四年级奥数之最值问题
四年级奥数简单的最值问题
学生姓名年级 4 授课时间教师姓名课时简单的最值问题一、专题简析:在日常生活中,人们常常会遇到“路程最近”、“费用最省”、“面积最大”、“损耗最少”等问题,这些寻求极端结果或讨论怎样实现这些极端情形的问题,最终都可以归结成为:在一定范围内求最大值或最小值的问题,我们称这些问题为“最大最小问题”。
解答最大最小问题通常要用下面的方法:1,枚举比较法。
当题中给定的范围较小时,我们可以将可能出现的情形一一举出再比较;2,着眼于极端情形,即充分运动已有知识和生活常识,一下子从“极端”情形入手,缩短解题过程。
二、精讲精练例题1 把1、2、3、…、16分别填进图中16个三角形里,使每边上7个小三角形内数的和相等。
问这个和最大值是多少?分析为了方便描述,我们把图中部分三角形注上字母,从图中可以看出:中心处D中填的数和三条边上的和没有关系,因此,应填最小的数1。
而三个角上的a、b、c六个三角形中的数都被用过两次,所以要尽可能填大数,即填11——16。
然后根据“三角形三边上7个小三角形内数的和相等”这一条件,就可以计算出这个和的最大值了。
(2+3+4+…+16+11+12+13+14+15+16)÷3=721练习一1,将5、6、7、8、9、10六个数分别填入圆圈内,使三角形每条边上的和相等,这个和最大是多少?2,把2——9分别填入下图圆圈内,使每个大圆上的五个数的和相等,并且最大。
3,将1——9这九个自然数分别填进九个小三角形中,使每4个小三角形组成的三角形内的4个数的和都等于20。
2例题2 有8个西瓜,它们的重量分别是2千克、3千克、4千克、4千克、5千克、6千克、8.5千克、10千克。
把它们分成三堆,要使最重的一堆西瓜尽可能轻些,那么,最重的一堆应是多少千克?分析 3堆西瓜的总重量是42.5千克,要使最重的一堆尽可能轻些,另两堆就得尽可能重些。
根据42.5÷3=14千克……0.5千克可知:最重的一堆是14+0.5=14.5千克,即由6千克和8。
四年级上奥数第16讲 最值问题(一)
四秋第16讲最值问题(一)一、教学目标1、我们在解最大与最小问题时,常常会从极端情形出发来考虑问题,并且还要举例说明最大值或最小值是能取到的.2、最大与最小的若干性质:①如果两个正整数的和一定,那么这两个正整数的差越小,它们的乘积越大;两个正整数的差越大,它们的乘积越小.②如果两个正整数的乘积一定,那么这两个正整数的差越小,那么它们的和也越小;两个正整数的差越大,那么它们的和越大.二、例题精选【例1】两个自然数的和为11,当这两个自然数分别是多少时,它们的积最大?最大的积是多少?【巩固1】两个自然数的乘积为36,当这两个自然数分别是多少时,它们的和最小?最小的和是多少?【例2】把14分成几个自然数的和,再求出这些自然数的乘积,要使得乘积尽可能大,问这个乘积是几?【巩固2】把16分成三个自然数的和,再求出这些自然数的乘积,要使得乘积尽可能大,问这个乘积是几?【例3】八个互不相等的正整数之和是88,将这八个数从小到大排列,第5个数最大是几?【巩固3】十个互不相等的非零自然数之和是60,其中最大的那个数记为a ,那么a 最大是多少?【例4】 用6~1这6个数字组成两个三位数,使这两个三位数的乘积最大,这两个三位数分别是多少?(要求每个数字都用到)【巩固4】用8~1这8个数字,组成2个四位数,把它们相减所得的差是一个自然数,问这个自然数最大是多少,最小是多少?(要求每个数字都用到)【例5】 某路公共汽车,包括起点和终点共有15个车站,有一辆公共汽车除终点外,每一站上车的乘客中,到以后的每一站都恰好有一位乘客下车,为了使每位乘客都有座位,这辆公共汽车最少要有多少个座位?【例6】 宴会邀请来了44位嘉宾。
会场里15张相同的正方形桌子,每张每边能坐1人。
经适当“拼桌”(将几张正方形桌子拼成一张长方形或正方形桌子)后,恰好让所有嘉宾全部入座而且没有空位。
那么最后会场里桌子是如何排布的?三、回家作业【作业1】一个自然数它各个数位上的数字的和等于25,这个数最小是多少?【作业2】两个非零自然数的积是45,这两个自然数的和最大是多少?最小是多少?【作业3】把13分成几个自然数的和,再求出这些自然数的乘积,要使得乘积尽可能大,问这个乘积是几?【作业4】用5、6、7、8这四个数字组成两个两位数,使这两个两位数的乘积最大.(每个数字都要用到)2013122108,一共12个数字。
高斯小学奥数四年级上册含答案第23讲_最值问题一
第二十三讲最值问题一最值问题,即求最大值、最小值的问题.这类问题中,有时满足题目条件的情况并不多,这时我们就可以用枚举法将所有可能情况一一列出,再比较大小.例题1(1)在五位数12435的某一位数字后面插入一个同样的数字可以得到一个六位数(例如:在2的后面插入2可以得到122435).请问:能得到的最大六位数是多少?(2)在七位数9876789的某一位数字后面再插入一个同样的数字.请问:能得到的最小八位数是多少?「分析」一共有多少种不同的插入数字的方法?你能将它们全部枚举出来吗?练习1在五位数41729的某一位数字前面插入一个同样的数字(例如:在7的前面插入7得到417729),能得到的最大六位数是多少?直接枚举的优点是不用过多思考,大家都能理直气壮地说,直接比较大小得到的答案一定是正确的.事实上,我们应该多想一想,为什么这个答案是最大或最小的,有没有什么道理,其中有没有什么规律.例题2有9个同学要进行象棋比赛.他们准备分成两组,不同组的任意两人之间都进行一场比赛,同组的人不比赛,那么一共最多有多少场比赛?「分析」把9个同学分成两组,有多少种情况呢?你能算出这些分法各自对应的比赛场数吗?练习2有7个同学要进行乒乓球单打比赛.他们准备分成两组,不同组的任意两人之间都进行一场比赛,同组的人不比赛,那么一共最多有多少场比赛?从例题2我们可以得出:两个数的和相等,当它们越接近时(也就是它们的差越小时),两数乘积越大,也可以简单记成“和同近积大”.“和同近积大”的应用非常广泛,接下来我们分析一下比较典型的“篱笆问题”.例题3墨爷爷要用长20米的篱笆围成一个长方形养鸡场,已知长和宽均为整数米,那么怎样围所得的养鸡场面积最大?(正方形是特殊的长方形)「分析」长方形面积是长、宽的乘积,要想长、宽乘积最大,可以不可以应用“和同近积大”的道理来解决呢?能找到“和同”吗?练习3墨爷爷要用长30米的篱笆围成一个长方形养鸡场,已知长和宽均为整数米,那么怎样围所得的养鸡场面积最大?例题4请将1、2、3、4、5、6这六个数填入下面的方格中,使得乘法算式的结果最大.⨯□□□□□□ 「分析」要使得乘积最大,百位应当填哪两个数?十位呢?个位呢?练习4请将1、2、3、4、5、6、7、8这八个数填入下面的方格中,使得乘法算式的结果最大.⨯□□□□□□□□例题5墨爷爷要用长20米的篱笆围成一个靠墙的直角三角形养鸡场,已知靠墙的恰好为三角形斜边,两条直角边长均为整数米,那么怎样围所得的养鸡场面积最大?「分析」长方形篱笆我们已经解决了,三角形的与长方形的有什么联系吗?养鸡场想一想要用篱笆围一个靠墙的三角形,那么锐角三角形、直角三角形、钝角三角形中的哪一种面积会最大呢?在很多问题中,我们都需要先进行整体的思考,再对局部进行一些调整.千万不能“丢了西瓜捡芝麻”!例题6各位数字互不相同的多位数中,数字之和为23的最小数是多少?最大数是多少?「分析」两个多位数比较大小,首先要比较它们的位数.如果位数相同,还要从高位到低位依次比较.课堂内外动物之最最大的动物:蓝鲸(平均长30米,重达160吨)最大的路上动物:非洲象(平均重达9吨)最高的路上动物:长颈鹿(平均高5米)嘴巴最大的陆生哺乳动物:河马最聪明的动物:海豚(人除外)最大的鸟类:鸵鸟(平均身高2.5米,最重可达155千克)翅膀最长的鸟类:信天翁(翅展2~3米)嘴巴最大的鸟:巨嘴鸟(最长24厘米,宽9厘米)形体最小的鸟:蜂鸟飞得最高的鸟:天鹅(最高能达17000米)最耐寒的鸟:企鹅路上奔跑速度最快的动物:猎豹(可高达时速130公里)速度最快的海洋动物:旗鱼(可高达时速190公里)飞行速度最快的动物:军舰鸟(可高达时速418公里)现存最古老的生物:舌形贝(有4.5亿年历史)牙齿最多的动物:蜗牛(共有25600颗牙齿)飞行能力最强的昆虫:蝗虫(每天能够连续飞行近10小时)力气最大的昆虫:屎壳郎(可以支撑或拖走相当于自己体重1141倍的物体)外形最奇特的鱼:海马最大的两栖动物:大鲵(即娃娃鱼)毒性最强的蛇:海蛇(其毒性为眼镜蛇的2倍)寿命最长的动物:海葵(已发现最年长的海葵有2000多岁了)冬眠时间最长的动物:睡鼠(冬眠时间5~6个月)作业1.在六位数129854的某一位数字前面再插入一个同样的数字(例如:可以在2的前面插入2得到1229854),能得到的最小七位数是多少?2.两个自然数之和等于10,那么它们的乘积最大是多少?3.用20根长1厘米的火柴棒围成一个长方形,这个长方形的面积最大是多少平方厘米?4.请将3,4,5,6,7,8这六个数分别填入算式□□□□□□的方格中,使这个乘法算式的结果最大.5.各位数字互不相同的多位数中,数字之和为32的最小数是多少,最大数是多少?第二十三讲 最值问题一1. 例题1答案:(1)124435;(2)98766789详解:(1)枚举:112435、122435、124435、124335、124355,最大的六位数是124435;(2)枚举:99876789、98876789、98776789、98766789、98767789、98767889、98767899,最小的八位数是98766789.2. 例题2答案:20场详解:如果是(1,8),那么共188⨯=场;如果是(2,7),那么共2714⨯=场;如果是(3,6),那么共3618⨯=场;如果是(4,5),那么共4520⨯=场;所以一共最多有20场比赛.3. 例题3答案:长、宽 都为5米时,面积最大为25平方米详解:长方形周长是20米,长、宽之和为10,是固定不变的;长方形面积为长、宽之积,根据“和同近积大”,可知长、宽越接近,面积越大; 当长、宽相等,即篱笆为正方形时,面积最大,最大面积为5525⨯=平方米.4. 例题4答案:631542⨯详解:要使得乘积最大,那么就要百位上的数字最大、个位上的数字最小;所以百位填5、6,十位填3、4,个位填1、2;在这个前提下,无论怎么填,最后两个三位数的和都固定等于5006003040121173+++++=,所以要想让它们的乘积最大,就要让这两个三位数差最小,尝试可得是631542⨯.5. 例题5答案:两条直角边都为10米时,面积最大为50平方米详解:设两条直角边分别为A 、B ,则20+=A B 米;直角三角形面积为“2⨯÷底高”,即面积大小是由“⨯A B ”决定的;A 、B 之和为20米,越接近则乘积越大,所以当10==A B 米时, “⨯A B ”有最大值; 所以,三角形面积最大为1010250⨯÷=平方米.6. 例题6答案:689;8543210详解:数的大小,首先是要考虑位数,再考虑各个数位上的数的大小.(1)最小:即要位数最少,那么就得要让每个数位上的数字都尽量的大,把23拆开:23986=++,所以最小数为689;(2)最大:即要位数最多,那么就得要让每个数位上的数字都尽量的小,把23拆开:230123458=++++++,所以最大数为8543210.7.练习1答案:441729详解:枚举:441729、411729、417729、417229、417299,最大的六位数为441729.8.练习2答案:12场详解:如果是(1,6),那么共166⨯=场;如果是(2,5),那么共2510⨯=场;如果是(3,4),那么共3412⨯=场;所以一共最多有12场比赛.9.练习3答案:长8米,宽7米时,面积最大为56平方米简答:长、宽和为15米,当长为8米、宽为7米时,长、宽最接近,长、宽乘积最大,最大面积为56平方米.10.练习4答案:76428531⨯简答:要使得乘积最大,那么就要千位上的数字最大、个位上的数字最小;所以千位填7、8,百位填5、6,十位填3、4,个位填1、2;在这个前提下,无论怎么填,最后两个四位数的和都固定等于+++++++=,所以要想让它们的乘积最大,就要让这两个四7000800050060030401216173位数差最小,尝试可得是76428531⨯.11.作业1答案:1129854简答:在原数某一位前面插入相同数一共可以得到1129854、1229854、1299854、1298854、1298554、1298544这些数,对比可知1129854最小.12.作业2答案:25简答:两个数的和为10,根据“和同近积大”的原则,当两个数都为5时乘积最大,为25.13.作业3答案:25平方厘米简答:长、宽的和是10厘米,根据“和同近积大”的原则,正方形的时候面积最大,此时边长为5厘米,面积为25平方厘米.14.作业4答案:853764⨯简答:最高位填8和7,十位填6和5,个位填4和3,相差越小乘积越大,所以应为853764⨯.15.作业5答案:26789;98543210简答:3298762=++++,所以最小为26789;3201234589=+++++++,所以最大为98543210.。
(完整版)小学奥数最值问题
最值问题内容概述均值不等式,即和为定值的两数的乘积随着两数之差的增大而减小.各种求最大值或最小值的问题,解题时宜首先考虑起主要作用的量,如较高数位上的数值,有时局部调整和枚举各种可能情形也是必要的.典型问题2.有4袋糖块,其中任意3袋的总和都超过60块.那么这4袋糖块的总和最少有多少块?【分析与解】方法一:设这4袋为A、B、C、D,为使4袋糖块的总和最少,则每袋糖应尽量平均,有A、B、C袋糖有20、20、21块糖.则当A、B、D三袋糖在一起时,为了满足条件,D袋糖不少于21块,验证A、B、C、D 这4袋糖依次有20,20,2l,2l时满足条件,且总和最少.这4袋糖的总和为20+20+21+21=82块.方法二:设这4袋糖依次有a、b、c、d块糖,有61616161a b ca b da c db c d++≥⎧⎪++≥⎪⎨++≥⎪⎪++≥⎩①②③④,①+②+③+④得:3(a+b+c+d)≥244,所以a+b+c+d≥8113,因为a+b+c+d均是整数,所以a+b+c+d的和最小是82.评注:不能把不等式列为a b c60a+b+d60a+c+d60b+c+d60++〉⎧⎪〉⎪⎨〉⎪⎪〉⎩①②③④,如果这样将①+②+③+④得到3(a+b+c+d)>240,a+b+c+d>80,因为a、b、c、d均是整数,所以a+b+c+d的和最小是81.至于为什么会出现这种情况.如何避免,希望大家自己解决.4.用1,3,5,7,9这5个数字组成一个三位数ABC和一个两位数DE,再用O,2,4,6,8这5个数字组成一个三位数FGH和一个两位数IJ.求算式ABC×DE-FGH×IJ的计算结果的最大值.【分析与解】为了使ABC×DE-FGH×IJ尽可能的大,ABC×DE尽可能的大,FGH×IJ 尽可能的小.则AB C×DE最大时,两位数和三位数的最高位都最大,所以为7、9,然后为3、5,最后三位数的个位为1,并且还需这两个数尽可能的接近,所以这两个数为751,93.则FGH×IJ最小时,最高位应尽可能的小,并且两个数的差要尽可能的大,应为468×20.所以AB C×DE-FG H×IJ的最大值为751×93-468×20=60483.评注:类似的还可以算出FGH×IJ-ABC×DE的最大值为640×82-379×15=46795.6.将6,7,8,9,10按任意次序写在一圆周上,每相邻两数相乘,并将所得5个乘积相加,那么所得和数的最小值是多少?【分析与解】我们从对结果影响最大的数上人手,然后考虑次大的,所以我们首先考虑10,为了让和数最小,10两边的数必须为6和7.然后考虑9,9显然只能放到图中的位置,最后是8,8的位置有两个位置可放,而且也不能立即得到哪个位置的乘积和最小,所以我们两种情况都计算.8×7+7×10+10×6+6×9+9×8=312;9×7+7×10+10×6+6×8+8×9=313.所以,最小值为312.8.一个两位数被它的各位数字之和去除,问余数最大是多少?【分析与解】设这个两位数为ab=lOa+b,它们的数字和为a+b,因为lOa+b=(a+b)+9a,所以lOa+b≡9a(mod a+b),设最大的余数为k,有9a≡k(mod a+b).特殊的当a+b为18时,有9a=k+18m,因为9a、18m均是9的倍数,那么k也应是9的倍数且小于除数18,即0,9,也就是说余数最大为9;所以当除数a+b不为18,即最大为17时,:余数最大为16,除数a+b只能是17,此时有9a=15+17m,有m=7+9ta=15+17t⎧⎨⎩(t为可取0的自然数),而a是一位数,显然不满足;:余数其次为15,除数a+b只能是17或16,除数a+b=17时,有9a=15+17m,有m=6+9ta=13+17t⎧⎨⎩,(t为可取0的自然数),a是一位数,显然也不满足;除数a+b=16时,有9a=15+16m,有m=3+9ta=7+16t⎧⎨⎩(t为可取0的自然数),因为a是一位数,所以a只能取7,对应b为16-7=9,满足;所以最大的余数为15,此时有两位数79÷(7+9)=4……15.10.用1,2,3,4,5,6,7,8,9这9个数字各一次,组成一个被减数、减数、差都是三位数的正确的减法算式,那么这个算式的差最大是多少?【分析与解】考虑到对差的影响大小,我们先考虑百位数,为了让差最大,被减数的百位为9,减数的百位为1,如果差的百位为8,那算式就是如下形式:剩下的6个数字为2、3、4、5、6、7,因为百位数字为8,所以我们可以肯定被减数的十位数字比减数要大,而且至少大2,因为1已经出现在算式中了,算式的可能的形式如下:得数的十位只可能是减数和被减数的十位数字之差,或者小1,可能的算式形式如下:但这时剩下的数都无法使算式成立.再考虑差的百位数字为7的情况,这时我们可以肯定减数的十位数比被减数要大,为了使差更大,我们希望差值的十位为8,因此,算式可能的形式为:再考虑剩下的三个数字,可以找到如下几个算式:,所以差最大为784.12. 4个不同的真分数的分子都是1,它们的分母有2个是奇数、2个是偶数,而且2个分母是奇数的分数之和与2个分母是偶数的分数之和相等.这样的奇数和偶数很多,小明希望这样的2个偶数之和尽量地小,那么这个和的最小可能值是多少?【分析与解】设这四个分数为上12m、12n、12a+1、12b+1(其中m、n、a、b均为非零自然数)有12m+12n=12a+1+12b+1,则有12m-12b+1=12a+1-12n,我们从m=1,b=1开始试验:1 2=16+13=14+14,13=112+14=16+16,1 4=120+15=18+18,15=130+16=110+110,1 6=15+110=112+112,﹍我们发现,15和16分解后具有相同的一项110,而且另外两项的分母是满足一奇一偶,满足题中条件:1 5+115=16+110,所以最小的两个偶数和为6+10=16.14.有13个不同的自然数,它们的和是100.问其中偶数最多有多少个?最少有多少个?【分析与解】 13个整数的和为100,即偶数,那么奇数个数一定为偶数个,则奇数最少为2个,最多为12个;对应的偶数最多有11个,最少有1个.但是我们必须验证看是否有实例符合.当有11个不同的偶数,2个不同的奇数时,11个不同的偶数和最小为2+4+6+8+10+12+14+16+18+20+22=132,而2个不同的奇数和最小为1+3=4.它们的和最小为132+4=136,显然不满足:当有9个不同的偶数,4个不同的奇数时,9个不同的偶数和最小为2+4+6+8+10+12+14+16+18=90,而4个不同的奇数和最小为1+3+5+7=16,还是大于100,仍然不满足;当有7个不同的偶数,6个不同的奇数时,7个不同的偶数和最小为2+4+6+8+10+12+14=56,6个不同的奇数和为1+3+5+7+9+11:36,满足,如2,4,6,8,10,12,22,1,3,5,7,9,11的和即为100.类似的可知,最少有5个不同的偶数,8个不同的奇数,有2,4,8,10,16,1.3.5,7,9,11,13,15满足.所以,满足题意的13个数中,偶数最多有7个,最少有5个.。
小学奥数全国推荐四年级奥数通用学案附带练习题解析答案11最值问题(一)
年级四年级学科奥数版本通用版课程标题最值问题(一)在日常生活中,我们常常考虑“最”字,如走路尽可能使所行的路程最短,用时最少或车费最省;做一件工作,尽可能使效率最高,工时最短;学习则尽可能使所用的时间最短而收获最大……,一句话,都是考虑一个“最”字的问题,即最值问题。
最值问题涉及的知识面较为广泛,但在国内外的历届数学竞赛中,一般都带有某种限制条件,因而解决问题的方法和策略常常因题而异,归纳起来有以下几种常用的方法:(1)从极端情况入手我们在分析某些数学问题时,不妨考虑一下把问题推向“极端”。
因为当某一问题被推向“极端”后,往往能排除许多枝节问题的干扰,使问题的“本来面目”清楚地显露出来,从而使问题迅速获解。
(2)枚举比较根据题目的要求,把可能得出的答案一一枚举出来,使题目的条件范围逐步缩小,进而筛选比较出答案。
(3)分析推理根据两个事物在某些属性上相同,猜测它们在其他属性上也有可能相同的推理方法。
(4)构造在寻求解题途径时,构造出新的式子或图形,往往可以取得出奇制胜的效果。
(5)应用求最大值和最小值的结论和一定的两个数,差越小,积越大。
积一定的两个数,差越小,和越小。
两点之间线段最短。
例1一把钥匙只能打开一个房间的门,现有20把钥匙和20个房间,但不知哪把钥匙能开哪个房间的门,如要打开所有房间的门,最多要开几次?分析与解:考虑极端情况,开第一个房间的门最多需20次。
开第二个房间的门最多需19次,……,开最后一个房间的门需1次,共需20+19+18+…+1=210(次)。
例2小明去听报告,发现报告厅只有最后一排没坐满,但他无论坐在哪个位子,都会和另一听众相邻,已知每排均有19个位子,问最后一排最少坐了多少个人?分析与解:将最后一排座位编号,由题意可知,没有连续3个的空位,而最后一排最少坐了的人数也就是已经坐下的每一个人两旁尽可能都是空位,即极端情形:2,5,8,11,14,17,19这几个编号的座位上坐着人,其余座位空着,故最少坐7人。
四年级高思奥数之最值问题一含答案
第23讲最值问题一内容概述求最大值与最小值的问题,解题时宜首先考虑起主要作用的量,有时还需要局部调整或者枚举各种可能情形.和为定值的两数的乘积随着两数之差的增大而减小.典型问题兴趣篇1.3个连续奇数相乘,所得乘积的个位数字最小可能是多少?2. 用1、2、4可以组成6个没有重复数字的三位数,这些三位数中相差最小的两个数之差是多少?3. 用24根长l厘米的火柴棒围成一个矩形,这个矩形的面积最大是多少?如果用22根火柴棒呢?4.三个自然数的和是19,它们的乘积最大可能是多少?5.(1)请将l、2、3、4填人算式“口口×口口”的方格中.要使得算式结果最大,应该怎么填?(2)请将1、2、3、4、5、6填人算式“口口口×口口口”的方格中.要求5、6分别填在百位,4、3分别填在十位,1、2分别填在个位,并使得算式结果最大.应该怎么填?6. 在图23-1的中间圆圈内填一个数,计算每一条线段两端的数之差(大减小),然后把这3个差数相加,所得的和最小是多少?7. 在所有包含3个相同数码的四位数中,与1389之差(大减小)最小的一个是多少?8. 把1、2、3、4、5、6填人算式“□□□-□□□”的空格中,要求前一个三位数比后一个三位数大.这个减法算式的结果最大可能是多少?最小可能是多少?9. 一个自然数是由数字8、9组成的,它的任意相邻两位都可以看成一个两位数,并且这些相邻数字组成的两位数都不相等.请问:满足条件的自然数最大是多少?10. 有7个盘子排成一排,依次编号为1,2,3,…,7.每个盘子中都放有若干玻璃球,一共放了80个.其中1号盘里放了18个玻璃球,并且任意编号相邻的3个盘子里放的玻璃球数之和都相等.请问:第6个盘子中最多可能放了多少个玻璃球?拓展篇1.3个连续自然数相乘,所得乘积的个位数字最大可能是多少?2. (1)在五位数12435的某一位数字后面再插入一个同样的数字(例如:可以在2的后面插入2得到122435),这样得到的六位数最大可能是多少?(2)在七位数9876789的某一位数字后面再插入一个同样的数字,这样得到的八位数最小是多少?3.有9个同学要进行象棋比赛.他们准备分成两组,不同组的人相互之间只比赛一场,同组的人之间不比赛.他们一共最多能比赛多少场?4.3个互不相同的自然数之和是17,它们的乘积最大可能是多少?5.请将2、3、4、5、6、8填人算式“口口口×口口口”的方格中.要使得算式结果最大,应该怎么填?6.请将6、7、8、9填人算式“口×口+口口”的方格中.要使得算式结果最大,应该怎么填?7.在图23-2的中间圆圈内填一个数,计算每一条线段两端的数之差(大减小),然后把这5个差数相加,所得的和最小是多少?8.如果7个互不相同的自然数之和为100,那么其中最小的数最大可能是多少?最大的数最小可能是多少?9.一个多位数的各位数字互不相同,而且各位数字之和为23.这样的多位数最小可能是多少?最大可能是多少?10.黑板上写着l,2,3,4,…,10各一个.小明每次擦去两个奇偶性相同的数,再写上它们的平均数.最后当黑板上只剩下一个自然数时,这个数最大可能是多少?11.如图23-3,这是一个正方体的展开图.将它折成一个正方体后,相交于同一顶点的3个面上的数之和最大是多少?12.如图23-4,在一个正方体方块的左下角A点处有一只蚂蚁,它要沿着正方体的表面爬行至右上角的B点,去搬运一块食物.为了使得这个蚂蚁所走的路线长度最短,它应该怎么爬行?它可以选择的最短路线一共有几条?超越篇1.一个两位数除以它的各位数字之和,余数最大是多少?2.4个小朋友,每人的体重都是整数千克,而且其中任意3人体重之和都大于99千克.这4个小朋友体重之和最小是多少千克?3.将1至30依次写成一排:123…2930,形成一个多位数.从这个多位数中划掉45个数字,剩下的数最大是多少?如果要求剩下的数首位不为0,这个数最小是多少?4.用1、2、3、4、6、7、8、9这8个数字组成2个四位数,使这2个数的差最小(大减小),这个差最小是多少?5.将2至8这7个自然数填入算式“口口×口口一口口÷口”的方格中.如果算式的计算结果为整数,那么这个结果最大是多少,最小是多少?6.如图23-5,一只木箱的长、宽、高分别为5厘米、3厘米、4厘米.有一只甲虫从A点出发,沿棱爬行,每条棱只允许爬一次.甲虫最多能爬行多少厘米?如果要求甲虫最后回到A点,那么它最多能爬行多少厘米?7.如图23-6,黑板上写有一个三位数减三位数的算式,其中首位已经确定.接下来,甲每次报一个数字,乙就把它放入四个方框中的一个,甲要使得差尽量大,乙要使得差尽量小,如果两人都使用最佳的策略,那么最后的差是多少?8.一栋大楼共33层,电梯停在第1层,现在有32个人分别要去第2层、第3层……第33层,他们可以选择坐电梯或者走楼梯.有一天电梯坏了,电梯只能在某一层停,每个人可以选择走楼梯上楼或乘电梯到这一层再走楼梯.每个人上一层楼梯会有3份不满意,下一层楼梯会有1份不满意.请问:电梯停在哪一层,才能使得所有人不满意的总份数最小?第23讲最值问题一内容概述求最大值与最小值的问题,解题时宜首先考虑起主要作用的量,有时还需要局部调整或者枚举各种可能情形.和为定值的两数的乘积随着两数之差的增大而减小.典型问题兴趣篇1.3个连续奇数相乘,所得乘积的个位数字最小可能是多少?答案:3分析:乘积的个位数字是由这三个奇数的个位数字决定的。
(完整版)小学奥数最值问题
最值问题内容概述均值不等式,即和为定值的两数的乘积随着两数之差的增大而减小.各种求最大值或最小值的问题,解题时宜首先考虑起主要作用的量,如较高数位上的数值,有时局部调整和枚举各种可能情形也是必要的.典型问题2.有4袋糖块,其中任意3袋的总和都超过60块.那么这4袋糖块的总和最少有多少块?【分析与解】方法一:设这4袋为A、B、C、D,为使4袋糖块的总和最少,则每袋糖应尽量平均,有A、B、C袋糖有20、20、21块糖.则当A、B、D三袋糖在一起时,为了满足条件,D袋糖不少于21块,验证A、B、C、D 这4袋糖依次有20,20,2l,2l时满足条件,且总和最少.这4袋糖的总和为20+20+21+21=82块.方法二:设这4袋糖依次有a、b、c、d块糖,有61616161a b ca b da c db c d++≥⎧⎪++≥⎪⎨++≥⎪⎪++≥⎩①②③④,①+②+③+④得:3(a+b+c+d)≥244,所以a+b+c+d≥8113,因为a+b+c+d均是整数,所以a+b+c+d的和最小是82.评注:不能把不等式列为a b c60a+b+d60a+c+d60b+c+d60++〉⎧⎪〉⎪⎨〉⎪⎪〉⎩①②③④,如果这样将①+②+③+④得到3(a+b+c+d)>240,a+b+c+d>80,因为a、b、c、d均是整数,所以a+b+c+d的和最小是81.至于为什么会出现这种情况.如何避免,希望大家自己解决.4.用1,3,5,7,9这5个数字组成一个三位数ABC和一个两位数DE,再用O,2,4,6,8这5个数字组成一个三位数FGH和一个两位数IJ.求算式ABC×DE-FGH×IJ的计算结果的最大值.【分析与解】为了使ABC×DE-FGH×IJ尽可能的大,ABC×DE尽可能的大,FGH×IJ 尽可能的小.则AB C×DE最大时,两位数和三位数的最高位都最大,所以为7、9,然后为3、5,最后三位数的个位为1,并且还需这两个数尽可能的接近,所以这两个数为751,93.则FGH×IJ最小时,最高位应尽可能的小,并且两个数的差要尽可能的大,应为468×20.所以AB C×DE-FG H×IJ的最大值为751×93-468×20=60483.评注:类似的还可以算出FGH×IJ-ABC×DE的最大值为640×82-379×15=46795.6.将6,7,8,9,10按任意次序写在一圆周上,每相邻两数相乘,并将所得5个乘积相加,那么所得和数的最小值是多少?【分析与解】我们从对结果影响最大的数上人手,然后考虑次大的,所以我们首先考虑10,为了让和数最小,10两边的数必须为6和7.然后考虑9,9显然只能放到图中的位置,最后是8,8的位置有两个位置可放,而且也不能立即得到哪个位置的乘积和最小,所以我们两种情况都计算.8×7+7×10+10×6+6×9+9×8=312;9×7+7×10+10×6+6×8+8×9=313.所以,最小值为312.8.一个两位数被它的各位数字之和去除,问余数最大是多少?【分析与解】设这个两位数为ab=lOa+b,它们的数字和为a+b,因为lOa+b=(a+b)+9a,所以lOa+b≡9a(mod a+b),设最大的余数为k,有9a≡k(mod a+b).特殊的当a+b为18时,有9a=k+18m,因为9a、18m均是9的倍数,那么k也应是9的倍数且小于除数18,即0,9,也就是说余数最大为9;所以当除数a+b不为18,即最大为17时,:余数最大为16,除数a+b只能是17,此时有9a=15+17m,有m=7+9ta=15+17t⎧⎨⎩(t为可取0的自然数),而a是一位数,显然不满足;:余数其次为15,除数a+b只能是17或16,除数a+b=17时,有9a=15+17m,有m=6+9ta=13+17t⎧⎨⎩,(t为可取0的自然数),a是一位数,显然也不满足;除数a+b=16时,有9a=15+16m,有m=3+9ta=7+16t⎧⎨⎩(t为可取0的自然数),因为a是一位数,所以a只能取7,对应b为16-7=9,满足;所以最大的余数为15,此时有两位数79÷(7+9)=4……15.10.用1,2,3,4,5,6,7,8,9这9个数字各一次,组成一个被减数、减数、差都是三位数的正确的减法算式,那么这个算式的差最大是多少?【分析与解】考虑到对差的影响大小,我们先考虑百位数,为了让差最大,被减数的百位为9,减数的百位为1,如果差的百位为8,那算式就是如下形式:剩下的6个数字为2、3、4、5、6、7,因为百位数字为8,所以我们可以肯定被减数的十位数字比减数要大,而且至少大2,因为1已经出现在算式中了,算式的可能的形式如下:得数的十位只可能是减数和被减数的十位数字之差,或者小1,可能的算式形式如下:但这时剩下的数都无法使算式成立.再考虑差的百位数字为7的情况,这时我们可以肯定减数的十位数比被减数要大,为了使差更大,我们希望差值的十位为8,因此,算式可能的形式为:再考虑剩下的三个数字,可以找到如下几个算式:,所以差最大为784.12. 4个不同的真分数的分子都是1,它们的分母有2个是奇数、2个是偶数,而且2个分母是奇数的分数之和与2个分母是偶数的分数之和相等.这样的奇数和偶数很多,小明希望这样的2个偶数之和尽量地小,那么这个和的最小可能值是多少?【分析与解】设这四个分数为上12m、12n、12a+1、12b+1(其中m、n、a、b均为非零自然数)有12m+12n=12a+1+12b+1,则有12m-12b+1=12a+1-12n,我们从m=1,b=1开始试验:1 2=16+13=14+14,13=112+14=16+16,1 4=120+15=18+18,15=130+16=110+110,1 6=15+110=112+112,﹍我们发现,15和16分解后具有相同的一项110,而且另外两项的分母是满足一奇一偶,满足题中条件:1 5+115=16+110,所以最小的两个偶数和为6+10=16.14.有13个不同的自然数,它们的和是100.问其中偶数最多有多少个?最少有多少个?【分析与解】 13个整数的和为100,即偶数,那么奇数个数一定为偶数个,则奇数最少为2个,最多为12个;对应的偶数最多有11个,最少有1个.但是我们必须验证看是否有实例符合.当有11个不同的偶数,2个不同的奇数时,11个不同的偶数和最小为2+4+6+8+10+12+14+16+18+20+22=132,而2个不同的奇数和最小为1+3=4.它们的和最小为132+4=136,显然不满足:当有9个不同的偶数,4个不同的奇数时,9个不同的偶数和最小为2+4+6+8+10+12+14+16+18=90,而4个不同的奇数和最小为1+3+5+7=16,还是大于100,仍然不满足;当有7个不同的偶数,6个不同的奇数时,7个不同的偶数和最小为2+4+6+8+10+12+14=56,6个不同的奇数和为1+3+5+7+9+11:36,满足,如2,4,6,8,10,12,22,1,3,5,7,9,11的和即为100.类似的可知,最少有5个不同的偶数,8个不同的奇数,有2,4,8,10,16,1.3.5,7,9,11,13,15满足.所以,满足题意的13个数中,偶数最多有7个,最少有5个.。
小学奥数全国推荐四年级奥数通用学案附带练习题解析答案12最值问题(二)
年级四年级学科奥数版本通用版课程标题最值问题(二)最值问题是数学中一类较具挑战性的问题。
其实,数学史上也有不少与最值问题相关的故事,如下即为其中较为经典的一则:海伦是古希腊精通数学、物理的学者,相传有位将军曾向他请教一个问题——如图,从A点出发,到笔直的河岸去饮马,然后再去B地,走什么样的路线最短呢?海伦轻松地给出了答案:作点A关于直线的对称点A′,连接A′B交直线于点P,则PA+PB=A′B 的值最小。
在最值问题中,判断某一结果是不是正确的最值,一般有两条判断标准,两者缺一不可:1. 不可能出现更大(更小)的结果,也就是说当超出该结果时,会与题目条件产生矛盾,所以检验该标准一般使用反证法;2. 所得到的结果必须是可行的,检验该标准一般是将结果放到题目条件中检验,最好能构造出符合条件的情况,以保证答案的正确性。
例1 一个三位数等于它各位上数字之和的19倍,这个三位数最大是多少?最小是多少?分析与解:设百位数字为A,十位数字为B,个位数字为C,则100A+10B+C=19(A+B+C),81A=9B+18C,9A=B+2C。
又因为B+2C是在0到27之间,所以A只能不超过3,当A最大取3时,可得B最大可取9,此时C=9,即这个三位数最大为399;当A最小取1时,可得B最小可取1,此时C=4,即这个三位数最小为114。
例2 已知a 、b 、c 、d 、e 、f 是不同的自然数,且前面标有两个箭头的每一个数恰等于箭头起点的两数的和(如b =a +d ),那么图中c 最小应为多少?分析与解:先把图中箭头所代表的加法含义写出来,如图。
d 应当取最小值1,那么a 和f 只能一个为2,另一个为4。
这样,根据b =a +d ,e =d +f ,可知b 和e 只能一个为3,另一个为5,而c =b +e 。
所以c 最小应为3+5=8。
请同学们思考:a 、d 、f 中为什么不能取最小的自然数0呢?(因为如果其中有0,就会出现两数相等的情况,与已知的条件矛盾)例3 a 和b 是小于100的两个不同的非零自然数,求b a b a +-的最大值。
四年级奥数题及答案-去除数字求最大和最小值
四年级奥数题及答案-去除数字求最大和最小值
【题目】今天小明的妈妈给小明出了一道难题,妈妈在纸上写下了一个有29位数字组成的一串数字:12345678910111213141516171819,小明可以在这串数字中任意去除10个数字,妈妈的题目是:去除后可以得到的最大的数字和最小的数字分别是多少?
【解析】
我们可以在29位数字中去掉其中的10位,那样我们就有了19位数,在遇到这种比较大小的题目时,我们可以从两个方面考虑:①位数②高位数字,现在位数是固定的,那么我们就从高位数字入手。
我们先来找最大值:我们想到高位数字最大的必然是数字9,因此这串数字中我们先来去除12345678,剩下910111213141516171819,我们要去掉9后面最小的0,接下来是1,这样就得到了最大值9111213141516171819。
最小值的求法类似:我们先来确定最高位一定是除0外最小的数字,即1,其次我们要考虑让次高位的数字放上最小的数字0,这样我们就把234567891都去掉,剩下10111213141516171819,我们把0后面的数字2去掉,这样最小的数字就是1011113141516171819。
四年级奥数之最值问题
四年级奥数之最值问题集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#四年级奥数之最值问题知识点睛:在一定范围内求最大值或最小值的问题,我们称之为“最大最小问题”。
“最大”、“最小”是我们所熟悉的两个概念,多年来各级数学竞赛中经常会出现求最值问题,解决办法有:一、枚举法例1一把钥匙只能开一把锁,现在有4把钥匙4把锁。
但不知哪把钥匙开哪把锁,最多要试多少次就能配好全部的钥匙和锁(北京市第三届“迎春杯”数学竞赛试题)分析与解开第一把锁,按最坏情况考虑试了3把还未成功,则第4把不用试了,它一定能打开这把锁,因此需要3次。
同样的道理开第二把锁最多试2次,开第三把锁最多试1次,最后一把锁则不用再试了。
这样最多要试的次数为:3+2+1=6(次)。
二、综合法例2x3=84A(x、A均为自然数)。
A的最小值是______。
(1997年南通市数学通讯赛试题)分析与解根据题意,84A开立方的结果应为自然数,于是我们可以把84分解质因数,得84=2×2×3×7,因此x3=2×2×3×7×A,其中A的质因数至少含有一个2、两个3、两个7,才能满足上述要求。
即A的最小值为(2×3×3×7×7=)882。
三、分析法例3一个三位数除以43,商是a,余数是b,(a、b均为自然数),a+b 的最大值是多少(广州市五年级数学竞赛试题)分析与解若要求a+b的最大值,我们只要保证在符合题意之下,a、b尽可能大。
由乘除法关系得43a+b=一个三位数因为b是余数,它必须比除数小,即b<43b的最大值可取42。
根据上面式子,考虑到a不能超过23。
(因为24×43>1000,并不是一个三位数)当a=23时,43×23+10=999,此时b最大值为10。
当a=22时,43×22+42=988,此时b最大值为42。
小学奥数模块教程最值问题初步(四年级提尖秋季)
1、 枚举法解最值问题2、 最值原理3、 拆数问题体育比赛中的数学课前加油站5 用数字0,1,2,3,4,5组成的最大三位数是多少?最小的三位数是多少?5 用数字0,1,2,3,4,5组成的最大三位偶数是多少?最小的三位偶数是多少?最值问题初步本章知识前铺知识5数字0,1,2,3,4,5,任意两个不同的数字相乘,乘积个位的最大值是多少?模块1 枚举法解最值问题例题1:在五位数12345的某一位数字后面再插入一个同样的数字(例如:可以在2的后面插入2得到122345),这样得到的六位数最大可能是多少?练一练:在4位数3782的某一位数码后再插入一个该数码,能得到的五位数最大是多少?最小是多少?例题2:电视台要播放一部30集的电视连续剧,如果要求每天安排播出的集数互不相等,不能不播,该电视连续剧最多可以播几天?例题3:一把钥匙只能开一把锁,现在有4把钥匙4把锁。
但不知哪把钥匙开哪把锁,最多要试多少次就能配好全部的钥匙和锁?练一练:19个苹果要分给一群小朋友,每个小朋友所分得的苹果都要不一样,且每位小朋友至少要有一个苹果,问:这群小朋友最多有几位?24个苹果分给4个小朋友,每个小朋友分得的苹果数量不同,求分得苹果最多的小朋友最多能分多少个?模块2 最值原理例题4:周长100米的长方形中,面积最大是多少平方米?面积为100平方米的长方形中,周长最小是多少米?练一练:用24根长1cm的小棍围成一个长方形,这个长方形的面积最大是多少?如果用22根呢?例题5: 用1,2,3,4,5,6这6个数字各一次,分别组成两个三位数,求积最大时,算式是什么?最小时算式是什么?例题6:用1-9九个数组成三个三位数,要使这三个三位数的乘积最大,下面的空怎么填?□□□×□□□×□□□练一练:请将2,3,4,5,6,8填入算式“□□□×□□□”的方格中,要使得算式结果最大,要怎么填?例题7:3个互不相同的自然数之和是17,他们的乘积最大可能是多少?3个自然数之和是17,他们的乘积最大可能是多少?若干个互不相同的自然数之和是17,他们的乘积最大可能是多少?例题8:若a+b=24,则(1)求a×b的最大值(2)求(a+4)×2b的最大值(3)求(a+7)×(2b+1)的最大值练一练:已知a+b=15,求(2a+1)×b的最大值。
四年级奥数之最值问题
四年级奥数之最值问题知识点睛:在一定范围内求最大值或最小值的问题,我们称之为“最大最小问题”。
“最大”、“最小”是我们所熟悉的两个概念,多年来各级数学竞赛中经常会出现求最值问题,解决办法有:一、枚举法例1一把钥匙只能开一把锁,现在有4把钥匙4把锁。
但不知哪把钥匙开哪把锁,最多要试多少次就能配好全部的钥匙和锁?(北京市第三届“迎春杯”数学竞赛试题)分析与解开第一把锁,按最坏情况考虑试了3把还未成功,则第4把不用试了,它一定能打开这把锁,因此需要3次。
同样的道理开第二把锁最多试2次,开第三把锁最多试1次,最后一把锁则不用再试了。
这样最多要试的次数为:3+2+1=6(次)。
二、综合法例2x3=84A(x、A均为自然数)。
A的最小值是______。
(1997年南通市数学通讯赛试题)分析与解根据题意,84A开立方的结果应为自然数,于是我们可以把84分解质因数,得84=2×2×3×7,因此x3=2×2×3×7×A,其中A的质因数至少含有一个2、两个3、两个7,才能满足上述要求。
即A的最小值为(2×3×3×7×7=)882。
三、分析法例3一个三位数除以43,商是a,余数是b,(a、b均为自然数),a+b 的最大值是多少?(广州市五年级数学竞赛试题)分析与解若要求a+b的最大值,我们只要保证在符合题意之下,a、b尽可能大。
由乘除法关系得43a+b=一个三位数因为b是余数,它必须比除数小,即b<43b的最大值可取42。
根据上面式子,考虑到a不能超过23。
(因为24×43>1000,并不是一个三位数)当a=23时,43×23+10=999,此时b最大值为10。
当a=22时,43×22+42=988,此时b最大值为42。
显然,当a=22,b=42时,a+b的值最大,最值为22+42=64。
最值问题(小学奥数)
汉城国际数学竞赛试题
有A、B、C三人,从P地到Q地 的距离为3千米,每人步行速度 为每时3千米。在P点有两辆自 行车,如果使用自行车,速度可 达每时15千米,但每辆自行车 只能1个人骑。怎样才能使3人 在最短的时间内到达Q地?
一张圆桌有12个座位,已有n 个人按某种方式就座,当某人 就座时,发现无论他坐在哪个 座位,都将与已经就座的人为 邻,则n的最小值是几?
现在有1g、2g、5g、10g、 20g的砝码各若干个,至少要 用其中的多少个砝码才能用天 平一次称出39g的味精?
6个人各拿一只水桶到一个水龙 头处接水,水龙头注满6个人的 水桶所需时间分别为5分、4分、 3分、10分、7分、6分。怎样 安排这6个人的打水次序,可使 他们总的等候时间最短?
六(2)班56名同学选班长,候选 人是英英、辰辰、花花,三人以得 票最多的人当选,在选票开票中途 累计时,花花得16票,辰辰得13 票,英英得9票。此后花花还要得 多少票才能保证当选?
用0——9这十个数字组成5个两位数, 每个数字只能用一次,要求它们的和 是一个奇数,并且尽可能大。这5个 两位数的和是多少? 用2—9这八个数字分别组成两个四位 数,使这两个四位数的乘积最大。
2001福建数学竞赛试题
a、b、c、d、e、f、g、h、i分别代 表自然数1至9中的某一个,如果每一 个圆环内的各数字之和都相等,求每一 个圆环内的数字和的最大值和最小值。
a b d e f i h
cLeabharlann g你来当厂长甲、乙两车间生产同一种成衣,但两 车间生产特长不同,甲每月用3/5的时 间生产上衣,2/5的时间生产裤子,每 月生产900套;乙每月用4/7的时间生 产上衣,3/7的时间生产裤子,每月生 产1200套。现在两车间联合起来生产, 尽量发挥各自特长多生产成衣,现在 比过去每月多生产多少套?
小学奥数容斥原理之最值问题
⼩学奥数容斥原理之最值问题⼩学奥数容斥原理之最值问题1. 了解容斥原理⼆量重叠和三量重叠的内容;2. 掌握容斥原理的在组合计数等各个⽅⾯的应⽤.⼀、两量重叠问题在⼀些计数问题中,经常遇到有关集合元素个数的计算.求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,⽽要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,⽤式⼦可表⽰成:A B A B A B =+-U I (其中符号“U ”读作“并”,相当于中⽂“和”或者“或”的意思;符号“I ”读作“交”,相当于中⽂“且”的意思.)则称这⼀公式为包含与排除原理,简称容斥原理.图⽰如下:A 表⽰⼩圆部分,B 表⽰⼤圆部分,C 表⽰⼤圆与⼩圆的公共部分,记为:A B I ,即阴影⾯积.图⽰如下:A 表⽰⼩圆部分,B 表⽰⼤圆部分,C 表⽰⼤圆与⼩圆的公共部分,记为:A B I ,即阴影⾯积.包含与排除原理告诉我们,要计算两个集合A B 、的并集A B U 的元素的个数,可分以下两步进⾏:第⼀步:分别计算集合A B 、的元素个数,然后加起来,即先求A B +(意思是把A B 、的⼀切元素都“包含”进来,加在⼀起);第⼆步:从上⾯的和中减去交集的元素个数,即减去C A B =I (意思是“排除”了重复计算的元素个数).⼆、三量重叠问题A 类、B 类与C 类元素个数的总和A =类元素的个数B +类元素个数C +类元素个数-既是A 类⼜是B 类的元素个数-既是B 类⼜是C 类的元素个数-既是A 类⼜是C 类的元素个数+同时是A 类、B 类、C 类的元素个数.⽤符号表⽰为:A B C A B C A B B C A C A B C =++---+U U I I I I I .图⽰如下:在解答有关包含排除问题时,我们常常利⽤圆圈图(韦恩图)来帮助分析思考.7-7-5.容斥原理之最值问题教学⽬标知识要点1.先包含——A B +重叠部分A B I 计算了2次,多加了1次;2.再排除——A B A B +-I把多加了1次的重叠部分A B I 减去.图中⼩圆表⽰A 的元素的个数,中圆表⽰B 的元素的个数,⼤圆表⽰C 的元素的个数.1.先包含:A B C ++ 重叠部分A B I 、B C I 、C A I 重叠了2次,多加了1次. 2.再排除:A B C A B B C A C ++---I I I 重叠部分A B C I I 重叠了3次,但是在进⾏A B C ++- A B B C A C --I I I 计算时都被减掉了. 3.再包含:A B C A B B C A C A B C ++---+I I I I I .【例 1】 “⾛美”主试委员会为三~⼋年级准备决赛试题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【课前小练习】
本讲主线 1. 最值中的三个常用方法 2. 两数和一定,差小积大
数字和是6的无重复数字 的多位数中,最大的是 多少?
1. 整体思想:比如,比较大小先看位数,再由高到底比较位置. 2. 局部调整思想 3. 平均分配思想 【例1】(★★) 电视台要播放一部30集的电视连续剧,如果要求每天播放的集数互不 相等 该电视剧最多可以播放几天? 相等,该电视剧最多可以播放几天?
1
4. 两数和一定,差越小乘积越大. 例如,a+b=10,那么,a×b最大等于____. 例如,一根绳子长度是20米,那么这根绳子围城的 , ,那 长方形,长和宽分别是多少的时候,长方形的面积 最大?
知识要点屋
a b
【例5】(★★★★) 如图,一个长方形被分成 4 个小长方形,其中长方形A、B、大 是___平方厘米.
【例4】(★★★) 牧羊人用15段,每段长2米的篱笆,一面靠墙围成一个长方形羊圈,则 羊圈 最 羊圈的最大面积是多少平方米? 多少平 米
最值问题 1. 整体方法,局部调整方法,平均数方法. 2. 两数和一定,差越小乘积越大. (1) 固定长度的绳子,围成正方形面积最大; (2) ( ) 当和不确定时,凑算式,使和变为一个定值. 和 确 时, 算式,使和变 个 值 【今日讲题】 例2 例3 例4 例2,例3,例4 【讲题心得】
知识大总结
a b
答案
墙
【课前小练习】①531, 47 ② 222 【例1】 7 【例2】 19, 517 【例3】 55, 15, 1, 5 【例4】 112 【例5】16
_____________________________________________________________。
【家长评价】
_____________________________________________________________。
2
知识要点屋
1. 把1、2、3、4、5、6填入算式“□□□-□□□”的空格中,要求前一 个三位数比后一个三位数大。这个减法算式的结果最大可能是多少?最 小可能是多少? 能是多少 2. 用0,1,2,…,9这10个数字各一次组成5个两位数a、b、c、d、e。请 问:a-b+c-d+e最大可能是多少? 问 最 多少
【例3】(★★★★) 【例2】(★★★★) 有7个各不相同的正整数,他们的平均数是100。将它们从小到大排列, 将100个苹果分给10位小朋友,每个小朋友分得的苹果数互不相 前3个数的平均数是20,后三个数的平均数是200。那么最小的数最大 同(每人都分到了苹果) 是多少,最大的数最大是多少? (1) 得到苹果最多的小朋友,最多得到___个苹果; (2) 得到苹果最多的小朋友,最少得到___个苹果; (3) ( ) 得 得到苹果最少的小朋友,最少得到___个苹果; 苹 最 ,最 得 个苹 ; (4) 得到苹果最少的小朋友,最多得到___个苹果;