地震勘探原理 第4章地震波速度

合集下载

《地震地层学》第四章 地震速度-岩性分 析3

《地震地层学》第四章  地震速度-岩性分 析3

第四章地震速度-岩性分析地震波的速度是地震勘探中最重要的一个参数,同时也是地震地层解释中最重要的一个参数。

从实质上讲,各种(大多数)地震技术的核心任务(主要目标),在诞生初期,几乎都是围绕着地层速度的勘测在进行。

从另一方面看,地震反射资料无非是地层界面之间波阻抗差的反映。

第一节地震波传播速度的影响因素一、岩石弹性常数的影响根据“均匀的完全弹性介质中弹性波的波动方程”可以知道,地震纵波与横波在介质中传播的速度与介质的弹性常数之间存在下述关系:V==(4-1)pV==(4-2)s式中λ、μ是拉梅系数;ρ是介质的密度;E是杨氏模量;δ是泊松比。

它们都是说明介质的弹性性质的参数。

E比ρ相对于密度增加了,增加的级次较高。

二、岩性的影响表一、表二、沉积岩的波速三、密度的影响除了波动方程导出的严格公式外,已经可以肯定,速度与密度的关系近似为线性关系,随着密度的增加,速度也会增加。

另外,国外对大量岩石样品做了物性研究后,提出了下列经验公式:4Va ρ= (4-3)140.31V ρ= (4-4) 但是,速度与密度的关系随地区的不同而有差异,在每个地区应该存在一定的关系。

四、与埋深的关系大量实际资料表明,在岩石性质和地质年代相同的条件下,地震波的速度随岩石埋藏深度的增加而增大,其原因主要是埋深控制地层压实程度的高低。

一般地,存在如下公式:0()CZ V Z V e = (4-5)五、与地质年代的关系在相同埋深条件下,地质年代增加时,塑性介质的蠕变,造成压实程度增高,进而速度降低。

六、与孔隙度和流体成分的关系 1、时间平均方程11f mV V V Φ-Φ=+ (4-6) 2、油、气、水等流体的速度很小,尤其是气。

5000/m V m s =,(1600/f V m s =盐水), (1300/fV m s =油),(300~400/f V m s =气)。

七、温度压力的影响温度升高,速度减小;压力增大,速度减小。

地震勘探原理知识点总结讲解

地震勘探原理知识点总结讲解

第三章地震资料采集方法与技术一.野外工作概述1.陆地石工基本情况介绍试验工作内容:①干扰波调查,了解工区内干扰波类型与特性。

②地震地质条件调查,了解低速带的特点、潜水面的位置、地震界面的存在与否、地震界面的质量如何(是否存在地震标志层)、速度剖面特点等。

③选择激发地震波的最佳条件,如激发岩性、激发药量、激发方式等。

④选择接收和记录地震波的最佳条件,包括最合适的观测系统、组合形式和仪器因素的选择等。

生产工作过程:地震队的组成(1)地震测量:把设计中的测线布置到工作地区,在地面上定出各激发点和接收排列上各检波点的位置(2)地震波的激发陆上地震勘探的震源类型:炸药震源和可控震源。

激发方式:炸药震源的井中激发、土坑等。

激发井深:潜水面以下1-3m,(6-7m)。

(3)地震波的接收实现方式:检波器、排列和地震仪器2.调查干扰波的方法(1)小排列(最常用)3-5m道距、连续观测目的:连续记录、追踪各种规则干扰波,分析研究干扰波的类型和分布规律。

从地震记录中可以得到干扰波的视周期和视速度等基本特征参数(2)直角排列适用于不知道干扰波传播方向的情况Δt1和Δt2的合矢量的方向近似于干扰波的传播方向(3)三分量检波器观测法(4)环境噪声调查信噪比:有效波的振幅/干扰波的振幅(规则)信号的能量/噪声的能量3.各种干扰波的类型和特点(1)规则干扰指具有一定主频和一定视速度的干扰波,如面波、声波、浅层折射波、侧面波等。

面波(地滚波):在地震勘探中也称为地滚波,存在于地表附近,振幅随深度增加呈指数衰减。

其主要特点:①低频:几Hz~20Hz;②频散(Dispersion):速度随频率而变化;③低速:100m/s ~1000m/s,通常为200m/s~500m/s;④质点的振动轨迹为逆时针方向的椭圆。

面波时距曲线是直线,记录呈现“扫帚状”,面波能量的强弱与激发岩性、激发深度以及表层地震地质条件有关。

(能量较强)声波:速度为340m/s左右,比较稳定,频率较高,延续时间较短,呈窄带出现。

地震波速度资料解释

地震波速度资料解释

地震波速度资料的解释论文提要地震波速度是地震勘探中最重要的一个参数,是地震波运动学特征之一。

在资料处理和解释过程中,速度资料均十分重要。

例如在计算动校正时需要叠加速度,绘制构造图进行时深转换时需要平均速度。

近年来,速度资料在地震解释中应用得越来越广泛,概括起来有以下几方面:(1)进行时深转换、绘制深度剖面和构造图。

(2)根据速度资料识别波的性质,如多次波、绕射波和声波等。

(3)利用速度资料制作合成地震记录和理论地震模型,对地震记录作模拟解释。

(4)利用速度纵横向变化规律,研究地层沉积特征和相态展布。

(5)利用层速度资料,预测岩性分布和砂泥岩横向变化。

(6)利用速度资料计算反射系数图板,进行烃类检测,判别含气亮点。

(7)利用合成声波测井,进行砂体横向追踪和对比。

(8)利用速度资料预测地层异常压力。

由此可见,提取和分析速度资料是地震地质解释的一项重要的工作,熟悉各种有关的速度概念、速度资料的求取方法和影响速度的各种地质因素对于应用速度资料解决地质问题是很重要的。

正文一、理论研究和实际资料证实,地震波在岩层中的传播速度与岩层的性质、岩石的成分、密度、埋藏深度、地质时代、孔隙度、流体性质等因素有关,下面分别分析各种因素对速度的影响。

(一)影响速度的一般因素1.岩性由于各种岩石类型的成分不同,其传播地震波的速度是不同的(图5—1);有时即使是同一种岩石类型,由于结构不同其波速也在一定围变化。

地震波传播速度主要取决于构成这些岩石矿物的弹性性质,一般来说,火成岩孔隙很少或没有孔隙,地震波速度比变质岩和沉积岩的都高,且变化围小;变质岩的波速变化围较大,沉积岩波速最低,变化围大,这主要与沉积岩成分和结构复杂,受孔隙度和流体性质的影响较大有关。

表(5—1)是几种类型岩石与介质的波传播速度和波阻抗资料。

2.密度通过大量岩石样品物性研究和数据分析整理,发现地震波速度与岩石体积密度之间(图5—1(a)、(b)),存在着一种令人满意的近似关系。

《地震勘探原理》§4-地震勘探野外工作方法3精选全文完整版

《地震勘探原理》§4-地震勘探野外工作方法3精选全文完整版
单井最大药量有一个限度。超过这个限度能量仍不足,可 采用小药量组合爆炸,这样还有利于激发高宽频信号,提 供分辨能力。 ⑷ 道间距(相邻两个中心道之间的距离)⊿x 通常不应该超过设计的水平分辨率的2倍。这样的目的是 使地下空间采样间隔满足设计要求,即满足空间采样定理
§4 地震勘探野外工作方法
(五)多次覆盖采集参数选择
室内处理方法:水平叠加
CMP R
对于水平层状介质,假如分别在点O1 ,O2 ,…,On激发,则 可分别在对应的S1 ,S2 ,…,Sn各点接收到来自地下反射界面 上同一反射点R的反射波(R为CRP或CDP)。若对n次激发得
到的R点的各道反射波进行动静校正,使其相位一致,然
后叠加起来,便获得了共反射点R的n次叠加记录。
❖ 4.3.2.2 综合平面法 D
O1 45
M
O2
R1
R2
O1单边放炮,offset = 0, O1O2之间布置检波器接收
1 R1R2 2 O1O2Leabharlann §4 地震勘探野外工作方法
❖ 4.3.2.2 综合平面法 D
O1 45
M
O2
R1
R2
R3
O1 、O2双边放炮,offset = 0, O1O2之间布置检波器接收
§4 地震勘探野外工作方法
shot1 shot2 shot3 shot4
offset = 2⊿x ⊿shot = 2⊿x
n =12
station
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
1 2 3 4 5 6 7 8 9 10 11 12
channel
1
5
9

地震波的速度

地震波的速度

i1
x2
i1
n
ti vi2
i1
)2
n
ti
i1
n

vR
t
i
v
2 i
i1
n
ti
i1
为均方根速度
t2
t
2 0
x2
v
2 R
v i :各小层的速度
t i :各层的垂直时间
v R :称为n层水平层状介质的均方根速度
定义:
把水平层状介质情况下的反射波时距曲线近 似当作双曲线求出的波速,就是这一水平层 状介质的均方根速度。
地震波的速度
第一节 地震波速度的影响因素
• 一、岩石的弹性对速度的影响 • 二、岩性的影响 • 三、密度的影响 • 四、孔隙度的影响 • 五、埋深和压力的影响 • 六、构造历史和地质年代的影响 • 七、频率和温度的影响 • 八、孔隙流体的影响 • 沉积岩中速度分布的规律
一、弹性常数的影响
弹性常数增加,速度增加
各种校正的随机误差 表层速度分布不均匀 地震波之间的干涉 大倾角地层、复杂构造 观测方式、观测误差
二、测定速度的方法
• 测定地震波传播速度的方法基本上可分 为以下几类:
• (1)实验室测定法 • (2)井中观测法 • (3)时距曲线计算法 • (4)速度谱方法 • (5)速度剖面法 • 对上述几种速度的测定方法作简要描述
对于覆盖层为连续介质,只给出对应的基本 公式。
均方根速度的定义
n

t
i
v
2 i
vR
i1 n
ti
i1
为均方根速度
均方根速度的意义还可以这样说明:把各层的速度值的平“方” 按时间取其加权平“均”值,而后取平方“根”值,要注意其中速 度较高的层所占比重要大,表明这种近似在一定程度上考虑了射 线的偏折。

地震勘探中常用速度的概念和特点

地震勘探中常用速度的概念和特点

地震勘探中常用速度的概念和特点地震勘探是一种通过分析地震波在地下传播的方式来获取地下结构信息的方法。

在地震勘探中,速度是一个重要的参数,它描述了地震波在地下传播的速度。

常用的速度包括纵波速度(P波速度)、横波速度(S波速度)和层速度。

纵波速度(P波速度)是地震波中传播速度最快的一种。

它是指地震波在介质中传播时,颗粒沿着波的传播方向做压缩和膨胀运动的速度。

纵波速度通常比横波速度大,因为介质对压缩力的响应比对剪切力的响应更快。

纵波速度可以用来计算地震波在地下的传播时间,从而确定地下结构的深度。

横波速度(S波速度)是地震波中传播速度较慢的一种。

它是指地震波在介质中传播时,颗粒沿着波的传播方向做剪切运动的速度。

横波速度通常比纵波速度小,因为介质对剪切力的响应比对压缩力的响应更慢。

横波速度可以用来计算地震波在地下的传播时间,从而确定地下结构的深度。

层速度是地震波在地下不同介质中传播的平均速度。

地下介质的速度通常是不均匀的,因为地下结构的密度和弹性模量会随深度变化。

为了更准确地描述地下结构,地震勘探中常用层速度来表示地下介质的速度。

层速度可以通过分析地震波在地下的传播时间和路径来计算得到。

在地震勘探中,速度的特点有以下几个方面:1. 方向性:地震波的传播速度通常与传播方向有关。

纵波速度通常比横波速度大,而且在同一介质中,纵波速度的方向性比横波速度更强。

这是因为介质对压缩力的响应比对剪切力的响应更快。

2. 受介质性质影响:速度的大小和方向受地下介质的性质影响。

不同类型的岩石和土壤具有不同的密度和弹性模量,从而导致不同的速度。

因此,在地震勘探中,需要对地下介质的性质进行准确的分析和判断,以获得准确的速度信息。

3. 变化性:地下介质的速度通常是不均匀的,因为地下结构的密度和弹性模量会随深度变化。

因此,在地震勘探中,需要通过分析地震波在地下的传播时间和路径来计算层速度,以更准确地描述地下结构。

总结起来,地震勘探中常用速度包括纵波速度、横波速度和层速度。

地震地层学第四章(速度岩性二)

地震地层学第四章(速度岩性二)

五、射线平均速度
2、数学模型
对于水平层状介质情况, 有
s V ( p, t ) t
其中, p 为射线参数。

i 1
n
hi 1 p 2Vi 2 hi 1 p 2Vi 2
V
i 1
n
i
射线平均速度比上面谈到的平均速度、均方根速度 等都更精确地描述波在介质中传播的情况。
第二节 主要地震速度的概念
实例
准东地区
砂岩指数平面分布 表示岩相变化: 三高一低
实例
准东地区
砂岩指数平面分布 表示岩相变化: 三高一低
实例
准东地区
砂岩指数平面分布 表示岩相变化: 东高西低
实例
复 杂 断 阶 区
实例
张参1
复杂断阶区
庄海5
T2
T3 T4 T5
T6
实例
井号
岩性指数平均误差=13.1 %
层 段 EdH EdE Es1E Es1L Es2E Es2L Es3H Es3E Es3L EdL Es1H Es1E Es1L Es2E Es2L Es3H Es3E Es3L EdL Es1E Es1L Es3E Es3L EdL Es1H Es1E Es1L Es3E Es3L EdL Es1E Es3H Es3E (计算值) 89.3% 15.4% 30.2% 70.5% 85.6% 100% 88.5% 25.7% 88.4% 10% 11.5% 60.5% 14.2% 45.5% 70.4% 54.4% 20.3% 77.5% 60.5% 29.8% 35.5% 25.9% 88.9% 69.2% 5% 7.9% 2.5% 35.5% 100% 35% 8.7% 56.8% 26.4% (钻井岩性值) % 52.1% 8.2% 7.7% 58.3% 21.5% 87.5% 52.4% 3.8% 62.4% 9.4% 0% 24.8% 0% 0% 76.9% 66.6% 0% 80% 55.9% 43.6% 0% 36.4% 81.4% 56.9% 0% 0% 0% 22.2% 91.1% 32% 9.1% 60.6% 12.5% 张参1 (%) 37.20% 7.20% 2250% 12.20% 64.10% 12.50% 36.10% 2190% 26.00% 0.0% 11.50% 35.70% 14.20% 45.50% -6.50% -12.20% 20.30% -2.50% 4.6% -13.80% 35.50% -10.50% 7.50% 12.30% 5.00% 7.90% 2.50% 13.30% 8.90% 3.00% -0.40% -3.80% 13.90%

《地震勘探原理》地震波的速度

《地震勘探原理》地震波的速度

第四章地震波的速度
第1节地震波在岩层中的速度及与各种因素的关系
第2节几种速度的概念
第3节各种速度之间的关系
第4节平均速度的测定
第5节叠加速度谱的制作与解释
主讲教师:刘洋
第1节地震波在岩层中的速度及与
各种因素的关系
)速度比值(或泊松比)
112111212222−−=−⎟⎟⎠⎞⎜⎜⎝⎛−⎟⎟⎠⎞⎜⎜⎝⎛r r V V V V S P S P
对数-对数坐标0.25
0.31V ρ=)
、温度、压力
)随着温度的升高,速度降低
)随着压力的升高,速度增加
第2节几种速度的概念。

需总时间之比是平均速度。

第3节各种速度之间的关系
第4节平均速度的测定
第5节叠加速度谱的制作与解释
道集动校正速度:
3500m/s 动校正速度:
4400m/s 动校正速度:4150m/s
CMP。

地震波速度变化规律

地震波速度变化规律

地震波速度变化规律
地震波速度变化规律是指地震波在地壳中传播时速度的变化规律。

地震波分为两类: 纵波和横波。

纵波在地壳中传播时速度较慢,而横波速度较快。

在地壳中,纵波速度随着深度的增加而减小,在地壳的表层速度较快,而在地壳的深部速度较慢。

这是因为地壳的表层较软,纵波可以较快地传播,而地壳的深部则较硬,纵波传播较慢。

横波速度则随着深度的增加而增加,在地壳的表层速度较慢,而在地壳的深部速度较快。

这是因为地壳的表层较软,横波可以较慢地传播,而地壳的深部则较硬,横波传播较快。

总之,地震波的速度在地壳中的变化规律是不同的,纵波的速度随着深度的增加而减小,而横波的速度则随着深度的增加而增加。

这种速度变化规律在研究地震学中有重要意义。

地震波速度变化规律的研究主要用于地震深度和地壳结构的研究。

通过观测纵波和横波的速度变化,可以推测出地震发生的深度。

此外,地震波速度变化规律还可以用于地壳结构的研究。

通过观测地震波速度的变化,可以推断出地壳结构的性质,如地壳的密度和弹性模量等。

地震波速度变化规律的研究也有助于地震预测和地震灾害
防御。

通过对地震波速度变化规律的研究,可以提高地震预测的准确性,并为地震灾害防御提供有力的技术支持。

总之,地震波速度变化规律的研究对地震学、地质学和工程领域都有重要的意义。

地震勘探原理总结

地震勘探原理总结

《地震勘探原理》各章节的复习要点第一章绪论(不作为考试内容)第二章地震波运动学理论§2.1 几何地震学基本概念1、基本概念,如地震子波:具有多个相位、延续60~100毫秒的稳定波形称为地震子波。

几何地震学:地震波的运动学是研究地震波,波前的空间位置与传播时间的关系,他与几何光学相似,也是引用波前,射线等几何图形来描述波的运动过程和规律,因此又叫几何地震学.地震勘探:通过人工方法激发地震波,研究地震波在地层中传播的情况,以查明地下的地质构造,力寻找油气田或其他勘探目的服务的一种物探方法.波面:介质中每一个同时开始振动的曲面。

射线:在几何地震学中,通常认为波及其能量是沿着一条“路径”从波源传到所考虑的一点P,然后又沿着那条“路径”从P点传向其他位置。

这样的假想路径称为通过P点的波线或射线。

振动图:在地震勘探中,每个检波器所记录的,便是那个检波器所在点处的地面振动,它的振动曲线习惯上叫做该点的振动图。

波剖面:在地震勘探中,通常把沿着测线画出的波形曲线叫做“波剖面”。

视速度和视波长:如果不是沿着波的传播方向而是沿着别的方向来确定波速和波长,得到的结果就不是波速和波长的真实值。

这样的结果叫做简谐波的视速度和视波长。

全反射:如果V2>V1,则有sinθ2>sinθ1,即θ2>θ1;当θ1增大到一定程度但还没到90°时,θ2已经增大到90°,这时透射波在第二种介质中沿界面“滑行”,出现了“全反射”现象,因为θ1再增大就不能出现透射波了。

雷克子波:2、基本原理反射定律:反射线位于入射平面内,反射角等于入射角,即。

透射定律:透射线也位于入射面内,入射角的正弦与透射角的正弦之比等于第一、第二两种介质中的波速之比,即Snell定律:惠更斯原理:在已知波前面(等时面)上的每一个点都可视为独立的、新的子波源,每个子波源都向各方发出新的波,称其为子波,子波以所在处的波速传播,最近的下一时刻的这些子波的包络面或线便是该时刻的波前面。

地震勘探原理各章节的复习要点(重点)

地震勘探原理各章节的复习要点(重点)

《地震勘探原理与解释》复习要点第一章绪论(不作为考试内容)第二章地震波运动学理论§2.1 几何地震学基本概念1、掌握基本概念,如地震子波、波面、射线、振动图、波剖面、视速度、视波长、全反射、雷克子波。

2、掌握基本原理,如反射定律、透射定律、Snell定律、惠更斯原理、费马原理等。

3、地震波的分类。

§2.2 常速单界面的反射波特征及时距关系1、基本概念:时距曲线、时距曲面、时间场、自激自收、共激发点、偏移距、初至时间、纵测线、同相轴、正常时差、倾角时差、动校正等。

2、基本原理:虚震源原理、讨论时距曲线的实际意义、直达波时距曲线及方程、反射波时距曲线及方程、反射波时距曲线的主要特点。

§2.3 变速多界面的反射波特征及时距关系1、基本概念:均匀介质、层状介质、连续介质、参数方程、平均速度、射线方程、等时线方程、回折波、最大穿透深度等。

2、基本原理:水平层状介质和连续介质情况下讨论反射波时距曲线的基本思路;水平层状介质和连续介质情况下反射波时距曲线的主要特点。

§2.4 地震折射波运动学1、基本概念:折射波盲区、初至波、续至波、交叉时、信噪比等。

2、基本原理:产生折射波的条件;利用折射波法研究地下地层起伏的基本依据;折射波与反射波的主要差异。

3、分析理解:单界面(水平和倾斜)直达波、反射波与折射波时距曲线之间的关系;三层介质情况下折射波的时距曲线及其特点;折射波法在地震勘探中的应用。

§2.5 地震波动力学理论及应用本节不作为考试内容。

第三章地震资料采集方法与技术§3.1 野外工作概述1、掌握基本概念:低(降)速带、频散、群速度、相速度、多次波、虚反射、鸣震、交混回响。

2、掌握基本内容:试验工作内容、生产工作过程、激发条件、接收条件、调查干扰波的方法、干扰波的类型、各种干扰波的主要特点、面波特点、压制面波的方法、海上地震勘探的特点与特殊性、海上特殊干扰波、海上震源等。

地震波的速度

地震波的速度
2 x 2 t 2 t0 2 V
三、等效速度:v
对于倾斜界面时共中心点M处的反射波 时距曲线为:
1 2 2 2 t 4hM x cos v 2 2 x x 2 2 2 t t0 t0 2 2 v v 2 cos
v为等效速度
o
X M
s
v
hm
R
四、迭加速度
O
V1 V2
S

V3
n1 l1 l2 n2 n3 l3
V
Vn
nn
ln
P
n
h
i 1
n
i
h
i 1
n
i
/ Vi
O
二、均方根速度(考虑了射线偏折现象):
1、均方根速度的引入(沿射线路径) 对于一水平界面当上覆介质不均匀时,把时距曲线近似为 双曲线,再动校中按双曲线进行校正,均方根速度就是在 不为双曲线关系的时距方程简化为双曲线关系引入的一种 速度。 O 2、均方根速度的推导:
八. 沉积岩中速度的一般规律:
1. 沉积岩的沉积规律呈层状分布;
O
V
2.速度随深度增加而增加,且具有
垂直方向特性, 而速度梯度随深度 增加而减小;如右图所示. 3.速度水平方向变化特点:速度的 水平梯度小于垂直梯度;
Z
4、地质构造对波的速度会产生影响。
§7.2几种速度概念
对地下复杂的地质介质情况作不同的假设,不同的速 度获取方法与计算方法或不同的用途而引出相应速度, 而每种速度都有其本身的意义,引入的原因,计算与 测定方法,以及使用范围等,而且随地震勘探的法而 出现变化或淘汰。 1. 平均速度 2. 均方根速度 3. 等效速度 4. 叠加速度
600-800

地震波的速

地震波的速

一般地,随岩石 埋藏深度的增加, 地震波的速度增 大,垂直梯度减 小。
22
六、与孔隙度和流体性质的关系
岩石孔隙度示意图
流体(孔隙) Vf
岩石骨架
Vr
1 1 V Vf Vr
2021/2/24
23
当考虑流体压力变化影响因素时,引入压差调 节系数C,上式变为:
1 C 1 C
V Vf
Vr
——孔隙度;
射,炮检距 OS1 等于 x1 。
x1 2[1000 tg10 1000 tg1642 1000 tg2010] 1684 米
2021/2/24
57
按照上述方法,可以计算出以不同角度入射 到 R3 界面的各条射线的射线平均速度。结 果如下:
1 10 2 20 3 25
2021/2/24
29
2021/2/24
30
2021/2/24
理 论 曲 线 图
31
八、沉积岩中速度的一般分布规律:
1、沉积岩的成层沉积决定了速度剖面上 成层分布。
2、速度梯度是随深度的增加而减小的。 3、一般地,速度的水平梯度不会很大, 细致处理和解释资料时,考虑速度的水 平梯度还是必要的。如构造破坏(断 层)、地层不整合及尖灭。
5000) 16042 3000
1
sin (1 sin16042
6000) 5000
20010
这条射线向下入射到 R3 界面时在三层介质中每一层 的传播路程长度分别是 l1、l2、l3
l1
1000 c os10 0
1061米
l2
1000 c os16 0 42
1044米
l3
1000 c os 20 010

地震勘探原理

地震勘探原理

第四章 地震剖面的形成(15学时)第一节 速度的概念及其相互关系一、速度的用途1、 在地震勘探的各个阶段中,速度是不可缺少的重要参数,其重要用途有以下几方面:设计多次覆盖观海系统,确定组合检波形成,都需要知道有效波和干扰波的速度。

剩余时差: ⎪⎪⎩⎪⎪⎨⎧-≤≤≤≤⇒⎪⎪⎩⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧-≤∆≤≤∆≤⇒-≤≤≤≤-=**n n T V n n T V o n n T t n n T t o n n y n n y o vv x t F F x F F F d to td 112111211121)11(2222δχδδ有有有有有2、速度是资料处理所必须的参数动校正:ot v x t 222=∆精校正:)()(1221111v h v h v h v h v h v h o o s o o +++++ 偏移迭加需要偏移速度,迭加速度等3、 资料解释中的应用:(1)时深转换的重要参数,把时间剖面转换成深度剖面利用下式:o av t V h 21=(2)利用速度资料计算空校量板,进行偏移归位(3)根据速度资料辨别波的性质:如:多次波(低速异常)、绕射波(高速异常)、 利用速度资料,计算空气校量板,进行偏移归位。

折射波、面波、声波。

(4)利用速度资料进行制作合成地震记录,确定地震剖面上的地质层位。

11221122)()()()(v v v v t a b t t x ρρρρδδ+-=⨯=(5)利用速度纵向和横向变化规律,研究地层沉积特征和沉积模式。

(6)利用层速度资料,直接划分地层和岩性,进行烃类检测。

(7)利用纵波和横波速度的比值,判别粮店性质(含气→低速),上此可见速度资料对地震勘探的各个环节都会产生影响,而最终都影响到解释成果的精度,提取分析和利用速度资料,也是地震解释工作的一个重要组成部分。

二、速度的概念严格地讲,速度是矢量,具有大小和方向,它是空间计算的参数,即V=V (x 、y 、z ),这就是说,即使在同一岩层的不几部位和不同方向,地震波的传播速度也各不相同。

地震波速度资料解释

地震波速度资料解释

地震波速度资料的解释论文提要地震波速度是地震勘探中最重要的一个参数,是地震波运动学特征之一。

在资料处理和解释过程中,速度资料均十分重要。

例如在计算动校正时需要叠加速度,绘制构造图进行时深转换时需要平均速度。

近年来,速度资料在地震解释中应用得越来越广泛,概括起来有以下几方面:(1)进行时深转换、绘制深度剖面和构造图。

(2)根据速度资料识别波的性质,如多次波、绕射波和声波等。

(3)利用速度资料制作合成地震记录和理论地震模型,对地震记录作模拟解释。

(4)利用速度纵横向变化规律,研究地层沉积特征和相态展布。

(5)利用层速度资料,预测岩性分布和砂泥岩横向变化。

(6)利用速度资料计算反射系数图板,进行烃类检测,判别含气亮点。

(7)利用合成声波测井,进行砂体横向追踪和对比。

(8)利用速度资料预测地层异常压力。

由此可见,提取和分析速度资料是地震地质解释的一项重要的工作,熟悉各种有关的速度概念、速度资料的求取方法和影响速度的各种地质因素对于应用速度资料解决地质问题是很重要的。

正文一、理论研究和实际资料证实,地震波在岩层中的传播速度与岩层的性质、岩石的成分、密度、埋藏深度、地质时代、孔隙度、流体性质等因素有关,下面分别分析各种因素对速度的影响。

(一)影响速度的一般因素1.岩性由于各种岩石类型的成分不同,其传播地震波的速度是不同的(图5—1);有时即使是同一种岩石类型,由于结构不同其波速也在一定围变化。

地震波传播速度主要取决于构成这些岩石矿物的弹性性质,一般来说,火成岩孔隙很少或没有孔隙,地震波速度比变质岩和沉积岩的都高,且变化围小;变质岩的波速变化围较大,沉积岩波速最低,变化围大,这主要与沉积岩成分和结构复杂,受孔隙度和流体性质的影响较大有关。

表(5—1)是几种类型岩石与介质的波传播速度和波阻抗资料。

2.密度通过大量岩石样品物性研究和数据分析整理,发现地震波速度与岩石体积密度之间(图5—1(a)、(b)),存在着一种令人满意的近似关系。

《地震波速度》课件

《地震波速度》课件

地震波的类型
P波和S波
地震波分为纵波和横波,纵波是一种压缩波,可以 在所有物质(固体、液体和气体)中传播;横波是 一种横振波,只能在固体中传播。
表面波
地震波在地表面传播时会产生表面波,它的速度比 体波慢,但振幅大,是地震破坏的主要来源之一。
地震波速度的测定方法
1
直接法
测量地震波在地下直接传播的速度,包括对井下岩心和地震记录进行分析等。
地震波速度
地震波速度是研究地震的重要参数之一。通过研究地震波速度的变化,我们 可以了解地球的内部结构,并用于地震勘探和监测。
引言
定义和意义
地震波速度是地震波在不同介质中传播的速度,它可以反映介质的物理性质和内部结构。
研究重要性
研究地震波速度是理解地震产生机制、预测地震危险性、探测地下物质和构造等方面的关键。
郭视频. 中亚高原晚新生代构造变形、地震地质 与地震云图[M]. 四川科学技术出版社,2015.
Friedrich, A. M., and D. A. Yuen. "Seismic anisotropy and the upper mantle." Annual Review of Earth and Planetary Sciences 38 (2010): 323-352.
总结与展望
研究现状
目前,地震波速度的研究已经成为地球物理学、地 球科学和地质学等领域不可或缺的内容。
未来研究方向
未来的研究方向是更准确地测定地震波速度,并将 其应用于地震灾害预测、地质灾害防治和地球物理 学研究的广泛领域。
参考文献
1. 2. 3.
朱宝山, 刘攀峰. 地震学文献综述[J ].地震地 质,1997(4).

论地震波速度在地震勘探中的应用

论地震波速度在地震勘探中的应用

论地震波速度在地震勘探中的应用论地震波速度在地震勘探中的应用论文提要地震勘探是地球物理勘探中的一种重要的方法,始于19世纪中叶,近五十年来经历了光点记录、模拟磁带记录、数字磁带记录三个阶段,广泛的应用于石油和天然气资源勘查、煤田勘查、工程地质勘查、及某些金属矿的勘查等方面。

地震勘探利用地震波在不同的岩石中的传播速度不同,研究地下的地质构造,判断油气藏等的可能储藏位置。

在这个过程中,地震波速度是一个重要的参数,根据不同的实际情况,可将地震波速度分为均一速度、层速度、等效速度、叠加速度、均方根速度等具有不同意义的速度,可谓是贯穿整个地震资料处理的过程。

正确的应用各种速度可以使所得资料更准确,更接近地下实际形态。

正文一、地震勘探发展史地震勘探是地球物理勘探中的一种最重要的方法。

它的原理是由人工制造的强烈的震动(一般是在地下不深处的爆炸)所引起的弹性波在岩石中的传播时,常遇到岩层的分界面,便产生反射波或折射波,在它返回地面时用高度灵敏的仪器记录下来,根据波的传播路线和时间,确定发生反射波或折射波的岩层介面的埋藏深度和形状,认识地下地质构造,以寻找油气圈闭。

地震勘探始于19世纪中叶。

1845年,R.马利特曾用人工激发的地震波来测量弹性波在地壳中的传播速度。

这可以说是地震勘探方法的萌芽。

在第一次世界大战期间,交战双方都曾利用重炮后坐力产生的地震波来确定对方的炮位。

反射法地震勘探最早起源于1913年前后R.费森登的工作,但当时的技术尚未达到能够实际应用的水平。

1921年,J.C.卡彻将反射法勘探投入实际应用,在美国俄克拉何马州首次记录到人工地震产生的清晰的反射波。

1930年,通过反射法地震勘探工作,在该地区发现了3个油田。

从此,反射法进入了工业应用的阶段。

50-60年代,反射法的光点照相记录方式被模拟磁带记录方式所代替,从而可选用不同因素进行多次回放,提高了记录质量。

70年代,模拟磁带记录又为数字磁带记录所取代,形成了以高速数字计算机为基础的数字记录、多次覆盖技术、地震数据处理技术相互结合的完整技术系统,大大提高了记录精度和解决地质的能力。

地震勘探原理--第四章

地震勘探原理--第四章

19
问题2 在M点自激自收时间tM 小于在O点发S点收得到R点 的反射时间tORS。
toM
tORS
2h = v
1 2 = x + 4h 2 v
同时来自R点的反射两者有时间差,这是因为炮检距不 为零引起的。
20
正常时差定义
定义一 水平界面时,对界面上某点以炮检距x进行观测得到 的反射旅行时与在零炮检距得到的反射旅行时之差。 正常时差也就是炮检距不为零引起的时差。 定义二 在水平界面下,各观测点相对于震源的炮检距不同引 起的反射波旅行时间差。 在水平界面下两种定义的定量关系相同。 正常时差的概念非常重要,它是判断地震记录上观察到 反射的主要标准
21
4、正常时差的定量计算
Δt = t − t 0 = 1 V x 2 + 4h 2 − 2h V
或 其中
x2 Δt = + t0 − t0 V2
t0 =
2h V
代表的是M点的自激自收时间。
22
这个精确公式有时讨论问题不够直观。在一定的条件 下,用二项式展开可以得到简单的近似公式,以后讨 论某些问题时经常用到。
以倾斜界面双曲线为例,根据双曲线的特点可知,该 方程的极小坐标为:
⎧ xmin = ±2h sin ϕ ⎪ ⎨ t = 2h cos ϕ ⎪ min V ⎩
•对于倾斜界面的共炮点反射波时距曲 线,其极小点总是相对激发点偏向界面 的上倾方向一侧。 由右图还可看到,xmin点实际上就是虚震 源在测线上的投影,由震源点O到xmin的 反射波射线是所有射线中最短的一条, 并且反射波时距曲线是对称于过xmin点的 t轴的。
公式变换
x 2 2 t = ( ) + t0 V
式中
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

n
x2
vi hi
i1 (vm 2 vi 2 )1/ 2
时,可以把反射波的传播时间和炮检距以x2的幂级数展开
t 2 t02 i x2i i 1
这个级数是收敛的。Vm是n层中最大的层速,
n
t0 ti i 1
40
4.2.2 均方根速度VR
t2
t02
x2 vR 2
(
vQ vR
4.1.1 速度与岩石弹性常数的关系 4.1.2 速度与岩性的关系 4.1.3 速度与岩石密度的关系 4.1.4 速度与地质年代和构造历史的关系 4.1.5 地震波速度与埋藏深度的关系 4.1.6 与孔隙度和流体性质的关系 4.1.7 与频率和温度压力的关系 4.1.8 沉积岩中速度分布的一般规律
5
1 1
v v f vm
式中,V是岩石实际速度 ;Vf是孔隙流体中的速度;Vm 是岩石基质的速度;Φ是岩石的孔隙度。
23
4.1.6 与孔隙度和流体性质的关系
在上述公式中速度还受孔隙流体压力的影响,流体压
力降低,流体压力这项的百分比影响就变小,当流体
压力接近大气压时,其影响变得最小。因此在实际条
件下,时间平均方程必须用一个压差调节系数C加以修
18
4.1.5 地震波速度与埋藏深度的 关系
一般来说,随深度的增加地震波速度增 大。不同的地区,速度随深度变化的垂 直梯度可能相差很大。一般地说,在浅 处速度梯度较大;深度增加时,梯度减 小。
19
4.1.5 地震波速度与埋藏深度的 关系
20
4.1 影响地震波传播速度的因素 分析
4.1.1 速度与岩石弹性常数的关系 4.1.2 速度与岩性的关系 4.1.3 速度与岩石密度的关系 4.1.4 速度与地质年代和构造历史的关系 4.1.5 地震波速度与埋藏深度的关系 4.1.6 与孔隙度和流体性质的关系 4.1.7 与频率和温度压力的关系 4.1.8 沉积岩中速度分布的一般规律
在地震资料处理、解释过程中,还会用到一些 其它的速度概念
叠加速度、偏移速度、平均速度、均方根速度、层 速度等
3
第4章 地震波速度
4.1 影响地震波传播速度的因素分析 4.2 各种地震波速度的概念 4.3 地震波速度的测定方法 4.4 各种地震波速度间的转换关系
4
4.1 影响地震波传播速度的因素分析
地震勘探原理
主讲人:陈双全
地震勘探原理
第1章 绪论 第2章 地震波运动学理论 第2+章 地震信号的频谱分析 第3章 地震资料采集方法与技术 第4章 地震波速度 第5章 地震资料解释的理论基础
2
第4章 地震波速度
地震波的速度是地震勘探中最重要的一个参数。 地震波的传播速度
所谓波动就是震动在介质中的传播 单位时间内地震波沿波线方向传播的距离 波的速度与波的类型和介质有关 波的速度是介质的一种性质
4.1.1 速度与岩石弹性常数的关系
地震纵波和横波与介质的弹性常数之间 的定量关系:
vP
2
E(1 ) (1 )(1 2 )
vS
E
2(1 )
其中λ、μ是介质的弹性常数(拉梅系
数),E是杨氏模量,ρ是介质的密度 ,
σ是泊松比。
6
4.1.1 速度与岩石弹性常数的关系
同一介质中纵波和横波速度比的关系如下
15
4.1.4 速度与地质年代和构造历 史的关系
同样深度、成分相似的岩石,当地质年代不同时,波 速也不同,年老的岩石比年青的岩石具有较高的速度。 速度与构造运动的关系,在不同地区有不同的表现。 在强烈褶皱地区,经常观测到速度的增大;而在隆起 的构造顶部、则发现速度减低。 一般地说,地震波在岩石中的传播速度随地质过程中 的构造作用力的场强而增大。根据在实验室对岩石样 品的分析发现地震波的速度与压力之间有一定的关系, 速度随压力的增加而增加。 此外压力的方向不同,地震波沿不同方向传播的速度 也就不同。
vP 2(1 )
vSBiblioteka 1 2纵波与横波速度之比取决于泊松比。泊松比σ的值在 大多数情况下约等于0.25,所以,纵波与横波的速度 比位VP/VS一般为1.73。 只有在最为疏松的岩石中σ≈0.5。
7
4.1 影响地震波传播速度的因素分析
4.1.1 速度与岩石弹性常数的关系 4.1.2 速度与岩性的关系 4.1.3 速度与岩石密度的关系 4.1.4 速度与地质年代和构造历史的关系 4.1.5 地震波速度与埋藏深度的关系 4.1.6 与孔隙度和流体性质的关系 4.1.7 与频率和温度压力的关系 4.1.8 沉积岩中速度分布的一般规律
26
4.1.7 与频率和温度压力的关系
与频率无关(无频散) 温度每升高100度,速度减少5~6%。
27
4.1 影响地震波传播速度的因素 分析
4.1.1 速度与岩石弹性常数的关系 4.1.2 速度与岩性的关系 4.1.3 速度与岩石密度的关系 4.1.4 速度与地质年代和构造历史的关系 4.1.5 地震波速度与埋藏深度的关系 4.1.6 与孔隙度和流体性质的关系 4.1.7 与频率和温度压力的关系 4.1.8 沉积岩中速度分布的一般规律
16
4.1.4 速度与地质年代和构造历 史的关系
一般来说, 地层越深,地震
波速度越大。 沉积年代越久, 地震波速度越大
17
4.1 影响地震波传播速度的因素 分析
4.1.1 速度与岩石弹性常数的关系 4.1.2 速度与岩性的关系 4.1.3 速度与岩石密度的关系 4.1.4 速度与地质年代和构造历史的关系 4.1.5 地震波速度与埋藏深度的关系 4.1.6 与孔隙度和流体性质的关系 4.1.7 与频率和温度压力的关系 4.1.8 沉积岩中速度分布的一般规律
12
4.1.3 速度与岩石密度的关系
13
4.1.3 速度与岩石密度的关系
14
4.1 影响地震波传播速度的因素 分析
4.1.1 速度与岩石弹性常数的关系 4.1.2 速度与岩性的关系 4.1.3 速度与岩石密度的关系 4.1.4 速度与地质年代和构造历史的关系 4.1.5 地震波速度与埋藏深度的关系 4.1.6 与孔隙度和流体性质的关系 4.1.7 与频率和温度压力的关系 4.1.8 沉积岩中速度分布的一般规律
n
n
hi
tivi
vav
i 1
n hi
v i1 i
i 1 n
ti
i 1
33
4.2.1 平均速度Vav
从另一个角度来讨论平均速度的含义。 定义在水平层状介质中,波沿直线传播所走过的总路程 与所需总时间之比。
vas
O*S tO*S
2(l1 l2 lm ) 2(tl2 tl2 tln )
( h1 h2 hn )
vav
c os
h1
c os
h2
c os
hn
c
os
c os
c os
v1
v2
vn
34
4.2.1 平均速度Vav
同样得到
n
n
hi
tivi
vav
i 1
n hi
v i1 i
i 1 n
ti
i 1
要注意:这里的地震波传播,真正遵循的是“沿最小 时间路程传播”,在非均匀介质(如层状介质)中,最 小时间路程将是折线而不是直线。
8
4.1.2 速度与岩性的关系
9
4.1.2 速度与岩性的关系
10
4.1.2 速度与岩性的关系
11
4.1 影响地震波传播速度的因素 分析
4.1.1 速度与岩石弹性常数的关系 4.1.2 速度与岩性的关系 4.1.3 速度与岩石密度的关系 4.1.4 速度与地质年代和构造历史的关系 4.1.5 地震波速度与埋藏深度的关系 4.1.6 与孔隙度和流体性质的关系 4.1.7 与频率和温度压力的关系 4.1.8 沉积岩中速度分布的一般规律
而在均匀介质,水平界面情况下反射波的时距曲线是一条双曲线。

t 1 4h2 x2 v
t2
t
2 0
x2 v2
t2
1 v2
x2
t02
式中h0是界面的深度;t0是双程垂直反射时间;x是接收点与激发 点距离;t是在x处接收到反射波的时间。 上式另一个意义在于,把时距曲线的方程可以写成这种形式,并 作t2-x2图形,波以常速度传播时,这是一条直线,斜率为1/V2。 也即速度是x2项前系数分母的平方根。 下面引入的几个速度都贯穿这种思路。
31
4.2 各种地震波速度的概念
4.2.1 平均速度 4.2.2 均方根速度 4.2.3 等效速度 4.2.4 叠加速度 4.2.5 层速度
32
4.2.1 平均速度Vav
平均速度定义为:“一组水平层状介质中某一 界面以上介质的平均速度就是地震波垂直穿过 该界面以上各层的总厚度与总的传播时间之 比”。n层水平层状介质的平均速度是
37
水平层状介质的时距曲线
问题:水平层状介质的反射波时距曲 线是否还是双曲线?如果不是的话, 能否近似地把它看成双曲线?
在实际生产工作中,不管介质是否均 匀,都采用双曲线公式计算动校正量, 也即把反射波时距曲线总是看成双曲 线。
当然,这样做是有误差的。
均方根速度的概念就是在处理上述问 题时,把不是双曲线关系的时距方程 简化为双曲线关系时引入的一个速度 概念。
sinn P vn
n
t
ti
i1 1 P 2vi 2
n
x
Pti vi2
i1 1 P 2vi 2
式中ti是波在第i层介质中沿垂直界面的方向双程传播的时间。这
两个方程不能写成简单的t=f(x)显函数形式。
39
4.2.2 均方根速度VR
从数学上对水平界面时距曲线方程的性质进行了研究,得出了对 地震勘探很有意义的结论。这结论是:对n层水平层状介质,当
相关文档
最新文档