导热理论基础

合集下载

导热基础必学知识点

导热基础必学知识点

导热基础必学知识点
1. 热传导:热量从高温区传导到低温区的过程。

热传导可以通过导热
机制(分子传导、电子传导和辐射传导)进行。

2. 热导率:物质传导热量的能力。

热导率越高,传热能力越高。

3. 热阻:物质对热传导的阻碍能力。

热阻越高,传热能力越低。

4. 热传导方程:描述热传导过程中温度分布的偏微分方程。

在稳态条
件下,热传导方程为焦耳定律,即热流密度等于热导率乘以温度梯度。

5. 导热系数:描述固体材料导热性能的物理量。

导热系数等于热导率
除以材料的厚度。

6. 热容量:物质吸收或释放的热量与温度变化之间的关系。

热容量越大,物质对热量的吸收或释放能力越强。

7. 热扩散:物质在受热时的体积膨胀现象。

热扩散系数描述了物质在
温度变化下的膨胀程度。

8. 热辐射:由热源发出的电磁辐射。

热辐射可以通过辐射传导方式进
行热传导。

9. 对流传热:通过流体介质(如气体或液体)的运动来实现热传输的
过程。

对流传热具有较高的传热效率。

10. 导热材料:具有较高热导率的材料,常用于热导设备或导热结构中,以实现高效的热传导。

常见的导热材料包括金属、陶瓷和导热塑
料等。

以上是导热基础必学的知识点,掌握了这些知识可以帮助理解热传导的基本原理和特性,对导热材料的选择和应用有一定的指导意义。

第2章-导热理论基础以及稳态导热

第2章-导热理论基础以及稳态导热

第二章 导热基本定律及稳态导热1、重点内容:① 傅立叶定律及其应用;② 导热系数及其影响因素; ③ 导热问题的数学模型。

2、掌握内容:一维稳态导热问题的分析解法3、了解内容:多维导热问题第一章介绍传热学中热量传递的三种基本方式:导热、对流、热辐射。

根据这三个基本方式,以后各章节深入讨论其热量传递的规律,理解研究其物理过程机理,从而达到以下工程应用上目的:基本概念、基本定律:傅立叶定律,牛顿冷却定律,斯忒藩—玻耳兹曼定律。

① 能准确的计算研究传热问题中传递的热流量 ② 能准确的预测研究系统中的温度分布导热是一种比较简单的热量传递方式,对传热学的深入学习必须从导热开始,着重讨论稳态导热。

首先,引出导热的基本定律,导热问题的数学模型,导热微分方程;其次,介绍工程中常见的三种典型(所有导热物体温度变化均满足)几何形状物体的热流量及物体内温度分布的计算方法。

最后,对多维导热及有内热源的导热进行讨论。

§2—1 导热基本定律一 、温度场1、概念温度场是指在各个时刻物体内各点温度分布的总称。

由傅立叶定律知:物体导热热流量与温度变化率有关,所以研究物体导热必涉及到物体的温度分布。

一般地,物体的温度分布是坐标和时间的函数。

即:),,,(τz y x f t =其中z y x ,,为空间坐标,τ为时间坐标。

2、温度场分类1)稳态温度场(定常温度场):是指在稳态条件下物体各点的温度分布不随时间的改变而变化的温度场称稳态温度场,其表达式),,,(z y x f t =。

2)稳态温度场(非定常温度场):是指在变动工作条件下,物体中各点的温度分布随时间而变化的温度场称非稳态温度场,其表达式),,,(τz y x f t =。

若物体温度仅一个方向有变化,这种情况下的温度场称一维温度场。

3、等温面及等温线1)等温面:对于三维温度场中同一瞬间同温度各点连成的面称为等温面。

2)等温线(1)定义:在任何一个二维的截面上等温面表现为等温线。

第2章-导热理论基础以及稳态导热

第2章-导热理论基础以及稳态导热

§ 2 -1 导热基本定律 一 、温度场 (Temperature field) 1 、概念 温度场是指在各个时刻物体内各点温度 分布的总称。 由傅立叶定律知,物体的温度分布是坐 标和时间的函数:
t f x, y, z,
其中 x, y , z 为空间坐标, 为时间坐标。

2 、温度场分类 1 )稳态温度场(定常温度场)
料称各向异性材料。此类材料 必须注明方
向。相反,称各向同性材料。
§ 2-2 导热微分方程式及定解条件
由前可知:
( 1 )对于一维导热问题,根据傅立叶定 律积分,可获得用两侧温差表示的导热量。 ( 2 )对于多维导热问题,首先获得温度 场的分布函数,然后根据傅立叶定律求得空 间各点的热流密度矢量。
一 、导热微分方程 1 、定义:根据能量守恒定律与傅立叶定律 ,建立导热物体中的温度场应满足的数学表 达式,称为导热微分方程。
d 时间内、沿 x 轴方向导入与导出微元体净热量
d x d x dx qx dxdydzd x
d 时间内、沿 y 轴方向导入与导出微元体净热量
d y d y dy qy y dxdydzd
d 时间内、沿 z 轴方向导入与导出微元体净热量
综上说明: ( 1 )导热问题仍然服从能量守恒定律; ( 2 )等号左边是单位时间内微元体热力学能的 增量(非稳态项); ( 3 )等号右边前三项之和是通过界面的导热使 微分元体在单位时间内 增加的能量 ( 扩散 项 ) ; ( 4 )等号右边最后项是源项; ( 5 )若某坐标方向上温度不变,该方向的净导 热量为零,则相应的扩散项即从导热微分方程中消 失。
t2
0 x δ
q 是该处的热流密度矢量。

传热学复习要点

传热学复习要点

传热学 复习要点1-3节为导热部分1.导热理论基础 (分稳态导热和非稳态导热) (1)导热现象的物理本质及在不同介质中的传递特征.依靠分子,原子和自由电子等微观粒子热运动进行的热量传递.气体中为分子,金属中为电子,非导电固体和液体中为晶格(2)温度场的空间时间概念.表达式:t=f(x,y,z, τ)空间用x,y,z表示.时间用τ.稳态: 非稳态:(3)温度梯度的概念和表达式.定义: 两等温面温差 与其法线方向距离 的比值极限..表达式:(4)傅立叶定律的概念及其表达式.----导热基本定律定义:表达式:适用范围:只适用于各向同性的固体材料.(5)导热系数的定义,物理意义和影响因素.表达式:物理意义:表征物体导热能力的大小.影响因素:(6)物性参数为常数时的导热微分方程式在各种不同条件下的数学表达.导热微分方程---由傅立叶定律和热一律导出.导热微分方程表达式:无内热源:稳态温度场:无内热源且为稳态温度场:(7)导温系数的表达及其物理意义,与导热系数的区别.导温系数a定义: a=λ/cρ;物理意义:表示物体加热或冷却时,物体内部各部分温度趋于一致的能力.(8)导热过程单值性条件和数学表达.单值性条件包括4个:几何条件;物理条件;时间条件;边界条件;其中边界条件分3类:①第一类边界条件:已知边界面温度.②第二类边界条件:已知边界面热流密度..③第二类边界条件:已知边界面与周围流体间的表面传热系数及周围流体温度tf.牛顿冷却公式:2.稳态导热--t=f(x,y,z)(1)通过单层平壁,多层平壁和复合平壁的导热计算式及温度分布,热阻概念及其表达式和运用.A: 第一类边界条件: 在无内热源,常物性条件下1)单层平壁,高度h>>厚度δ,即为无限大平壁.因是一维导热,所以温度分布为线性分布.t=tw1-(tw1-tw2)x/δ;热流密度q=tw1-tw2/(δ/λ)=Δt/Rt.热阻Rt: Rt=Δt/q.2)多层平壁:温度分布为折线..B: 第三类边界条件: 厚度δ,无内热源,常物性单层平壁:q=(tf1-tf2)/(1/h1+δ/λ+1/h2)Rt=1/h1+δ/λ+1/h2多层平壁:q=(tf1-tf2)/(1/h1+δ/λ+1/h2)C: 复杂的平壁导热:(串连加并联)RA与RB串连: R=RA+RB;RA与RB并连: R=1/(1/RA+1/RB).D: 导热系数为t的函数: λ=λ0(1+bt)t=q=此时,温度分布为二次曲线.(2)通过单层圆筒壁和多层圆筒壁的导热及温度分布,热阻表达式和运用.工程上长度l>>厚度δ的称为圆筒壁导热.1)第一类边界条件:内径为r1,外径为r2单层: 边界条件:t=q=温度分布为曲线分布.多层:q=1)第三类边界条件:单层:多层:(3)临界热绝缘直径的物理概念和如何确定合理的绝热层厚度.当绝热层外径=dx时,总热组最小,散热量最大.这一直径称为临界~~Dx=dc=2λins/h2.说明:外径d2<dc时,热损失反而增大.外径d2>dc时,加绝热层才有效.(4)肋片的作用及温度分布曲线,肋片效率概念及影响因素,肋片散热量的计算式.---- 只讨论等截面直肋1)等截面直肋:肋高为l,肋厚为δ,肋片周边长度为U,导热系数为λ,l>>δ,可认为肋片温度只沿着高度方向变化.边界条件:2)过余温度:以周围介质tf为基准的温度.θ=t-tf.其中m=温度分布为一条余弦双曲函数,即沿x反向逐渐降低.肋端国余温度:3)肋片表面散热量:4)肋片效率:定义:在肋片表面平均温度tm下,肋片的实际散热量Φ与假定整个肋片表面都处在肋基温度to时的理想散热量Φo的比值.即:结论:①当m一定时,随着肋高增加, Φ先迅速增大然后逐渐趋于平缓.也即η先降低,肋高增加到一定程度时, Φ急剧降低.②ml大,肋端过于温度小,肋片表面tm小,效率低.所以应降低m提高效率.③λ与h都给定时,m随U/A降低而减小.变截面肋片效率高.(5)接触热阻的形成和表达式.两固体直接接触,因接触面不绝对平整,会产生接触热阻.定义式:减小接触热阻的措施:改善接触面粗糙镀;提高接触面挤压压力;减小表面硬度;接触面上涂油.3.非稳态导热 (分瞬态导热和周期性导热)两个重要准则:Fo准则和Bi准则.Bi=(δ/λ):(1/h)Fo=aτ/δ2(1)瞬态导热过程及周期性不稳态导热过程的特点.前者物理量瞬间变化.后者物理量周期性变化.(2)Fo准则的表达式及物理意义,当Fo>0.2时,无限大平壁内的温度变化规律.傅立叶准则:Fo=aτ/δ2物理意义:表征不稳态导热过程的无因次时间. Fo>0.2为临界值.无限大平壁:在进行到F o>0.2的时间起,物体中任何给定地点的过余温度的对数值将随时间按线性规律变化.(3)Bi准则的表达式及物理意义, Bi准则对无限大平壁内温度分布的影响.毕渥准则Bi=(δ/λ):(1/h)物理意义:表征物体内部导热热阻与表面对流换热热阻之比.它的值越小,内部温度越趋于均匀一致.Bi<0.1可近似认为,物体温度是均匀一致的.(4)运用集总参数法的条件及温度计算式.集总参数法的条件:对于平板,圆柱,球体,温度计算式:V为体积,A为表面积,初始温度θ=to-tf.地下建筑的预热:5-7节为对流换热部分5.对流换热分析 (对流换热=导热+热对流)(1) 对流换热过程的特征及基本计算公式.定义:流体因外部原因(强迫对流)或内部原因(自然对流)而流动并与物体表面接触时发生的热量传递.特征:①导热与热对流同时存在的复杂热传递过程② 必须有直接接触(流体与壁面)和宏观运动;也必须有温差③ 由于流体的粘性和受壁面摩擦阻力的影响,紧贴壁面处会形成速度梯度很大的边界层基本计算公式:---牛顿冷却公式:q=h(tw-tf)(2)影响对流换热的因素.影响因素:①流动的起因(强迫对流或自然对流);②流动状态(层流或紊流);③有无相变;④换热表面几何因素;⑤流体的物理性质。

第一章—导热理论基础

第一章—导热理论基础

第一章 导热理论基础本章重点:准确理解温度场、温度梯度、导热系数等基本概念,准确掌握导热基本定律与导热问题的基本分析方法。

物质部导热机理的物理模型:(1)分子热运动;(2)晶格(分子在无限大空间里排列成周期性点阵)振动形成的声子运动;(3)自由电子运动。

物质部的导热过程依赖于上述三种机理中的部分项,这几种机理在不同形态的物质中所起的作用是不同的。

导热理论从宏观研究问题,采用连续介质模型。

第一节基本概念与傅里叶定律1-1 导热基本概念一、温度场(temperature field)(一)定义:在某一时刻,物体各点温度分布的总称,称为即为温度场(标量场)。

它是空间坐标和时间坐标的函数。

在直角坐标系下,温度场可表示为:),,,(τz y x f t = (1-1)(二)分类:1.从时间坐标分:①稳态温度场:不随时间变化的温度场,温度分布与时间无关,0=∂∂τt ,此时,),,(z y x f t =。

(如设备正常运行工况)稳态导热:发生于稳态温度场中的导热。

②非稳态温度场:随时间而变化的温度场,温度分布与时间有关,),,,(τz y x f t =。

(设备启动和停车过程)非稳态导热:在非稳态温度场中发生的导热。

2.从空间坐标分: ①三维温度场:温度与三个坐标有关的温度场,⎩⎨⎧==稳态非稳态),,(),,,(z y x f t z y x f t τ ②二维温度场:温度与二个坐标有关的温度场,⎩⎨⎧==稳态非稳态),(),,(y x f t y x f t τg ra d t③一维温度场:温度只与一个坐标有关的温度场,⎩⎨⎧==稳态非稳态,)()(x f t x f t τ 二、等温面与等温线1.等温面(isothermal surface):在同一时刻,物体温度相同的点连成的面即为等温面。

2.等温线(isotherms):用一个平面与等温面相截,所得的交线称为等温线。

为了直观地表示出物体部的温度分布,可采用图示法,标绘出物体中的等温面(线)。

传热学复习要点

传热学复习要点

传热学复习要点1-3节为导热部分1.导热理论基础(分稳态导热和非稳态导热) (1)导热现象的物理本质及在不同介质中的传递特征.依靠分子,原子和自由电子等微观粒子热运动进行的热量传递.气体中为分子,金属中为电子,非导电固体和液体中为晶格(2)温度场的空间时间概念.表达式:t=f(x,y,z, τ)空间用x,y,z表示.时间用τ.稳态: 非稳态:(3)温度梯度的概念和表达式.定义: 两等温面温差与其法线方向距离的比值极限..表达式:(4)傅立叶定律的概念及其表达式.----导热基本定律定义:表达式:适用范围:只适用于各向同性的固体材料.(5)导热系数的定义,物理意义和影响因素.表达式:物理意义:表征物体导热能力的大小.影响因素:(6)物性参数为常数时的导热微分方程式在各种不同条件下的数学表达.导热微分方程---由傅立叶定律和热一律导出.导热微分方程表达式:无内热源:稳态温度场:无内热源且为稳态温度场:(7)导温系数的表达及其物理意义,与导热系数的区别.导温系数a定义: a=λ/cρ;物理意义:表示物体加热或冷却时,物体内部各部分温度趋于一致的能力.(8)导热过程单值性条件和数学表达.单值性条件包括4个:几何条件;物理条件;时间条件;边界条件;其中边界条件分3类:①第一类边界条件:已知边界面温度.②第二类边界条件:已知边界面热流密度..③第二类边界条件:已知边界面与周围流体间的表面传热系数及周围流体温度tf.牛顿冷却公式:2.稳态导热--t=f(x,y,z)(1)通过单层平壁,多层平壁和复合平壁的导热计算式及温度分布,热阻概念及其表达式和运用.A: 第一类边界条件: 在无内热源,常物性条件下1)单层平壁,高度h>>厚度δ,即为无限大平壁.因是一维导热,所以温度分布为线性分布.t=tw1-(tw1-tw2)x/δ;热流密度q=tw1-tw2/(δ/λ)=Δt/Rt.热阻Rt: Rt=Δt/q.2)多层平壁:温度分布为折线..B: 第三类边界条件: 厚度δ,无内热源,常物性单层平壁:q=(tf1-tf2)/(1/h1+δ/λ+1/h2)Rt=1/h1+δ/λ+1/h2多层平壁:q=(tf1-tf2)/(1/h1+δ/λ+1/h2)C: 复杂的平壁导热:(串连加并联)RA与RB串连: R=RA+RB;RA与RB并连: R=1/(1/RA+1/RB).D: 导热系数为t的函数:λ=λ0(1+bt)t= q=此时,温度分布为二次曲线.(2)通过单层圆筒壁和多层圆筒壁的导热及温度分布,热阻表达式和运用.工程上长度l>>厚度δ的称为圆筒壁导热.1)第一类边界条件:内径为r1,外径为r2单层: 边界条件:t=q=温度分布为曲线分布.多层:q=1)第三类边界条件:单层:多层:(3)临界热绝缘直径的物理概念和如何确定合理的绝热层厚度. 当绝热层外径=dx时,总热组最小,散热量最大.这一直径称为临界~~Dx=dc=2λins/h2.说明:外径d2<dc时,热损失反而增大.外径d2>dc时,加绝热层才有效.(4)肋片的作用及温度分布曲线,肋片效率概念及影响因素,肋片散热量的计算式.---- 只讨论等截面直肋1)等截面直肋:肋高为l,肋厚为δ,肋片周边长度为U,导热系数为λ,l>>δ,可认为肋片温度只沿着高度方向变化.边界条件:2)过余温度:以周围介质tf为基准的温度.θ=t-tf.其中m=温度分布为一条余弦双曲函数,即沿x反向逐渐降低.肋端国余温度:3)肋片表面散热量:4)肋片效率:定义:在肋片表面平均温度tm下,肋片的实际散热量Φ与假定整个肋片表面都处在肋基温度to时的理想散热量Φo的比值.即:结论:①当m一定时,随着肋高增加, Φ先迅速增大然后逐渐趋于平缓.也即η先降低,肋高增加到一定程度时, Φ急剧降低.②ml大,肋端过于温度小,肋片表面tm小,效率低.所以应降低m提高效率.③λ与h都给定时,m随U/A降低而减小.变截面肋片效率高.(5)接触热阻的形成和表达式.两固体直接接触,因接触面不绝对平整,会产生接触热阻.定义式:减小接触热阻的措施:改善接触面粗糙镀;提高接触面挤压压力;减小表面硬度;接触面上涂油.3.非稳态导热(分瞬态导热和周期性导热)两个重要准则:Fo准则和Bi准则.Bi=(δ/λ):(1/h)Fo=aτ/δ2(1)瞬态导热过程及周期性不稳态导热过程的特点.前者物理量瞬间变化.后者物理量周期性变化.(2)Fo准则的表达式及物理意义,当Fo>0.2时,无限大平壁内的温度变化规律.傅立叶准则:Fo=aτ/δ2物理意义:表征不稳态导热过程的无因次时间. Fo>0.2为临界值.无限大平壁:在进行到F o>0.2的时间起,物体中任何给定地点的过余温度的对数值将随时间按线性规律变化.(3)Bi准则的表达式及物理意义, Bi准则对无限大平壁内温度分布的影响.毕渥准则Bi=(δ/λ):(1/h)物理意义:表征物体内部导热热阻与表面对流换热热阻之比.它的值越小,内部温度越趋于均匀一致.Bi<0.1可近似认为,物体温度是均匀一致的.(4)运用集总参数法的条件及温度计算式.集总参数法的条件:对于平板,圆柱,球体,温度计算式:V为体积,A为表面积,初始温度θ=to-tf.地下建筑的预热:5-7节为对流换热部分5.对流换热分析(对流换热=导热+热对流)(1)对流换热过程的特征及基本计算公式.定义:流体因外部原因(强迫对流)或内部原因(自然对流)而流动并与物体表面接触时发生的热量传递.特征:①导热与热对流同时存在的复杂热传递过程②必须有直接接触(流体与壁面)和宏观运动;也必须有温差③由于流体的粘性和受壁面摩擦阻力的影响,紧贴壁面处会形成速度梯度很大的边界层基本计算公式:---牛顿冷却公式:q=h(tw-tf)(2)影响对流换热的因素.影响因素:①流动的起因(强迫对流或自然对流);②流动状态(层流或紊流);③有无相变;④换热表面几何因素;⑤流体的物理性质。

第一章 导热理论基础

第一章 导热理论基础

三维温度场
t t t t t t
f (x) f ( x, ) f ( x, y ) f ( x, y, ) f ( x, y, z ) f ( x, y , z , )
传热学 Heat Transfer
2.等温面,等温线 ①定义:同一时刻,温度场中所有温度相同的点 连接所构成的面叫做等温面。不同的等温面与同 一平面相交,则在此平面上构成的一簇曲线称为 等温线 ②特点:a、同一时刻,温度不同的等温线(面)不能相交;
y
x
1.温度场:某一时刻空间所有各点温度分布的总 称
温度场是时间和空间的函数:
t f ( x, y, z, )
传热学 Heat Transfer
稳态温度场
t f ( x, y, z )
非稳态温度场
t 0
t 0
t f ( x, y , z , )
一维温度场 二维温度场
传热学 Heat Transfer
1.导热基本定律的文字表达:
在导热现象中,单位时间内通过给定截面的热量, 正比于垂直于该截面方向上的温度梯度和截面面积, 方向与温度梯度相反。
2.导热基本定律的数学表达:
Agradt t q gradt n A n
t t t q ( i ) ( j ) ( k ) x y z
§1-2 导热系数
1.定义
q gradt
物理意义:物体中单位温度梯度单位时间通 过单位面积的导热量,标量,单位:W/(m· K) 2.导热系数数值表征物体导热能力的大小,由 实验测定
传热学 Heat Transfer
3.导热系数与物质种类及热力状态有关(温度, 压力(气体)),与物质几何形状无关。 常用物质之值:

传热学课件第二章导热基础理论

传热学课件第二章导热基础理论

也称导温系数,
单位为m2/s。
其大小反映物体被瞬态加热或冷却时温度变化的快慢。
导热微分方程式的简化
(1) 物体无内热源:V = 0 t a2t
(2) 稳态导热: t 0 a2t V 0 c
(3)稳态导热、无内热源:
2t 2t 2t 2t = 0,即 x2 y2 z2 0
(4)热流密度
q d
dA
nt dA
热流密度的大小和方向可 以用热流密度矢量q 表示
q
d
q d n
dA
热流密度矢量的方向指向温度降低的方向。
在直角坐标系中,热流密度矢量可表示为
q qxi qy j qzk
qx、qy、qz分别表示q在三个坐标方向的分量的大小。
2. 2 导热的基本定律—傅里叶定律
第二章 导热基础理论
例内重基 题容点本 赏精难要 析粹点求
基本要求
1. 理解温度场、等温面(线)、温度梯 度、热流密度等概念。
2. 掌握傅立叶定律及其应用。 3. 掌握热导率和热扩散率的定义、意
义、影响因素和确定方法。 4. 能写出典型简单几何形状物体导热问
题的数学描述表达式。
重点与难点
重点: 1. 傅里叶定律与热导率。 2. 导热微分方程及单值性条件。 难点: 1. 傅里叶定律的矢量表达式。 2. 导热微分方程及单值性条件。
标量形式的付里叶定律表达式为
q t
n
对于各向同性材料, 各方向上的导热系数相等,
q qxi qy j qzk
gradt t i t j t k x y z
q




t x

传热学--导热理论基础--ppt课件精选全文

传热学--导热理论基础--ppt课件精选全文
此时表观热导率最小。最佳密度一般由实验确定。
第二章 导热理论基础
第三节 热导率
3、隔热层必须采取防潮措施
(1) 湿材料 干材料或水
因多孔材料很容易吸收水分,吸水后,由于热导率较大的水
代替了热导率较小的介质,加之在温度梯度的推动下引起水分
迁移,使多孔材料的表观热导率增加很多。
0.35
0.599
第二章 导热理论基础
※导热是在温度差作用下依靠物质微粒(分子、原子和 自由电子等)的运动(移动、振动和转动)进行的能 量传递。因此,导热与物体内的温度分布密切相关。 ※本章将从温度场、温度梯度等基本概念出发 阐述导热过程的基本规律 讨论描述物体导热的导热微分方程和定解条件
第二章 导热理论基础
第一节 温度场和温度梯度 一、温度场(P13)
第二章 导热理论基础
第三节 热导率
4、几点说明
(1)保温材料的λ值界定值随时间和行业的不同有所变化。 保温材料热导率的界定值大小反映了一个国家保温材料的生
产及节能的水平。
20世纪50年代我国沿用前苏联标准为0.23W/(m·K); 20世纪80年代,GB4272-84规定为0.14W/(m·K), GB4272-92《设备及管道保温技术通则》中则降低到 (0.122)W对/(于m各·K向) 异性材料,其热导率还与方向有关。
1、等温面:同一瞬间,温度场中温度相同的点所连成的面。 2、等温线:等温面与其他任一平面的交线。
3、立体的等温面常用等温线的平面图来表示。
为了在平面内清晰地表示一组等温面,常用这些等温面与一 平面垂直相交所得的一簇等温线来表示。 图2-1是用等温线表示的内燃机活塞和水冷燃气轮机叶片的温度场
第二章 导热理论基础
三、温度梯度(P13-14)

传热学-第2章-导热的理论基础

传热学-第2章-导热的理论基础
温度是标量,因而温度场是标量场
4
2.1 基本概念和导热基本定律
2.1.1 温度场
从不同的角度对温度场进行分类: 按温度场是否随时间变化,可分为:
稳定(Steady-state)温度场:物体内各点温度不随时间 变化——稳态导热
t f (x, y, z)
稳态温度场、定常温度场
5
2.1 基本概念和导热基本定律
提出的, 傅里叶是导热理论的奠基人,他通过实验, 分析和总结了物体内的导热规律,建立了傅立叶导热 定律。
19
2.1 基本概念和导热基本定律
2.1.3 导热的基本定律
Fourier定律的表述: 在任意时刻,各向同性连续介质内任意位置处的热
流密度在数值上与该点的温度梯度成正比,但方向相反
q gradt t n
❖ 实验表明,除了甘油和0~120℃范围内的水以外,其他 液体的导热系数值随温度升高而减小
❖ 压力变化对液体导热系数的影响很小,通常可以忽略
43
2.2 物质的导热特性
液体中液态金属和电解液是一类特殊的液体 ——依靠原子的运动和自由电子的迁移来传递热量,导热
系数要比一般非金属液体大10~1000倍
44
q gradt t n
n
❖ 热流密度是一个矢量 与温度梯度位于等温线同一的法线上 方向相反,永远指向温度降低的方向
❖ 在直角坐标系下,热流密度矢量可表示为
q qxi qyj qzk 22
2.1 基本概念和导热基本定律
2.1.3 导热的基本定律
温度梯度和热流密度矢量、等温线和热流线间的关系
湿量等 ❖ 有些材料,如木材、结构体、胶合板等还与方向有关
(各向异性材料)有关
30
2.2 物质的导热特性

第二章--稳态热传导(导热理论基础)

第二章--稳态热传导(导热理论基础)
具有稳态温度场的导热过程我们常称之为稳态导热;具有非稳态温 度场的导热过程我们常称之为非稳态导热。
2021/3/10
2
导热理论基础
二、傅里叶(J.Fourier)定律:
1.基本概念:
2>.等温面与等温线:(温度场习惯上用等温面图或等温线图来表 示,如图2-1)
等温线
a.等温面:同一时刻温度场中所有 温度相同的点构成的面。
第二章 稳态热传导(导热理论 基础)
一、概述 二、傅里叶(J.Fourier)定律 三、导热系数 四、导热微分方程 五、导热微分方程的单值性条件 六、解决一具体导热问题的一般步骤
2021/3/10
1
导热理论基础
一、概述:
一般我们认为:导热是发生在物体中的宏观现象,故将物质看作是 连续介质。
导热基础理论的主要任务:
3
导热理论基础
二、傅里叶(J.Fourier)定律:
1.基本概念:
3>.温度梯度gradt:两等温面间的温差△t与其法线方向
的距离△n比值的极限。在单位距离内温度沿法线方
向上的变化值最大、最显著,此时的温度变化率称
之为温度梯度。即: gr a lid m n ttn n n t
n 0
t+△t t t-△t
2.傅里叶(J.Fourier)定律:
在导热现象中,单位时间内通过给定面积的传热量,正比例于该处 垂直导热方向的截面面积及此处的温度梯度,其数学表达式为:
q g A g rrW a a / W m 2 d dtt
几点问题:
1>.负号表示热量传递指向温度降低的方向,与温度梯度方向相反。
2>.温度梯度是引起物体内热量传递的根本原因。

高等传热学-2

高等传热学-2

已知圆柱坐标系与直角坐标系之间的函数关系
x = r cos j , y = r sin j , z = z
令 x1 = r , x2 = j , x3 = z 求出拉梅系数
H1 = Hr = 1 H2 = Hj = r H3 = Hz =1
圆柱坐标系的导热方程
H = H1H 2H3 = r
rc ¶T ¶t
高等传热学
张靖周
南京航空航天大学 能源与动力学院
第二章 导热的理论基础
2-1 导热基本定律
一、 经典傅里叶(Fourier)定律 qv = - l Ñ T = - l gradT = - l ¶ T nv ¶n
Fourier定律作为导热的本构方程,描述了热流量和 温度分布之间的关系。 思考: Fourier定律的适定条件?
r n
方向
温度升高,即
( ¶T ¶n
)w
>
0
,故
-
l(
¶T ¶n
)w
<
0
(2)假设 Tf < Tw ,表面温度比内部温度低,则沿 nr方向
温度降低,即
( ¶T ¶n
)w
<
0
,故
-
l(
¶T ¶n
)w
>0
第二类和第三类边界条件的具体应用
热流密度 导热
q0
=
-l
¶T (0,t ¶x
)
导热 热流密度
-
l
¶T
C 是热传播速度 a 是导温系数
t0
=
a C2
t 0 是弛豫时间:温度场的重新建立滞后于热扰动改
变的时间,反映了系统趋于新的平衡状态的快慢程度
(1) 对于稳态导热过程,热流密度矢量场不随时间变化,传播项 的影响消失

第二章-导热理论基础-1

第二章-导热理论基础-1
一般而言:
λ固 > λ 液 > λ 气 λ 金属 > λ 非金属
一定温度范围内, ∝ f (t ) ,可写成:λ = λ0 ⋅ (1 + bt ) λ 即,导热系数是温度的线性函数。 由于热能的传输在固体中体现为自由电子的迁移和晶格振动 波,于是 λ固 = λe + λl
晶格分量 电子分量 对于金属: e λ
∂t qx = −λ ⋅ ∂x ∂t q y = −λ ⋅ 或 ∂y ∂t q z = − λ ⋅ ∂z
2-1-6 导热系数
q qx =− 定义: λ = − gradt ∂t ∂x
物理意义: 物体中单位时间、单位温降通过单位面积的导
W 热量;为表征物质导热能力的系数。 m ⋅ ℃
如果初始时刻物体各部分的温度相同,可以把初始条件改 写为: t τ =0 = t0 = const
(4)边界条件 )
①第一类边界条件 已知任何时刻物体边界的温度值 第一类边界条件—已知任何时刻物体边界的温度值 第一类边界条件
tw = const t s = tw = tw = f (τ )
dτ 时间内,微元体内部产生的能量为:
& E g = qv ⋅ dx ⋅ dy ⋅ dz ⋅ dτ
dτ 时间内,微元体贮存能的变化量为:
∂t dE = ρc p ⋅ dxdydzdτ ∂τ
根据能量守恒: 可得
Ein + E g − Eout = dE
∂t ∂q x ∂q y ∂q z = ρc p ∂x + ∂y + ∂z + qv & ∂τ
∂t −λ ∂x
= h t f − t (0 , τ )

导热理论基础

导热理论基础

传热的基本方式
(1)热传导: 纯导热过程:物体各部分之间不发生相对位移。 (2)对流传热 对流传热:是指流体各部分质点发生相对位移而 引起的热量传递过程。因而对流只能发生在流体 中。 (3 )辐射传热 )辐射传热 因热原因而发出辐射能的过程称为热辐射。
铜底铝鳍 但由于银的价格相当昂贵,因此目前还没有哪个厂 商采用纯银来制造散热器因此现在市场上比较流 行的高档散热片大多采用铜来做为导热材质。 采用了"铜底铝鳍"的设计,所谓"铜底铝鳍" 采用了"铜底铝鳍"的设计,所谓"铜底铝鳍"就是与处 理器表面接触的底板采用纯铜材料,而散热鳍片 则继续沿用铝。这种结构能充分发挥铜热传导快 的优点,增大了散热面积,使CPU产生的热量迅 的优点,增大了散热面积,使CPU产生的热量迅 速散除。
2.材质相同时,接触面积越大,热传导效果越明 2.材质相同时,接触面积越大,热传导效果越明 显 根据热传导理论,导热量与接触面积成正比。 对于CPU散热器而言,CPU表面积已越来越来越 对于CPU散热器而言,CPU表面积已越来越来越 小,接触面积已经受限,且散热器底部与CPU表 小,接触面积已经受限,且散热器底部与CPU表 CPU 面因不可能完全平滑,所以需要选用适当的导热 介质填充空隙,可增大接触面积,达到将热源的 热量大量带走的目的。前面谈到,散热片吸入的 热量要尽量传至鳍片以便对流换热,主要靠改善 鳍片与散热片的接触面积来实现,鳍片底部与散 热片基部的连接处用弧状,就是为了增大接触面 积。
导热理论基础
金属材料的导热系数较大, 固体非金属材料的导热系数较小, 纯金属导热系数值大于合金, 纯金属导热系数值大于合金, 且合金中杂质含量越多, 且合金中杂质含量越多,导热系数值越 小,而气体的导热系数最小。

传热学第五版课件完整版PPT课件

传热学第五版课件完整版PPT课件

d 2t qV 0 2 dx
7.物性参数λ 、 ρ 、c均为常数,一维稳态温度场,无内热源:
d 2t 0 2 dx
第四节
通解
导热过程的单值性条件
特解
作用:用来对某一特定的导热过程进行进一步的具体说明
四种单值性条件:
几 何 条 件 时 间 条 件 物 理 条 件 边 界 条 件
δ,l,d……
q z
t z
第二节
导热系数
每种物质的导热系数可通过实验确定 常用物质可查表获取
一 般 规 律
固相>液相>气相 金属>非金属 晶体>无定形态 纯物质>有杂质物质 纯金属>合金
导热系数的主要影响因素:温度、压力
气体的导热系数:
随温度升高而增大(由于分子运动速度和比定容热容增大),
压力对其影响不大(密度增大但自由程减小)
第三节
导热微分方程式
研究目标:确定物体内的温度场
研究基础: 导热微分方程式=能量守恒定律+傅立叶定律 研究对象: 右 图 中 的 六 面 微 元 体
根据能量守恒定律: 导入和导出微元体的净热量+微元体中内热源的发热量 =微元体热能(内能)的增加
在一定时间dτ内: 导入微元体的净热量: 导出微元体的净热量:
t t t t c qV x x y y z z
——导热微分方程式
在几种特殊条件下对导热微分方程式的简化:
1.物性参数λ 、 ρ 、c均为常数:
q z dz q z q z dz z
q y
代入上式
再将傅立叶定律代入,得出: 三个方向导入与导出微元体的净热量:

第二章-导热理论基础-3

第二章-导热理论基础-3

程,通解为
δ 0 x
x+dx
x
c1emx c2emx
dx H
肋根 x=0 处边界条件为: x 0, 0 t0 t;
另一边界条件取决于肋片端部 x = H 处的条件,一般可
认为肋片端部绝热:
x 0: xH:
0 d 0
dx
c1emx c2emx
1
s
应用边界条件可得:
c1
0
1 e2mH
0.05 时,误差小于1%。对于短而厚的肋片,二维 温度场,上述算式不适用;实际上,肋片表面上表面
传热系数h不是均匀一致的 ——数值计算
2-4-2 通过环肋及三角形截面直肋的导热
为了减轻肋片重量、节省材料,并保持散热量基本不 变,需要采用变截面肋片,环肋及三角形截面直肋是 其中的两种。
y
r 0
0 x
1
s
Qxdx
Qx
dQ dx
dx
Ac
dt dx
Ac
d 2t dx2
dx
δ 0 x
x+dx
dx H
x
Φs hPdx(t t ) P为肋片截面周长
将以上三式代入守恒方程得:
Ac
d 2t dx2
hP(t
t )
令 m hP
Ac
t t 为过余温度
得微分方程为:
d 2
dx 2
m 2
1
s
这里一个二阶线性齐次常微分方
2-4 通过肋壁的导热
• 由传热过程计算式
Φ
tf1 tf2
1
1
W
h1A A h2 A
为了增加传热量,可以采取哪些措施?
➢增加温差,但受工艺条件限制

2.导热基本定律

2.导热基本定律

第九章导热9-1 导热理论基础1. 导热的基本概念(1)温度场(temperature field)在τ时刻,物体内所有各点的温度分布称为该物体在该时刻的温度场。

一般温度场是空间坐标和时间的函数,在直角坐标系中,温度场可表示为t=fy),,,(τzx非稳态温度场:温度随时间变化的温度场,其中的导热称为非稳态导热。

稳态温度场:温度不随时间变化的温度场,其中的导热称为稳态导热。

(),,t f x y z=一维温度场二维温度场三维温度场(),t f xτ=()t f x=(),,t f x yτ=(),t f x y=(),,,t f x y zτ=(),,t f x y z=(2)等温面与等温线在同一时刻,温度场中温度相同的点连成的线或面称为等温线或等温面。

等温面与等温线的特征:同一时刻,物体中温度不同的等温面或等温线不能相交;在连续介质的假设条件下,等温面(或等温线)或者在物体中构成封闭的曲面(或曲线),或者终止于物体的边界,不可能在物体中中断。

(3)温度梯度(temperature gradient)在温度场中,温度沿x 方向的变化率(即偏导数)0lim x t t x x∂∂∆→∆=∆很明显,等温面法线方向的温度变化率最大,温度变化最剧烈。

温度梯度:等温面法线方向的温度变化率矢量:tt n∂=∂grad nn —等温面法线方向的单位矢量,指向温度增加的方向。

温度梯度是矢量,指向温度增加的方向。

6在直角坐标系中,温度梯度可表示为t t tt x y z∂∂∂=++∂∂∂grad i j kt t tx y z∂∂∂∂∂∂、、分别为x 、y 、z 方向的偏导数;i 、j 、k 分别为x 、y 、z 方向的单位矢量。

(4)热流密度(heat flux)d d q AΦ=热流密度的大小和方向可以用热流密度矢量q 表示d d AΦ=-q n热流密度矢量的方向指向温度降低的方向。

nt d Ad Φq在直角坐标系中,热流密度矢量可表示为x y z q q q =++q i j kq x 、q y 、q z 分别表示q 在三个坐标方向的分量的大小。

导热理论(as)

导热理论(as)

第一章导热理论基础第一节基本概念及傅里叶定律 1-1导热基本概念一、温度场1、定义:在某一时间,物体内部各处的温度分布即为温度场。

直角坐标系:t =f (x ,y ,z ,T )(2-l )热流是由高温向低温传递,具有方向性。

而温度则属于标量,无方向性。

2、分类: 从时间坐标看,稳态导热:温度分布与时间无关,t =f (x ,y ,Z ); 非稳态导热:温度分布与时间有关,t =f (x ,y ,z ,T )从空间坐标可将导热分为一维、二维、三维导热。

其中最简单的是一维稳态导热,可表示为::=f (x )。

3、等温面(线)在同一瞬间,物体内温度相同的点连成的面即为等温面。

不同的等温面与同一平面相交,在平面上得到的一组线为等温线。

不同的等温面(线)之间是不可能相交的。

图2-1所示的即为一维大平壁和一维圆筒壁内的等温面(线)的示意图。

温度梯度是一个矢量,具有方向性。

它的方向是沿等温面法线由低温指向高温方向。

在直角坐标系:二、温度梯度定义沿法线方向的温度变化率为温度梯度,以gradt 表示。

图2-1等温线a :平壁b :圆筒壁—>grad t =limAnT 0 A tAnd t d n(2-3)gradt图2-2.温度梯度与热流密度矢量a厂.dt:dt-(24)gradt=i+j+k(2-4丿a x a y a z。

热流密度是一个矢量,具有方向性,其大小等于沿着这方向单位时间单位面积流过的热量,方向即为沿等温面之法线方向,且由高温指向低温方向,见图。

在直角坐标系中,同样可以分解成由沿坐标轴三个方向的分量表示:2-)内热源?内热源为多大。

其中,岂、色、 QxQ y 三、热流密度热流密度, 色分别为沿x 、y 、z 方向的温度梯度。

式中 q ,q ,qxyz为沿坐标轴三个方向的分热流。

而通过该等温面传递的热量为—>—>Q=q -A =qA +qA +qAxxyyzz2-)1-2.傅立叶定律傅立叶(J.Fourier )热流密度与温度梯度的关系可以用下式表示Q t 「q=_入gradt=_入nQn①=一九Agradt =一九AnQn2-5) 2-6)式中的比例系数九即为材料的导热系数(或称热导率),单位W/(m -°C )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档