药用高分子材料
药用高分子材料学
药用高分子材料学药用高分子材料学是研究药物与高分子材料相互作用的学科,它将高分子材料的独特性能与药物的治疗效果相结合,有力地推动了药物传递和药物治疗领域的发展。
药用高分子材料是指那些在药物传递和控释系统中应用的材料,它们具有良好的生物相容性和生物可降解性,能够与药物稳定结合并通过体内的代谢和排出途径进行自行降解。
这些材料具有多种形态,包括颗粒、纳米粒、微球、纤维、薄膜等,可以通过不同的制备方法进行制备。
药用高分子材料的研究主要集中在以下几个方面:1.控释系统:药物的快速释放容易导致药物的代谢和排泄,降低治疗效果。
因此,研究人员开发了一些控释系统,例如微球、纳米粒等,通过调节材料的构型和孔隙结构来控制药物的释放速度和时间,从而确保药物可以持续稳定地释放。
2.靶向传递:药物的靶向传递是指将药物直接送达到疾病部位,减少对正常细胞的损害。
药用高分子材料可以作为药物载体,经过改性后具有靶向识别特性,可以通过配体-受体相互作用、磁性导引等方式将药物精确地传递到病变组织。
3.仿生组织工程:随着组织工程学的发展,药用高分子材料也被广泛应用于修复和再生组织。
例如,通过制备生物可降解的支架材料,可以在体内形成新的组织,加速伤口愈合和损伤修复。
4.药物检测:药用高分子材料也可以用于药物的检测,例如利用其光学、电化学、磁性等特性,开发出一系列荧光探针、电化学传感器和磁共振成像探针,用于检测药物的浓度和分布。
药用高分子材料的应用已经取得了一系列的研究进展。
例如,通过调控高分子材料的结构和性质,可以改善药物的溶解度和稳定性,提高药物的生物利用度。
同时,还可以优化药物的代谢途径和药效学特性,加强药效的持续性和生物活性。
总之,药用高分子材料学在药物传递和药物治疗领域具有重要的应用前景,有望进一步推动药物研发和临床治疗的发展。
药用高分子材料
药用高分子材料药用高分子材料是指用于医药领域的高分子材料,其具有良好的生物相容性、可降解性和药物载体功能。
药用高分子材料在医学领域中有着广泛的应用,包括药物输送、组织工程、医疗器械等方面。
本文将重点介绍药用高分子材料在医学领域中的应用及其相关研究进展。
首先,药用高分子材料在药物输送方面具有重要的应用价值。
传统的药物输送方式往往存在药物的不稳定性、生物利用度低、毒副作用大等问题。
而药用高分子材料作为药物的载体,可以提高药物的稳定性、延长药物在体内的停留时间、减少毒副作用,从而提高药物的疗效。
例如,聚乳酸-羟基乙酸共聚物(PLGA)是一种常用的药用高分子材料,可以作为微球或纳米粒子的载体,用于输送抗癌药物、抗生素等。
另外,聚乙烯吡咯烷酮(PVP)和明胶等药用高分子材料也被广泛应用于药物输送领域。
其次,药用高分子材料在组织工程方面也有着重要的应用。
组织工程是一种利用生物材料、细胞和生物活性分子构建人工组织和器官的技术,旨在修复和再生受损组织。
药用高分子材料具有良好的生物相容性和可降解性,可以作为组织工程材料用于修复骨折、软骨损伤、皮肤缺损等。
例如,聚乳酸(PLA)和聚乳酸-羟基乙酸共聚物(PLGA)可以用于制备骨修复材料和软骨修复材料,可促进骨细胞和软骨细胞的生长和再生。
另外,明胶和壳聚糖等药用高分子材料也被广泛应用于组织工程领域。
此外,药用高分子材料在医疗器械方面也有着重要的应用。
医疗器械是用于诊断、治疗、缓解疾病的器械,如缝合线、人工心脏瓣膜、支架等。
药用高分子材料具有良好的生物相容性和可加工性,可以用于制备医疗器械。
例如,聚乙烯吡咯烷酮(PVP)和聚二甲基硅氧烷(PDMS)可以用于制备医用缝合线和人工心脏瓣膜,具有良好的生物相容性和机械性能。
另外,聚乳酸(PLA)和聚己内酯(PCL)等药用高分子材料也被广泛应用于医疗器械领域。
总之,药用高分子材料在医学领域中具有着广泛的应用前景,其在药物输送、组织工程、医疗器械等方面都有着重要的应用价值。
药用高分子材料学之
目录
• 药用高分子材料的概述 • 药用高分子材料的制备与加工 • 药用高分子材料的生物相容性与
安全性 • 药用高分子材料在药物制剂中的
应用 • 药用高分子材料的未来展望
01
药用高分子材料的概述
定义与分类
定义
药用高分子材料是指在药物制剂中用作辅料或载体的高分子化合物。这些高分子化合物具有特定的化学结构和理 化性质,能够影响药物的释放、稳定性和生物利用度。
循环利用与资源化
建立药用高分子材料的循环利用体系,实现资源的有效利用和减少对自然资源 的依赖。
感谢您的观看
THANKS
1 2 3
新材料和新技术的应用
随着科技的不断进步,新型药用高分子材料的研 发和应用将不断涌现,如智能型药用高分子材料、 纳米药用高分子材料等。
生物相容性和生物降解性
提高药用高分子材料的生物相容性和生物降解性 是未来的重要发展方向,有助于降低药物制剂对 人体的副作用和环境污染。
个性化和精准医疗的需求
随着个性化医疗和精准医疗的发展,对具有特定 功能和性能的药用高分子材料的需求将不断增加。
总结词
提高药物稳定性、控制药物释放、改善药物口感
高分子材料作为药物载体
利用高分子材料作为药物载体,能够提高药物的稳定性,降低药物在 储存和运输过程中的降解。
高分子材料对药物释放的控制
通过控制高分子材料的性质和结构,可以实现对药物释放速度的调节, 提高药物的疗效和减少副作用。
高分子材料改善药物口感
利用高分子材料对药物进行包覆或改性,可以掩盖药物的不良口感, 提高患者的用药依从性。
分类
根据其来源和用途,药用高分子材料可分为天然高分子和合成高分子两大类。天然高分子包括淀粉、纤维素、壳 聚糖等,合成高分子则包括聚乙烯醇、聚丙烯酸树脂、聚乳酸等。
药剂学药用辅料高分子材料
药剂学药用辅料高分子材料
第9页
1.2 高分子基本特点
2、多分散性
❖ 什么是分子量多分散性(Polydispersity) ? 高分子不是由单一分子量化合物所组成
即使是一个“纯粹”高分子,也是由化学组成相同、 分子量不等、结构不一样同系聚合物混合物所组成
这种高分子分子量不均一(即分子量大小不一、参差不 齐)特征,就称为分子量多分散性
6.
从而使溶质分子分离,并溶于溶剂中。
药剂学药用辅料高分子材料
第20页
四、高分子溶液性质
特点
(1)稀溶液 大多稳定,溶质以分子形式分散在溶剂中 溶质与溶剂形成单相体系,含有热力学稳定性。 (1%以下认为是稀aq) (2)浓aq 粘度大,稳定性较低,有时长久放置可能有 高分子析出。(浓aq﹥20%)
第3页
1.1 高分子材料基本概念
单体单元( Monomer unit ) 聚合物中含有与单体相同化学组成而不一样电子结构单元。
重复单元 (Repeating unit),又称链节
聚合物中化学组成和结构均可重复出现最小基本单元;有 重复单元连接成是线性大分子,有时重复单元又称为链节
药剂学药用辅料高分子材料
1、这种高分子aq失去流动性时,所展现半固体 状态称为凝胶。 2、此过程称为胶凝。
影响胶凝作用原因:浓度、温度、电解质。
药剂学药用辅料高分子材料
第26页
2、凝胶性质
(1)触变性:物理凝胶受外力作用,网状结构被破坏而 变成流体,外部作用停顿后,又恢复成半固体凝胶结构, 这种凝胶与溶胶相互转化过程,称为触变性。
药剂学药用辅料高分子材料
第14页
❖ 一是溶胀
首先是溶剂小分子渗透进入高分子内部,撑开分 子链,增加其体积,形成溶胀聚合物。
药用高分子材料-高分子材料在药物制剂中的应用
缩聚反应
缩聚反应是合成高分子材 料的重要方法,通过缩合 反应形成高分子链。
共聚反应
共聚反应是将两种或多种 单体进行聚合,生成具有 不同结构和性能的高分子 材料。
药用高分子材料的加工技术
溶解与混合
将高分子材料溶解在适当的溶剂中,与其他药物成分混合均匀。
干燥与除湿
去除高分子材料中的水分和溶剂,保证其质量和稳定性。
04
药用高分子材料的安全性与 评价
药用高分子材料的安全性评价
安全性评价原则
确保药用高分子材料在使用过程中对患者的安全性,避免因材料本 身引发的不良反应或潜在风险。
安全性测试
对药用高分子材料进行全面的安全性测试,包括急性毒性、慢性毒 性、致突变性、致敏性等方面的评估。
临床数据支持
收集并分析药用高分子材料在临床应用中的数据,以评估其长期安全 性。
水溶性
根据药物制剂的需求,药用高分子材料应具有适当的水溶性,以便于 药物的溶解和分散。
粘附性
对于某些药物制剂,如口腔贴片、鼻腔喷雾等,药用高分子材料应具 有较好的粘附性,以保证药物能够较长时间地停留在作用部位。
药用高分子材料的应用领域
口服给药制剂
注射给药制剂
药用高分子材料可用于制造片剂、胶囊剂 、颗粒剂等口服给药制剂,以提高药物的 稳定性和生物利用度。
分类
根据其来源和性质,药用高分子材料可分为天然高分子材料和合成高分子材料两大类。天然高分子材料如淀粉、 纤维素、壳聚糖等,合成高分子材料如聚乙烯吡咯烷酮(PVP)、聚丙烯酸树脂等。
药用高分子材料的基本性质
生物相容性
药用高分子材料应具有良好的生物相容性,不引起免疫排斥反应和毒 性反应。
稳定性
药用高分子材料应具有良好的化学稳定性和热稳定性,以确保药物制 剂在储存和使用过程中的有效性。
药用高分子材料
药用高分子材料
药用高分子材料是一种具有广泛应用前景的新型材料,它在医药领域具有重要
的意义。
药用高分子材料是指在药物制剂中作为载体、包装材料或者药物本身的高分子材料。
它具有良好的生物相容性、生物降解性、可控释放性和多功能性等特点,因此在药物制剂领域具有重要的应用价值。
首先,药用高分子材料在药物制剂中作为载体具有重要作用。
通过将药物载入
高分子材料中,可以提高药物的稳定性、降低毒性、延长药物的作用时间。
例如,聚乳酸-羟基乙酸共聚物(PLGA)是一种常用的药用高分子材料,它可以作为微球、纳米粒等载体,用于控制释放药物,提高药物的生物利用度。
其次,药用高分子材料在药物包装领域也具有重要作用。
药物包装材料需要具
有良好的阻隔性能、稳定性和生物相容性,以保护药物免受外界环境的影响。
药用高分子材料可以作为药物包装材料,例如聚乙烯醇、聚己内酯等,它们可以有效地保护药物,延长药物的保质期,确保药物的安全性和有效性。
此外,药用高分子材料还可以作为药物本身。
一些高分子材料本身具有药物活性,例如聚乙二醇-聚乳酸共聚物(PEG-PLA)可以作为抗癌药物,具有良好的抗
肿瘤活性。
这种药物既可以作为载体,也可以作为药物本身,具有双重作用。
总的来说,药用高分子材料具有重要的应用前景和发展空间。
它在药物制剂中
作为载体、包装材料或者药物本身,都具有重要的作用。
随着科学技术的不断发展,相信药用高分子材料将会在医药领域发挥越来越重要的作用,为人类健康事业做出更大的贡献。
药用高分子材料
药用高分子材料药用高分子材料是一类应用于医药领域的特殊高分子材料。
它们具有良好的生物相容性、可控释放性和生物可降解性等特点,在医疗器械、药物传递系统和组织工程等方面有着广泛的应用。
以下将介绍一些常见的药用高分子材料及其应用。
1. 聚乳酸(PLA)和聚乳酸-羟基乙酸共聚物(PLGA):聚乳酸和PLGA是最常用的药用高分子材料之一。
它们具有良好的生物相容性和生物降解性,可用于制备缝合线、药物载体和组织工程支架等。
此外,由于它们的可良好可控释放性,它们也被广泛应用于药物缓释系统,如微球、纳米颗粒和纳米纤维等。
2.玻尿酸(HA)和聚乙二醇(PEG):玻尿酸是一种天然多糖,具有良好的生物相容性和生物活性。
它可用于制备软骨修复材料、皮肤填充剂和药物传递系统等。
聚乙二醇是一种具有良好生物相容性的合成高分子材料,可用于改善药物的稳定性、增加其溶解度,并延长药物的半衰期。
3.聚酯和聚酰胺:聚酯和聚酰胺是常用的生物降解高分子材料。
它们可用于制备缝线、填充剂和组织工程支架等,在骨科、牙科和整形外科等领域得到广泛应用。
此外,它们还可以通过改变化学结构和物理性质来调控材料的生物可降解性和机械性能,以适应不同的医疗需求。
4.明胶和胶原蛋白:明胶和胶原蛋白是一种具有良好生物相容性和生物活性的天然高分子材料。
它们可用于制备组织工程支架、药物载体和伤口愈合材料等。
此外,由于其结构与人体组织相似,它们在医学成像和细胞培养等方面也有着重要的应用。
除了以上几种常见的药用高分子材料外,还有许多其他类型的药用高分子材料被用于特定的医疗应用,如聚己内酯(PCL)、聚碳酸酯(PC)和聚乳酸-联谷氨酸共聚物(PLLA-Glu)等。
随着科技的不断发展,药用高分子材料还将有更广阔的应用前景,并为医学领域的进步做出贡献。
药用高分子材料
常用的增溶剂与乳化剂包括表面 活性剂、油脂、脂肪酸等。
04
05 药用高分子材料的安全性 与评价
安全性评估方法
01
02
03
04
急性毒性试验
通过观察高分子材料对实验动 物的急性毒性反应,评估其安
全性。
亚急性毒性试验
观察高分子材料对实验动物长 期毒性反应,评估其安全性。
慢性毒性试验
观察高分子材料对实验动物的 长期毒性反应,评估其安全性
以及其在体内的药效和代谢行为。
法规与监管
02
随着新技术的出现和应用,需要制定相应的法规和标准,以确
保药用高分子材料的安全性和有效性。
跨学科合作
03
需要加强药学、化学、生物学、医学等领域的跨学科合作,共
同推动药用高分子材料的发展和创新。
感谢您的观看
THANKS
04 药用高分子材料在药物制 剂中的应用
药物载体
药物载体是药用高分子材料在药物制剂中的重要应用 之一。它能够将药物包裹起来,保护药物免受环境影
响,同时提高药物的稳定性和生物利用度。
输标02入题
药物载体可以控制药物的释放速度,实现药物的缓释 或控释,从而减少服药次数,提高患者的依从性。
01
03
常用的药物载体材料包括脂质体、纳米粒、微球等。
常用的药物控释材料包括生物降解高 分子材料和不可降解高分子材料。
药物稳定剂与保护剂
药物稳定剂与保护剂是利用药 用高分子材料来提高药物的稳 定性和保护药物免受环境因素
影响的制剂。
药物稳定剂能够减缓药物的氧 化、水解等降解反应,延长药
物的保质期和药效时间。
药物保护剂能够将药物包裹在 稳定的微环境中,减少药物与 外界的接触,降低药物的物理 和化学不稳定性。
药用高分子材料
1.高分子材料:高分子化合物材料。
高分子化合物,简称高分子,是分子量很高的一类化合物。
常用高分子的分子量高达104~106。
2.药用高分子材料:药品生产和制造加工过程中使用的高分子材料,药用高分子材料包括作为药物制剂成分之一的药用辅料与高分子药物,以及与药物接触的包装贮运高分子材料。
药用高分子辅料:指能将药理活性物质制备成药物制剂的各种高聚物。
3药用辅料的作用:在药剂制备过程中有利于成品的加工;加强药剂稳定性,提高生物利用度或病人的顺应性;有助于从外观鉴别药剂;增强药剂在贮藏或应用时的安全和有效。
4.辅料和药用高分子材料的比较:A相同点:辅料与药用高分子辅料都是主药以外的另一种材料,但又是制剂中必不可少的辅助材料。
B不同点:辅料包括制剂中所有用到的气液固材料,含义比药用高分子材料广,但它不具备药理活性;药用高分子材料包括高分子药物,侧重于天然、半天然、合成大分子液体和固体材料应用于现代制剂中。
5.高分子化合物(简称高分子):是指分子量很高的一类化合物。
分子量在104以上.由许多相同的、结构简单的单元(unit)通过共价键(covalent bond)重复键接而成的化合物。
6.单体(monomer):合成聚合物的低分子的原料。
重复单元(repeating unit):大分子链上重复出现的、最小基本单元(分子式中括号内的部分)。
7.结构单元(structural unit):单体在大分子链中形成的单元。
习惯上,将形成结构单元的分子称为单体8 a有机高聚物;碳链高聚物:主链纯为碳原子构成 .杂链高聚物:主链中含有碳原子及氧、氮、硫、磷等原子b 元素有机聚合物:主链结构中不含碳原子,而是由硅、硼、铝、钛等原子和氧原子构成c无机高聚物:主链和侧链结构中均无碳原子,一般呈现规则交联的面型结构或体型结构9.PVC-聚氯乙烯PE-聚乙烯PMMA-聚甲基丙烯酸甲酯PP-聚丙烯PC-聚碳酸酯聚酰胺(尼龙)10.高分子的聚集态有晶态和非晶态之分的晶态比小,高聚物分子的晶态的有序程度差很多,存在着很多缺陷。
药用天然高分子材料
老化作用的防止与利用
在生产上为了防止淀粉的老化作用,采用高温糊化,同时进行激烈搅拌,使淀粉分子充分分散,但必须严格控制加热时间及搅拌条件,使淀粉糊液保持一定的粘度。 淀粉发生凝沉作用,可使食品品质下降,但有时也可利用淀粉的凝沉作用制造各类制品,如我国粉丝的制造,就是利用含直链淀粉高的淀粉(如绿豆、豌豆等),通过糊化、凝沉、干燥等步骤制成。
(3) 有的药物具有不良臭味、苦涩味,甚至有些具有较强的刺激性,影响该制剂的应用,特别是对于儿童和老人,将其制成包合物可使不良臭味、苦味减轻或消除。
(4) 用-环糊精包合挥发油,可使其粉末化,制成散剂、颗粒剂、片剂、硬胶囊剂等剂型,不仅便于生产,而且可使剂量准确,利于保存和携带。
-1,6苷键
-1,4-苷键
支链淀粉
支链淀粉构象示意图
1.淀粉粒的比重约为1.5,不溶于冷水,但吸湿性很强——淀粉制造工业的理论基础 所谓水磨法,就是利用这一性质。先将原料打碎成糊 (若原料为玉米一类籽粒粮则必须先行浸泡,然后湿磨破坏组织,使其成糊),除去蛋白质及其它杂质,再使淀粉在水中沉淀析出 2.直链淀粉溶于热水(60-80度),支链淀粉不可溶。(可用于分离二者)
(三)、淀粉的性质
3.淀粉的糊化
淀粉在水中经加热后出现膨润现象,继续加热,成为溶液状态,这种现象称为糊化,处于这种状态的淀粉称为-淀粉。
表2-5 几种谷物淀粉粒的糊化温度
淀粉种类
糊化温度范围(℃)
糊化开始温度(℃)
大米
58~61
58
小麦
65~67.5
65
玉米
64~72
64
高粱
69~75
69
二、糊精
(一) 来源与制法
淀粉
水解
药用高分子材料学
药用高分子材料学药用高分子材料学是指将高分子材料应用于药物制备、药物传递、医疗器械等医药领域的学科。
高分子材料是一类由大量重复单元组成的大分子化合物,具有较高的分子量和复杂的结构。
在医药领域,药用高分子材料具有广泛的应用前景,可以用于改善药物的稳定性、控制药物的释放速度、提高药物的生物利用度等方面。
首先,药用高分子材料可以用于药物的包埋和控释。
传统的药物制剂往往存在稳定性差、口服生物利用度低、剂型单一等问题。
而利用高分子材料,可以将药物包埋在高分子材料的内部,形成微球或纳米粒子,从而提高药物的稳定性,延长药物的作用时间,改善药物的生物利用度。
常见的药用高分子材料有聚乙烯醇、明胶、壳聚糖等,它们可以通过不同的制备方法和控释机制,实现对药物释放速度的调控,从而满足不同药物的需要。
其次,药用高分子材料还可以用于医疗器械的制备。
在医疗器械领域,高分子材料具有良好的生物相容性和可塑性,可以用于制备各种医疗器械,如人工关节、支架、缝线等。
与传统的金属材料相比,高分子材料制备的医疗器械更轻便、更舒适,且能减少对患者的创伤。
同时,药用高分子材料还可以通过表面修饰和功能化,赋予医疗器械更多的功能,如抗菌、促进愈合等,从而提高医疗器械的治疗效果。
此外,药用高分子材料还可以用于组织工程和再生医学领域。
利用高分子材料的支架结构和生物相容性,可以制备出各种组织工程支架,用于修复受损组织和器官。
同时,高分子材料还可以作为细胞载体,用于细胞的培养和传递,促进组织再生。
在再生医学领域,药用高分子材料的应用为组织工程和再生医学的发展提供了新的途径和可能性。
总的来说,药用高分子材料学作为一门新兴的交叉学科,将高分子材料的特性与药物制备、医疗器械、组织工程等医药领域相结合,为医药领域的发展带来了新的机遇和挑战。
随着科学技术的不断进步和人们对健康的需求不断增加,药用高分子材料必将在医药领域发挥越来越重要的作用。
相信随着更多的研究和应用,药用高分子材料将为人类的健康事业做出更大的贡献。
医用高分子材料
5.3.1 分类
❖ 根据不同的分类方法人工器官可以分为如下几类:
❖ 1)按功能分:
(1)支持运动功能的人工器官,如人工关节、人工脊椎、人工骨、人工肌腱、肌电控制 人工假肢等。
(2)血液循环功能的人工器官,如人工心脏及其辅助循环装置、人工心脏瓣膜、人工血 管、人工血液等。
(3)呼吸功能的人工器官,如人工肺(人工心肺机)、人工气管、人工喉等。 (4)血液净化功能的人工器官,如人工肾(血液透析机)、人工肺等。 (5)消化功能的人工器官,如人工食管、人工胆管、人工肠等。 (6)排尿功能的人工器官,如人工膀胱、人工输尿管、人工尿道等。 (7)内分泌功能的人工器官,如人工胰、人工胰岛细胞。 (8)生殖功能的人工器官,如人工子宫、人工输卵管、人工睾丸等。 (9)神经传导功能的人工器官,如心脏起搏器、膈起搏器等。 (10)感觉功能的人工器官,如人工视觉、人工听觉(人工耳蜗)、人工晶体、人工角
5.2 高分子材料的特性
❖ 高分子材料:一类相对分子质量比一般有机化合物高得多的化 合物。
❖ 一般有机化合物的相对分子质量只有几十到几百,高分子化合 物是通过小分子单体聚合而成的相对分子质量高达上万甚至上 百万的聚合物。
❖ 通常高分子材料可以压延成膜;可以纺制成纤维;可以挤铸或 模压成各种形状的构件;可以产生强大的粘结能力;可以产生 巨大的弹性形变;并具有质轻、绝缘、高强、耐热、耐腐蚀、 自润滑等许多独特的性能。
❖ 旋光异构:有机物能构成互为镜影的两种异构体,表现出不同的旋光性。
❖ 例如饱和氢化物中的碳构成一个四面体,碳原子位于四面体中心,4个基团位 于四面体的顶点,当4个基团都不相同时,位于四面体中心的碳原子称为不对 称原子,用C*表示,其特点是C*两端的链节不完全相同。有一个C*存在,每一 个链节就有两个旋光异构体。
药用高分子材料学(完整版)
一.名词解释1.药用高分子材料:指药物生产和加工过程中使用的高分子材料,药用高分子材料包括作为药物制剂成分之一的药用辅料高分子药物,以及药物接触的包装贮运高分子材料2.聚合度:单个聚合物分子所含单体单元的数目3.聚合物:小分子通过化学反应,高分子化合物习惯上又称为聚合物,是指相对分子质量很高的一类化合物4.均聚物:由一种(真实的隐含的或假设的)单体聚合而成的聚合物5.共聚物:由一种以上(真实的隐含的或假设的)单体聚合而成的聚合物6.聚集态结构:晶态、非晶态、取向态、液晶态及织态等,是在聚合物加工成型过程中形成的,决定着材料的性能7.玻璃态:分子链节或整个分子链无法产生运动,高聚物呈现如玻璃体状的固态8.高弹态:链节可以较自由的旋转但整个分子链不能移动,高弹态是高聚物所独存的罕见的一种物理形态,能产生形变9.粘流态:高聚物分子链节可以自由旋转整个分子链也能自由转动,从而成为能流动的粘液10.生物降解:是聚合物在生物环境中(水、酶、微生物等作用下)大分子的完整性受到破坏产生碎片或其他降解产物的现象11.多分散性:聚合物是由一系列的分子是(或聚合度)不等的同系物高分子组成,这些同系物高分子之间的分子量差为重复结构单元分子量的倍数,这种同种聚合物分子长短不一的特征称为聚合物的多分散性12.缩合聚合:指单体间通过缩合反应脱去小分子,聚合成高分子的反应,所得产物称为缩聚物13.凝胶化现象:在交联型逐步聚合反应中,随着聚合物反应的进行,体系粘度突然增大失去流动性,反应及搅拌所产生的气泡无法从体系逸出,可看到凝胶及不溶性聚合物的明显生成14.共混聚合物:将两种或两种以上的高分子材料加以物理混合,使之形成混合物,此混合物称为共混聚合物15.重复单元结构:重复组成高分子分子结构的最小的结构单元16.单体:形成结构单元的小分子化合物称为单体17.昙点:将聚合物溶液加热,当其高过低临界溶液温度时,聚合物能从溶液中分离出来,此时称为昙点二.简答题1. 简述逐步聚合反应的反应特征?(1)反应是通过单体功能基之间的反应逐步进行的(2)每一步反应的速率和活化能大致相同(3)反应体系始终由单体和分子量递增的一系列中间产物组成,单体以及任何中间产物两分子之间都能发生反应(4)聚合产物的分子量是逐步增大的最重要特征:聚合体系中任何两分子(单体或聚合产物)间都能相互反应,生成聚合度更高的聚合产物2. 简述链式聚合反应特征?(1)聚合过程一般由多个基元反应组成(2)多基元反应的反应速率和活化能差别大(3)单体只能与活性中心反应生成新的活性中心,单体之间不能反应(4)反应体系始终是由单体、聚合产物和微量引发剂及含活性中心的增长链所组成(5)聚合产物的分子量一般不随单体转化率而变(活性聚合除外)3. 纤维素的重要性质?(1)化学反应性(氧化、酯化、醚化)(2)氢链的作用(3)吸湿性(4)溶胀性(5)机械溶解特性(6)可水解性(酸水解、碱水解)4. 乳化剂的主要作用?(1)降低表面张力,便于单体分散成细小的液滴,即分散单体(2)在单体液滴表面形成保护层,防止凝聚,使乳化稳定(3)增溶作用:当乳化剂浓度超过一定值时会形成胶束,胶束中乳化剂分子的极性基团朝向水相,亲油基指向油相,能使单体微溶于胶束内5. 共混与共聚化合物的主要区别?共混化合物是将两种或两种以上的高分子材料加以物理混合形成的混合物,只是简单的物理混合。
药用高分子材料四大类型PPT课件
02
药用高分子材料的四大类 型
天然高分子材料
天然高分子材料是从自然界中获取的高分子材料,如淀粉、纤维素、壳聚糖等。
天然高分子材料具有良好的生物相容性和可降解性,常用于药物载体和组织工程领 域。
天然高分子材料的缺点是稳定性较差,易受微生物侵蚀和环境因素的影响。
合成高分子材料
合成高分子材料是通过化学合 成制备的高分子材料,如聚乙 烯、聚丙烯、聚氯乙烯等。
随着药物传输技术的发展,高分子材料在药物载体方面的应用将更加 广泛,为新型药物的开发提供更多可能性。
提高药物稳定性
高分子材料可以作为药物的稳定剂,提高药物的稳定性和延长药物的 有效期。
靶向药物传输
通过高分子材料的修饰和改性,实现药物的靶向传输,提高药物的疗 效并降低副作用。
生物可降解性
发展可生物降解的高分子材料,减少药物残留和环境污染。
药用高分子材料四大类 型PPT课件
目录 CONTENT
• 药用高分子材料概述 • 药用高分子材料的四大类型 • 药用高分子材料的生产工艺与质
量控制 • 药用高分子材料的发展前景与展
望
01
药用高分子材料概述
药用高分子材料的定义
药用高分子材料是指在药物制剂中用作辅料或载体的高分子 化合物。这些高分子化合物具有良好的生物相容性和药理性 能,能够提高药物的稳定性、延长药物的作用时间、降低药 物的副作用等。
药用高分子材料在药物制剂中起到关键作用,是现代药物制 剂的重要组成部分。
药用高分子材料的应用领域
第一季度
第二季度
第三季度
第四季度
口服给药系统
药用高分子材料在口服 给药系统中作为药物载 体、粘合剂、崩解剂等 ,能够提高药物的生物 利用度、稳定性以及患 者的顺应性。
药用高分子材料学ppt课件
感谢您的观看
THANKS
药用高分子材料学ppt 课件
目录 CONTENT
• 引言 • 药用高分子材料的性质与要求 • 药用高分子材料的制备与加工 • 药用高分ቤተ መጻሕፍቲ ባይዱ材料在药物制剂中的
应用 • 药用高分子材料的安全性与评价 • 药用高分子材料的未来展望与挑
战
01
引言
药用高分子材料的定义与分类
总结词
介绍药用高分子材料的定义,以及按照来源、合成方 法和功能进行的分类。
提高药物的稳定性
某些高分子材料可以作为药物 的保护层,防止药物在储存和 运输过程中发生氧化、水解等 反应,从而提高药物的稳定性 。
改善药物的释放行为
通过使用不同类型和不同分子 量的高分子材料,可以调节药 物的释放速度和释放模式,实 现药物的定时、定量、定位释 放。
药用高分子材料在注射制剂中的应用
用作药物载体和稳定剂
04
药用高分子材料在药物制 剂中的应用
药用高分子材料在口服制剂中的应用
药用高分子材料作为药物 载体
用于改善药物在体内的溶解度 、稳定性和生物利用度。例如 ,利用高分子材料包裹药物, 以实现缓释或控释效果,减少 服药次数和剂量,提高患者的 依从性。
改善药物口感和口感持久 性
通过使用高分子材料,改善药 物口感,使其更易于被患者接 受。同时,高分子材料还可以 增加药物口感的持久性,提高 患者用药的满意度。
表面处理与修饰
对高分子材料表面进行修饰,以提高其生物相容性和稳定性。
药用高分子材料的质量控制
化学结构
确保药用高分子材料的化学结构符合预定要求,无杂质和降解产 物。
物理性质
控制药用高分子材料的物理性质,如粒径、形态、流动性、吸湿性 和稳定性等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《药用高分子材料》第1-3章试题一、选择题(每题2分,共60分)1.下列不属于高分子的聚集态结构的是( C )A 晶态结构B 取向结构C 远程结构D 织态结构2.下列属于高分子间相互作用力的是( A )A 范德华力B 共价键C 疏水力D 离子键3.高分子合金不包括( D )A 共混聚合物B 嵌段聚合物C 接枝共聚物D 无规共聚物4.下列几种聚合物的水解速度顺序正确的是( A )A 聚酸酐>聚酯>聚酰胺>聚烃B 聚酯>聚酸酐>聚酰胺>聚烃C 聚酰胺>聚酯>聚酸酐>聚烃D 聚酸酐>聚酰胺>聚酯>聚烃5.下列关于影响高分子链柔性的因素的叙述中不正确的是( A )A 主链中含有双键的高分子如聚丁二烯因为不发生旋转,故弹性较差B 侧链极性越强,数量越多,柔链的柔性越差C 交链程度较低时分子可保持一定柔性D 温度越高柔性越大6.下列高聚物中结晶能力最弱的是( C )A 聚乙烯B 聚四氯乙烯C 聚氯乙烯D 聚偏二氯乙烯7.聚丙烯的下列几种结构中最不易结晶的是( A )A 无规立构B 全同立构C 间同立构D 几种结构相差不大8.下列对于聚合物取向度的表述正确的是( B )A 取向态的分子不仅需成行成列,而且需要原子在特定位置上定位B 晶态聚合物取向是结晶形变过程,经外力拉伸后形成新的结晶结构C 在晶态聚合物的非晶区观察不到取向现象D 在非晶态聚合物观察不到取向现象9.高分子键链~~~H2C—CHCl—CHCl—CH2~~~属于( A )键接方式。
A 头头键接B 头尾键接C 尾头键接D 尾尾键接10.下列对于聚合反应的表述不正确的是( D )A 自由基聚合反应中引发速率是控制总聚合速率的关键B 有两个官能团的单体可相互反应进行线型缩聚反应C 自由基共聚反应可分为共聚和均聚D 体型聚合物是由支链聚合物经非共价键连接而成11.什么是具有生物相容性、经过安全评价且应用于药物制剂的一类高分子辅料( A )A 药用高分子材料 B 高分子材料 C 任何材料 D 药用材料12.肠溶PH一般为( A )A 6.0B 1.0C 2.0D 3.013.药用高分子材料一般具有许多特殊要求,除了( A )A 有抗原性B 无毒C 无抗原性D 良好的生物相容性14.乙烯-醋酸乙烯共聚物的英文简写为( A )A. EV AB. VEAC. V AED. A VE15.塑料软包装输液具有许多优势,除了( B )A 体积小B 重量大C 重量轻D 破损率低16.聚合物的相对分子质量M是重复单元相对分子质量M0与聚合度DP的( A )A 积 B 商 C 和 D 差17.在合成高分子时,参与反应是结构完全对称的单体,则其有几种链接方式( A )A 1B 2C 3D 418.下列说法正确的是( A )A 聚合物的熔点是指完全融化时的温度B 熔点的大小与受热温度没有多大关系C 熔点大小与聚合物近程结构无关D 结晶温度越低,熔点越高19.影响结晶过程的因素不包括( D )A 链的对称性B 链规整性C分子间相互作用D分子内相互作用20.自由基聚合反应的特征可概括为( A )A 慢引发,快增长,速终止B 快引发,快增长,速终止C 快引发,慢增长,速终止D 快引发,快增长,慢终止21.下列描述不属于高分子聚集态的结构是( A )A 远程结构B 晶态结构C 非晶态结构D 取向结构22.下列关于高分子的物理力学性能叙述错误的是( D )A 高分子具有很大的分子间作用力,无沸点,不能气化B 高分子材料在固体时其力学性质是弹性与黏性的综合,在一定条件下可发生相当大的可逆力学变形C 高分子材料在溶剂中表现出溶胀特性D 高分子材料具有准确的相对分子质量23.相对分子质量是鉴定聚合物的重要指标,自由基聚合过程中,影响相对分子质量的主要因素不包括下列的( C )A 单体的浓度B 引发剂的浓度C 反应时间D 反应温度24.自由基聚合反应中,要根据聚合反应实施的办法来选择引发剂,乳液聚合和水溶液聚合要选择( A )水溶性引发剂。
A 硫酸盐类B 盐酸盐类C 高氯酸盐类D 磷酸盐类25.聚合物在外力作用下,分子链沿外力方向平行排列形成的结构称为聚合物的取向态结构。
未取向聚合物是()的,取向后材料呈(B)。
A 各向同性,各向同性B 各向同性,各向异性C 各向异性,各向同性D 各向异性,各向异性26.下列不是单体分子间进行线型缩聚反应的特点是( D )A 逐步性B 成环性C 平衡反应D 链对称性27.生物降解通常是指聚合物在生物环境中大分子的完整性遭到破坏,产生碎片或其他降解产物的现象,( D )和酶解是最主要的降解机制。
A 酸解B 碱解C 热解D 水解28.下列不是影响聚合物生物降解水解速率的因素的是( B )A PH值B 水解时间C 聚合物的化学结构D 聚合物的结晶度29.偶氮类和过氧化物类引发剂均属于( A )引发剂,常用于本体聚合悬浮聚合和溶液聚合。
A 油溶性B 水溶性C 酸性D 碱性30.关于结晶聚合物的主要特征,下列说法中不正确的是( C )A 结晶聚合物的熔点不是单一温度值,而是从预熔到全熔的一个时间范围B 结晶的比例受结晶条件影响C 聚合物可全部结晶D 聚合物只能部分结晶,或者说聚合物的结晶往往是不完全的1.简述高分子材料在药物制剂中的应用答:①用于片剂和一般固体制剂:作为粘合剂,稀释剂,崩解剂,润滑剂,包衣材料等。
作为缓、控释材料:如用作扩散控释材料,溶解、溶蚀或生物降解基水凝胶材料,高分子渗透膜,离子交换树脂等。
②用于液体或半固体制剂作为增稠剂,助悬剂,胶凝剂,乳化剂,分散剂等③用作生物粘附性材料④用作新型给药装置的组件⑤用作药品包装材料2.自由基聚合的基元反应有哪些?自由基聚合反应的特征?答:自由基聚合的基元反应:链引发,链增长,链终止,链转移。
自由基聚合反应的特征①慢引发、快增长、速终止;②只有链增长反应才使聚合度增加;③在聚合过程中,单体浓度逐步降低,聚合物浓度相应提高,延长聚合时间主要提高转化率,对分子量影响不大;④少量(0.01% ~ 0.1%)阻聚剂足以使自由基聚合反应终止。
3.生物降解中的化学降解的主要形式有哪些?答:第一种形式中,聚合物主链上不稳定键断裂,生成了小分子的水溶性产物第二种形式中,因侧基水解,使整个聚合物溶解第三种形式中,聚合物是一个交联网络,不稳定的交联链断裂,释放出可溶解的聚合物碎片;第四种形式是以上三种形式的综合表现。
4.聚合物的化学反应的特征答:虽然聚合物的化学反应与小分子的化学反应没有本质区别,但事实上由于聚合物分子量大,链结构复杂等特性,使得它和小分子的化学反应相比又具有许多特点:(1)在很多情况下,聚合物的官能团反应活性明显低于小分子,两者在反应程度上有很大的不同。
大分子的反应速度较慢,并且聚合物的化学反应往往不完全,具有局部反应的特点。
(2)产物不纯,副反应多,如聚丙烯晴水解制备聚丙烯酸的反应过程中,大分子链上总同时含有未反应的情基和其他处于不同反应阶段的基团,如酚基、羧基、环亚胺基,因而不存在纯的聚丙烯酸。
(3)大分子化学反应只需加入少量试剂即可引起性质上巨大变化,而低分子化合物,一般需要等摩尔试剂。
5.如何选择引发剂?答:首先要根据聚合反应实施的方法来选择,一般情况下:(1)本体聚合、悬浮聚合和有机溶液聚合选择偶氮类和过氧化物类油溶性引发剂;(2)乳液聚合和水溶液聚合则要选择过硫酸盐类的水溶性引发剂。
其次要根据聚合温度选择活化能或半衰期适当的引发剂,使聚合时间适宜。
6.药用高分子辅料有别于非药用的高分子材料的特殊要求?(P4第二段)7.简述聚合反应的分类①聚合反应按照单体与聚合物在元素组成和结构上的变化,分为加聚反应和缩聚反应。
加聚反应:是指单体经过加成聚合起来的反应,所得产物称之为加聚物,加聚物的元素组成与其单体相同,只是电子结构有所改变,加聚物的分子量是单体分子量的整数倍。
缩聚反应:是指单体间通过缩合反应,脱去小分子,聚合成高分子的反应,所得产物称之为缩聚物。
②聚合反应按照聚合机理的不同分为链锁聚和逐步聚合。
链锁聚合:是指整个聚合反应是由链引发,链增长,链终止等基元反应组成。
逐步聚合反应:反映大分子形成过程中的逐步性。
反应初期单体很快消失,形成二聚体、三聚体、四聚体等低聚物,随后这些低聚物间进行反应,分子量随反应时间逐步增加。
在逐步聚合全过程中,体系由单体和分子量递增的一系列中间产物所组成。
8.简述自由基聚合反应的特征答:①自由基聚合反应的特征可概括为慢引发、快增长、速终止。
②引发速率是控制总聚合速率的关键;③聚合体系中只有单体和聚合物组成;④延长反应时间可提高单体转化率,对分子量影响较少;⑤少量阻聚剂即可终止自由基聚合反应。
9.药用高分子辅料有别于非药用高分子材料,应具备那些特殊要求?①对特殊药物有适宜的载药能力②载药后有适宜的释药能力③无毒并具有良好的生物相容性④无抗原性⑤为适应制剂加工成型的要求,还需具备适宜的分子量和物理机械性质10.简述自由基聚合反应的机制。
①链引发反应链引发是形成单体的活性中心的反应,包括两步:引发分解生成初级自由基;初级自由基与单体加成形成单体自由基②链增长反应单体自由基能打开另一单体的π键形成新的自由基,该自由基活性不变,继续与其它单体结合生成单元更多的键自由基③链终止反应键自由基失去活性形成聚合物的反应称为链终止反应。