幂的运算.ppt

合集下载

幂的运算ppt课件(自制)

幂的运算ppt课件(自制)

= =1 (3)-82000×(-0.125)=2001
-1

行 = -82000×(-0.125)2000× (-0.125)

算 = -82000×0.1252000× (-0.125)
= -(8×0.125)2000× (-0.125)
= -1× (-0.125) = 0.125
课堂测验
计 ①(5ab)2
(4) (a7)3 a21
(6) (x5)5
x25
(8)(y3)2·(y2)3
= y 6 ·y 6 = y 12
➢ 练习一 2. 计算:
①10m·10m-1·100= 102m+1 ②3×27×9×3m= 3m+6 ③(m-n)4·(m-n) 5·(n-m)6 = (m-n)15 ④ (x-2y)4·(2y-x) 5·(x-2y)6 = (2y-x)15
同底数幂相乘
am·an=am+n
指数相加 底数不变 指数相乘
(a ) =a 其中m , n都是
m n mn
正整数
幂的乘方
➢ 练习一 1. 计算:( 口答)
(1) 105×106 1011
(3) a7 ·a3 a10
(5) x5 ·x5
x10 (7) x5 ·x ·x3
x9
(2) (105)6 1030
46、活在昨天的人失去过去,活在明 天的人 失去未 来,活 在今天 的人拥 有过去 和未来 。 47、你可以一无所有,但绝不能一无 是处。
48、通过辛勤工作获得财富才是人生 的大快 事。— —巴尔 扎克 49、相信自己能力的人,任何事情都 能够做 到。
50、有了坚定的意志,就等于给双脚 添了一 对翅膀 。—— 乔·贝利 51、每一种挫折或不利的突变,是带 着同样 或较大 的有利 的种子 。—— 爱默生 52、如果你还认为自己还年轻,还可 以蹉跎 岁月的 话,你 终将一 事无成 ,老来 叹息。

8.幂的运算-----幂的乘方与积的乘方课件数学沪科版七年级下册(1)

8.幂的运算-----幂的乘方与积的乘方课件数学沪科版七年级下册(1)
=105×3
=(x4)·(x4) =x4+4 =x4×2 =x8
=1015
(3)(-a2)3.
=(-a²)·(-a²)·(-a²) =-a2+2+2 =-a2×3 =-a6
例1 计算:(1)(102)3 ; (4)-(x2)m ;
(2)(b5)5; (5)(y2)3·y;
(3)(an)3; (6)2(a2)6-(a3)4.
①同底数幂的乘法法则的逆用:am+n=am·an. ②幂的乘方法则的逆用:amn=(am)n=(an)m.
= am+m+…+m (根据_同__底__数__幂__的__乘__法__法__则___) = amn
幂的运算性质2:(am)n=amn(m,n都是正整数)
幂的乘方,底数不变,指数相乘.
地球、木星、太阳可以近似地看做是球体.木星、太阳的半径分别约 是地球的10倍和102倍,它们的体积分别约是地球的多少倍?
正方体的体积比=棱长比的立方
地球、木星、太阳可以近似地看做是球体.木星、太阳的半径分别约 是地球的10倍和102倍,它们的体积分别约是地球的多少倍?
太阳
地球
木星
地球、木星、太阳可以近似地看做是球体.木星、太阳的半径分别约 是地球的10倍和102倍,它们的体积分别约是地球的多少倍?
木星的半径是地球的10倍,它的体积是地球的10³倍! 太阳的半径是地球的10²倍,它的体积是地球的(10²)³倍! 那么,你知道(10²)³等于多少吗?
例2 已知5x=m,5y=n,则52x+3y等于( D )
A.2m+3n
B.m2+n3
C.6mn
D.m2n3
解析:因为5x=m,5y=n,

幂的运算ppt课件

幂的运算ppt课件
想一想
am·an·ap等于什么?
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
判断下列计算是否正确,并说明理由:
(1)aa2a3; (2)aa2 a3 .
(3)a3a3a9; (4)a3a3a6.
n个
n个
= anbn ∴(ab)n = a nbn (n为正整数)
积的乘方,等于各因数乘方的积.
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
例计算:
解(1)(2b)3
=23b3 =8b3
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
智力冲浪
已知:2m =3,2n =4, 求2mn的值.
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
(3)(ab)4=______(a_b_)__• _(a_b_)__• _(a_b_)__• _(a_b_)___ =______(_a_a_a_a_)_•_(_b_b_b_b_)________ = a (4)b( 4)
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
上图是洋葱的根尖细胞,细胞每分裂一次,1个细 胞变成2个细胞.洋葱根尖细胞分裂的一个周期大 约是12时,210个洋葱根类细胞经过分裂后,变成 220个细胞大约需要多少时间? 所需时间为:(220÷210) ×12

幂的运算PPT教学课件

幂的运算PPT教学课件

• 1.下列元素在人体内最终代谢产物错误的是 (B)

A. 碳→碳酸
B. 氮→硝酸

C. 硫→硫酸
D. 磷→磷酸
• 2.下列食物属碱性食物的是(B )
• A.面包 B.海带 C.大米 D. 鸡蛋
食物的组成成分在人体内代谢后生成 碱性物质,使体液呈弱碱性。这类食物在 生理上称为成碱性食物,习惯上称为碱性 食物。
(如某些蔬菜、水果多含钾、钠、钙、 镁等盐类,多属于碱性食物。)
1. 食物的酸碱性与化学上所指的溶液的酸碱 性是不同的概念。食物的酸碱性指的是代 谢产物的性质,而溶液的酸碱性直接指溶 液的性质。
➢练习二
下面的计算对不对?如果不对,怎样改正?
(1)b5 ·b5= 2b5 (× ) (2)b5 + b5 = b10 (×)
b5 ·b5= b10
b5 + b5 = 2b5
(3)x5 ·x5 = x25 (× ) (4)y5 ·y5 = 2y10 (× )
x5 ·x5 = x10
y5 ·y5 =y10
2.中酸性食品:火腿、鸡肉、猪肉、鳗鱼、牛肉、 面包、小麦、奶油、马肉等。
3.弱酸性食品:白米、花生、啤酒、酒、油炸豆 腐、海苔、文蛤、章鱼、泥鳅。
4.弱碱性食品:红豆、萝卜、苹果、甘蓝菜、洋 葱、豆腐等。
5.中碱性食品:萝卜干、大豆、红萝卜、番茄、 香蕉、橘子、南瓜、草莓、蛋白、柠檬、菠菜等。
6.强碱性食品:葡萄、茶叶、葡萄酒、海带等
解:(1)107 ×104 =107 + 4= 1011
(2)x2 ·x5 = x2 + 5 = x7 2.计算:(1)23×24×25 (2)y ·y2 ·y3
解:(1)23×24×25=23+4+5=212

华师版数学八年级上册1幂的运算第1课时同底数幂的乘法课件

华师版数学八年级上册1幂的运算第1课时同底数幂的乘法课件

12个
3个
=10×10×···×10
15个
=1015
新课探究
测测你的视察力:
(1)23×24 =(2×2×2) × (2×2×2×2 ) = 2( 7 ) ; (2)53×54 = (5×5×5)×(5×5×5×5) = 5( 7 ); (3)a3 ·a4 = (a×a×a)×(a×a×a×a) = a(7 ); (4)a5 ·a4 = (a×a×a×a×a) × (a×a×a×a) = a(9) (5)am ·an = (a×… ×a )×(a×a×… ×a ) =a( m+n )
(1)b5·b5=2b5(
)
(2)b5+b5=b10 ( )
(3)x5·x5=x25 (
)
(4)y5·y5=2y10 (
)
(5)c·c3=c3 (
) (6)m+m3=m4 ( )
思考 根据同底数幂的乘法法则,填空: பைடு நூலகம்1) am+n=am·__a_n_ (m,n都是正整数), (2) am+n+p=am·an ·__a_p_ (m,n,p都是正整数). 这说明同底数幂的乘法法则可以__逆__用___.
2.已知am=5,an=3,则am+n等于( A )
A.15
B.8
C.0.6
D.125
分析:因为同底数幂的乘法可以逆用, 即am+n=am·an , 又因为am=5,an=3, 所以am+n=am·an =5×3=15.故选A.
3.已知am=3,an=2,那么am+n+2的值为( C )
A.8
B.7
成立
am ·an ·ap =am+n+p(m,n,p都是正整数)

实数指数幂及其运算(56张PPT)高一数学人教B版必修第二册

实数指数幂及其运算(56张PPT)高一数学人教B版必修第二册
根式
当 有意义的时候, 称为根式,n 称为根指数,a 称为被开方数.
注意,虽然我们不知道 等的精确的小数形式(计算器和计算机上给出的值都是近似值),但是按照定义,我们知道 的一些性质,比如 等.
尝试与发现
现在我们已经将整数指数幂推广到了分数指数幂(即有理数指数幂).一般情况下,当 s 与 t 都是有理数时,有运算法则:
例如,________.
3
(2)如果 x3=a,则 x 称为 a 的立方根(或三次方根),在实数范围内,任意实数 a 有且只有一个立方根,记作.
例如,=______
2
n次方根
一般地,给定大于 1 的正整数 n 和实数 a,如果存在实数 x,使得 xn=a,则 x 称为 a 的 n 次方根.
例如,因为方程 x4=81 的实数解为 3 与-3,因此 3 与-3都是 81 的 4 次方根;因为 25=32,而且 x5=32只有一个实数解,所以 32 的 5 次方根为 2 .
用信息技术求实数指数幂
实数指数幂的值可以通过计算器或计算机软件方便地求得.在GeoGebra中,在“运算区”利用符号“^”,就可以得到实数指数幂的精确值或近似值.如图所示,前面三个是在符号计算模式下的输入和所得到的结果,后面两个是在数值计算模式下得到的结果.
练习提升
C
B
C
B
C
C
根据方程 xn=a 解的情况不难看出:(1)0 的任意正整数次方根均为 0,记为.(2)正数 a 的偶次方根有两个,它们互为相反数,其中正的方根称为 a 的 n 次算术根,记为,负的方根记为 ;负数的偶数次方根在实数范围内不存在,即当 a<0 且 n 为偶数时,在实数范围内没有意义.(3)任意实数的奇数次方根都有且只有一个,记为.而且正数的奇数次方根是一个正数,负数的奇数次方根是一个负数.

12.1幂的运算(1)精品PPT课件

12.1幂的运算(1)精品PPT课件
mnpmnp都是正整数法则说明28例题21例题2a10注意运算顺序先进行幂的乘方再进行同底数幂的乘法最后合并同类项
12.1 幂的运算(1)
引言
别把劳动认为只是耕耘物质收获的原野, 它是能同时开拓我们心灵原野的尊贵锄头。无 论如何,我们可以借劳动加强我们的心身,锄 尽蔓延在我们心田的各种邪恶野草。然后,把 幸福和喜悦的种子撒在此地,四季茂盛,以至 开花。
例题
例5 (1)已知a2=3,求①(a3)2 ②a8 解:① (a3)2=a6=(a2)3=33=27 ② a8=a2·(a2)3=3×(3)3=81
(2) 已知3m+2n=5,求8m·4n 的值. 解:8m·4n=(23)m·(22) =23m·22n
n
=23m+2n =25=32
演练
1. ①{[(-a)3]2}5 ②- (-m3)2·[(-m)2]3·[(-m)3] 2n+1 ③[(-a-b)3]2 [-(a+b)2]3 ④(-3)2n+1+3·(-3)2n
感谢聆听
不足之处请大家批评指导
Please Criticize And Guide The Shortcomings
演讲人:XXXXXX 时 间:XX年XX月XX日
思考
做一做:先说出下列各式的意义,再计算下列各式:
(23)2=_2_3__·_2_3______=_2_6____;
(32)3=__3_2 _·_3_2_·_3_2___=_3_6____;
(a3)4=____________=_a_12____. 上面各a式3·括a3·号a3中·a都3 是幂的形式,然后乘方,
2. 若(x2)n=x8,则n=___
演练
3.若[(x3)m]2=x12,则m=___. 4.若xm·x2m=2,求x9m的值. 5.若a2n=3,求(a3n)4的值.

《幂的乘方与积的乘方》课件(共26张PPT)【推荐】

《幂的乘方与积的乘方》课件(共26张PPT)【推荐】

2
2
16
(4)(3a4bm)n=3n(a4)n(bm)n=3na4nbmn.
经典例题
题型一 几种幂的综合运算
例1 计算:(1)(-2x2)3+(-3x3)2+(-x)6; (2)x2·x4·x6+(x3)2+[(-x)4]3. 、
题型一 几种幂的综合运算
例1 计算:(1)(-2x2)3+(-3x3)2+(-x)6; (2)x2·x4·x6+(x3)2+[(-x)4]3. 分析 按照先算乘方,再算乘除,最后算加减,若 有小括号先算小括号里的原则进行计算. 、
题型二 幂的运算法则的逆用
例2 计算:(1)已知2×8x×16x=222,求x的值; (2)已知2m=3,2n=4,求22m+n的值.
题型二 幂的运算法则的逆用
例2 计算:(1)已知2×8x×16x=222,求x的值; (2)已知2m=3,2n=4,求22m+n的值.
解析 (1)因为2×8x×16x=222, 所以2×(23)x×(24)x=222, 所以2×23x×24x=222,所以,21+3x+4x=222, 所以1+3x+4x=22,解得x=3. (2)因为2m=3,2n=4, 所以22m+n=(2m)2·2n=9×4=36.
题型一 几种幂的综合运算
例1 计算:(1)(-2x2)3+(-3x3)2+(-x)6; (2)x2·x4·x6+(x3)2+[(-x)4]3. 分析 按照先算乘方,再算乘除,最后算加减,若 有小括号先算小括号里的原则进行计算. 解析(1)原式=-8x6+9x6+x6=2x6. (2)原式=x12+x6+x12=2x12+x6. 、
(3)
1
3
3
1
9
.
3 3
(4)(x4)3-2(x3)4=x12-2x12=-x12.

苏科版七年级下册数学《幂的运算》课件

苏科版七年级下册数学《幂的运算》课件

你还记得吗?
4.同底数幂的除法法则
文字叙述: 同底数幂相除,底数不变,指数相减
字母表示: am÷an=am-n (a≠0 m,n是正整数 m>n)
扩大:
am÷an÷ap=am-n-p (a≠0 m,n,p是整数)
考考你
a8 ÷a3 =a8-3=a5
(½)5÷(½)3 =(1/2)5-3=(1/2)2=1/4 (-s)7÷(-s)2 =(-s)7-2=(-s)5=-s5
=4b4
(5) a8÷a4=a2 ×
=a4
(6) (-z)6÷(-z)2=-z4 ×
=z4
幂的运算中的方法与技能
类型一:熟练使用公式,正确进行各种计算
(1)m19÷m14·m3÷m2
=m5·m3÷m2 =m8÷m2
或=m19-14+3-2 =m6
=m6
(2)(x-y)8÷(x-y)4÷(y-x)3
am-n=am÷an amn= (an)m anbn= (ab)n
幂的运算中的方法与技能
类型二:逆用公式进行计算
例1.已知am=4,an=2.
求①am+n的值.②am-n的值.③ a3m+2n的值.④ a2m-n的值=am·an=m÷an=a3m·a2n
=a2m÷an
=4×2 =4÷2
=(am)3·(an)2
=(-x2n-2 ) ·(-x5) ÷x2n+1 =x2n+3÷x2n+1 =x2 (4)4-(-1/2)-2-32÷(-3)0 =4-4-9÷1 =4-4-9 =-9
注意:运算时第一确定
所含运算类型,理清运 算顺序,用准运算法则
幂的运算中的方法与技能
类型二:逆用公式进行计算

幂的运算-ppt课件

幂的运算-ppt课件
(1)每个因式都要乘方,不要漏掉任何一个因式;
(2)系数应连同它的符号一起乘方,尤其是当系数是-1时,不
可忽略.
感悟新知
知3-练
例 5 计算:
(1)(x·y3)2; (2)(-3×102)3;


(3) -
2;
(4)(-a2b3)3.
解题秘方:运用积的乘方、幂的乘方的运算法则
进行计算.
感悟新知
知3-练
最后结果要符合科
学记数法的要求
(2)(-3×102)3=(-3)3×(102)3=-27×106=-2.7×107;
解:(1)(x·y3)2=x2·(y3)2=x2y6;


(3) -
12
a ;

2=



· () 2 =
2
2

·(a6)2 =


系数乘方时,要带前面的符号,特
a4n-a6n用a2n表示,再把a2n=3 整体代入求值.
解:a4n-a6n=(a2n)2-(a2n)3=32-33=9-27=-18.
感悟新知
知2-练
4-1.已知10m=3,10n=2,求下列各式的值:
(1)103m;
解:103m=(10m)3=33=27;
(2)102n;
102n=(10n)2=22=4;
感悟新知
知3-练
6-1. [中考·淄博] 计算(-2a3b)2-3a6b2的结果是( C )
A.-7a6b2
B. -5a6b2
C. a6b2
D. 7a6b2
感悟新知
知3-练
6-2. 计算:
(1)(-2anb3n)2+(a2b6)n;

华师大版八年级数学上册第12章第1节《同底数幂的乘法》优质课件

华师大版八年级数学上册第12章第1节《同底数幂的乘法》优质课件

6、已知: 12
x
=
1 2
1 4
1 8
1 16
1 32
1 64

试求x的值 。
7、已知xm-n x2n+1=x11且 ym-1 y4-n =y5,求m-n的值。
b4m1
对前面两个问题如何解?
地球与太阳的距离 = 5 102 3 105 千米 3 5 102 105 15107 千米
比邻星与地球的距离 = 3107 4.22 3105 千米 3 3 4.22107 105 37.981012 3.7981013 千米
判断:
(1) x3 x5 x15 × (2) x x3 x3 × (3) x3 x5 x8 × (4) x2 x2 2x4 ×
根据 路程 = 时间 × 速度 有
地球与太阳的距离 = 5 102 3 105 千米 比邻星与地球的距离 = 3107 4.22 3105 千米
如何计算 102 105 和 107 105 呢?
根据幂的意义:10 2 105 (10 10) (10 10 10 10 10)
2个10
5个10
(5) (x)2 (x)3 (x)5 x5 √ √ (6) a3 a2 a2 a3 0
(7) a3 b5 (a b)8 × × (8) y 7 y 7 y14
这节课我们学习了同底数幂的乘法的运 算性质,你有何新的收获和体会n
(m,n都是正整数)
智力大冲浪
第12章 整式的乘除
12.1幂的运算 1.同底数幂的乘法
指数
an

底数
它的意义呢?
an a a a a
n 个a
问题一 、光的速度为 3×105 千米/秒,太阳光照射到地球

06幂的运算复习课件

06幂的运算复习课件
同底数幂相乘,底 语言叙述: 数不变,指数相加。
学习指导二
幂的乘方法则: 字母表示:
(am)n=amn 其中m,n都是正整数 语言叙述:幂的乘方,底 数不变,指数相乘。
想一想:同底数幂的 乘法法则与幂的乘方 法则有什么相同点和 不同点?
同底数幂相乘 m n m+n a · a =a
指数相加 底数不变 指数相乘
练习十一
(1)a ÷a
8 3
(2)(-a)÷(-a)
6 4
10
3
(3)(2a)÷(2a) (4) (-a)÷(-a)
(5)(p )÷p
8 2 3 2 5
(6)a ÷(-a )
3
10
2
3
(7)m ÷m ×m
(8)(a ) ÷a
2
4
3
小结:
(1)掌握幂的运算的一些性质及字 母的表示方法。 (2)会运用性质完成有关的计算。 (3)注意幂的四种运算的区别。 (4)体会性质的逆运用。
(a ) a
m n
(ab)
m
mn 幂的乘方,底数不 变,指数相乘。 m m 积的乘方,把积的 a b 每一个因式分别乘 方,再把所得的幂 相乘。
m n 同底数幂除法,底ቤተ መጻሕፍቲ ባይዱ
同底数幂 的除法
a a a
m n
数不变,指数相减。
学习指导一
同底数幂的乘法法则: 字母表示: a m· an=am+n 其中m,n都是正整数
(m-n)
15
④ (x-2y)4· (2y-x) 5· (x-2y)6=
(2y-x)
15
练习四、选择
5m+1 1.下列各式中,与x
相等的是( c )

幂的基本运算

幂的基本运算
复习
第一讲:幂的运算(1)
定义:形如am(a≠0)的整式叫做幂,表示m个man= aa…aa…a=am+n
同底数幂的乘法法则:
am•an=______(m、n都是正整数)
ambm= aa…ab…b
=(ab)(ab)…(ab)(ab)
=(ab)m
(an)m= anan…anan
拓展:am•an•…ap=am+n+…+p
(ab)n=anbn(m、n为正整数)积的乘方等于乘方的积
拓展:(ab…c)n=anbn…cn
(am)n=amn(m、n为正整数)幂的乘方,底数不变,指数相乘
拓展:[(am)n]p=amnp
同底数幂的除法法则:
am÷an=am-n(m、n都是正整数)
拓展:am÷an÷…÷ap=am-n-…-p
=a…aa…aa…aa…a
=amn
(ab)n=anbn(m、n为正整数)
积的乘方等于乘方的积
(am)n=amn(m、n为正整数)
幂的乘方,底数不变
指数相乘
1、 (1)若a3•am =a9,则m=
(3)(a3)4=
.
2、若x+y=3,则2x•2y的值为
. (2)若32•27 =3n,则n=
(4)若xy=3,则x3y3=
.
.
.
3、(1)若x+2y-4=0,则22y•2x-2的值为
.
(2) 若x,y均为正整数,且2x+1•22y=128 ,则x+y的值为
.
4、(1)若2x+3y-4=0,则9x-1•27y的值为
(2) 若2×8x×16x=222则x的值为
.
.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2 5
3
2 5
4
2 5
2
2 5
5
0.252000 24002
642 83 2n1 ,求n的值。
1.510 211 310 (4)2
( y ym1)2 ( y2 )m3 y2 xm 8, xn 2, 求xm2n
(1)已知n为偶数,化简
a b3n b a2n b a5n
将几个相同的数字摆成一个数,不 用任何数学运算符号,如果要摆成 的数尽可能的大,该怎样摆?如3个
1,可以写成111,111,111,111 ,
那么4个2有几种摆法?比较2222与 2222的大小。
本子上 P66 1-5
代数作业格式
评价手册:P31-32 1,2,3,5,6
P62 练一练1,2
(2)已知 am an a5 b2m1 bn2 b9
求m、n的值。
2128 2127
1
7 9
9
9 16
10
111
已知m、n均为正整数,且3m+n是10的倍数, 求证:3m+4+n也是10的倍数。
1.已知a、b是有理数,且ab=1,求a、b。
2.计算 (1)15,25,35,45,55,......,195 (2)1275的个位数的数字是几? (3)5811、7313的个位上的数字分别是几?
0.000 000 608 9 -0.001 000 2
用科学记数法表示下列结果:
一种叫四季海棠的植物,它的种子很 小,5万粒棵海棠种子的质0.25g, 1粒四季海棠种子的质量约为多少? 解:设1粒四季海棠种子的质量约为xg,
由题意得: 5×104 ×x=0.25 x=0.5×10-5
答: 1粒四季海棠种子的质量约为 0.5×10-5g。
(3)x12 2 x2 4 x3 3
(4) a3 a
a10
(1) a b2 b a3 (2) a2 a3 a5
(3)
2
2
3
2
3
(4) 2a2b 2 5a3b4
(5) xm 3 xn 4 xmn
(6)用科学记数法表示下列各数
0.000 17
0.000 021 5
( a≠0,n为正整数)
b a
n
bn an
a0 1(a 0) an 1 (a 0) n为正整数
an
零指数幂与负整数指数幂的应用
•一般地,一个正数利用科学记数法可以写成 a×10n的形式,其中1≤a<10,n是整数。
•注意应用题当中单位的换算统一。
(1) x4 x3 x (2) ym y2m1 y2m
第八章 幂的运算
同底数幂的乘法 法则
推广


幂的乘方
运 算
积的乘方
法则 推广
同底数幂 的除法
法则 零指数幂 负整数指数幂
a ·a = a m n
m+n (当m、n都是正整数)
a a a m
n
m-(n a≠n都是正整数)
(ab)n anbn
相关文档
最新文档