6 s后官兵看到警告弹在海盗船附近爆炸,若爆炸时警告弹的运动方向与水平方向的夹角为30°,空气阻力不计,g=10 m/s2,求:(1)直升机发射警告弹时的高度;(2)警告弹的初速度;(3)发射警告弹时直升机到海盗船的距离.、课后巩固练1.D 2.C3.BC[炸弹投出后,具有与飞机相同的水平速度,故所有炸弹抛出后均做平抛运动,轨迹是抛物线;炸弹抛出后在竖直方向上自由下落,在水平方向与飞机一样做匀速运动,所以炸弹落地前总在飞机的正下方,落地前炸弹和飞机总排列成一条竖直线.] 4.C[小球B以初速度v0水平抛出并落于C点,其水平方向做匀速直线运动,而在光滑的水平面上有小球A以初速度v0匀速直线运动,所以两球同时到达C点.]5.C[由于飞机在水平方向做匀速运动,当物体自由释放的瞬间,物体具有与飞机相同的水平初速度,则从飞机上看,物体始终处于飞机的正下方,选项B错;物体在重力的作用下在竖直方向做自由落体运动,所以选项A错误;在地面上看,由于物体具有水平方向的速度且只受重力的作用,因此物体做平抛运动,则C对,D错.]6.C[平抛运动的时间只与下落的高度有关,由t=得t A>t B>t C,由题图可知,在下落高度相同时,水平射程s A<s B<s C,所以v A<v B<v C,故C正确.]7.D[如图所示,设小球抛出时的初速度为v0,则v x=v0 ①v y=v0cotθ②v y=gt ③x=v0t ④y=⑤解①②③④⑤得:=,D正确.]8.A[根据平抛运动的规律可知,小球在空中运动的时间由抛出点到落地点的竖直高度决定,因h a>h b,所以t a>t b;水平位移由初始速度和小球在空中运动的时间决定,因x a =x b,所以v a<v b,故A正确.]9.cos θ解析根据题中条件,小球做平抛运动的水平方向的位移x=L cos θ,竖直方向的位移y =L sin θ,则x=v0t,y=gt2,故v0=,将上述条件代入得:v0=,整理得:v0=cos θ.点评将平抛运动的规律与斜面的几何关系相结合,是分析此类问题的技巧.10.(1)10 m/s (2)20 m/s(3)15 m(4)10 m解析(1)物体抛出t1=1 s时,由速度方向可得tan 45°=,得v0=10 m/s.(2)物体落地时,由速度方向可得cos 60°=,得v=20 m/s.(3)因v y=v·sin 60°=gt2,得t2=s,故h=gt=15 m.(4)物体的水平射程x=v0t2=10 m.11.17.3 m/s与水平地面的夹角约为54.7° 1.41 s解析设物体从抛出到落地所用时间为t,根据平抛运动的性质可知v x=v0,v y=gt,y =.所用时间t==s≈1.41 s.落地时的速度大小v==m/s≈17.3 m/s.速度方向与水平地面的夹角为θ,则θ=arctan =arctan ≈54.7°.落地时的速度大小为17.3 m/s,方向与水平地面的夹角约为54.7°,所用时间为1.41 s.12.(1)180 m(2)104 m/s(3)649 m解析(1)直升机的高度h=gt2=×10×62 m=180 m.(2)警告弹爆炸前瞬间在竖直方向上的速度v y=g·t=10×6 m/s=60 m/s所以v0==m/s=60 m/s≈104 m/s.(3)直升机到海盗船的距离s==m≈649 m.。

平抛运动练习题(附参考答案)

平抛运动练习题(附参考答案)

5.2 平抛运动 练习1. 做平抛运动的物体,每秒的速度增量总是( )A.大小相等,方向相同 B.大小不等,方向不同 C.大小相等,方向不同 D.大小不等,方向相同 2. 在高空匀速水平飞行的飞机,每隔1s 投放一物体,则()A.这些物体落地前排列在一条竖直线上 B.这些物体都落在地同上的同一点 C.这些物体落地时速度大小和方向都相同鞋 D.相邻物体在空中距离保持不变3. 从高h 处以水平速度v 0抛出一物体,物体落地速度方向与水平地面夹角最大的时候,h 与v 0的取值应为下列四组中的( )A.h =30m ,v 0=10m/s B.h =30m ,v 0=30m/s C.h =50m ,v 0=30m/s D.h =50m ,v 0=10m/s 4. 物体做平抛运动时,它的速度方向与水平方向的夹角α的正切tanα随时间t 变化的图像是图1中的( )5.如果作平抛运动的物体落地时竖直方向的速率和水平方向的速率相等, 则其水平位移和竖直方向的位移之比为( )A. 1 : 1B. 2 : 1C. 2 : 1D. 1 : 26. 对于一个做平抛运动的物体,它在从抛出开始的四段连续相等的时间内,在水平方向和竖直方向的位移之比,下列说法正确的是( )A.1:2:3:4; 1:4:9:16 B.1:3:5:7;1:1:1:1 C.1:1:1:1; 1:3:5:7 D.1:4:9:16;1:2:3:47.以v 0的速度水平抛出一个物体, 当其竖直分位移与水平分位移相等时, 则此时物体的 A. 竖直分速度等于水平分速度 B. 即时速度的大小为 5 v 0 C. 运动时间为 2 v 0g D. 运动的位移为 22v 02g8.物体从某一确定高度以v 0初速度水平抛出,已知落地时的速度为v t ,它的运动时间是 ( )A .g v v t 0-B .g v v t 20-C .gv v t 2202-D班级:________ 姓名:___________ 组别:tanαtαt αt αt A B C D图1图3__________9.如图3所示,斜面上有a 、b 、c 、d 四个点,ab =bc =cd ,从a 点正上方O以速度v 水平抛出一个小球,它落在斜面的b 点;若小球从O以速度2v 水平抛出,不计空气阻力,则它落在斜面上的( )A.b 与c 之间某一点 B.c 点C.d 点 D.c 与d 之间某一点 10.平抛物体的运动规律可以概括为两点:(1)水平方向做匀速运动;(2)竖直方向做自由落体运动.为了探究平抛物体的运动规律,可做下面的实验:如图4所示,用小锤打击弹性金属片,A球就水平习出,同时B球被松开,做自由落体运动,无论A球的初速度大小如何,也无论两球开始距地面高度如何,两球总是同时落到地面,这个实验( ) A.只能说明上述规律中的第(1)B. 只能说明上述规律中的第(2)条 C.不能说明上述规律中的任何一条 D.能同时说明上述两条规律11.A、B两小球同时从距地面高为h =15m 处的同一点抛出,初速度大小均为v 010m/s .A球竖直向下抛出,B球水平抛出,(空气阻力不计,g 取10m/s 2).求:(1)A球经多长时间落地? (2)A球落地时,A、B两球间的距离是多少?12.跳台滑雪是勇敢者的运动,它是利用依山势特别建造的跳台进行的,运动员穿着专用滑雪板峭带雪杖在助滑路上取得高速后起跳,在空中飞行一段距离后着陆,这项运动极为壮观,设一位运动员由a 点沿水平方向跃起,到b 点着陆,如图8所示测得ab 间距离L=40m ,山坡倾角θ=300,试计算运动员起跳的速度和他在空中飞行的时间.(不计空气阻力,g 取10m/s 2)图41.A2.AC3.D4.B5.B6.C7. BCD8.D9.A 10.B 、11.解:(1)A球做竖直下抛运动,由平抛运动规律可知 m h 15= ①s m v /100= ②2021gt v h += ③ 联立方程①②③解得:s t 1= ④(2)B球做平抛运动,由平抛运动规律可知 t v x 0= ⑤221gt y =⑥ 联立方程②④⑤⑥解得:x =10m 、y =5m 此时,A球与B球的距离L为:m 210y)-(h x 22=+=L所以,A球经1s 落地;A球落地时,A球与B球的距离m 210y)-(h x 22=+=L .12. 解:由题意知,运动员起跳后做平抛运动,由平抛运动规律可知: 水平位移x =v 0t =Lcos θ ① 竖直位移y =gt 2/2=Lsin θ ② 题中已知L =40m ,θ=300 ③联立方程①②③解得:m/s 310v 0=,t=2s所以,运动员起跳的速度为m/s 310v 0=, 他在空中运动的时间为t=2s .。

平抛运动练习题(含答案)

平抛运动练习题(含答案)

平抛 【2 】活动演习题 (一) 对平抛活动的懂得及纪律的运用1. 下列关于平抛活动的说法准确的是:A.平抛活动是匀速活动 B.平抛活动是匀变速曲线活动C.平抛活动长短匀变速活动 D.平抛活动在程度偏向是匀速直线活动2.关于平抛活动,下列说法中准确的是A.落地时光仅由抛出点高度决议B.抛出点高度一准时,落地时光与初速度大小有关C.初速度必定的情形下,程度飞出的距离与抛出点高度有关D.抛出点高度一准时,程度飞出距离与初速度大小成正比3.甲.乙两球位于统一竖直线上的不同地位,甲比乙高h ,如图所示,将甲.乙两球分离以v 1.v 2的速度沿统一偏向抛出,不计空气阻力,下列前提中有可能使乙球击中甲球的是A.同时抛出,且v 1 < v 2B.甲比乙后抛出,且v 1 > v 2C.甲比乙早抛出,且v 1 > v 2D.甲比乙早抛出,且v 1 < v 24.有一物体在高为h 处以初速度v 0程度抛出,落地时速度为v t ,竖直分速度为y v ,程度位移为s,则能用来盘算该物体在空中活动的时光的公式有A.g v v t 202-B.g v yC.g h2 D.y v h 25.在地面上方某一高处,以初速度v 0程度抛出一石子,当它的速度由程度偏向变化到与程度偏向成θ角时,石子的程度位移的大小是(不计空气阻力)A.g sin v θ20 B. g cos v θ20 C. g tan v θ20 D. g cot v θ206. 做平抛活动的物体,它的速度偏向与程度偏向夹角的正切值tanθ随时光t 的变化图象,准确的是7. 以速度v 0程度抛出一球,某时刻其竖直分位移与程度位移相等,以下断定错误的是A.竖直分速度等于水等分速度B.此时球的速度大小为5 v 0t O D tan θ tan θ t O C tan θ t O B tan θt O AC.活动的时光为g v 02D.活动的位移是g v 0228. 如右图所示,一小球以v 0=10 m/s 的速度程度抛出,在落地之前经由空中A .B 两点.在A 点小球速度偏向与程度偏向的夹角为45°,在B 点小球速度偏向与程度偏向的夹角为60°(空气阻力疏忽不计,g 取10 m/s 2),以下断定中准确的是( )A .小球经由A .B 两点间的时光t =1 sB .小球经由A .B 两点间的时光t =3sC .A .B 两点间的高度差h =10 mD .A .B 两点间的高度差h =15 m9. 飞机在程度地面上空的某一高度程度匀速飞翔,每隔相等时光投放一个物体.假如以第一个物体a 的落地点为坐标原点.飞机飞翔偏向为横坐标的正偏向,在竖直平面内树立直角坐标系.如图所示是第5个物体e 分开飞机时,抛出的5个物体(a .b .c .d .e )在空间地位的示意图,个中不可能的是( )10.将小球从如图4-2-10所示的阶梯状平台上以 4 m/s 的速度程度抛出,所有台阶的高度和宽度均为1.0 m,取g =10 m/s 2,小球抛出后起首落到的台阶是A .第一级台阶B .第二级台阶C .第三级台阶D .第四级台阶(二) 平抛与斜面分解11.如图2甲所示,以9.8m/s 的初速度程度抛出的物体,飞翔一段时光后,垂直地撞在倾角θ为30°的斜面上.可知物体完成这段飞翔的时光是A.s 33B.332sC.s 3D.s 212.若质点以V 0正对倾角为θ的斜面程度抛出,假如请求质点到达斜面的位移最小,求飞翔时光为若干?13. .如图所示,在倾角为θ=37°(已知tan37°=34)的斜面底正直上方h 高处平抛一物体,该物体落到斜面上时速度偏向正好与斜面垂直,这物体抛出时的初速度大小是A.ghB.3ghC.317ghD.317gh 17h θ=37°14. 如图所示,从倾角为θ的斜面上A 点,以程度速度v 0抛出一个小球,不计空气阻力,它落到斜面上B 点时所用的时光为A .g v θsin 20 B .g v θtan 20 C .g v 2sin 0θ D .g v 2tan 0θ15.如图所示,两个相对斜面的倾角分离为37°和53°,在斜面极点把两个小球以同样大小的初速度分离向左.向右程度抛出,小球都落在斜面上.若不计空气阻力,则A.B 两个小球的活动时光之比为A .1:1B .4:3C .16:9D .9:1616.如图所示,在斜面上O 点先后以v 0和2v 0的速度程度抛出A.B 两小球,则从抛出至第一次着地,两小球的程度位移大小之比可能为①1∶2 ②1∶3 ③1∶4 ④1∶5 个中准确的是( )A.①②③B.①②④C.①③④D.②③④17. 如图,小球从倾角为45°的斜坡顶端A 被程度抛出,抛出时速度为V 0,则AB 之间的距离为_____18. 如图,在倾角为θ的斜面上以速度 v 程度抛出一球,当球与斜面的距离最大时( )(A )速度为θcos 2v (B )飞翔时光为θtg g v(C )下落高度为θ222tg g v (D ) 程度距离为θtg g v 219. 如图所示,斜面上有a .b .c .d 四个点,ab=bc=cd.从a 点正上方的O 点以速度v 程度抛出一个小球,它落在斜面上b 点.若小球从O 点以速度2v 程度抛出,不计空气阻力,则它落在斜v v AB 37︒ 53︒面上的 A .b 与c 之间某一点B .c 点C .c 与d 之间某一点D .d 点20.如图所示,斜面上O.P.Q.R.S 五个点,距离关系为OP=PQ=QR=RS ,从O 点以υ0的初速度程度抛出一个小球,不计空气阻力,小球落在斜面上的P 点.若小球从O 点以2υ0的初速度程度抛出,则小球将落在斜面上的A.Q 点B. S 点C.Q.R 两点之间D. R.S 两点之间21. 如图所示,离地面高h 处有甲.乙两个物体,甲以初速度v 0程度射出,同时乙以初速度v 0沿倾角为45°的滑腻斜面滑下.若甲.乙同时到达地面,则v 0的大小是A .2ghB .ghC .22ghD .2gh22. 如图所示,在程度地面上固定一倾角θ=37°.表面滑腻的斜面体,物体A 以v 1=6 m/s 的初速度沿斜面上滑,同时在物体A 的正上方,有一物体B 以某一初速度程度抛出.假如当A 正好上滑到最高点时被B 物体击中.(A .B 均可看做质点,sin 37°=0.6,cos 37°=0.8,g 取10 m/s 2)求:(1)物体A 上滑到最高点所用的时光t ; (2)物体B 抛出时的初速度v 2;(3)物体A .B 间初始地位的高度差h .23. 竖直雪道的长为50 m,顶端高为30m,下端经由一小段圆弧过渡后与很长的程度雪道相接,如图所示.一滑雪运发动在竖直雪道的顶端以程度速度v 0=10m/s 飞出,在落到竖直雪道上时,运发动靠转变姿态进行缓冲使本身只保留沿斜面的分速度而不弹起.除缓冲外运发动可视为质点,过渡轨道滑腻,其长度可疏忽.设滑雪板与雪道的动摩擦因数μ=0.2,求:(1)运发动落在竖直雪道上时与飞出点之间的距离;(2)运发动落到竖直雪道刹时沿斜面的速度大小;(3)运发动在程度雪道上滑行的距离(取g =10 m/s 2).24. 下图所示,高台滑雪运发动经由一段滑行后从斜坡上的O 点程度飞出,斜坡与程度面的夹角θ=37°,运发动连同滑雪板的总质量为m=50kg,他落到斜坡上的A 点后不再弹起,立刻顺势沿斜坡下滑.A 点与O 点的距离为S 1=12m,A 点与斜面底端的距离为S 2=5.6m,滑雪板与斜坡和程度面上的动摩擦因数均为50.=μ,运发动滑到斜面底端时仅速度偏向变为程度,大小不变.疏忽空气阻力,重力加快度g=10m/s 2.(sin37°=0.6;cos37°=0.8),求:(1)运发动从O 点活动到斜面底端须要多长时光?(2)运发动在程度面上能滑行多远?参考答案1.BD2.ACD3.D4.ABCD5.C6.B7.AD8.C9.B 10.D 11.C12.θθtg 2,21020g v t gt t v y x tg === 13.D 14.B 15.D 16.A 17.2022v g 18. BCD 19.A 20.B 21.A 22. (1)1 s (2)2.4 m/s (3)6.8 m23. (1)如图,运发动飞出后做平抛活动0x v t =212y gt =由y=x tanθ得飞翔时光t =1.5 s ……1分落点的x 坐标:x =v 0t =15 m ……2分落点离斜面顶端的距离:θcos 1xs ==18.75m ……2分(2)落点距地面的高度:h=(L-s 1)sinθ=18.75m接触斜面前的x 分速度:v x =10m/s ……1分y 分速度:v y =gt=15m/s ……1分沿斜面的速度大小为:θθsin cos y x B v v v +== 17m/s ……3分(3)设运发动在程度雪道上活动的距离为s 2,由功效关系得:2121cos ()2B mgh mv mg L s mgs μθμ+=-+……3分解得:s 2=141m ……2分感悟与反思:第一问用常规解法;第二问求运发动落到竖直雪道刹时沿斜面的速度大小,分化时正交系先选择水温和竖直偏向,看似老套其实很好,只不过要二次分化,对分化的请求很高,相符2008江苏测验解释的变化及请求;第三问请求准确列出动能定理的方程.24(1)1.6s;(2)20.7m。

平抛运动实验练习及答案(含三份专题练习)

平抛运动实验练习及答案(含三份专题练习)

平抛运动实验练习及答案(含三份专题练习)(1)如图所示,用小锤打击弹性金属片,金属片把A球沿水平向抛出,同时B球松开,自由下落,A、B两球同时开始运动。

观察到两球同时落地,多次改变小球距地面的高度和打击力度,重复实验,观察到两球落地,这说明了小球A在竖直向上的运动为自由落体运动。

(2)如图,将两个质量相等的小钢球从斜面的同一高度处由静止同时释放,滑道2与光滑水平板吻接,则将观察到的现象是A、B两个小球在水平面上相遇,改变释放点的高度和上面滑道对地的高度,重复实验,A、B两球仍会在水平面上相遇,这说明平抛运动在水平向上的分运动是匀速直线运动。

21.[2014·卷] (18分)Ⅰ.图1是“研究平抛物体运动”的实验装置图,通过描点画出平抛小球的运动轨迹.(1)以下是实验过程中的一些做法,其中合理的有________.a.安装斜槽轨道,使其末端保持水平b.每次小球释放的初始位置可以任意选择c.每次小球应从同一高度由静止释放d.为描出小球的运动轨迹,描绘的点可以用折线连接(2)实验得到平抛小球的运动轨迹,在轨迹上取一些点,以平抛起点O为坐标原点,测量它们的水平坐标x和竖直坐标y,图2中yx2图像能说明平抛小球运动轨迹为抛物线的是________.a bc d图2图3(3)图3是某同学根据实验画出的平抛小球的运动轨迹,O 为平抛的起点,在轨迹上任取三点A 、B 、C ,测得A 、B 两点竖直坐标y 1为5.0 cm ,y 2为45.0 cm ,A 、B 两点水平间距Δx 为40.0 cm.则平抛小球的初速度v 0为________m/s ,若C 点的竖直坐标y 3为60.0 cm ,则小球在C 点的速度v C 为________m/s(结果保留两位有效数字,g 取10 m/s 2).21.Ⅰ.D3(1)ac (2)c (3)2.0 4.0[解析] Ⅰ.本题考查“研究平抛物体的运动”实验原理、理解能力与推理计算能力.(1)要保证初速度水平而且大小相等,必须从同一位置释放,因此选项a 、c 正确.(2)根据平抛位移公式x =v 0t 与y =12gt 2,可得y =gx 22v 20,因此选项c 正确.(3)将公式y =gx 22v 20变形可得x =2ygv 0,AB 水平距离Δx =⎝⎛⎭⎪⎫2y 2g-2y 1g v 0,可得v 0=2.0 m/s,C点竖直速度v y=2gy3,根据速度合成可得v c=2gy3+v20=4.0 m/s.平抛运动训练1一.不定项选择题1.平抛物体的运动规律可以概括为两点:①水平向做匀速运动;②竖直向做自由落体运动.为了研究平抛物体的运动,可做下面的实验,如图所示,用小锤打击弹性金属片,A球就水平飞出,同时B球被松开,做自由落体运动,两球同时落到地面.这个实验()A.只能说明上述规律中的第①条 B.只能说明上述规律中的第②条C.不能说明上述规律中的任一条D.能同时说明上述两条规律2.平抛运动可以分解为水平向的匀速直线运动和竖直向的自由落体运动,在同一坐标系中作出两分运动的v-t图线,如图所示.则以下说确的是() A.图线1表示水平分运动的v-t图线B.图线2表示竖直分运动的v-t图线C.t1时刻物体的速度向与初速度向夹角为45°D.若图线2倾角为θ,当地重力加速度为g,则一定有tanθ=g3.在研究平抛物体的运动的实验中,为了求平抛物体的初速度,需直接测的数据有()A.小球开始滚下的高度B.小球在空中飞行的时间C.运动轨迹上某点P的水平坐标D.运动轨迹上某点P的竖直坐标4.如图所示,在研究平抛运动时,小球A沿轨道滑下,离开轨道末端(末端水平)时撞开轻质接触式开关S,被电磁铁吸住的小球B同时自由下落.改变整个装置的高度H做同样的实验,发现位于同一高度的A、B两球总是同时落地.该实验现象说明了A球在离开轨道后()A.水平向的分运动是匀速直线运动B.水平向的分运动是匀加速直线运动C.竖直向的分运动是自由落体运动D.竖直向的分运动是匀速直线运动5.下列哪些因素会使“研究物体平抛运动”实验的误差增大()A.小球与斜槽之间有摩擦B.安装斜槽时其末端不水平C.建立坐标系时,以斜槽末端端口位置为坐标原点D.根据曲线计算平抛运动的初速度时,在曲线上取作计算的点离点O较远6.如右图所示是物体做平抛运动的x-y图象,物体从O点抛出,A、B、C分别为其轨迹上的三点,A、B、C三点的水平距离相等,则A、B、C三点的竖直距离之比为()A.1:1:1 B.1:3:5C.1:4:9 D.不能确定7.一同学做“研究平抛物体的运动”的实验,只在纸上记下重锤线y向,忘记在纸上记下斜槽末端位置,并只在坐标纸上描出如图所示曲线。

平抛运动典型问题

平抛运动典型问题

的细线被拉直?在这段时间内A球的位移是多大?不计空气阻力
,g=10m/s2
解:由平抛运动规律可得 :
xA v0t xBv0(t0.8)
yA
1 2
gt2
yB
1g(t 2
0.8)2
L 2 (x A x B )2 (y A y B )2
解得 t=1s xA=4.5m yA=5m
sA2 = xA2 +yA2 = 45.25
解析:小球与板碰撞后的轨迹,相当于将抛物线对称到竖直
线的另一侧,由自由落体运动的特点,将整个时间分成相等
的5 段,得
h1
h1 : h2 : h3 =(1+3):(5+7):9=4:12:9
h2
D
整理课件
h3
12
典型问题3 斜面问题
3.如图所示,在倾角θ=370的斜面底端的正上方H处,
平抛一个物体,该物体落到斜面上的速度方向正好与 斜面垂直,求物体抛出时的初速度.
t vy g
法3 t 2v0 sin 370 gy
gy gco3s70
370
v0
t 2v0tg370
370
g
v
vy v0 sin370
v0 370
v0 cos370
整理课件
g g x 370 y
g
16
典型问题4 类平抛运动
物体所做的运动不是真正的平抛运动,而是此运动可 看成某一方向的匀速直线运动和垂直于该方向的匀加速直 线运动。处理方法与平抛类似。 7.光滑斜面倾角为θ,长为L,上端一小球沿斜面水平方向以速 度v0抛出,如图,求小球滑到底端时,水平方向位移s有多大?
【答案】 tan370/tan530

平抛运动典型例题

平抛运动典型例题
A.v1∶v2∶v3=3∶2∶1 B.v1∶v2∶v3=5∶3∶1 C.v1∶v2∶v3=6∶3∶2 D.v1∶v2∶v3=9∶4∶1
推论4.在做平抛运动的物体任意时刻瞬时速度 方向的反向延长线一定通过水平位移的中点
体育竞赛中有一项运动为掷镖,如图8所示。墙壁 上落有两只飞镖,它们是从同一位置水平射出的, 飞镖A与竖直墙壁成角θ1=530,飞镖B与竖直墙壁 成角θ2=370,两者相距为d。假设飞镖的运动为平 抛运动,求射出点离墙壁的水平距离。 (sin37°=0. 6,cos37°=0. 8)
C 、
D、2 3 s
3
8.从分解位移的角度进行解题
对于一个做平抛运动的物体来说, 如果知道了某 一时刻的位移方向(如物体从已知倾角的斜面上水 平抛出, 这个倾角也等于位移与水平方向之间的夹 角), 则我们可以把位移分解成水平方向和竖直方 向, 然后运用平抛运动的运动规律来进行研究问题 (这种方法, 暂且叫做“分解位移法”)
v02 sin 2 g
练习
1.如右图所示,某同学为了找出平抛运动物体的初速度之间的 关系,用一个小球在O点对准前方的一块竖直放置的挡板,O与 A在同一高度,小球的水平初速度分别是v1、v2、v3,打在挡板 上的位置分别是B、C.D,且AB∶BC∶CD=1∶3∶5。则v1、v2、 v3之间的正确关系是( )
3.平抛运动“撞球”问题——判断两球运动的时间 是否相同(h是否相同);类比追击问题,利用撞 上时水平位移、竖直位移相等的关系进行解决
在同一水平直线上的两位置分别沿同方向抛出小两小
球A和B,其运动轨迹如图所示,不计空气阻力.要使两
球在空中相遇,则必须
A. 甲先抛出A球
B. 先抛出B球
C. 同时抛出两球
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[例1] 在倾角为的斜面上的P点,以水平速度向斜面下方抛出一个物体,落在斜面上的Q点,
证明落在Q点物体速度。

解析:设物体由抛出点P运动到斜面上的Q点的位移是,所用时间为,则由“分解位移法”可得,竖直方向上的位移为;水平方向上的位移为。

又根据运动学的规律可得
竖直方向上,
水平方向上

所以Q点的速度
[例2] 如图3所示,在坡度一定的斜面顶点以大小相同的速度同时水平向左与水平向右抛出两个小球A和B,两侧斜坡的倾角分别为和,小球均落在坡面上,若不计空气阻力,则A 和B两小球的运动时间之比为多少?
图3
解析:和都是物体落在斜面上后,位移与水平方向的夹角,则运用分解位移的方法可以得到
所以有
同理

[例3] 如图6所示,在倾角为的斜面上以速度水平抛出一小球,该斜面足够长,则从抛出开始计时,经过多长时间小球离开斜面的距离的达到最大,最大距离为多少?
图6
解析:将平抛运动分解为沿斜面向下和垂直斜面向上的分运动,虽然分运动比较复杂一些,但易将物体离斜面距离达到最大的物理本质凸显出来。

取沿斜面向下为轴的正方向,垂直斜面向上为轴的正方向,如图6所示,在轴上,小球做初速度为、加速度为的匀变速直线运动,所以有


当时,小球在轴上运动到最高点,即小球离开斜面的距离达到最大。

由①式可得小球离开斜面的最大距离
当时,小球在轴上运动到最高点,它所用的时间就是小球从抛出运动到离开斜面最大距离的时间。

由②式可得小球运动的时间为
例4:在平直轨道上以20.5/m s 的加速度匀加速行驶的火车上,相继下落两个物体下落的高度都是2.45m .间隔时间为1s .两物体落地点的间隔是2.6m ,则当第一个物体下落时火车的速度是多大?(g 取210/m s )
分析:如图所示.第一个物体下落以0v 的速度作平抛运动,水平位移0s ,火车加速到下落第二个物体时,已行驶距离1s .第二个物体以1v 的速度作平抛运动水平位移2s .两物体落地点的间隔是2.6m .
解:由位置关系得 1202.6s s s =+-
物体平抛运动的时间 20.7h
t s g
'=
= 由以上三式可得
例5:光滑斜面倾角为θ,长为L ,上端一小球沿斜面水平方向以速度0v 抛出(如图所示),小球滑到底端时,水平方向位移多大?
解:小球运动是合运动,小球在水平方向作匀速直线运动,有
0s v t = ①
沿斜面向下是做初速度为零的匀加速直线运动,有
2
12
L at =
② 根据牛顿第二定律列方程
sin mg ma θ= ③
由①,②,③式解得0
022sin L L
s v v a g θ
== 例6:某一物体以一定的初速度水平抛出,在某1s 内其速度方向与水平方向成37︒变成53︒,则此物体初速度大小是________/m s ,此物体在1s 内下落的高度是________m (g 取210/m s ) 选题目的:考查平抛物体的运动知识的灵活运用.
解析:作出速度矢量图如图所示,其中1v .2v 分别是ts 及(1)t s +时刻的瞬时速度.在这两个时刻,物体在竖直方向的速度大小分别为gt 及(1)g t +,由矢量图可知:
由以上两式解得017.1/v m s = 9
7
t s =
物体在这1s 内下落的高度
例7如图,跳台滑雪运动员经过一段加速滑行后从O 点水平飞出,经过3.0s 落到斜坡上的A 点.已知O 点是斜坡的起点,斜坡与水平面的夹角θ=37°,运动员的质量m=50kg .不计空气阻力.(取sin37°=0.60,cos37°=0.80;g 取10m/s 2)求:
(1)A 点与O 点的距离L ;(2)运动员离开O 点时的速度大小;
(1)从O点水平飞出后,人做平抛运动,根据水平方向上的匀速直线运动,竖直方向上的自由落体运动可以求得A点与O点的距离L;
(2)(2)运动员离开O点时的速度就是平抛初速度的大小,根据水平方向上匀速直线运动可以求得;
设A点与O点的距离为L,运动员在竖直方向做自由落体运动,则有:
Lsin37°=0.5gt2
L=
gt2
2sin37°
=75m
(2)设运动员离开O点的速度为v0,运动员在水平方向做匀速直线运动,
即:Lcos37°=v0t
解得:v0=20m/s
答:(1)A点与O点的距离是75m;
(2)运动员离开O点时的速度大小是20m/s.
1:在倾角为的斜面上的P点,以水平速度向斜面下方抛出一个物体,落在斜面上的Q点,证明落在Q点物体速度。

2:如图3所示,在坡度一定的斜面顶点以大小相同的速度同时水平向左与水平向右抛出两个小球A和B,两侧斜坡的倾角分别为和,小球均落在坡面上,若不计空气阻力,则A和B两小球的运动时间之比为多少?
3 :如图6所示,在倾角为的斜面上以速度水平抛出一小球,该斜面足够长,则从抛出开始计时,经过多长时间小球离开斜面的距离的达到最大,最大距离为多少?
4:在平直轨道上以2
m s的加速度匀加速行驶的火车上,相继下落两个物体下落的高度都是
0.5/
2.45m.间隔时间为1s.两物体落地点的间隔是2.6m,则当第一个物体下落时火车的速度是多大?(g取2
m s)
10/
5:光滑斜面倾角为θ,长为L,上端一小球沿斜面水平方向以速度
v抛出(如图所示),小球滑到
底端时,水平方向位移多大?
6:某一物体以一定的初速度水平抛出,在某1s内其速度方向与水平方向成37︒变成53︒,则此物体初速度大小是________/
m s,此物体在1s内下落的高度是________m(g取2
m s)
10/
7:如图,跳台滑雪运动员经过一段加速滑行后从O点水平飞出,经过 3.0s落到斜坡上的A点.已知O点是斜坡的起点,斜坡与水平面的夹角θ=37°,运动员的质量m=50kg.不计空气阻力.(取sin37°=0.60,cos37°=0.80;g取10m/s2)求:
(1)A点与O点的距离L;(2)运动员离开O点时的速度大小。

相关文档
最新文档